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ON MIXED AND COMPONENTWISE CONDITION NUMBERS
FOR MOORE–PENROSE INVERSE

AND LINEAR LEAST SQUARES PROBLEMS

FELIPE CUCKER, HUAIAN DIAO, AND YIMIN WEI

Abstract. Classical condition numbers are normwise: they measure the size
of both input perturbations and output errors using some norms. To take into
account the relative of each data component, and, in particular, a possible data
sparseness, componentwise condition numbers have been increasingly consid-
ered. These are mostly of two kinds: mixed and componentwise. In this pa-
per, we give explicit expressions, computable from the data, for the mixed and
componentwise condition numbers for the computation of the Moore–Penrose
inverse as well as for the computation of solutions and residues of linear least
squares problems. In both cases the data matrices have full column (row)
rank.

1. Introduction

1.1. General considerations. Condition numbers measure the worst-case sen-
sitivity of an input data to small perturbations. To the best of our knowledge a
general theory of condition numbers was first given by Rice in [12]. Let φ : R

s → R
t

be a mapping, where R
s and R

t are the usual s- and t-dimensional Euclidean spaces
equipped with some norms, respectively. If φ is continuous and Fréchet differen-
tiable in the neighborhood of a0 ∈ R

s, then, according to [12], the relative normwise
condition number of a0 is given by

cond(a0) := lim
ε→0

sup
‖∆a‖≤ε

(
‖φ(a0 + ∆a) − φ(a0)‖

‖φ(a0)‖
/
‖∆a‖
‖a0‖

)
=

‖φ′(a0)‖‖a0‖
‖φ(a0)‖

,

where φ′(a0) is the Fréchet derivative of φ at a0.
A drawback of condition numbers as defined above is that they ignore the struc-

ture of both input and output data with respect to scaling and/or sparsity. When
the data is badly scaled or contains many zeros measuring the size of a perturba-
tion in terms of its norm, we are left in the dark concerning the relative size of the
perturbation on its small (or zero) entries.

To tackle this drawback, another approach in perturbation theory, known as
componentwise analysis, has been increasingly considered. To be precise, two dif-
ferent kinds of condition number were studied: first, those measuring the errors in
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the output using norms and the input perturbations componentwise, and second,
those measuring both the error in the output and the perturbation in the input
componentwise. The resulting condition numbers are called mixed and componen-
twise, respectively, by Gohberg and Koltracht [6]. We will use this terminology
throughout this paper.

By their very nature, condition numbers are defined as limits of suprema. There-
fore, their definition does not suggest a way to compute them from the input data.
To do so, equivalent explicit expressions are sought or, alternatively, easy to com-
pute and sufficiently sharp upper bounds. This has been done extensively for many
problems in linear algebra, mostly for normwise condition numbers.

In this paper we exhibit explicit expressions for mixed and componentwise condi-
tion numbers for both Moore–Penrose inverse and linear least squares problems. We
also exhibit upper bounds for these condition numbers which are easier to compute
for large matrices.

1.2. A brief description of some previous work. Probably the first mixed
perturbation analysis was done by Skeel [14]. He performed a mixed perturbation
analysis for nonsingular linear systems of equations and a mixed error analysis for
Gaussian elimination.

Skeel’s condition number is of mixed type. It is defined using componentwise
perturbations on the input data and infinity norm in the solution. In [13], Rohn
introduced a new relative condition number measuring both perturbation in the
input data and error in the output componentwisely.

They were Gohberg and Koltracht [6] who named Skeel’s condition number mixed
to distinguish it from componentwise condition numbers such as that in [13]. They
also gave explicit expressions for both mixed and componentwise condition numbers,
always for square systems of linear equations.

Perturbation theory for rectangular matrices and linear least squares problems
existed for quite a while for the normwise case (cf. [15, 18]) and has been further
studied in [5, 8, 9, 11].

For the mixed and componentwise settings for the problem of linear least squares,
the existing results consisted of bounds for both condition numbers (or first-order
perturbation bounds) and unrestricted perturbation bounds. There were no explicit
expressions for mixed and componentwise condition numbers. To the best of our
knowledge the sharpest such bounds were given in [1, 3, 10].

1.3. Main definitions and results. To define mixed and componentwise condi-
tion numbers, the following form of “distance” function will be useful. For any
points a, b ∈ R

n we define a
b = (c1, . . . , cn) with

ci =

⎧⎨
⎩

ai/bi, if bi �= 0,
0, if ai = bi = 0,
∞, otherwise.

Then we define

d(a, b) =
∥∥∥∥a − b

b

∥∥∥∥
∞

= max
i=1,...,n

{
|ai − bi|

|bi|

}
.

Note that if d(a, b) < ∞,

d(a, b) = min{ν ≥ 0 | |ai − bi| ≤ ν|bi| for i = 1, . . . , n}.
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In the rest of this paper we will only consider pairs (a, b) for which d(a, b) < ∞.
We can extend the function d to matrices in an obvious manner. We introduce
a notation allowing us to do so smoothly. For a matrix A ∈ R

m×n we define
vec(A) ∈ R

mn by vec(A) = [aT
1 , . . . , aT

n ]T, where A = [a1, . . . , an] with ai ∈ R
m,

i = 1, . . . , n. Then, we define

d(A, B) = d(vec(A), vec(B)).

