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ANALYSIS OF THE HETEROGENEOUS MULTISCALE METHOD
FOR PARABOLIC HOMOGENIZATION PROBLEMS

PINGBING MING AND PINGWEN ZHANG

Abstract. The heterogeneous multiscale method (HMM) is applied to var-
ious parabolic problems with multiscale coefficients. These problems can be
either linear or nonlinear. Optimal estimates are proved for the error between
the HMM solution and the homogenized solution.

1. Introduction and main results

1.1. Generality. Consider the following parabolic problem:

(1.1)

⎧⎪⎨⎪⎩
∂tu

ε −∇ · (aε∇uε) = f in D × (0, T ) =: Q,

uε = 0 on ∂D × (0, T ),

uε|t=0 = u0.

Here ε is a small parameter that signifies the multiscale nature of the problem. We
let D be a bounded domain in R

d and T a positive real number. A problem of this
type is interesting because of its simplicity and its relevance to several important
practical problems, such as the flow in porous media and the mechanical properties
of composite materials. In contrast to the elliptic problems there may be oscillations
in the temporal direction besides the oscillation in the spatial direction.

On the analytic side, the following fact is known about (1.1). In the sense of
parabolic H-convergence (see [25], [8], [12]), introduced with minor modification
by Spagnolo and Colombini under the name of G-convergence or PG-convergence
(see [11], [22], [23], [24]), for every f ∈ L2(0, T ; H−1(D)) and u0 ∈ L2(D), the
sequence {uε} the solutions of (1.1) satisfies

uε ⇀ U weakly in L2(0, T ; H1
0 (D)),

aε∇uε ⇀ A∇U weakly in L2(Q; Rd),

Received by the editor June 3, 2003 and, in revised form, December 6, 2005.
2000 Mathematics Subject Classification. Primary 65N30, 35K05, 65N15.
Key words and phrases. Heterogeneous multiscale method, parabolic homogenization prob-

lems, finite element methods.
The first author was partially supported by the National Natural Science Foundation of China

under the grant 10571172 and also supported by the National Basic Research Program under the
grant 2005CB321704.

The second author was partially supported by National Natural Science Foundation of China
for Distinguished Young Scholars 10225103 and also supported by the National Basic Research
Program under the grant 2005CB321704.

c©2006 American Mathematical Society
Reverts to public domain 28 years from publication

153



154 P.-B. MING AND P.-W. ZHANG

where U is the unique solution of the problem

(1.2)

⎧⎪⎨⎪⎩
∂tU −∇ · (A∇U) = f in Q,

U = 0 on ∂D × (0, T ],

U |t=0 = u0.

In general, there are no explicit formulas for the effective matrix A.
Classical numerical methods for this problem are designed to resolve the full

details of the fine scale problem (1.1) and without taking into account the special
features of the coefficient matrix aε. In contrast, the modern multiscale methods
are designed specifically for retrieving partial information about uε with sublinear
cost [16], i.e., the total cost grows sublinearly with the cost of solving the full fine
scale problem. To this end, the methods have to take full advantage of the special
features of the problem such as scale separation and self-similarity of the solution.
One cannot hope to get an algorithm with sublinear cost for a fully general problem.

The heterogeneous multiscale method introduced in [15] is a general method-
ology for designing a sublinear algorithm by exploiting the scale separation and
other special features of the problem. HMM consists of two ingredients: an overall
macroscopic scheme for macrovariables on a macrogrid and estimating the miss-
ing macroscopic data from the microscopic model. The efficiency of HMM lies in
the ability to extract the missing macroscale data from microscale models with
minimum cost, by exploiting scale separation.

For (1.1), the macroscopic solver is chosen to be the standard piecewise linear
finite element method [10] over a macroscopic triangulation TH with mesh size H as
the spatial solver, and the backward Euler scheme as the temporal discretization.
Many other conventional discretization methods could be proper candidates as the
macroscopic solver. For example, the finite difference method and the discontinuous
Galerkin method have been employed as the macroscopic solver in [1] and [9],
respectively.

We formulate our method as follows. For 1 ≤ k ≤ n, let tk = k∆t with ∆t = T/n.
Let U0

H = QHu0 with QH the L2 projection operator from H1
0 (D) to XH , where

XH is the macroscopic finite element space. Let Uk
H ∈ XH be the solution of the

problem

(1.3) (∂Uk
H , V ) + AH(tk; Uk

H , V ) = (fk, V ) for all V ∈ XH ,

where ∂Uk
H = (Uk

H − Uk−1
H )/∆t and fk = ∆t−1

∫ tk+∆t

tk
f(x, s) ds.

It remains to estimate the stiffness matrix, which amounts to evaluating the
effective bilinear form AH(tn; V, W ) for any V, W ∈ XH . We write AH as

AH(tn; V, W ) =
∫
D

∇W · AH(x, tn)∇V dx =
∑

K∈TH

∫
K

∇W · AH(x, tn)∇V dx

�
∑

K∈TH

|K|∇W · AH(xK , tn)∇V,

where xK is the barycenter of K. We approximate AH(xK , tn) by solving the
Cauchy-Dirichlet problem:

(1.4)

⎧⎪⎨⎪⎩
∂tv

ε −∇ ·
(
aε∇vε

)
= 0 in (xK + Iδ) × (tn, tn + τn),

vε = V on ∂Iδ × (tn, tn + τn),

vε|t=tn
= V.
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We then let

∇W · AH(xK , tn)∇V � 1
τn|Iδ|

tn+τn∫
tn

∫
Iδ

∇wε · aε∇vε dx dt,

where τn denotes the microsimulation time that evolves in nth macrotime step,
and Iδ = δY with the unit cell Y : = (−1/2, 1/2)d. For simplicity, we denote
Iδ := xK + Iδ, Tn: = (tn, tn + τn), and the cylinder Qn: = Iδ × Tn. We thus rewrite
AH as

(1.5) AH(tn; V, W ): =
∑

K∈TH

|K|
|Qn|

∫
Qn

∇wε · aε∇vε dx dt.

In (1.4), we use the Dirichlet boundary condition and the Cauchy initial con-
dition. One may also use other boundary conditions and initial conditions. For
example, we may use the Neumann or periodic boundary condition and the peri-
odic initial condition. In the case when aε = a(x, x/ε, t) and a(x, y, t) is periodic
in y, one can take Iδ to be xK + εY and impose the boundary/initial conditions,
as vε − V is periodic on the boundary of the cylinder (xK + εY ) × (tn, tn + ε2).

So far, the algorithm is quite general. The saving compared with solving the full
fine scale problem comes from the fact that we may choose Iδ and {τk} much smaller
than K and ∆t, respectively. The size of the microcell Iδ and the microsimulation
time {τk} are mainly determined by the accuracy, the cost, and the microstructure
of aε. The main purpose of the error analysis presented below is to help to assess
the performance of the method and give guidance for the designing of the methods,
namely, how we choose δ and {τk}, or types of cell problems.

Since HMM is based on standard macroscale numerical methods and uses the
microscale model only as a supplement, it is possible to analyze its stability and
accuracy properties using the traditional framework of numerical analysis. This
has already been illustrated in [14, 15, 17] and will be further elaborated in the
present paper. Roughly speaking, we will show that HMM is stable whenever the
macroscopic solver is stable. The overall error between the HMM solution and the
homogenized solution is controlled by the accuracy of the macroscopic solver, and
the consistency error emanates from the estimate of the macroscopic data from the
microscopic model, which will be denoted by e(HMM). Next we estimate e(HMM)
for two cases. One is aε = a(x, x/ε, t) with a(x, y, t) periodic in y, and the other is
aε = a(x, x/ε, t, t/ε2) with a(x, y, t, s) periodic in y and s.

We will always assume that aε(x, t) is symmetric and uniformly elliptic:

λI ≤ aε ≤ ΛI

for some λ, Λ > 0. We will use |·| to denote the abstract value of a scalar quantity
and the volume of a set.

Throughout this paper, the generic constant C is assumed to be independent
of the microscale ε, the mesh size H, the time step ∆t, the cell size δ, and the
microsimulation time {τk}n

k=1. We use the summation convention.

