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QUATERNIONIC MANIN SYMBOLS, BRANDT MATRICES,
AND HILBERT MODULAR FORMS

LASSINA DEMBÉLÉ

Abstract. In this paper, we propose a generalization of the algorithm we de-
veloped previously. Along the way, we also develop a theory of quaternionic M -
symbols whose definition bears some resemblance to the classical M -symbols,
except for their combinatorial nature. The theory gives a more efficient way
to compute Hilbert modular forms over totally real number fields, especially
quadratic fields, and we have illustrated it with several examples. Namely, we
have computed all the newforms of prime levels of norm less than 100 over
the quadratic fields Q(

√
29) and Q(

√
37), and whose Fourier coefficients are

rational or are defined over a quadratic field.

Introduction

This paper is a generalization of [4] (see also the author’s thesis [3]). It presents
a new approach to the theory of Brandt matrices in order to compute Hilbert
modular forms. To give a brief discussion of this approach, let F be a totally real
number field of even degree and narrow class number one—we will explain later
how those conditions can be relaxed—and let B be the unique (up to isomorphism)
totally definite quaternion algebra whose ramification is only at infinity. We let
N be an integral ideal in F . By the Jacquet–Langlands correspondence, we know
that any Hilbert modular form of level N and arbitrary weight k comes from an
automorphic form of the same level and weight on B (see Section 3 and reference
therein). The algorithm in Pizer [12], which has been the most used so far when it
comes to computing modular forms on fields larger than Q is based on the knowledge
of the invariants of an Eichler order of level N in B, such as its class number,
representatives of its ideal classes, and the left or right orders of those ideals; see,
for example, Consani and Scholten [1], Pizer [12] and Socrates and Whitehouse [15].
The main disadvantage of this approach is that one needs to throw away almost
everything and start all over again when the level changes. Our approach, instead,
is based on using invariants of the quaternion algebra B itself. So, the knowledge
of the Eichler order becomes rather virtual. From a computational point of view,
this has tremendous advantages as one can store a huge amount of data from the
start, and the computations which are required for each level amount to finding
some local embeddings of a set of representatives of the types of B.

Though, the aim of this paper was primarily computational, some of the issues
we address certainly have some theoretical interest. Indeed, our approach to the
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1040 LASSINA DEMBÉLÉ

Brandt matrices suggests that one can give a purely algebraic description of the
Hecke module SB

k (N), the space of automorphic forms of level N and weight k
on B. This leads us to the notion of quaternionic Manin symbols. The definition
of the Hecke module of the quaternionic Manin symbols has a lot of resemblance
to the one of the usual Manin symbols when F = Q (see Merel [11] or Stein
[16]). Unfortunately, the only way one can relate this module to the holomorphic
part of the cuspidal cohomology of the Hilbert modular variety X0(N) seems to
be by means of the Jacquet–Langlands correspondence. The similarities of the
quaternionic M -symbols with the usual M -symbols over Q suggests that one could
implement them in a package similar to the Magma package of Stein [16, 9] for a
wide range of number fields, especially real quadratic fields. One of the applications
we have in mind for such an algorithm would be to gather more numerical evidence
about the Serre conjecture for totally real number fields.

As can be seen easily, the definition of the automorphic forms in this paper is
a special case of the theory of algebraic modular forms in Gross [7]. So, we think
that quaternionic M -symbols could also help in approaching those forms, at least
from a computational standpoint.

The paper is organized as follows. Sections 1 and 2 recall preliminaries on Hilbert
modular forms and automorphic forms on definite quaternion algebras, together
with the Jacquet–Langlands correspondence which allows one to go from one side
to the other. In Section 3, we describe the Brandt matrices, and in Section 4,
we show how one can add a character to that definition. In Section 5, we define
quaternionic M -symbols and give their basic properties. The final two sections
give numerical examples on the theory we have developed; namely, we give tables
of all the eigenforms of parallel weight (2, 2) and prime level N of norm less than
100, whose coefficients are rationals or defined over a quadratic field, for the fields
F = Q(

√
29) and F = Q(

√
37).