Note that vec is a homeomorphism between R
m×n and R

mn. In addition, it trans-
forms norms in the sense that, for all A ∈ R

m×n,

(1.1) ‖vec(A)‖∞ = ‖A‖max

where ‖ ‖max is the max norm given by

‖A‖max = max
i,j

|Aij |.

For ε > 0 we denote B0(a, ε) = {x | d(x, a) ≤ ε}. For a partial function F : R
p →

R
q we denote by Dom(f) its domain of definition.

Definition 1. Let F : R
p → R

q be a continuous mapping defined on an open set
Dom(F ) ⊂ R

p such that 0 /∈ Dom(F ). Let a ∈ Dom(F ) such that F (a) �= 0.
(i) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x �=a

‖F (x) − F (a)‖∞
‖F (a)‖∞

1
d(x, a)

.

(ii) Suppose F (a) = (f1(a), . . . , fq(a)) is such that fj(a) �= 0 for j = 1, . . . , q.
Then the componentwise condition number of F at a is

c(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x �=a

d(F (x), F (a))
d(x, a)

.

In this paper we consider these condition numbers for the Moore–Penrose inverse
of A ∈ R

m×n. We recall that this is the unique n×m matrix A† satisfying the four
matrix equations [2, 17]

AA†A = A, A†AA† = A†, (AA†)T = AA†, (A†A)T = A†A.

Here, for a real matrix M , MT denotes its transpose matrix.
Identifying R

m×n with R
mn via vec and using (1.1), Definition 1 yields, respec-

tively,

m†(A) := lim
ε→0

sup
‖∆A/A‖max≤ε

‖(A + ∆A)† − A†‖max

‖A†‖max

1
‖∆A/A‖max

and

c†(A) := lim
ε→0

sup
‖∆A/A‖max≤ε

1
‖∆A/A‖max

∥∥∥∥ (A + ∆A)† − A†

A†

∥∥∥∥
max

.

Here B
A is an entrywise division defined by B

A := vec−1(vec(B)/vec(A)). Note also
that in the definition of c†(A) we are assuming that A† has no zero components.

The main result for these condition numbers, Theorem 1, gives explicit expres-
sions for them. Corollary 1 then gives easier-to-compute upper bounds.
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In a similar way, one defines, given a full column rank matrix A and a vector b,
the condition numbers mls(A, b), and cls(A, b) for the computation of the solution
x of the least squares problem

min
v∈Rn

‖Av − b‖2,

and the condition numbers mres(A, b), and cres(A, b) for the computation of the
residue r = b − Ax. The main results in Section 4, Theorems 2 and 4, give ex-
plicit expressions for them. Easier-to-compute upper bounds are also shown in this
section. Theorem 3 also gives sharp bounds for unrestricted (i.e., not necessarily
small) perturbations. Section 5 shows similar results for the Moore–Penrose inverse
of full row rank matrices and for minimal norm solutions of underdetermined linear
systems.

2. Preliminaries

2.1. Kronecker products. If A ∈ R
m×n and B ∈ R

p×q, then the Kronecker
product A ⊗ B ∈ R

mp×nq is defined by

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

⎤
⎥⎥⎥⎦ .

The following results can be found in [7]

|A ⊗ B| = |A| ⊗ |B|,(2.1)

vec(AXB) = (BT ⊗ A)vec(X),(2.2)

where |A| = (|Aij |), Aij is the (i, j)th entry of A.
Also, it is proven in [7] that there exists a matrix Π ∈ R

mn×mn such that, for all
A ∈ R

m×n,

(2.3) Π(vec(A)) = vec(AT).

The matrix Π is called the vec-permutation matrix and can be represented explicitly
by

(2.4) Π =
n∑

i=1

m∑
j=1

Eij(m × n) ⊗ Eji(n × m).

Here Eij(m×n) = e
(m)
i (e(n)

j )T ∈ R
m×n denotes the (i, j)th elementary matrix and

e
(m)
i is the vector

[
0, . . . , 0, 1, 0, . . . , 0

]T ∈ R
m, the 1 in the ith component (see [7]).

Also it is proved in [11] that for any vector y ∈ R
p and matrix Y ∈ R

p×q,

(2.5)
(
yT ⊗ Y

)
Π = Y ⊗ yT.

2.2. Condition numbers and differentiability. The following lemma gives ex-
pressions for the mixed and componentwise condition numbers for differentiable
functions. In its statement, and in all that follows, if a ∈ R

p, we denote by Dg(a)
the p × p diagonal matrix with a1, . . . , ap in the diagonal. Recall, for a matrix
A ∈ R

m×n, that its operator norm with respect to ‖ ‖∞ satisfies

‖A‖∞ = max
i≤m

n∑
j=1

|Aij |.
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Lemma 1 ([6]). Let F : R
p → R

q be as in Definition 1 and a ∈ Dom(F ) be such
that F is Fréchet differentiable at a. Then,

(a) If F (a) �= 0, then m(F, a) =
‖DF (a)Dg(a)‖∞

‖F (a)‖∞
.

(b) If (F (a))i �= 0 for i = 1, . . . , q, then c(F, a) = ‖Dg(F (a))−1DF (a)Dg(a)‖∞.
�

We can simplify the expressions in Lemma 1.