1.2. Main results. Define

(1.6) e(HMM) = max
1≤k≤n

ek(HMM)
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with
ek(HMM) = max

K∈TH

‖(A−AH)(xK , tk)‖,

where ‖ · ‖ denotes the Euclidean norm.
Our main results for the linear problem are as follows.

Theorem 1.1. Let U and Un
H be the solutions of (1.2) and (1.3), respectively.

If U is sufficiently smooth, then there exists a constant C that is independent of
ε, δ, {τk}n

k=1, H, ∆t, such that

‖Un
H − U(x, tn)‖0 + |||Un

H − U(x, tn)||| ≤ C
(
∆t + H2 + e(HMM)

)
,(1.7)

‖Un
H − U(x, tn)‖1 ≤ C

(
∆t + H + e(HMM)∆t−1/2

)
,(1.8)

where |||·||| is the weighted space-time H1 norm that is defined for every V = {V k}n
k=1

with V k ∈ X for k = 1, . . . , n as

|||V |||: =
( n∑

k=1

∆t‖∇V k‖2
0

)1/2

.

At this stage, no assumption on the form of aε is necessary. For Un
H to converge

to U(x, tn), i.e., e(HMM) → 0. U must be chosen as the solution of the homoge-
nized equation, which we now assume exists. To obtain a qualitative estimate for
e(HMM), we must make more assumptions on aε.

We estimate e(HMM) for two special cases that depend on the estimate of the
homogenized problem (1.1) presented in the Appendix. The extension to other
cases [2, 28] is beyond this paper, since it depends heavily on the qualitative esti-
mates of the corresponding homogenization problem that presently seems missing.

Theorem 1.2. For aε = a(x, x/ε, t) with a(x, y, t) periodic in y with period Y ,
and the cell problem (1.4) is solved with Dirichlet boundary condition and Cauchy
initial condition, we have

(1.9) e(HMM) ≤ C
[
δ +

ε

δ
+ max

1≤k≤n

(
τk +

ε2

τk

)]
.

Another important case for which the estimate of e(HMM) can be obtained is
the so-called self-similar case, i.e., aε = a(x, x/ε, t, t/ε2). In this case, we have

Theorem 1.3. For aε = a(x, x/ε, t, t/ε2) with a(x, y, t, s) periodic in y and s with
period Y and 1, respectively, and the cell problem (1.4) solved with the Dirichlet
boundary condition and the Cauchy initial condition, we have

(1.10) e(HMM) ≤ C
[
δ +

(ε

δ

)1/2

+ max
1≤k≤n

(
τk +

ε

τ
1/2
k

)]
.

Similar results with some modification hold for the nonlinear problems. The
details are given in §4.

1.3. Parameter choices. In this part, we analyze the sources of each term that
appears in the upper bound of e(HMM). It is clear that the term ε/δ comes from
the boundary condition, while the term ε2/τk comes from the initial condition. It
is clear to see the corresponding terms vanishes if we let δ/ε, τk/ε2 ∈ N, and vε −V
be periodic on ∂Qn.
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For aε = a(x, x/ε, t), we may choose δ = M1ε � ε1/2 and τk = M2ε
2 � ε for

k = 1, . . . , n. With such a choice of parameters, we get

(1.11) e(HMM) ≤ Cε1/2.

For aε = a(x, x/ε, t, t/ε2), we may choose δ = M1ε � ε1/3 and τk = M2ε
2 � ε2/3

for k = 1, . . . , n. With such a choice of parameters, we have the overall estimate
for e(HMM) as

(1.12) e(HMM) ≤ Cε1/3.

Actually, a formal asymptotical expansion suggests that there is no oscillation
in the temporal direction when aε = a(x, x/ε, t). Therefore, we may replace (1.4)
by an elliptic cell problem:

(1.13)

{
−∇ ·

(
aε(·, tn)∇vε

)
= 0 in Iδ,

vε = V on ∂Iδ.

Define wε in the same way, and AH is defined as

∇W · AH(xK , tn)∇V =
1
|Iδ|

∫
Iδ

∇wε · aε(·, tn)∇vε dx.

Corollary 1.4. For aε = a(x, x/ε, t) with a(x, y, t) periodic in y with period Y , if
we use the cell problem (1.13), then

(1.14) e(HMM) ≤ C
(
δ +

ε

δ

)
.

The proof of (1.14) is essentially the same as the elliptic case as we have done
in [17]. Actually, it may also follow the proof of Theorem 1.2 literally; we omit the
proof.

2. Analysis of the method

2.1. Preliminaries and notation. We introduce some notation. Denote by
L2(D), Hm(D) and Hm

0 (D), m ∈ Z, the usual Lebesgue space and Sobolev spaces.
(·, ·)D and ‖ ·‖m,D will be denoted as the L2 inner-product and norms, respectively,
and the subscript will be omitted if no confusion can occur.

∫
−

D
u dx is defined as

the mean value of u over D. For any Banach space U with norm ‖ · ‖U , the space
L2(0, T ; U) consists of all measurable functions u : [0, T ] → U with

‖u‖L2(0,T ;U): =
(∫ T

0

‖u(t)‖2
U dt

)1/2

.

The space Hm(0, T ; U) comprises of all functions dku/dtk ∈ L2(0, T ; U) for 0 ≤
k ≤ m, which is equipped with the norm

‖u‖Hm(0,T ;U): =
(∫ T

0

∑
0≤k≤m

‖dku/dtk‖2
U dt

)1/2

.

The space C([0, T ]; U) comprises all continuous functions u : [0, T ] → U with

‖u‖C([0,T ];U) = max
0≤t≤T

‖u(t)‖U .

For vectors x = (x1, x2) and y = (y1, y2) ∈ R
2, x ⊗ y is a 2 × 2 matrix with

elements (x⊗y)ij := xiyj . A matrix product is defined by A : B = tr(AT B), where
tr(A) is the trace of a 2 × 2 matrix A.
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The following simple result underlines the stability of HMM for problem (1.1).
A similar one for the elliptic problem can be found in [17, Lemma 1.9].

Lemma 2.1. Given a domain Ω ∈ R
d, T > 0 and a linear function V , let ϕ be the

solution of

(2.1)

⎧⎪⎨⎪⎩
∂tϕ −∇ ·

(
a∇ϕ

)
= 0 in Ω × (0, T ],

ϕ = V on ∂Ω × (0, T ],

ϕ|t=0 = V,

where a =
(
aij

)
satisfies

λI ≤ a ≤ ΛI a.e. (x, t) ∈ Ω × (0, T ].

Then for any t > 0, we have
(2.2)

‖∇V ‖0,Ω ≤ ‖∇ϕ(x, t)‖0,Ω and
( t∫

0

∫
Ω

∇ϕ · a∇ϕ
)1/2

≤
( t∫

0

∫
Ω

∇V · a∇V
)1/2

.

Proof. Note that ϕ = V on the boundary of Ω, using the fact that ∇V is a constant
in Ω, and integration by parts leads to∫

Ω

∇(ϕ − V )(x, t)∇V (x) dx = 0 for any t > 0,

which implies∫
Ω

|∇ϕ(x, t)|2 dx =
∫
Ω

|∇V (x)|2 dx +
∫
Ω

|∇(ϕ − V )(x, t)|2 dx.

This gives the first result of (2.2). Multiplying the first equation of (2.1) by ϕ− V
and integrating by parts, we obtain

1
2

∫
Ω

|ϕ(x, t) − V |2 dx +

t∫
0

∫
Ω

∇ϕ(x, s) · a(x, s)∇ϕ(x, s) dx ds

=

t∫
0

∫
Ω

∇V (x) · a(x, s)∇ϕ(x, s) dx ds.(2.3)

By the Cauchy-Schwartz inequality,∫
Ω

∇V (x) · a(x, s)∇ϕ(x, s) dx ds ≤
( t∫

0

∫
Ω

∇ϕ(x, s) · a(x, s)∇ϕ(x, s) dx ds
)1/2

×
( t∫

0

∫
Ω

∇V (x) · a(x, s)∇V (x) dx ds
)1/2

.