1. Hilbert modular forms

We fix a totally real number field F of even degree g. We assume that the narrow
class number of F is one. We let I be the set of all real embeddings of F . For each
τ ∈ I, we denote the corresponding embedding into R by a �→ aτ . Also, we let OF

be the ring of integers of F , and δ its different. For an integral ideal p of F , we
denote by Fp and OF,p the completions of F and OF , respectively, at p. We say
that an element a ∈ F is totally positive if, for all τ ∈ I, aτ > 0. We then denote
this by a � 0 and, for every subring A of F , we let GL+

2 (A) be all the invertible 2
by 2 matrices with coefficients in A, with totally positive determinant. We fix an
integral ideal N of F , and put

Γ0(N) =
{

γ =
(

a b
c d

)
∈ GL+

2 (OF ) : c ∈ N

}
.

Let k = (kτ )τ∈I ∈ ZI be an integer vector whose components have the same
parity, kτ ≥ 2. Let H denote the Poincaré upper half-plane. We recall that Γ0(N)
acts on the set of functions f : HI → C by

f ||kγ(z) =

(∏
τ∈I

det γkτ /2
τ (cτzτ + dτ )−kτ

)
f

((
aτzτ + bτ

cτzτ + dτ

)
τ∈I

)
.
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Definition 1. A Hilbert modular form of level N and weight k is a holomorphic
function f : HI → C such that

f ||kγ = f for all γ ∈ Γ0(N).

Let f be a Hilbert modular form. Then

f(z + µ) = f(z) for all z ∈ HI , µ ∈ OF .

Therefore, f admits a Fourier expansion which, by the Koecher principle, is of the
form

f(z) =
∑

ν∈δ−1

aνe2πiTr(νz),

with ν = 0 or ν � 0. Also, since f is invariant under the action of matrices of the

form
(

ε 0
0 ε−1

)
, with ε ∈ O×

F , we see that aν = N(ε)k/2aε2ν . For any integral ideal

a of F , we choose ν � 0 such that a = (ν)δ and put

c(a, f) = aν .

This is a well-defined coefficient. For all γ ∈ GL+
2 (F ), let aγ

0 be the first coefficient
in the Fourier expansion of f ||kγ. We say that f is a cusp form if aγ

0 = 0, for all
γ ∈ GL+

2 (F ). We denote the space of all cusp forms by Sk(N).
The Petersson inner product on the space of cusp forms is given by

〈f, g〉 :=
1

µ(Γ0(N)\HI)

∫
Γ0(N)\HI

f(z)g(z)ykdµ(z),

where

dµ(z) =
∏
τ∈I

dyτ

y2
τ

, and yk =
∏
τ∈I

ykτ
τ , for zτ = xτ + iyτ .

Hecke operators. Let p be a prime ideal of F such that (p, N) = 1, and πp a
uniformizer of p . We write the disjoint union

Γ0(N)
(

1 0
0 πp

)
Γ0(N) =

∐
Γ0(N)αi,

and define the action of the Hecke operators Tp on Sk(N) by

f ||Tp =
∑

f ||kαi.

The operators Tp generate a commutative (finite) Z-subalgebra of End(Sk(N)).
We denote it by Tk(N) and call it the Hecke algebra of level N.

Definition 2. A Hecke eigenform f is an eigenvector of Tk(N). We say that f is
normalized if c(OF , f) = 1.

It is a result of Shimura that, when f is a normalized eigenform, its eigenvalues
are given by the c(a, f), for a running over the integral ideals in F , and that they
generate a number field ([14]).

We denote by Sold
k (N) the subspace of Sk(N) generated by all cusp forms of the

form f(dz), where d ∈ M and f ∈ Sk(NM−1), for M a nontrivial divisor of N. We
denote the orthogonal complement of Sold

k (N), with respect to the Petersson inner
product, by Snew

k (N), and call it the subspace of newforms. We also let Tnew
k (N)

be the part of Hecke algebra which acts on the space of newforms.
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2. Automorphic forms on definite quaternion algebras

and the Jacquet–Langlands correspondence

In this section, we let B be the unique (up to isomorphism) totally definite
quaternion algebra of center F that ramifies only at infinite places (this is possible
because F has even degree). We fix a maximal order R in B, and let RN be
an Eichler order of level N contained in R. We fix a Galois extension K of F
contained in C, which splits B. We also fix an isomorphism B ⊗F K ∼= M2(K)I ,
and let j : B× ↪→ GL2(C)I be the resulting embedding.