Lemma 2. With the notation above, we have

(a) If F (a) �= 0, then m(F, a) =
‖|DF (a)| |a|‖∞

‖F (a)‖∞
.

(b) If (F (a))i �= 0 for i = 1, . . . , q, then c(F, a) =
∥∥∥∥ |DF (a)||a|

|F (a)|

∥∥∥∥
∞

.

Proof. If readily follows from the fact that for any matrix A ∈ R
p×q and diagonal

matrix Dg(d) ∈ R
q×q we have

‖ADg(d)‖∞ = ‖ |ADg(d)| ‖∞ = ‖|A| |Dg(d)|‖∞ = ‖|A||Dg(d)|eq‖∞ = ‖|A| |d|‖∞ .

Here eq = (1, 1, . . . , 1) ∈ R
q. �

Remark 1. (i) Lemma 2 reduces the computation of condition numbers,
mostly, to finding explicit expressions for |DF (a)| |a| or, more precisely,
matrix expressions for the derivative DF (a). This will therefore be a ma-
jor concern in the rest of this paper.

(ii) To simplify notation, in the rest of this paper we assume that every time
we deal with componentwise condition numbers, the computed object has
no zero components.

3. Moore–Penrose inverse

To use Lemma 2 for the Moore–Penrose inverse (of full-rank matrices) we intro-
duce some notation. Consider the set

V = {g ∈ R
mn | g = vec(G), with G ∈ R

m×n, rank(G) = n}.
Note that the set {G ∈ R

m×n | rank(G) = n} is open in R
m×n since its complement

is the union of the sets det(Gs) = 0, where Gs runs over all n×n submatrices of G.
Moreover, since vec is a homeomorphism between R

m×n and R
mn, it follows that

V is open as well.
Now define the mapping φ : V → R

mn by φ(vec(G)) = vec(G†). By definition
we have,

m†(A) = m(φ; vec(A)), and c†(A) = c(φ; vec(A)).

To make use of the above we would like to have an explicit expression for the
derivative Dφ. Lemma 4 below exhibits such an expression. Its proof uses the
following well-known result.

Lemma 3. ([2, 16, 17]) Let A ∈ R
m×n and suppose {Ak} is a sequence of

m × n matrices satisfying limk→∞ Ak = A. A necessary and sufficient condition
for limk→∞ A†

k = A† is
rank(Ak) = rank(A)

for sufficiently large k. �
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Lemma 4. The mapping φ is continuous and Fréchet differentiable at a for all
a ∈ V . Moreover, it has the matrix expression Dφ(a) = M(A) where

M(A) =
[
−

(
A†T ⊗ A†

)
+

(
(Im − AA†) ⊗ (ATA)−1

)
Π

]
.

Here Im denotes the m × m identity matrix.

Proof. The continuity of φ on V follows immediately from Lemma 3.
The following equation is well known (see [16, Page 150, eqn. 3.35]):

(A + ∆A)† − A† = −A†∆AA† + (ATA)−1(∆A)T(Im − AA†) + O(‖∆A‖2).

Omitting the second-order terms, using the vec function, and denoting a = vec(A)
and δa = vec(∆A), we have

φ(a + δa) − φ(a)

≈ vec
(
−A†∆AA† + (ATA)−1(∆A)T(Im − AA†)

)
= −

(
A†T ⊗ A†

)
vec(∆A) +

(
(Im − AA†) ⊗ (ATA)−1

)
vec(∆AT)

=
[
−

(
A†T ⊗ A†

)
+

(
(Im − AA†) ⊗ (ATA)−1

)
Π

]
δa,

where the second line follows from (2.2) and Π is the vec-permutation matrix defined
by (2.3).

So the Fréchet derivative of φ at a is given by Dφ(a) = M(A). �

The main result in this section is the following theorem. It provides explicit
expressions for the condition numbers we defined for the Moore–Penrose inverse
computation.

Theorem 1. Let A ∈ R
m×n be such that rank(A) = n. Then

(a) m†(A) =
‖|M(A)| vec(|A|)‖∞

‖vec(A†)‖∞
,

(b) c†(A) =
∥∥∥∥ |M(A)| vec(|A|)

vec(A†)

∥∥∥∥
∞

.

Proof. By Lemmas 2 and 4,

m†(A) = m(φ; a) =
‖|Dφ(a)||a|‖
‖φ(a)‖∞

=
‖|M(A)|vec(|A|)‖∞

‖vec(A†)‖∞
and

c†(A) = c(φ; a) =
∥∥∥∥ |M(A)||a|

|φ(a)|

∥∥∥∥
∞

=
∥∥∥∥ |M(A)|vec(|A|)

vec(|A†|)

∥∥∥∥
∞

. �

Theorem 1 gives explicit expressions for the condition numbers m†(A) and c†(A).
While these expressions are sharp they may not be easy to compute by their depen-
dance on the (large) matrix Π and the need to compute Kronecker products. The
next corollary gives easier to compute upper bounds for these condition numbers.
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Lemma 5. For any matrices M, N, P, Q, R, and S with dimensions making the
following well defined

[M ⊗ N + (P ⊗ Q) Π] vec(R),

[M ⊗ N + (P ⊗ Q)Π] vec(R)
S

,

NRMT and QRTPT,

we have∥∥∥∥∥| [M ⊗ N + (P ⊗ Q)Π] |vec(|R|)
∥∥∥∥∥
∞

≤
∥∥vec

(
|N ||R||M |T + |Q||R|T|P |T

)∥∥
∞

and∥∥∥∥∥∥

∣∣∣[M ⊗ N + (P ⊗ Q)Π]
∣∣∣vec(|R|)

|S|

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥

vec
(
|N ||R||M |T + |Q||R|T|P |T

)
|S|

∥∥∥∥∥
∞

.