A combination of the above two gives the second part of (2.2). �

Remark 2.2. For this result, the coefficient a =
(
aij

)
may depend on the solution,

i.e., (2.1) may be nonlinear.
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2.2. Generality. Using (2.2) with Ω = Iδ, for any V ∈ XH and 1 ≤ k ≤ n, we
have

AH(tk; V, V ) =
∑

K∈TH

|K|
∫
−

Qk

∇vε · aε∇vε ≥ λ
∑

K∈TH

|K|
∫
−

Qk

|∇vε|2

≥ λ
∑

K∈TH

|K|
∫
−

Qk

|∇V |2 = λ
∑

K∈TH

∫
K

|∇V |2

= λ‖∇V ‖2
0.(2.4)

Similarly, we get

AH(tk; V, W ) ≤
∑

K∈TH

|K|
(∫
−

Qk

∇vε · aε∇vε
)1/2(∫

−
Qk

∇wε · aε∇wε
)1/2

≤
∑

K∈TH

|K|
(∫
−

Qk

∇V · aε∇V
)1/2(∫

−
Qk

∇W · aε∇W
)1/2

≤ Λ
∑

K∈TH

|K| |∇V | |∇W | = Λ
∑

K∈TH

(∫
K

|∇V |2
)1/2(∫

K

|∇W |2
)1/2

≤ Λ‖∇V ‖0‖∇W‖0.(2.5)

The stability of the method is included in the following lemma. The proof is
standard by (2.4) and (2.5); we refer to [26] for details.

Lemma 2.3. There exists a constant C such that

‖Un
H‖0 + |||Un

H ||| ≤ C
(
‖u0‖0 +

( n∑
k=1

∆t‖fk‖2
−1,h

)1/2)
,(2.6)

‖∇Un
H‖0 ≤ C

(
‖u0‖1 +

( n∑
k=1

‖fk‖2
−1,h

)1/2)
,(2.7)

where ‖ · ‖−1,h is defined for any G ∈ L2(D) as

‖G‖−1,h = sup
V ∈XH

(G, V )
‖∇V ‖0

.

To prove Theorem 1.1, we define an auxiliary function Ũn
H ∈ XH as follows. Let

Ũ0
H = QHu0, and for 1 ≤ k ≤ n, Ũk

H ∈ XH satisfies

(2.8) (∂Ũk
H , V ) + A(tk; Ũk

H , V ) = (fk, V ) for all V ∈ XH ,

where A is defined as A(tk; V, W ) =
∑

K∈TH
|K|∇W · A(xK , tk)∇V for all V, W ∈

XH .
The error estimate for the above problem is well known [26]:

(2.9)
‖Ũn

H−U(x, tn)‖0+|||Ũn
H−U(x, tn)||| ≤ C(∆t+H2), ‖Ũn

H−U(x, tn)‖1 ≤ C(∆t+H).

Proof of Theorem 1.1. For 1 ≤ k ≤ n, define Ek: = Uk
H − Ũk

H . For any V ∈ XH , it
is clear that

(2.10) (∂Ek, V ) + A(tk; Ek, V ) = (F k, V ),

where (F k, V ): = A(tk; Uk
H , V ) − AH(tk; Uk

H , V ). By definition,

‖F k‖−1,h ≤ ek(HMM)‖∇Uk
H‖0.
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By (2.6) we have, since E0 = 0,

(2.11) ‖En‖0 + |||En||| ≤ Ce(HMM)|||Un
H ||| ≤ Ce(HMM).

Combining the above inequality and the first part of (2.9), we obtain (1.7).
Repeating the above steps, using (2.7) and (2.6), we obtain

‖∇En‖0 ≤ Ce(HMM)∆t−1/2|||Un
H ||| ≤ Ce(HMM)∆t−1/2.

The estimate (1.8) follows from the above estimate and the second part of (2.9). �

Remark 2.4. Noting that En ∈ XH for any n, and using (2.11) and the inverse
estimate [10], we get

‖En‖1 ≤ (C/H)‖En‖0 ≤ Ce(HMM)/H,

which together with the second part of (2.9) leads to

(2.12) ‖Un
H − U(x, tn)‖1 ≤ C(H + ∆t + e(HMM)/H).

3. Estimating e(HMM)

In this section, we estimate e(HMM) for two cases: one is aε = a(x, x/ε, t) and
the other is aε = a(x, x/ε, t, t/ε2). In both cases, the cell problem (1.4) is solved
with the Dirichlet boundary condition and the Cauchy initial condition. We will
use aε

K,n = a(xK , x/ε, tn) or aε
K,n = a(xK , x/ε, tn, t/ε2) and χK,n = χ(xK , x/ε, tn)

or χK,n = χ(xK , x/ε, tn, t/ε2) for simplicity, where χ is the solution of certain cell
problems (cf. (3.4) and (3.15)).

Estimating e(HMM) consists of two steps. First, we estimate ‖Ã − A‖. The
auxiliary operator Ã is defined by

(3.1) ∇W · Ã(xK , tn)∇V =
∫
−

Qn

∇Ŵ ε · aε
K,n∇V̂ ε for any W, V ∈ XH ,

where
V̂ ε = V + εχK,n · ∇V and Ŵ ε = W + εχK,n · ∇W.

Next we estimate ‖Ã − AH‖. This is achieved by

∇W · (Ã − AH)(xK , tn)∇V

=
∫
−

Qn

[∇Ŵ ε · aε
K,n∇(V̂ ε − vε) + ∇V̂ ε · aε

K,n∇(Ŵ ε − wε)](3.2)

−
∫
−

Qn

[∇wε · (aε − aε
K,n)∇vε + ∇(wε − Ŵ ε) · aε

K,n∇(vε − V̂ ε)].

Finally, estimating e(HMM) follows from the triangle inequality.

3.1. Estimating e(HMM) for the case when aε = a(x, x/ε, t). Denote by v̂ε

the solution of (1.4) with aε replaced by aε
K,n. By a standard a priori estimate

and (2.2), we have

(3.3) ‖∇(vε − v̂ε)‖L2(Qn) ≤ C(δ + τn)‖∇vε‖L2(Qn) ≤ C(δ + τn)‖∇V ‖L2(Qn).

For j = 1, . . . , d, χ = {χj}d
j=1 is periodic in y with period Y and satisfies

(3.4)
∂

∂yi

(
aik

∂χj

∂yk

)
(x, y, t) = −

( ∂

∂yi
aij

)
(x, y, t) in Y,

∫
Y

χj(x, y, t) dy = 0.
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This problem is solvable, and there exists a constant C such that for j = 1, . . . , d,

(3.5) |∇yχj(x, y, t)| ≤ C for all (x, t) ∈ Q and y ∈ Y.

The effective matrix is given by

(3.6) Aij(x, t) =
∫
−

Y

(
aij + aik

∂χj

∂yk

)
(x, y, t) dy i, j = 1, . . . , d.

A straightforward calculation gives

(3.7) ∇ ·
(
aε

K,n∇V̂ ε
)

= 0 and ∇ ·
(
aε

K,n∇Ŵ ε
)

= 0.

Define θε = v̂ε − V̂ ε, which obviously satisfies

(3.8)

⎧⎪⎨⎪⎩
∂tθ

ε −∇ ·
(
aε

K,n∇θε
)

= 0 in Qn,

θε = −εχK,n · ∇V on ∂Iδ × Tn,

θε|t=tn
= −εχK,n · ∇V.

Lemma 3.1. Let θε be solution of (3.8). There exists a constant independent of
ε, δ, and τn such that

(3.9) ‖∇θε‖L2(Qn) ≤ C
( ε

τ
1/2
n

+
(ε

δ

)1/2)
‖∇V ‖L2(Qn).

Proof. Multiplying both sides of (3.8)1 by θε
1: = θε+(V̂ ε−V )(1−ρε) and integrating

over Iδ, we obtain

(3.10)
1
2

∂

∂t

∫
Iδ

|θε
1|2 +

∫
Iδ

∇θε
1 · aε

K,n∇θε
1 =

∫
Iδ

∇(θε
1 − θε) · aε

K,n∇θε
1,

where the cut-off function ρε ∈ C∞
0 (Iδ), |∇ρε| ≤ C/ε, and

ρε =

{
1 if dist(x, ∂Iδ) ≥ 2ε,

0 if dist(x, ∂Iδ) ≤ ε.