We fix a vector k ∈ ZI such that kτ ≥ 2 for all τ , with all the components having
the same parity. Set t = (1, . . . , 1) and m = k − 2t, then choose v ∈ ZI such that
each vτ ≥ 0, vτ = 0 for some τ , and m + 2v = nt for some nonnegative n ∈ Z. For
every nonnegative integer a, b ∈ Z, we let Sa, b(C) denote the right M2(C)-module
Syma(C2) (the ath symmetric power of the standard right M2(C)-module C2) with
the M2(C) action:

x · m := (detm)bxSyma(m).
Then, we define

Lk =
⊗
τ∈I

Smτ , vτ
(C).

We let G = ResF/Q(B×) be the algebraic group obtained by restriction of scalars.
Via the obvious extension of j, G(R) acts on Lk. On the complex space of functions
f : G(Q)\G(A) → Lk, we define an action of G(A) by

(f ||ku)(g) := f(gu)u−1
∞ , g, u ∈ G(A).

Similarly, on the space of functions f : G(Af )/R̂×
N

→ Lk, we define an action of
G(Q) by

(f ||kγ)(g) := f(γg)γ, g ∈ G(A), γ ∈ G(Q).

Definition 3. The space of automorphic forms of level N and weight k on B is

SB
k (N) :=

{
f : G(Q)\G(A) → Lk : f ||ku = f, u ∈ G(R) × R̂×

N

}
.

Equivalently, we can define the space of automorphic forms as

SB
k (N) =

{
f : G(Af )/R̂×

N
→ Lk : f ||kγ = f, γ ∈ G(Q)

}
.

Hecke operators. Take u ∈ G(Af ) and write the finite disjoint union

R̂×
N

uR̂×
N

=
∐

R̂×
N

ui.

We define the Hecke operator [R̂×
N

uR̂×
N

] by

[R̂×
N

uR̂×
N

] : SB
k (N) → SB

k (N),

f �→
∑

i

f ||kui.

Let p be a prime ideal of F such that (p, N) = 1, and πp a uniformizer of p. We
let

Tp :=
[
R̂×

N

(
1 0
0 πp

)
R̂×

N

]
.

The operators Tp generate a commutative (finite) Z-subalgebra of End(SB
k (N)), we

denote it by TB
k (N) and call it the Hecke algebra of level N.
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Let µB : B → Q+ be the composition of the norm map on B with the norm map
on F . We denote by µB, A : BA → R+ its natural extension to BA. As in Taylor
[17], we can find a bilinear pairing

〈 , 〉 : Lk → C

such that
〈xα, yα〉 = µB(α)n〈x, y〉, α ∈ B×.

We then define a bilinear pairing on SB
k (N) by

〈f, g〉 :=
∑

x∈XB
0 (N)

µB, A(x)n〈f(x), g(x)〉,

where
XB

0 (N) = G(Q)\G(Af)/R̂×
N

.

This bilinear pairing is not Hecke equivariant, but one can show that

〈f ||k[R̂×
N

uR̂×
N

], g〉 = µB, A(u)n〈f, g||k[R̂×
N

u−1R̂×
N

]〉.
See Taylor [17] for more details, see also Gross [7, Proposition 1.4] on how to obtain
such a symmetric positive definite bilinear pairing in general. Analogously to the
previous section, we define the spaces SB, old

k (N) and SB, new
k (N), and the Hecke

algebra TB, new
k (N) using this bilinear pairing. By [7, Proposition 1.4], the pairing

is well defined up to scaling by a factor in Q×
+. So the space of newforms does not

depend on the choice of this pairing.
Since the ramification of B is only at infinite places, the Jacquet–Langlands

correspondence translates as follows.

Theorem 1 (Jacquet–Langlands). There is an isomorphism of Z-algebras

TB, new
k (N) ∼= Tnew

k (N),

and a compatible isomorphism

SB, new

k (N) ∼= Snew
k (N)

of Hecke modules.

Proof. See Jacquet–Langlands [8, Section 16] and Gelbart [6, Chap. 9]. �

Theorem 1 asserts that one obtains all the newforms on GL2/F by computing
the ones that live on B×/F . Our next goal is to provide an efficient algorithm
which computes the latter space.

3. Brandt matrices

We will now bring the Hecke module SB
k (N) in a form that lends itself better

to computation. We keep the notation of the previous section. Let h be the class
number of B, and let (gα)1≤α≤h be a set of finite idèles that generate the right ideal
classes of R.