Proof. It is easy to see that∣∣∣[M ⊗ N + (P ⊗ Q)Π]
∣∣∣vec(|R|) ≤ [|M | ⊗ |N | + (|P | ⊗ |Q|) Π] vec(|R|)

= (|M | ⊗ |N |) vec(|R|) + (|P | ⊗ |Q|) vec(|R|T)

= vec
(
|N ||R||M |T + |Q||R|T|P |T

)
,

the first line by (2.1) and the last by (2.2). Taking norms (and dividing by |S|
before doing so for the second inequality in the statement) proves the lemma. �

Corollary 1. In the hypothesis of Theorem 1 we have

(a) m†(A) ≤
∥∥|A†||A||A†| + |(ATA)−1||AT||Im − AA†|

∥∥
max

‖A†‖max

,

(b) c†(A) ≤
∥∥∥∥ |A

†||A||A†| + |(ATA)−1||AT||Im − AA†|
A†

∥∥∥∥
max

.

Proof. Using Theorem 1 and Lemma 5 with M = −A†T, N = A†, P = Im − AA†,
Q = (ATA)−1, R = A, and S = vec(A†), we obtain

m†(A) ≤
∥∥vec

(
|A†||A||A†| + |(ATA)−1||AT||Im − AA†|

)∥∥
∞

‖vec(A†)‖∞

=

∥∥|A†||A||A†| + |(ATA)−1||AT||Im − AA†|
∥∥

max

‖A†‖max

and

c†(A) ≤
∥∥∥∥∥

vec
(
|A†||A||A†| + |(ATA)−1||AT||Im − AA†|

)
vec(A†)

∥∥∥∥∥
∞

=
∥∥∥∥ |A

†||A||A†| + |(ATA)−1||AT||Im − AA†|
|A†|

∥∥∥∥
max

. �
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4. Linear least squares problems

We consider linear least squares problems (LLS)

(4.1) min
v∈Rn

‖Av − b‖2,

where A ∈ R
m×n, rank(A) = n, and b ∈ R

m. Since A, as a linear map, is injective
there is a unique minimizer x for (4.1).

This minimizer satisfies
ATAx = ATb,

and therefore, since A† = (ATA)−1AT for full column rank matrices A,

x = A†b = (ATA)−1ATb.

Let x be as above, ∆b ∈ R
m, and ∆A ∈ R

m×n such that rank(A + ∆A) = n.
Consider the problem

(4.2) min
w∈Rn

‖(A + ∆A)w − (b + ∆b)‖2.

Then there is a unique minimizer y and letting ∆x := y − x, we have

∆x = (A + ∆A)†(b + ∆b) − x.

The mixed and componentwise condition numbers for LLS are defined as follows:

mls(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

‖∆x‖∞
ε‖x‖∞

,

cls(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

1
ε

∥∥∥∥∆x

x

∥∥∥∥
∞

.

Just as in the previous section, to comfortably make use of Lemma 1, we define
the mapping ψ : V × R

m → R
n by

ψ(g, f) := (vec−1g)†f.

Note that mls(A, b) = m(ψ; a, b) and cls(A, b) = c(ψ; a, b).

Lemma 6. The set V × R
m is open and ψ is a continuous mapping on V × R

m.
In addition, for all (a, b) ∈ V ×R

m, ψ is Fréchet differentiable at (a, b) and has the
matrix expression Dψ(a, b) =

[
H(A, b), A†], where

H(A, b) = −
(
xT ⊗ A†) + (ATA)−1 ⊗ rT.

Proof. The first statement is trivial. We next proceed with the claimed equality.
To do so, note that

∆x ≈ −A†∆Ax + (ATA)−1(∆A)Tr + A†∆b

=
[
−

(
xT ⊗ A†) +

(
rT ⊗ (ATA)−1

)
Π, A†] [

δa
∆b

]

=
[
−

(
xT ⊗ A†) + (ATA)−1 ⊗ rT, A†] [

δa
∆b

]
,(4.3)

where the first line is shown in [11, (1.4)], the second follows from (2.2) and the
fact that vec applied to a vector yields the vector itself, and the last line follows
from (2.5).
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From (4.3) we can rewrite

ψ(a + ∆a, b + ∆b) − ψ(a, b) ≈
[
−

(
xT ⊗ A†) + (ATA)−1 ⊗ rT, A†] [

δa
∆b

]
.

Then the Fréchet derivative of ψ at (A, b) is

Dψ(a, b) =
[
−

(
xT ⊗ A†) + (ATA)−1 ⊗ rT, A†] . �

We can now give expressions for the mixed and componentwise condition number
of LLS. Recall, for the first we assume x �= 0 and for the second xi �= 0 for
i = 1, . . . , n.