It is clear to see that

|
∫

Iδ

∇(θε
1−θε)·aε

K,n∇θε
1|≤

(∫
Iδ

∇(θε
1−θε)·aε

K,n∇(θε
1−θε)

)
1/2

(∫
Iδ

∇θε
1·aε

K,n∇θε
1

)1/2

.

Substituting the above inequality into (3.10), we obtain
∂

∂t

∫
Iδ

|θε
1|2 +

∫
Iδ

∇θε
1 · aε

K,n∇θε
1 ≤

∫
Iδ

∇(θε
1 − θε) · aε

K,n∇(θε
1 − θε).

Integrating the above inequality over Tn, we get

λ‖∇θε
1‖2

L2(Qn) ≤ ‖θε
1(x, tn)‖2

L2(Iδ) + Λ‖∇(θε
1 − θε)‖2

L2(Qn),

which implies

‖∇θε‖L2(Qn) ≤ λ−1/2‖θε
1(x, tn)‖L2(Iδ) +

(
1 + (Λ/λ)1/2

)
‖∇(θε

1 − θε)‖L2(Qn).

A direct calculation gives

‖∇(θε
1 − θε)‖L2(Qn) ≤ C

(ε

δ

)1/2

‖∇V ‖L2(Qn),

‖θε
1(x, tn)‖L2(Iδ) = ε‖ρε(V̂ ε − V )‖L2(Iδ) ≤ Cε‖∇V ‖L2(Iδ).

A combination of the above three inequalities leads to (3.9). �

Next lemma concerns estimating ‖Ã − A‖.
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Lemma 3.2. There exists a constant C such that

(3.11) ‖(Ã − A)(xK , tn)‖ ≤ C
ε

δ
.

Proof. Denote by Iκε = κY , where κ is the integer part of δ/ε, i.e., κ = 	δ/ε
,
integrating by parts and using (3.7), we get∫

−
Iκε

∇(Ŵ ε − W ) · aε
K,n∇V̂ ε = 0.

Using the expression of V̂ ε and (3.6), we obtain∫
−

Iκε

∇W · aε
K,n∇V̂ ε = ∇W · A(xK , tn)∇V.

It follows from the above two equations that∫
−

Iκε

∇Ŵ ε · aε
K,n∇V̂ ε = ∇W · A(xK , tn)∇V.

Since V̂ ε, Ŵ ε and aε
K,n are independent of t, we write Ã as

∇W · Ã(xK , tn)∇V =
∫
−

Iδ

∇Ŵ ε · aε
K,n∇V̂ ε for any W, V ∈ XH .

It follows from the above equation and (3.5) that

|∇W · (A− Ã)(xK , tn)∇V |

≤
(
1 − |Iκε|

|Iδ|

)∫
−

Iκε

|∇W · aε
K,n∇V̂ ε| + |Iδ|−1

∫
Iδ\Iκε

|∇W · aε
K,n∇V̂ ε|(3.12)

≤ C
ε

δ
|∇W | |∇V |,

which in turn implies (3.11). �

Proof of (1.9). Using the first part of (3.7) and noting that

[Ŵ ερε − wε + W (1 − ρε)](x, t) = 0

for (x, t) ∈ ∂Iδ × Tn, integrating by parts, we have∫
−

Qn

∇V̂ ε · aε
K,n∇(Ŵ ερε − wε + W (1 − ρε)) = 0.

Therefore, we get∫
−

Qn

∇V̂ ε · aε
K,n∇(Ŵ ε − wε) =

∫
−

Qn

∇V̂ ε · aε
K,n∇[(Ŵ ε − W )(1 − ρε)]

=
∫
−

Iδ

∇V̂ ε · aε
K,n∇[(Ŵ ε − W )(1 − ρε)].

Symmetrically, using the second part of (3.7), we have

(3.13)
∫
−

Qn

∇Ŵ ε · aε
K,n∇(V̂ ε − vε) =

∫
−

Iδ

∇Ŵ ε · aε
K,n∇[(V̂ ε − V )(1 − ρε)].
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Using the above two identities, we rewrite (3.2) as

∇W · (Ã − AH)(xK , tn)∇V

=
∫
−

Iδ

[
∇Ŵ ε · aε

K,n∇[(V̂ ε − V )(1 − ρε)]

+ ∇V̂ ε · aε
K,n∇[(Ŵ ε − W )(1 − ρε)]

]
−

∫
−

Qn

[∇wε · (aε − aε
K,n)∇vε

+ ∇(wε − Ŵ ε) · aε
K,n∇(vε − V̂ ε)]

= :I1 + I2.

(3.14)

A direct calculation gives
|I1| ≤ C

ε

δ
|∇W | |∇V |.

It follows from (3.3) and (3.9) that

‖∇(vε − V̂ ε)‖L2(Qn) ≤ ‖∇(vε − v̂ε)‖L2(Qn) + ‖∇θε‖L2(Qn)

≤ C
(
δ + τn +

(ε

δ

)1/2

+
ε

τ
1/2
n

)
‖∇V ‖L2(Qn).

Similarly, we have

‖∇(wε − Ŵ ε)‖L2(Qn) ≤ C
(
δ + τn +

(ε

δ

)1/2

+
ε

τ
1/2
n

)
‖∇W‖L2(Qn).

Using the above two inequalities, we obtain

|I2| ≤ C
δ + τn

|Qn|
‖∇wε‖L2(Qn)‖∇vε‖L2(Qn)

+
Λ

|Qn|
‖∇(wε − Ŵ ε)‖L2(Qn)‖∇(vε − V̂ ε)‖L2(Qn)

≤ C|Qn|−1
(
δ + τn +

ε

δ
+

ε2

τn

)
‖∇W‖L2(Qn)‖∇V ‖L2(Qn)

= C
(
δ + τn +

ε

δ
+

ε2

τn

)
|∇W | |∇V |.

Summing up the estimates for I1 and I2, we obtain

‖(Ã − AH)(xK , tn)‖ ≤ C
(
δ + τn +

ε

δ
+

ε2

τn

)
,

which together with (3.11) gives (1.9). �
3.2. Estimating e(HMM) for the case when aε = a(x, x/ε, t, t/ε2). Next we
estimate e(HMM) for the case aε = a(x, x/ε, t, t/ε2) when a(x, y, t, s) is periodic in
y and s with period Y and 1, respectively. We assume that (1.4) is solved with the
Dirichlet boundary condition and the Cauchy initial condition. For j = 1, . . . , d,
χ(x, y, t, s) = {χj}d

j=1 is periodic in y and s with periods Y and 1, respectively,
and satisfies
(3.15)

∂sχ
j−∂yi

(
aik

∂χj

∂yk

)
(x, y, t, s) = (∂yi

aij)(x, y, t, s) and

1∫
0

∫
Y

χj(x, y, t, s) dy ds=0.
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The existence of χj is obvious since
1∫

0

∫
Y

(∂yi
aij)(x, y, t, s) dy ds = 0.

By [20], there exists a constant C such that for j = 1, . . . , d,
(3.16)

|χj(x, y, s, t)| + |∇yχj(x, y, s, t)| ≤ C for all (x, t) ∈ Q, y ∈ Y and s ∈ (0, 1).

Denote by v̂ε the solution of (1.4) with aε replaced by aε
K,n. Using the standard

a priori estimate and Lemma 2.1, we have

(3.17) ‖∇(vε − v̂ε)‖L2(Qn) ≤ C(δ + τn)‖∇V ‖L2(Qn).

It is easy to verify that

(3.18) ∂tV̂
ε −∇ ·

(
aε

K,n∇V̂ ε
)

= 0 and ∂tŴ
ε −∇ ·

(
aε

K,n∇Ŵ ε
)

= 0,

and

(3.19)

⎧⎪⎨⎪⎩
∂tθ

ε −∇ ·
(
aε

K,n∇θε
)

= 0 in Qn,

θε = −εχK,n · ∇V on ∂Iδ × Tn,

θε|t=tn
= −ε(χK,n · ∇V )|t=tn

.