For each α, we let Iα be the right R-ideal generated by gα and Rα its left
(maximal) order. We assume, without loss of generality, that R1 = R, and fix local
isomorphisms Rp

∼= M2(OF,p). Via the resulting isomorphism R̂×
α

∼= GL2(ÔF ),
R̂×

α acts transitively on P1(OF /N). We put R̂N, α = gαR̂Ng−1
α , and let ∞α be the

point whose stabilizer is R̂×
N, α.
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We define the space of automorphic forms of level N and weight k on the order
Rα by

Sk(Rα, N) =
{
f : P1(OF /N) → Lk : f ||kγ = f, γ ∈ R×

α

}
,

with
f ||kγ(x) := f(γx)γ.

As in Definition 3, we can equivalently define the space Sk(Rα, N) as

Sk(Rα, N) =
{

f : R×
α \G(R) × R̂×

α → Lk : f ||ku = f, u ∈ G(R) × R̂×
N, α

}
.

We will be using both definitions with no distinction.
We now define Hecke operators between such spaces. For each α, β, let Iα, β =

IαI−1
β . Then, Iα, β is an ideal in B whose left order (resp. right order) is Rα (resp.

Rβ). Now, take u ∈ R̂α(gαg−1
β ) and write the (finite) disjoint union

R̂×
N, αuR̂×

N, β =
∐
ν

uνR̂×
N, β,

and for each x ∈ G(R) × R̂×
α , put

N(x, α, β, u) =
{

uν : xuν = γνxν for some γν ∈ B×, xν ∈ G(R) × R̂×
β

}
.

Take f ∈ Sk(Rβ, N) and x ∈ G(R) × R̂×
α , and put

f ||k[R̂×
N, αuR̂×

N, β](x) =
∑

ν∈N(x,α, β, u)

f ||kuν(x),

where we choose γν ∈ B× and xν ∈ G(R) × R̂×
β such that xuν = γνxν , and put

f ||kuν(x) = f(xν).

If xuν = γνxν = γ′
νx′

ν , then γ−1
ν γ′

ν ∈ R×
β . And, since f is left R×

β -invariant, we
see that f(xν) = f(x′

ν). So, f ||kuν(x) is well defined. Furthermore, multiplication
to the right of the uν ’s by elements in R̂×

N, β does not affect their cosets, and
multiplication to the left by elements in R̂×

N, α will induce a permutation of those
cosets. As a result, we get that f ||k[R̂×

N, αuR̂×
N, β] is well defined and belongs to

Sk(Rα, N). Thus, we have a map

[R̂×
N, αuR̂×

N, β ] : Sk(Rβ, N) → Sk(Rα, N),

f �→ f ||k[R̂×
N, αuR̂×

N, β ],

which we call the Hecke operator [R̂×
N, αuR̂×

N, β]. We can now state the following
result.

Theorem 2. The map

SB
k (N) →

h⊕
α=1

Sk(Rα, N),

f �→ (fα)α,

where
fα(x · ∞α) = f(xgα), x ∈ R̂×

α ,

is an isomorphism of Hecke modules.
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Proof. We first recall that every element in SB
k (N) is completely determined by its

values on the finite set

G(Q)\G(Af)/R̂×
N

= B×\B̂×/R̂×
N

.

Now, since B has class number h, we can write the disjoint union

B̂× =
h∐

α=1

B×gαR̂×,

hence

B×\B̂×/R̂×
N

= B×\
(

h∐
α=1

B×gαR̂×

)
/R̂×

N

=
h∐

α=1

B×\
(
B×gαR̂×

)
/R̂×

N
.

Now, it is not hard to verify that the map

B×\B×gαR̂×/R̂×
N

→ R×
α \R̂×

α /R̂×
N, α,

γgαx �→ R×
α (gαxg−1

α )R̂×
N, α

is a bijection. By recalling that R̂×
α acts transitively on P1(OF /N) with the stabi-

lizer of ∞α being R̂×
N, α, we can rewrite the above bijection as

B×\B×gαR̂×/R̂×
N

→ R×
α \P1(OF /N),

γgαx �→ (gαxg−1
α ) · ∞α.

It then follows that f uniquely determines the vector (fα)α, and vice versa. There-
fore, the map

SB
k (N) →

h⊕
α=1

Sk(Rα, N),

f �→ (fα)α

is an isomorphism of complex vector spaces, the inverse being obtained as follows.
For any h-tuple (fα)α, we define f by

f(γgαx) := fα((gαxg−1
α ) · ∞α)γ−1, γ ∈ G(Q), x ∈ R̂×.