Theorem 2. Let A ∈ R
m×n, rank(A) = n, and b ∈ R

m. We have

mls(A, b) =

∥∥|H(A, b)| vec(|A|) + |A†||b|
∥∥
∞

‖x‖∞
,

cls(A, b) =
∥∥∥∥ |H(A, b)| vec(|A|) + |A†||b|

x

∥∥∥∥
∞

.

Furthermore, if r = 0 (i.e., for consistent linear systems Ax = b), we have

mls(A, b) =

∥∥|A†||A||x| + |A†||b|
∥∥
∞

‖x‖∞
,

cls(A, b) =
∥∥∥∥ |A

†||A||x| + |A†||b|
x

∥∥∥∥
∞

.

Proof. By Lemmas 2 and 6

mls(A, b) =

∥∥∥∥|Dψ(a, b)|
[

|a|
|b|

]∥∥∥∥
∞

‖x‖∞
=

∥∥∥∥[
|H(A, b)| , |A†|

] [
|a|
|b|

]∥∥∥∥
∞

‖x‖∞

=

∥∥|H(A, b)| vec(|A|) + |A†||b|
∥∥
∞

‖x‖∞
and

cls(A, b) =

∥∥∥∥∥
|Dψ(a, b)|

[
|a|
|b|

]

|x|

∥∥∥∥∥
∞

=
∥∥∥∥ |H(A, b)| vec(|A|) + |A†||b|

|x|

∥∥∥∥
∞

.

For consistent linear systems replace r by 0 in H(A, b) to obtain

mls(A, b) =

∥∥|A†||A||x| + |A†||b|
∥∥
∞

‖x‖∞
and cls(A, b) =

∥∥∥∥ |A
†||A||x| + |A†||b|

|x|

∥∥∥∥
∞

.

�
Remark 2. When n = m the consistent case of Theorem 2 recovers the known
expressions [10] for mixed and componentwise condition numbers for linear systems.

Corollary 2. We have the following bounds:

mls(A, b) ≤ mupper
ls :=

∥∥|A†||A||x| + |(ATA)−1||AT||r| + |A†||b|
∥∥
∞

‖x‖∞
,

cls(A, b) ≤ cupper
ls :=

∥∥∥∥ |A
†||A||x| + |(ATA)−1||AT||r| + |A†||b|

|x|

∥∥∥∥
∞

.
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Proof. Using Theorem 2, equality (2.5), and Lemma 5, we have

mls(A, b) =

∥∥∣∣[− (
xT ⊗ A†) +

(
rT ⊗ (ATA)−1

)
Π

]∣∣ vec(|A|) + |A†||b|
∥∥
∞

‖x‖∞

≤
∥∥|A†||A||x| + |(ATA)−1||AT||r| + |A†||b|

∥∥
∞

‖x‖∞
and

cls(A, b) =

∥∥∥∥∥
[∣∣(xT ⊗ A†) − (

rT ⊗ (ATA)−1
)
Π

∣∣ vec(|A|) + |A†||b|
]

|x|

∥∥∥∥∥
∞

≤
∥∥∥∥ |A

†||A||x| + |(ATA)−1||AT||r| + |A†||b|
|x|

∥∥∥∥
∞

. �

Remark 3. In [3], Björck derived a bound for mls(A, b). Namely, he proved that

mls(A, b) ≤ M(A, b) :=

∥∥|A†||A||x| + |A†||b|
∥∥
∞ +

∥∥∥
∣∣∣(ATA

)−1
∣∣∣ ∣∣AT

∣∣ |r|∥∥∥
∞

‖x‖∞
.

We note that, by the triangle inequality, mupper
ls ≤ M(A, b).

Condition numbers bound the worst-case sensitivity of an input data only to
small perturbations. If ε is the size of the perturbation, a term O(ε2) is neglected
and therefore, the bound only holds for ε small enough. One says that condition
numbers are first-order bounds for these sensitivities. Occasionally, one is inter-
ested in bounds for unrestricted perturbations. The following result exhibits such
unrestricted perturbation bounds for LLS.

Theorem 3. Let A, ∆A ∈ R
m×n satisfy rank(A) = rank(A + ∆A) = n. Let

∆b ∈ R
m and x, y be the solutions of (4.1) and (4.2), respectively. If for some

E ∈ R
m×n and f ∈ R

m we have |∆A| ≤ εE and |∆b| ≤ εf , then

‖y − x‖∞
‖x‖∞

≤ ε

∥∥∣∣[(yT ⊗ A†) − (ATA)−1 ⊗ sT
]∣∣ vec(E) + |A†|f

∥∥
∞

‖x‖∞
,

‖s − r‖∞
‖r‖∞

≤ ε

∥∥∥
∣∣∣[yT ⊗

(
Im − AA†) + A†T ⊗ sT

]∣∣∣ vec(E) +
∣∣Im − AA†∣∣ f

∥∥∥
∞

‖r‖∞
,

(4.4)

where s = b + ∆b − (A + ∆A)y. Both inequalities are sharp.

To prove Theorem 3 we need some preparation.