For the correction θε, we have the following estimate (cf. (3.9)).

Lemma 3.3. There exists a constant C independent of ε, δ, and τn such that

(3.20) ‖∇θε‖L2(Qn) ≤ C
((ε

δ

)1/2

+
ε

τ
1/2
n

)
‖∇V ‖L2(Qn).

The proof of (3.20) is essentially the same as Lemma 3.1. The difference lies in
the second term in the right-hand side of the equation below.

Proof. Multiplying both sides of (3.19)1 by θε
1: = θε + (V̂ ε − V )(1 − ρε) and inte-

grating by parts, we get

(3.21)
1
2

∂

∂t

∫
Iδ

|θε
1|2+

∫
Iδ

∇θε
1·aε

K,n∇θε
1 =

∫
Iδ

∇θε
1·aε∇(θε

1−θε)+
1
2

∫
Iδ

θε
1∂t(θε

1−θε).

It follows from (3.15) that∫
Iδ

θε
1∂t(θε

1 − θε) = ε−1

∫
Iδ

∂sχK,n · ∇V (1 − ρε)θε
1

= ε−1

∫
Iδ

∇y · (aε
K,n(I + ∇yχK,n))∇V (1 − ρε)θε

1

=
∫

Iδ

∇ · (aε
K,n(I + ∇yχK,n))∇V (1 − ρε)θε

1.

Integrating by parts, we obtain∫
Iδ

θε
1∂t(θε

1 − θε) = −
∫

Iδ

∇(θε
1(1 − ρε)∇V ) : aε

K,n(I + ∇yχK,n)

= −
∫

Iδ

(1 − ρε)[∇θε
1 ⊗∇V ] : aε

K,n(I + ∇yχK,n)

+
∫

Iδ

θε
1∇ρε · aε

K,n(I + ∇yχK,n)∇V.(3.22)
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Using (3.16), we bound the first term in the right-hand side of the above equation
as

|
∫

Iδ

(1 − ρε)[∇θε
1 ⊗∇V ] : aε

K,n(I + ∇yχK,n)|

≤ Λ max
(x,t)∈Qn

‖I + ∇yχK,n‖ ‖∇θε
1‖L2(Iδ)‖∇V ‖L2(Iδ\I(κ−2)ε))

≤ C
(ε

δ

)1/2

‖∇θε
1‖L2(Iδ)‖∇V ‖L2(Iδ).

By maximum principle [20], we have

(3.23) max
(x,t)∈Qn

|θε(x, t)| ≤ ε max
(x,t)∈Qn

|χK,n(x, t)| |∇V |.

We thus get

max
(x,t)∈Qn

|θε
1(x, t)| ≤ max

(x,t)∈Qn

(
|θε(x, t)| + ε|χK,n(x, t)||∇V |

)
≤ 2ε max

(x,t)∈Qn

|χK,n(x, t)||∇V |.

Therefore, we bound the second term in the right-hand side of (3.22) as

|
∫

Iδ

θε
1∇ρε · aε

K,n(I + ∇yχK,n)∇V |

≤ 2Λ max
(x,t)∈Qn

‖I + ∇yχK,n(x, t)‖
∫

Iδ

|∇V |2|ε∇ρε|

≤ C
ε

δ
‖∇V ‖2

L2(Iδ).

Substituting the above two estimates into (3.21), we obtain

1
2

∂

∂t

∫
Iδ

|θε
1|2 +

∫
Iδ

∇θε
1 · aε

K,n∇θε
1

≤ 1
2

∫
Iδ

∇θε
1 · aε

K,n∇θε
1 +

∫
Iδ

∇(θε − θε
1) · aε

K,n∇(θε − θε
1)

+ C
ε

δ
‖∇V ‖2

L2(Iδ).

Therefore, integrating the above inequality over Tn, we obtain

‖∇θε
1‖L2(Qn) ≤ C

(
‖θε

1(x, tn)‖L2(Iδ) + ‖∇(θε − θε
1)‖L2(Qn) +

(ε

δ

)1/2

‖∇V ‖L2(Qn)

)
,

which in turn implies

‖∇θε‖L2(Qn) ≤ C
(
‖θε

1(x, tn)‖L2(Iδ)+C‖∇(θε−θε
1)‖L2(Qn)+C

(ε

δ

)1/2

‖∇V ‖L2(Qn)

)
.

A direct calculation gives

‖θε
1(x, tn)‖L2(Iδ) ≤ Cε‖∇V ‖L2(Iδ),

‖∇(θε − θε
1)‖L2(Qn) ≤ C

(ε

δ

)1/2

‖∇V ‖L2(Qn).

A combination of the above three inequalities leads to (3.20). �

Similar to Lemma 3.2, we have
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Lemma 3.4. There exists a constant C such that

(3.24) ‖(A− Ã)(xK , tn)‖ ≤ C
(ε

δ
+

ε2

τn

)
.

Proof. Let �: = 	τn/ε2
 and Q̃n: = Iκε × (tn, tn + �ε2). The key to the proof is the
following observation: for any V, W ∈ XH , we have

(3.25) ∇W · A(xK , tn)∇V : =
∫
−

Q̃n

∇Ŵ ε · aε
K,n∇V̂ ε.

Integration by parts and using the first part of (3.18), we obtain∫
−

Q̃n

∇(Ŵ ε − W ) · aε
K,n∇V̂ ε

= −
∫
−

Q̃n

(Ŵ ε − W )∇ · (aε
K,n∇V̂ ε) = −

∫
−

Q̃n

(Ŵ ε − W )∂tV̂
ε

= −
∫
−

Q̃n

(Ŵ ε − W )∂t(V̂ ε − V ).

A direct calculation leads to∫
−

Q̃n

∇W · aε
K,n∇V̂ ε = ∇W · A(xK , tn)∇V.

Adding up the above two equations, we obtain

∇W · A(xK , tn)∇V −
∫
−

Q̃n

∇Ŵ ε · aε
K,n∇V̂ ε =

∫
−

Q̃n

(Ŵ ε − W )∂t(V̂ ε − V ).

Exchanging W and V and noting that aε and A are symmetric, we get

∇W · A(xK , tn)∇V −
∫
−

Q̃n

∇Ŵ ε · aε
K,n∇V̂ ε =

∫
−

Q̃n

(V̂ ε − V )∂t(Ŵ ε − W ).

Adding up the above two equations and using the explicit expressions of V̂ ε and
Ŵ ε, we get

∇W · A(xK , tn)∇V −
∫
−

Q̃n

∇Ŵ ε · aε
K,n∇V̂ ε =

1
2

∫
−

Q̃n

∂t[(V̂ ε − V )(Ŵ ε − W )] = 0,

which gives (3.25).
By (3.25), proceeding as in (3.12) and using (3.16), we get (3.24). �

Proof of (1.10). It follows from (3.2), (3.17) and Lemma 3.3 that

|∇W · (Ã − AH)(xK , tn)∇V | ≤ C
(
δ + τn +

(ε

δ

)1/2

+
ε

τ
1/2
n

)
|∇W | |∇V |

+ C
δ + τn

|Qn|
‖∇wε‖L2(Qn)‖∇vε‖L2(Qn)

+
Λ

|Qn|
‖∇(wε − Ŵ ε)‖L2(Qn)‖∇(vε − V̂ ε)‖L2(Qn)

≤ C
(
δ + τn +

(ε

δ

)1/2

+
ε

τ
1/2
n

)
|∇W ||∇V |,

which implies

(3.26) ‖(Ã − AH)(xK , tn)‖ ≤ C
(
δ + τn +

(ε

δ

)1/2

+
ε

τ
1/2
n

)
.
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This estimate together with (3.24) leads to (1.10). �

Remark 3.5. One may wonder whether the estimate (1.10) can be improved to (1.9).
This is actually not the case due to (3.26).