It remains to prove that this isomorphism is compatible with the Hecke action.
To this end, take u ∈ R̂, with u �= 0, and write the disjoint union

R̂×
N

uR̂×
N

=
∐
ν

uνR̂×
N

.
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Then, the αth component of the form f under the action of the Hecke operator
[R̂×

N
uR̂×

N
] is given by

f ||k[R̂×
N

uR̂×
N

]α(x) =
∑

ν

f ||kuν(xgα) =
∑

ν

f(xgαuν)

=
h∑

β=1

∑
xgαuν∈B×gβR̂×

β

f(xgαuν)

=
h∑

β=1

∑
ν∈N(x, α, β, gαug−1

β )

f(x(gαuνg−1
β )gβ)

=
h∑

β=1

∑
ν∈N(x, α, β, gαug−1

β )

fβ ||k(gαuνg−1
β )(x)

=
h∑

β=1

fβ ||k[R̂×
N, αgαug−1

β R̂×
N, β](x).

This completes the proof. �

From now on, we fix a prime q such that (q, N) = 1. (We simply let q = (1),
when the class number of the quaternion algebra B is 1.) By making use of the
strong approximation theorem, we choose the ideal Iα such that N(Iα) is a power of
q, for each α = 1, . . . , h. Now, let p �= q be a prime ideal of F such that (p, N) = 1,
and πp a uniformizer of p. For each α, β, put

N(α, β, p) :=

{
u ∈ IαI−1

β :
N(u)

N(IαI−1
β )

= πp

}
/R×

α ,

where we let R×
α act by multiplication on the left. The action of Hecke in terms of

global elements translates as follows:

Tα, β
p : Sk(Rβ , N) → Sk(Rα, N),

f �→
∑

u∈N(α, β, p)

f ||ku.

When applying to an element x ∈ P1(OF /N), the summation must be restricted to
the u’s whose action is nondegenerate. The operators Tα, β

p generate a (finite)
Z-submodule TRα, Rβ

k (N) of Hom(Sk(Rα, N), Sk(Rβ, N)). The computation of
the action of TB

k (N) amounts to the computation of the action of the collection

(TRα, Rβ

k (N)).
We will now describe the Brandt matrices. To this end, let us fix a fundamental

domain

Sα = {xα
i , i = 1, . . . , sα}

for the action of R×
α on P1(OF /N), where sα is the cardinality of Sα. Recalling

that each element in Sk(Rα, N) is completely determined by its values on the set
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Sα, we get an isomorphism of complex vector spaces

Sk(Rα, N) →
sα⊕
i=1

L
Γα

i

k ,

f �→ (f(xα
i ))i,

where Γα
i is the stabilizer of xα

i and L
Γα

i

k is the space of Γα
i -invariants. To compute

the Brandt matrix of Tα, β
p , we let N(xα

i , xβ
j , p) be the subset of N(α, β, p) given

by

N(xα
i , xβ

j , p) =
{

u : u · xα
i = γu · xβ

j for some γu ∈ R×
β

}
.

Now, take f ∈ Sk(Rα, N). Then, we have

f ||kTα, β
p (xα

i ) =
∑

u

f ||ku(xα
i ) =

∑
u

f(uxα
i )u

=
sβ∑

j=1

∑
u∈N(xα

i , xβ
j , p)

f(uxα
i )u

=
sβ∑

j=1

∑
u∈N(xα

i , xβ
j , p)

f(γuxβ
j )u

=
sβ∑

j=1

f(xβ
j )

⎛
⎜⎝ ∑

u∈N(xα
i , xβ

j , p)

γ−1
u u

⎞
⎟⎠ .

So, we define the Brandt matrix of the operator Tα, β
p to be Bα, β

p = (bij), where the
entry bji is the linear operator

bji : L
Γβ

j

k → L
Γα

i

k ,

v �→ v

⎛
⎜⎝ ∑

u∈N(xα
i , xβ

j , p)

γ−1
u u

⎞
⎟⎠ .

Remark 1. One can verify that the definition of the Brandt matrices is independent
of the choice of the fundamental domains Sα, 1 ≤ α ≤ h.