Lemma 7. Let A, ∆A, b, ∆b, x, y, E, and f be as in the hypothesis of Theorem 3.
Then

y − x =
[
−

(
yT ⊗ A†) + (ATA)−1) ⊗ sT, A†] [

δa
∆b

]
,(4.5)

s − r =
[
−

(
yT ⊗ (I − AA†)

)
− (A†A)T ⊗ sT, Im − AA†] [

δa
∆b

]
,(4.6)

where s = b + ∆b − (A + ∆A)y.
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Proof. In [10, Theorem 4.2] it is shown that

y − x = −A†∆Ay +
(
ATA

)−1
(∆A)Ts + A†∆b,

s − r = −(Im − AA†)∆Ay − (A†)T∆ATs + (Im − AA†)∆b.

Then

y − x = vec
(
−A†∆Ay +

(
ATA

)−1
(∆A)Ts

)
+ A†∆b

= −
(
y ⊗ A†) vec(∆A) +

(
s ⊗ (ATA)−1

)
vec(∆AT) + A†∆b

=
[
−

(
yT ⊗ A†) + (ATA)−1) ⊗ sT, A†] [

δa
∆b

]

and similarly for the second equality. �

For the proof of the following lemma, we use an idea from [6].

Lemma 8. Let A ∈ R
m×n, D = Dg(d) ∈ R

n×n, and v ∈ R
n satisfying |vi| ≤ ε|di|

for i = 1, . . . , n. Then ∥∥∥AD
v

d

∥∥∥
∞

≤ ε‖AD‖∞,

and v can be chosen to make the upper bound attainable.

Proof. The first inequality is easy to prove. For the second statement, let i ≤ m
such that

‖AD‖∞ =
n∑

k=1

|aikdk|.

Define v by vk = εsgn(aikdk)dk, where sgn is the sign function, i.e., sgn(x) = 1 if
x ≥ 0 and sgn(x) = −1 otherwise. Then

v

d
= ε

⎡
⎢⎣

sgn(Ai1d1)
...

sgn(Aindn)

⎤
⎥⎦ and

∥∥∥v

d

∥∥∥
∞

= ε

and the ith row of AD v
d is given by(

AD
v

d

)
i
= ε [Ai1d1sgn(Ai1dn), . . . , Aind1sgn(Aindn)] = ε [|Ai1d1|, . . . , |Aindn|] .

Therefore ∥∥∥(
AD

v

d

)
i

∥∥∥
∞

= ε‖AD‖∞. �

Proof of Theorem 3. By Lemma 7, writing e = vec(E),

y − x =
[
−

(
yT ⊗ A†) + (A†A†T) ⊗ sT, A†

] [
δa
∆b

]

=
[
−

(
yT ⊗ A†) + (A†A†T) ⊗ sT, A†

] [
Dg(e) 0

0 Dg(f)

] [ δa
e

∆b
f

]
.

Taking norms and using Lemma 8, we obtain

‖y − x‖∞ ≤ ε

∥∥∥∥
[
−

(
yT ⊗ A†) + (A†A†T) ⊗ sT, A†

] [
Dg(e) 0

0 Dg(f)

]∥∥∥∥
∞

= ε
∥∥∣∣[(yT ⊗ A†) − (ATA)−1 ⊗ sT

]∣∣ vec(E) + |A†|f
∥∥
∞ ,
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the second line as in Lemma 2. This proves inequality (4.4). Sharpness follows
from Lemma 8.

The second inequality can be proved similarly. �

In what follows we assume that b �∈ R(A), where R(A) denotes the range of A.
That is, the residual vector r �= 0. For componentwise results, we also assume that
ri �= 0 for i = 1, . . . , m. Define the mixed and componentwise condition numbers
for r as

mres(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

‖∆r‖∞
ε‖r‖∞

,

cres(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

1
ε

∥∥∥∥∆r

r

∥∥∥∥
∞

.

Define the function Φ : V × R
m → R

m by

Φ(g, f) := (Im − (vec−1g)(vec−1g)†)f.

Then mres(A, b) = m(Φ; a, b) and cres(A, b) = c(Φ; a, b).

Lemma 9. The function Φ is continuous. Moreover, for all (a, b) ∈ V × R
m,

it is Fréchet differentiable at (a, b) and has the matrix expression DΦ(a, b) =[
Q(A, b), Im − AA†] where

Q(A, b) = −
(
xT ⊗

(
Im − AA†)) + (A†)T ⊗ rT.

Proof. Let (δa, ∆b) be a perturbation of (a, b) and ∆A = vec−1(δa). It is easy to
see that, omitting second- (and higher-) order terms, the perturbed residual vector
r + ∆r satisfies

r + ∆r = b + ∆b − (A + ∆A)(A + ∆A)†(b + ∆b)

≈ r − (Im − AA†)∆Ax − (A†)T(∆A)Tr + (Im − AA†)∆b,

i.e., using (2.2),

∆r ≈
[
−

(
xT ⊗

(
Im − AA†)) + (A†)T ⊗ rT, Im − AA†] [

δa
∆b

]
.