4. Nonlinear problem

We consider the following nonlinear problem

(4.1)

⎧⎪⎨⎪⎩
∂tu

ε −∇ ·
(
aε

(
x, t, uε

)
∇uε

)
= f in Q,

uε = 0 on ∂D × (0, T ),

uε|t=0 = u0.

We assume that aε(x, t, uε) satisfies

λ|ξ|2 ≤ aε
ij(x, t, z)ξiξj ≤ Λ|ξ|2 for all ξ ∈ R

d and for all (x, t) ∈ Q and z ∈ R

with 0 < λ ≤ Λ. Moreover, we assume that aε(x, t, z) is Lipschitz continuous in
z uniformly with respect to x and t. The existence of uε is classic. A similar
problem in the elliptic case has been discussed in [7], and the extension to (4.1)
is straightforward. We refer to [19] for more general nonlinear problems. The
homogenized problem, if it exists, is of the following form:

(4.2)

⎧⎪⎨⎪⎩
∂tU −∇ ·

(
A

(
x, t, U

)
∇U

)
= f in Q,

U = 0 on ∂D × (0, T ),

U |t=0 = u0.

To formulate HMM, for any V ∈ XH , define vε to be the solution of

(4.3)

⎧⎪⎨⎪⎩
∂tv

ε −∇ ·
(
aε

(
x, t, vε

)
∇vε

)
= 0 in Qn,

vε = V on ∂Iδ × Tn,

vε|t=tn
= V.

We can define wε similarly.
For any V, W ∈ XH , we define

∇W · AH(xK , tn, V )∇V : =
∫
−

Qn

∇wε · aε(x, t, vε)∇vε,

and AH(tn; V, W ) =
∑

K∈TH
|K|∇W · AH(xK , tn, V )∇V .

The HMM solution is given by the following problem.

Problem 4.1. Let U0
H = QHu0, for k = 1, . . . , n, and find Uk

H ∈ XH such that

(4.4) (∂Uk
H , V ) + AH(tk; Uk

H , V ) = (fk, V ) for all V ∈ XH .

Remark 4.2. Though we only consider a special nonlinear problem, the algorithm
applies to a much general nonlinear problem (cf. [19]) that together with realistic
application will be dealt with in a forthcoming paper.

For any V, W ∈ XH , we define

Ek(V, W ): = ∇W · (AH −A)(xK , tk, V )∇V

and

e(HMM) = max
K∈TH ,V ∈XH ,

1≤k≤n

Ek(V, W )
|∇W ||∇V | .
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Proceeding along the same line of Lemma 2.1, we get the same estimate for vε.
Note that aε in the second part of (2.2) depends on the solution vε. Obviously, for
any V ∈ XH , we have

(4.5) AH(tk; V, V ) ≥ λ‖∇V ‖2
0.

By (4.5), it is easy to derive a stability result that is similar to (2.6) and (2.7).
Similar to the second part of (2.2), for any W ∈ XH , we have( t∫

0

∫
Ω

∇wε · aε(x, t, wε)∇wε
)1/2

≤
( t∫

0

∫
Ω

∇W · aε(x, t, wε)∇W
)1/2

.

Using the above inequality, we get

AH(tk; V, W ) ≤
∑

K∈TH

|K|
(Λ

λ

)1/2

·
(∫
−

Qk

∇vε · aε(x, t, vε)∇vε
)1/2(∫

−
Qk

∇wε · aε(x, t, wε)∇wε
)1/2

≤
∑

K∈TH

|K|
(Λ

λ

)1/2(∫
−

Qk

∇V · aε(x, t, vε)∇V
)1/2

·
(∫
−

Qk

∇W · aε(x, t, wε)∇W
)1/2

(4.6)

≤ Λ
(Λ

λ

)1/2 ∑
K∈TH

|K| |∇V | |∇W |

= Λ
(Λ

λ

)1/2 ∑
K∈TH

(∫
K

|∇V |2
)1/2(∫

K

|∇W |2
)1/2

≤ Λ(Λ/λ)1/2‖∇V ‖0‖∇W‖0.

The existence of the solution easily follows from the standard approach in [13]
by (4.5) and (4.6), while the uniqueness is more involved, which together with the
error estimate will be addressed in Theorem 4.3.

The error estimate for Problem 4.1 is essentially the same as the linear case.
Define Ũn

H as: let Ũ0
H = QHu0, for k = 1, . . . , n, and Ũk

H ∈ XH satisfies

(∂Ũk
H , V ) + A(tk; Ũk

H , V ) = (fk, V ) for all V ∈ XH ,

where
A(tk; Ũk

H , V ) =
∑

K∈TH

|K|∇V · A(xK , tk, Ũk
H)∇Ũk

H .

For simplicity of notation, we associate A with an operator Â as

(Â(x, tk, V )∇V,∇W ) = A(tk; V, W ) for all V, W ∈ XH .

By [7, Theorem 3.1], the effective matrix A satisfies

λI ≤ A ≤ (Λ2/λ)I.

Moreover, by [7, Proposition 3.5], A(x, t, z) (so does Â) is Lipschitz continuous in
z uniformly with respect to all (x, t) ∈ Q, and the Lipschitz constant is denoted by
L. By [26],

(4.7) ‖Ũn
H − U(x, tn)‖0 ≤ C(∆t + H2),
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and there exists a constant K1: = C∗(∆t1/2 + H + ∆t/H) such that

(4.8) ∆t1/2‖∇Ũn
H‖L∞ ≤ K1,

where C∗ depends on U .

Theorem 4.3. Let U and Un
H be solutions of (4.2) and (4.4), respectively. Then,

under the appropriate regularity assumption on U , we have, for small ∆t,

(4.9) ‖Un
H − U(x, tn)‖0 ≤ C

(
H2 + ∆t + e(HMM)

)
.

Moreover, for M = K1 +CH−1e(HMM) with C a generic constant independent of
ε, δ, H, τn, X, Z, and V , if M satisfies

(4.10) L2M2 < λ,

and there exists a constant η(M) with 0 < η(M) < λ/2 such that

(4.11)
∫
D

|Ek(X, V ) − Ek(Z, V )| dx ≤ η(M)‖X − Z‖1‖∇V ‖0

for all X, Z ∈ XH ∩ W 1,∞(D) and V ∈ XH satisfying ‖X‖1,∞, ‖Z‖1,∞ ≤ M , then
the HMM solution is locally unique.

Proof. Define En = Un
H − Ũn

H ; we have for any V ∈ XH ,

(∂Ek, V ) + (Â(x, tk, Uk
H)∇Ek,∇V ) = (A − AH)(tk; Uk

H , V )

+
(
(Â(x, tk, Ũk

H) − Â(x, tk, Uk
H))∇Ũk

H ,∇V
)
.

Taking V = Ek in the above equation and using (4.5), we get
1

2∆t

(
‖Ek‖2

0 − ‖Ek−1‖2
0

)
+ λ‖∇Ek‖2

0 ≤ e(HMM)‖∇Uk
H‖0‖∇Ek‖0

+ C‖∇Ũk
H‖L∞‖Ek‖0‖∇Ek‖0.

Using (4.8) and a kickback of ‖∇Ek‖, we get

(4.12)
1

2∆t

(
‖Ek‖2

0 −‖Ek−1‖2
0

)
+

λ

2
‖∇Ek‖2

0 ≤ (e2(HMM)/λ)‖∇Uk
H‖2

0 +C‖Ek‖2
0.

There exists a constant M1 such that for ∆t < M1, there holds

‖Ek‖2
0 ≤ (1 + C∆t)‖Ek−1‖2

0 + C∆t e2(HMM)‖∇Uk
H‖2

0.

Hence, by recursive application of the above inequality and noting that E0 = 0, we
obtain

(4.13) ‖En‖2
0 ≤ Ce2(HMM)∆t

n∑
k=1

(1 + C∆t)n−k‖∇Uk
H‖2

0 ≤ Ce2(HMM)|||UH |||2.