4. Brandt matrices with character

To develop the theory of Brandt matrices with character, let us start with the
observation that by replacing U0(N) ∼= R̂×

N
by U1(N), the theory we just presented

in Sections 2 and 3 will work through, especially, Theorem 2 will still hold, and we
will get the following isomorphism of Hecke modules:

SB
k (U1(N)) ∼=

h⊕
α=1

Sk(Rα, U1(N)),

with the obvious definitions. Now, the space Sk(Rα, U1(N)) will just be the set of
functions

f : H1(N) → Lk such that f ||kγ = f,
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where
H1(N) :=

{
(a, b) ∈ (O/N)2 with gcd(a, b) ∈ (O/N)×

}
.

The natural action of (O/N)× on H1(N) induces the following action

(u · f) := f(ux) u ∈ (O/N)× and x ∈ H1(N)

on Sk(Rα, U1(N)). We would like to decompose Sk(Rα, U1(N)) under this action.
To this end, let us fix a set S of coset representatives for H1(N)/(O/N)×. We
would like to observe that, though there is a bijection between S and the projective
line we considered before, we would like to make a marked distinction between the
two. We fix a character χ : (O/N)× → C× and define the twisted projective line
by χ to be

P1
χ(O/N) := H1(N)/ ker(χ),

i.e., (ua, ub) ∼ (a, b) ⇐⇒ u ∈ ker(χ). Note that, for the trivial character, we get
the usual projective line. Also, note that there is a canonical map P1

χ(O/N) →
P1(O/N) which is not R×

α -linear in general. We define the space of automorphic
forms of level U1(N, α), weight k and character χ to be

Sk(Rα, N, χ) :=
{
f : P1

χ(O/N) → Lk such that f ||kγ = f
}

.

Now, take f ∈ Sk(Rα, N, χ) and put

fχ(u · x) := χ(u)f(x), u ∈ (O/N)×, x ∈ S.

It is not hard to see that fχ is a well-defined element of Sk(Rα, U1(N)) lying
in the χ-eigenspace. Conversely, any χ-eigenvector of the action of (O/N)× on
Sk(Rα, U1(N)) will determine an element of Sk(Rα, N, χ) by the relation above.
Thus, we have proved the following result.

Theorem 3. The map

Sk(Rα, U1(N)) →
⊕

χ

Sk(Rα, N, χ),

f �→ (fχ)χ

is an isomorphism of complex spaces in which the χ-eigenspace corresponds to
Sk(Rα, N, χ).

By making use of the theorem above, one can develop the theory of Brandt
matrices with character mutatis mutandis.

5. Quaternionic M-symbols

In this section, we define quaternionic M -symbols and give their basic properties.
The content of this section was largely inspired by Stein [16], and of course, Merel
[11] and Manin [10]. We keep the notations of the previous section, except that
we put some integral structure on Lk. We choose a generator πq of q and let
OF,(q) = OF [ 1

πq
] and OK,(q) = OK,(q) ⊗ OF,(q). The integral stucture on Lk is

obtained by letting Lk(OK,(q) be the OK,(q)-submodule of Lk obtained by replacing
C by OK(q) in the definition, where OK is the ring of integers of K. So, for each
OK,(q)-algebra A, we now define

Lk(A) =
⊗
τ∈I

Smτ,vτ
(A),
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with the right action now restricted to M2(A)I . We fix an isomorphism j : B⊗K ∼=
M2(K)I such that j(R ⊗OK) = M2(OK)I .

We consider the product of OK,(q)-modules

OK,(q)[P1(O/N)] × Lk(OK,(q)),

and define a left action of R× on it by

γ · (x, v) := (γx, vγ−1).

We let Mk(R, N, OK,(q)) be the largest torsion-free quotient

OK,(q)[P1(O/N)] ⊗ Lk(OK,(q))/〈x − γx, γ ∈ R×〉.
We see from that definition that replacing R by a conjugate order will give an
isomorphic OK,(q)-module. So, we can make the following definition.

Definition 4. We call Mk(R, N, OK,(q)) the OK,(q)-module of quaternionic M -
symbols of weight k and level N attached to R.

With obvious definitions, we see that for any subring OK,(q) ⊂ A ⊂ C,

Mk(R, N, A) = Mk(R, N, OK,(q)) ⊗OK,(q) A.

Let m =
∑

i xi ⊗ vi be an element of Mk(R, N, C), with xi ∈ P1(O/N) and
vi ∈ Lk(C). We define the support of m to be

Supp(m) =
⋃
i

R×xi.