So

DΦ(a, b) =
[
−

(
xT ⊗

(
Im − AA†)) + (A†)T ⊗ rT, Im − AA†] . �

Theorem 4. With the notation above, the mixed and componentwise condition
numbers for r satisfy

mres(A, b) =

∥∥|Q(A, b)| vec(|A|) +
∣∣Im − AA†∣∣ |b|∥∥∞

‖r‖∞
,

cres(A, b) =

∥∥∥∥∥
|Q(A, b)| vec(|A|) +

∣∣Im − AA†∣∣ |b|
r

∥∥∥∥∥
∞

.
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Proof. From Lemmas 2 and 9, we have that

mres(A, b) = m(Φ; a, b) =

∥∥∥∥|DΦ(a, b)|
[
|a|
|b|

]∥∥∥∥
∞

‖Φ(a, b)‖∞

=

∥∥|Q(A, b)| vec(|A|) +
∣∣Im − AA†∣∣ |b|∥∥∞

‖r‖∞
and

cres(A, b) = c(Φ; a, b) =

∥∥∥∥∥∥∥∥
|DΦ(a, b)|

[
|a|
|b|

]

Φ(a, b)

∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥
|Q(A, b)| vec(|A|) +

∣∣Im − AA†∣∣ |b|
r

∥∥∥∥∥
∞

. �

The next corollary gives (easier to compute, no occurrences of ⊗) upper bounds
for the residual vector mixed and componentwise condition numbers.

Corollary 3. Let A ∈ R
m×n satisfy rank(A) = n. Let b ∈ R

m, b �∈ R(A), x be the
solution of (4.1) and r = b − Ax. Then

mres(A, b) ≤mupper
res (A, b)

:=

∥∥∣∣Im − AA†∣∣ |A||x| + |(A†)T||A|T|r| +
∣∣Im − AA†∣∣ |b|∥∥∞

‖r‖∞
,

cres(A, b) ≤cupper
res (A, b)

:=

∥∥∥∥∥
∣∣Im − AA†∣∣ |A||x| + |(A†)T||A|T|r| +

∣∣Im − AA†∣∣ |b|
|r|

∥∥∥∥∥
∞

.

Proof. Using Theorem 4, equality (2.5) and Lemma 5, we obtain

mres(A, b) =

∥∥∣∣[xT ⊗
(
Im − AA†) − (

rT ⊗ (A†)T
)
Π

]∣∣ vec(|A|) +
∣∣Im − AA†∣∣ |b|∥∥∞

‖r‖∞

≤
∥∥∣∣Im − AA†∣∣ |A||x| + |(A†)T||A|T|r| +

∣∣Im − AA†∣∣ |b|∥∥∞
‖r‖∞

and

cres(A, b) =

∥∥∥∥∥
∣∣[xT ⊗

(
Im − AA†) − (

rT ⊗ (A†)T
)
Π

]∣∣ vec(|A|) +
∣∣Im − AA†∣∣ |b|

|r|

∥∥∥∥∥
∞

≤
∥∥∥∥∥

∣∣Im − AA†∣∣ |A||x| + |(A†)T||A|T|r| +
∣∣Im − AA†∣∣ |b|

|r|

∥∥∥∥∥
∞

. �

5. Full row rank and underdetermined systems

Suppose A ∈ R
m×n with rank(A) = m. Then the Moore–Penrose inverse of A

can be written as
A† = AT(AAT)−1.
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Let
U = {g ∈ R

mn | g = vec(G), with G ∈ R
m×n, rank(G) = m}.

Now define the mapping Ψ : U → R
mn given by Ψ(vec(G)) = vec(G†).

Lemma 10. The mapping Ψ is continuous. Moreover, for all a ∈ U , it is Fréchet
differentiable at a and has the matrix expression DΨ(a) = N(A) where

N(A) =
[
−

(
A†T ⊗ A†

)
+

(
(AAT)−1 ⊗ (In − A†A)

)
Π

]
.

Proof. The continuity of φ on V follows immediately from Lemma 3.
The following equality is well known (see [16, p. 150, eqn. 3.35]):

(A + ∆A)† − A† = −A†∆AA† + (In − A†A)(∆A)T(AAT)−1 + O(‖∆A‖2).

Omitting the second-order term and using the vec function, we have

Ψ(a + δa) − Ψ(a)

= vec
(
−A†∆AA† + (In − A†A)(∆A)T(AAT)−1

)
= −

(
A†T ⊗ A†

)
vec(∆A) +

(
(AAT)−1 ⊗ (In − A†A)

)
vec(∆AT)

=
[
−

(
A†T ⊗ A†

)
+

(
(AAT)−1 ⊗ (In − A†A)

)
Π

]
vec(∆A),

where Π is the vec-permutation matrix defined by (2.3).
So the Fréchet derivative of φ at a is given by

DΨ(a) =
[
−

(
A†T ⊗ A†

)
+

(
(AAT)−1 ⊗ (In − A†A)

)
Π

]
. �

The next result exhibits expressions for the condition numbers of A (for the
Moore–Penrose inverse).

Theorem 5. Let A ∈ R
m×n be such that rank(A) = m. Then

m†(A) =
‖|N(A)| vec(|A|)‖∞

‖vec(A†)‖∞
,

c†(A) =
∥∥∥∥ |N(A)| vec(|A|)

vec(A†)

∥∥∥∥
∞

.