This together with (4.7) gives (4.9).
Let Un

H = X and Un
H = Z be solutions of Problem 4.1 with Un−1

H given. Then
by substraction, we get for all V ∈ XH ,

(X − Z, V ) + ∆t AH(tn; X, V ) = ∆t AH(tn; Z, V ),

which can be rewritten as

(X − Z, V ) + ∆t(Â(x, tn, X)∇(X − Z),∇V )

= ∆t(AH − A)(tn; Z, V ) − ∆t(AH − A)(tn; X, V )

+ ∆t
(
[Â(x, tn, Z) − Â(x, tn, X)]∇Z,∇V

)
.
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Taking V = X − Z in the above equation and using (4.11), we get

‖X − Z‖2
0 + λ∆t‖∇(X − Z)‖2

0 ≤ η(M)∆t‖∇(X − Z)‖2
0

+ L∆t‖∇Z‖L∞‖X − Z‖0‖∇(X − Z)‖0.

After a kickback of ‖∇(X − Z)‖0, we obtain

‖X − Z‖2
0 + (λ/2)∆t‖∇(X − Z)‖2

0 ≤ η(M)∆t‖∇(X − Z)‖2
0

+
L2∆t

2λ
‖∇Z‖2

L∞‖X − Z‖2
0.(4.14)

It follows from (4.12) and (4.13) that

∆t‖∇En‖2
0 ≤ C

(
∆t‖En‖2

0 + ‖En−1‖2
0 + ∆te2(HMM)

)
≤ Ce2(HMM).

This, together with (4.8) and the inverse inequality, gives

∆t1/2‖∇Z‖L∞ ≤ K1 + CH−1∆t1/2‖∇En‖0 ≤ K1 + CH−1e(HMM).

Substituting the above inequality into (4.14), we get

‖X − Z‖2
0 + (λ/2)∆t‖∇(X − Z)‖2

0 ≤ η(M)∆t‖∇(X − Z)‖2
0 + (L2M2/λ)‖X − Z‖2

0

with M = K1 + CH−1e(HMM). Using (4.10) and (4.11), we get X = Z, i.e. the
HMM solution is locally unique. �

Remark 4.4. Conditions (4.10) and (4.11) show that the HMM solution may not
be unique if the estimating data procedure is not accurate enough. This is indeed
the case even if the homogenized solution U is unique. We refer to [3] for related
discussion on the approximation of the quasilinear elliptic problems.

To simplify the presentation, we will show how to estimate e(HMM) when (4.3)
is changed slightly to

(4.15)

⎧⎪⎨⎪⎩
∂tv

ε −∇ ·
(
aε

(
x, t, V (xK)

)
∇vε

)
= 0 in Qn,

vε = V on ∂Iδ × Tn,

vε|t=tn
= V,

and AH is changed to

AH(tn; V, W ) =
∑

K∈TH

|K|
∫
−

Qn

∇wε · aε(x, t, V (xK))∇vε.

Estimating e(HMM) with cell problem (4.3) is more involved, and we will address
it in a forthcoming paper.

Theorem 4.5. If we assume that aε(x, t, uε) = a(x, x/ε, t, uε) with a(x, y, t, p)
periodic in y with period Y , and the cell problem (4.15) is employed, then

(4.16) e(HMM) ≤ C
(
δ +

(ε

δ

)1/2

+ max
1≤k≤n

(
τk +

ε

τ
1/2
k

))
.

If
(
δ + (ε/δ)1/2 + τn + ε/τ

1/2
n

)
/∆t1/2,

(
δ + (ε/δ)1/2 + τn + ε/τ

1/2
n

)
/H, and ∆t/H

are sufficiently small, then (4.10) and (4.11) hold.
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Proof. By the homogenization result in [4] and proceeding along the same line
as (1.9), we may get (4.16). The only modification lies in the fact that AH is not
symmetric, therefore, the identity (3.13) is invalid, which actually accounts for the
accuracy loss in (4.16).

To verify the validity of (4.10) and (4.11), we proceed in the same fashion of [17,
Theorem 5.5]. Define

K1 = δ +
(ε

δ

)1/2

+ τn +
ε

τ
1/2
n

.

It follows from (4.16) that

L2M2 ≤ 2L2(K2
1 + CH−2K2

1) = 2L2C2
∗(∆t + H2 + (∆t/H)2) + CL2H−2K2

1).

Therefore, there exists ρ0 > 0 and ρ1 > 0 such that if ∆t, H, ∆t/H < ρ0 and
K1/H < ρ1, we get (4.10).

Next, proceeding in the same fashion as [17, Lemma 5.9], we may take η(M) =
C(1 + M∆t−1/2)K1. Invoking (4.16) once again, we obtain

η(M) ≤ C(1 + K1∆t−1/2)K1 + CH−1∆t−1/2K2
1

≤ C(1 + C∗)K1 + C∗(H/∆t1/2 + ∆t1/2/H)K1 + CH−1∆t−1/2K2
1.

Therefore, there exists a constant ρ2 such that if K1/∆t1/2 < ρ2, we have η(M) <
λ/2. Finally, let ρ = min(ρ1, ρ2); if K1/∆t1/2,K1/H < ρ and ∆t, H, ∆t/H < ρ0,
then (4.10) and (4.11) hold true. �

Remark 4.6. A formal asymptotical expansion suggests that there is no oscillation
in the temporal direction, and uε in the coefficient aε(x, x/ε, t, uε) serves as a pa-
rameter. Based on these special features of the problem, we may employ other
types of cell problem and get a better estimate for e(HMM). The details will be
addressed elsewhere.

Appendix A. Error estimates for the locally periodic parabolic

homogenization problems

The homogenization procedure for the parabolic problem is by now well under-
stood; see [5, 6, 29] and the references therein. However, there are very few results
concerning the error estimate for the difference between uε and the homogenization
solution U , or the difference between uε and the first-order approximation uε

1 and
the second-order approximation uε

2 (see (A.2) and (A.6) for the definitions). In this
Appendix, we shall prove such error estimates for the locally periodic parabolic
homogenization problem [6, 8].

As to the locally periodic parabolic homogenization problem, the homogenization
matrix A is given by (3.6). We have the following regularity estimate for the solution
of (1.2) (see [18]):

(A.1)
‖∇U‖L2(Q) + ‖D2U‖L2(Q) ≤ C(‖f‖L2(Q) + ‖u0‖1),

‖∇∂tU‖L2(Q) ≤ C(‖∂tf‖L2(Q) + ‖u0‖2).

Set

(A.2) uε
1: = U + εχ · ∇U.
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A direct calculation yields(
aij

∂uε
1

∂xj

)
(x, x/ε, t) =

(
Aij

∂U

∂xj

)
(x, t) + G(x, x/ε, t)∇U

+ ε
(
aij

∂χk

∂xj

)
(x, x/ε, t)

∂U

∂xk
+ ε(aijχ

k)(x, x/ε, t)
∂2U

∂xk∂xj
,(A.3)

where G = {gj
i }d

i,j=1 is defined as

gj
i (x, y, t): =

(
aij + aik

∂χj

∂yk

)
(x, y, t) −Aij(x, t).

Obviously, ∫
Y

gj
i (x, y, t) dy = 0 and gj

i (x, y, t) is periodic in y.

Note that ∂yi
gj

i (x, y, t) = 0 for j = 1, . . . , d; therefore, there exists a skew-symmetric
matrix α(x, y, t) = {αk

ij(x, y, t)}d
i,j,k=1 such that

gj
i (x, y, t) =

∂

∂yk
αj

ik(x, y, t),
∫
Y

αj
ik(x, y, t) dy = 0.

Thus, we obtain

gj
i (x, x/ε, t)

∂U

∂xj
= ε

∂

∂xk

(
αj

ik(x, x/ε, t)
∂U

∂xj

)
− εαj

ik(x, x/ε, t)
∂2U

∂xk∂xj

− ε
∂αj

ik

∂xj
(x, x/ε, t)

∂U

∂xj
.(A.4)

Let the corrector θε be the solution of

(A.5)

⎧⎪⎨⎪⎩
∂tθ

ε −∇ ·
(
a(x, x/ε, t)∇θε

)
= 0 in Q,

θε = −εχ · ∇U on ∂D × (0, T ),

θε|t=0 = −εχ|t=0 · ∇u0 in D.

Define

(A.6) uε
2: = uε

1 + θε.

We estimate uε − uε
2 in the following theorem.

Theorem A.1. Assume that u0 ∈ H2(D) and f ∈ H1(0, T ; L2(D)). Then

sup
0<t≤T

‖(uε − uε
2)(t)‖0 + ‖∇(uε − uε

2)‖L2(Q)

≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q)).(A.7)

Proof. For any φ ∈ C(0, T ; L2(D))∩L2(0, T ; H1
0 (D)) with φ(x, 0) = 0, we write the

weak form of (1.2) and (A.5) as∫
D

(
φ∂sU + ∇φ · A∇U

)
dx =

∫
D

fφ dx and
∫
D

(
φ∂sθ

ε + ∇φ · aε∇θε
)
dx = 0.
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Invoking (A.3) and the above equations, we obtain∫
D

φ∂s(uε − uε
2) dx +

∫
D

∇φ · aε∇(uε − uε
2) dx

= −ε

∫
D

∂s

(
χ · ∇U

)
φ dx −

∫
D

∇φ · G∇U dx − ε

∫
D

∇φ · aε∇(χ · ∇U) dx.(A.8)

In view of (A.4) and the fact that α is a skew-symmetric matrix, we get∫
D

∇φ · G∇U dx = −ε

∫
D

(
∇φ · α : D2U + ∇φ · (∇ · α)∇U

)
dx.

Substituting the above identity into (A.8), we get∫
D

∂s(uε − uε
2)φ dx +

∫
D

∇φ · aε∇(uε − uε
2) dx

= −ε

∫
D

∂s(χ · ∇U)φ dx − ε

∫
D

∇φ · aε∇(χ · ∇U) dx

+ ε

∫
D

(
∇φ · α : D2U + ∇φ · (∇ · α)∇U

)
dx.(A.9)

Taking φ = uε−uε
2 in the above identity since (uε−uε

2) ∈ H1
0 (D) and (uε−uε

2)|t=0 =
0, integrating from 0 to t for any 0 < t ≤ T , we obtain

‖(uε − uε
2)(x, t)‖0 +

( t∫
0

‖∇(uε − uε
2)‖2

0 ds
)1/2

≤ Cε
( t∫

0

(‖∂sU‖2
1 + ‖U‖2

2) ds
)1/2

.

A combination of the above inequality and the regularity estimate (A.1) gives (A.7).
�

In what follows, we turn to the estimates for the corrector and the first order
approximation uε

1. No error estimates for the correctors are available to the best of
the author’s knowledge.

Theorem A.2. Assume that u0 ∈ H2(D) and f, ∂tf ∈ L2(Q). Then

sup
0<t≤T

‖(uε − uε
1)(t)‖0+‖∇(uε − uε

1)‖L2(Q)

≤ C
√

ε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q))(A.10)

and

(A.11) sup
0<t≤T

‖(uε − U)(t)‖0 ≤ C
√

ε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q)).

Proof. Define ψε ∈ C∞
0 (D), which equals 1 in D/D2ε and equals 0 in Dε, where

Dε: = {x ∈ D | dist(x, ∂D) ≤ ε }.

Obviously, |∇ψε| ≤ C/ε.



174 P.-B. MING AND P.-W. ZHANG

Define wε: = U + εψεχ · ∇U ; obviously, wε(x, t) ∈ H1
0 (D) for a.e.t ∈ (0, T ]. A

direct calculation gives

sup
0<t≤T

‖(uε
1 − wε)(t)‖L2(D) + ‖∇(uε

1 − wε)‖L2(Q)

≤ C
√

ε(‖u0‖1 + ‖∇U‖L2(Q) + ‖∇∂tU‖L2(Q) + ‖D2U‖L2(Q)).
(A.12)

It remains to bound uε − wε. As that in the proof of (A.7), we have for any
φ ∈ C(0, T ; L2(D)) ∩ L2(0, T ; H1

0 (D)),∫
D

∂s(uε − wε)φ dx +
∫
D

∇φ · aε∇(uε − wε) dx

= −ε

∫
D

∂s(χ · ∇U)φψε dx + ε

∫
D

∇φ · aε∇(χ · ∇U) dx

− ε

∫
D

∇φ · aε(χ · D2U)ψε dx −
∫
D

rε · ∇φ dx,

where rε is defined by

rε: = ∇U · aε∇yχ(ψε − 1) + ε∇ψε · aε(χ∇U).

The terms except the last one in the right-hand side of of the above expansion
can be easily bounded by Cε(|∂sU |1 + |U |1 + |U |2)‖∇φ‖0.

By virtue of [21, Lemma 2.5], we get

|U |1,D2ε
≤ C

√
ε(|U |1 + |U |2).

We thus bound rε as

‖rε‖0 ≤ C|U |1,D2ε
≤ C

√
ε(|U |1 + |U |2).

Therefore, we get∫
D

∂s(uε − wε)φ dx +
∫
D

∇φ · aε∇(uε − wε) dx ≤ C
√

ε(|∂sU |1 + |U |1 + |U |2)‖∇φ‖0,

and let φ = uε − wε. Integrating the above inequality from 0 to t, we obtain

‖(uε − wε)(t)‖2
0 +

t∫
0

‖∇(uε − wε)‖2
0 ≤ ‖(uε − wε)(x, 0)‖2

0

+ Cε

t∫
0

(‖∂sU‖2
0 + ‖∇U‖2

0 + ‖D2U‖2
0) ds.

Using ‖(uε − wε)(x, 0)‖0 ≤ Cε‖u0‖1, we get

max
0<t≤T

‖(uε − wε)(t)‖0 + ‖∇(uε − wε)‖L2(Q)

≤ C
√

ε(‖u0‖1 + ‖∇∂tU‖L2(Q) + ‖D2U‖L2(Q)).

This inequality together with (A.12) and the regularity estimate (A.1) give the
desired estimate (A.10). The estimate (A.11) follows from (A.7) and (A.10). �

If U is smoother, then we may improve (A.11) from O(
√

ε ) to O(ε).
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Corollary A.3. If ∇U ∈ L∞(Q), then we have

(A.13) sup
0<t≤T

‖(uε −U)(t)‖0 ≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q) + ‖∇U‖L∞(Q)).

Proof. By maximum principle [20], we have

(A.14) max
(x,t)∈Q

|θε(x, t)| ≤ Cε max
(x,t)∈Q

|∇U(x, t)|,

which together with (A.7) gives

sup
0<t≤T

‖(uε − U)(t)‖0 ≤ sup
0<t≤T

‖(uε − uε
2)(t)‖0

+ ε sup
0<t≤T

‖(χ · ∇U)(t)‖0 + sup
0<t≤T

‖θε(·, t)‖0

≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q))

+ Cε max
0<t≤T

‖∇U(·, t)‖0 + Cε‖∇U‖L∞(Q)

≤ Cε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q) + ‖∇U‖L∞(Q)).

This gives (A.13). �
Note that (A.14) also holds true for the case when aε = a(x, x/ε, t, t/ε2). There-

fore, we may proceed as in Lemma 3.3 to obtain the following estimate (A.15) for
the corrector. But we cannot obtain (A.10) since we cannot obtain (A.7) by the
method herein.

Corollary A.4. For aε = a(x, x/ε, t, t/ε2) with a(·, y, ·, s) periodic in y and s,
respectively, with periods Y and 1, if ∇U ∈ L∞(Q), then we have

(A.15) ‖∇θε‖L2(Q) ≤ C
√

ε(‖u0‖2 + ‖f‖L2(Q) + ‖∂tf‖L2(Q) + ‖∇U‖L∞(Q)).

Remark A.5. In case of the one-dimensional problem, the following error estimates
are stated in [5, p. 43, Theorem 1]:

‖∇(uε − uε
2)‖L2(Q) ≤ C(T )ε, ‖∇(uε − uε

1)‖L2(Q) ≤ C(T )ε.

It is not surprising that the error estimate for the first-order approximation is O(ε),
since there is no boundary layer for one-dimensional problem.
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