Proof. From Lemmas 2 and 10 we get

m†(A) = m(Ψ; a) =
‖|DΨ(a)||a|‖∞

‖Ψ(a)‖∞
=

‖|N(A)| vec(|A|)‖∞
‖vec(A†)‖∞

and

c†(A) = c(Ψ; a) =
∥∥∥∥ |DΨ(a)||a|

Ψ(a)

∥∥∥∥
∞

=
∥∥∥∥ |N(A)| vec(|A|)

vec(A†)

∥∥∥∥
∞

. �

Corollary 4. Let A ∈ R
m×n be such that rank(A) = m. Then

m†(A) ≤
∥∥|A†||A||A†| + |In − A†A||AT||(AAT)−1|

∥∥
max

‖A†‖max

,

c†(A) ≤
∥∥∥∥ |A

†||A||A†| + |In − A†A||AT||(AAT)−1|
A†

∥∥∥∥
max

.
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Proof. Using Theorem 5 and Lemma 5, we have

m†(A) ≤
∥∥vec

(
|A†||A||A†| + |In − A†A||AT||(AAT)−1|

)∥∥
∞

‖vec(A†)‖∞

=

∥∥|A†||A||A†| + |In − A†A||AT||(AAT)−1|
∥∥

max

‖A†‖max

and

c†(A) ≤
∥∥∥∥∥

vec
(
|A†||A||A†| + |In − A†A||AT||(AAT)−1|

)
vec(A†)

∥∥∥∥∥
∞

=
∥∥∥∥ |A

†||A||A†| + |In − A†A||AT||(AAT)−1|
A†

∥∥∥∥
max

. �

For underdetermined systems
Av = b,

where A ∈ R
m×n with rank(A) = m and b ∈ R

m, the set of solutions is an affine
subspace of R

n with the dimension of N (A), the nullspace of A. It contains a unique
point x minimizing the 2-norm. It is well known that this solution is x = A†b.
Consider the problem of, given A and b, finding x. This problem induces condition
numbers mmin(A, b) and cmin(A, b). The following result exhibits expressions for
these condition numbers.

We define the function χ : U × R
m → R

n by

χ(g, f) := (vec−1g)†f.

Then mmin(A, b) = m(χ; a, b) and cmin(A, b) = c(χ; a, b). Also, we assume that
x �= 0 and, for componentwise results, that xi �= 0 for i = 1, . . . , n.

Lemma 11. The function χ is continuous. Moreover, for all (a, b) in U × R
m, it

is Fréchet differentiable at (a, b) and Dχ(a, b) =
[
P (A, b), A†], where

P (A, b) = −xT ⊗ A† + (In − A†A) ⊗ (xTA†).

Proof. We have

∆x ≈ −A†∆Ax + (In − A†A)(∆A)T(A†)Tx + A†∆b

= vec
(
−A†∆Ax + (In − A†A)(∆A)T(A†)Tx + A†∆b

)
=

[
−xT ⊗ A† + (xTA†) ⊗ (In − A†A)Π

]
vec(∆A) + A†∆b

=
[
−xT ⊗ A† + (xTA†) ⊗ (In − A†A)Π, A†] [

δa
∆b

]

=
[
−xT ⊗ A† + (In − A†A) ⊗ (xTA†), A†] [

δa
∆b

]
,

where the first line is proved in [4, Theorem 2.1]. �

Theorem 6. Let A ∈ R
m×n with rank(A) = m and b ∈ R

m. Then

mmin(A, b) =

∥∥|P (A, b)| vec(|A|) + |A†||b|
∥∥
∞

‖x‖∞
,

cmin(A, b) =
∥∥∥∥ |P (A, b)| vec(|A|) + |A†||b|

x

∥∥∥∥
∞

.
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Proof. From Lemmas 2 and 11, we have

mmin(A, b) = m(χ; a, b) =

∥∥∥∥|Dχ(a, b)|
[
|a|
|b|

]∥∥∥∥
∞

‖χ(a, b)‖∞
=

∥∥|P (A, b)| vec(|A|) + |A†||b|
∥∥
∞

‖x‖∞
and

c†(A) = c(χ; a, b) =

∥∥∥∥∥
|Dχ(a, b)|

[
|a|
|b|

]

χ(a, b)

∥∥∥∥∥
∞

=
∥∥∥∥ |P (A, b)| vec(|A|) + |A†||b|

x

∥∥∥∥
∞

. �

Corollary 5. Let A ∈ R
m×n with rank(A) = m and b ∈ R

m. Then

mmin(A, b) ≤ mupper
min (A, b) :=

∥∥∥|A†||A||x| + |In − A†A||AT||A†Tx| + |A†||b|
∥∥∥
∞

‖x‖∞
,

cmin(A, b) ≤ cupper
min (A, b) :=

∥∥∥∥∥
|A†||A||x| + |In − A†A||AT||A†Tx| + |A†||b|

x

∥∥∥∥∥
∞

.

Proof. Using Theorem 6, (2.5), and Lemma 5,

mmin(A, b) =

∥∥∣∣[(xT ⊗ A†) − ((
xTA†) ⊗ (In − A†A)

)
Π

]∣∣ vec(|A|) + |A†||b|
∥∥
∞

‖x‖∞

≤

∥∥∥|A†||A||x| + |In − A†A||AT||A†Tx| + |A†||b|
∥∥∥
∞

‖x‖∞
and

cmin(A, b) =

∥∥∥∥∥
∣∣[(xT ⊗ A†) − ((

xTA†) ⊗ (In − A†A)
)
Π

]∣∣ vec(|A|) + |A†||b|
x

∥∥∥∥∥
∞

≤
∥∥∥∥∥
|A†||A||x| + |In − A†A||AT||A†Tx| + |A†||b|

x

∥∥∥∥∥
∞

. �
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