Then, we define the map

fm : P1(O/N) → Lk,

x �→

⎧⎨
⎩

viγ
−1
i , x = γixi ∈ Supp(m),

0, else.

It is not hard to see that fm is an element of Sk(R, N).

Proposition 4.

Mk(R, N, OK,(q)) → Sk(R, N, OK,(q)),
m �→ fm

is an isomorphism of OK,(q)-modules.

Proof. We only need show that

Mk(R, N, C) → Sk(R, N),
m �→ fm

is an isomorphism of complex spaces, but this is not very hard to see from the
definition. �

Definition 5. The OK,(q)-module of quaternionic M -symbols of level N and weight
k attached to B is defined by

MB
k (N, OK,(q)) :=

h⊕
α=1

Mk(Rα, N, OK,(q)).
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We now define the action of Hecke on this module by

Tα, β
p : Mk(Rα, N, OK,(q)) → Mk(Rβ, N, OK,(q)),

[x]α �→
∑

u∈N(α, β, p)

[u · x]β ,

where [x]α denotes the class of x ∈ OK,(q)[P1(O/N)] ⊗ Lk(OK,(q)) in the module
Mk(Rα, N, OK,(q)). We get the Hecke operator Tp on MB

k (N, OK) by piecing
together all the Tα, β

p ’s.

Theorem 5. The map

MB
k (N, OK,(q)) → SB

k (N, OK,(q)),

(mα)α �→ (fmα
)α

is an isomorphism of Hecke modules.

Proof. This is a restatement of Theorem 2 in light of Proposition 4. �

Remark 2. 1) The analogy between our quaternionic M -symbols and the Manin
symbols, for F = Q, is clearly transparent from the definition. Further, the same
way the Manin symbols give a purely algebraic description of the holomorphic cus-
pidal cohomology of the modular curve which lends itself very well to computation,
so do our quaternionic M -symbols. In our case however, one needs to resort to the
Jacquet–Langlands correspondence in order to prove that the holomorphic cuspi-
dal part of the cohomology of the Hilbert modular variety X0(N) is given by our
quaternionic M -symbols, whereas in the rational case, one disposes of the so-called
Manin trick. One of our goals is to implement the computation of the module of
quaternionic M -symbols into a package similar to the Magma package of Stein [9]
for M -symbols, at least for a wide range of quadratic fields.

2) From a computational point of view, the module MB
k (N, OK,(q)) can also

be used in approaching algebraic modular forms as defined in Gross [7]. Indeed,
let G/Q be a reductive group satisfying the conditions in [7, Proposition 1.4], and
U ⊂ G(Ẑ) a compact open subgroup. In most interesting cases, the quotient
G(Ẑ)/U will often have a nice description as a flag variety over a finite artinian
ring. So, knowing the class number of G, one can give a description of the space
of algebraic modular forms of level U similar to ours, and get the Hecke operators
as acting on a disjoint union of such flag varieties. In fact, a similar approach was
adopted by Pollack in his thesis [13] in order to compute coset representatives for
G(Q)\G(Af)/U , except that for the description of Hecke action, he went back to
the adelic setting.

6. Algorithms for real quadratic fields

We will now explain how the discussion in the previous sections can be used for
explicit computation of Hilbert modular forms on real quadratic fields. In order
to do so we need some preliminary results. We assume for the rest of this section
that F = Q(

√
D) is a real quadratic field of narrow class number one, where D is a

square-free positive integer. Let v1 and v2 be the two real places of F . We assume
that F has a fundamental unit ε with v1(ε) > 0, v2(ε) < 0 and N(ε) = −1.
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6.1. Choosing the definite quaternion algebra. To start our algorithm, we
need a totally definite quaternion algebra B of center F with Ram(B) = {v1, v2}.
The following lemma will help in that choice.

Lemma 1. Let p be a positive prime in Q that is inert or ramified in F , and B the
quaternion algebra

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1,−1
F

)
if p = 2,

(−1,−p
F

)
if p = 3 mod 4,

(−2,−p
F

)
if p = 5 mod 8,

(−p,−q
F

)
if p = 1 mod 8,

where q is a positive prime in Q with q = 3 mod 4 and (
p

q
) = −1. Then B is

the unique (up to isomorphism) totally definite quaternion algebra with Ram(B) =
{v1, v2}.
Proof. Let B∞, p be the unique (up to isomorphism) quaternion algebra defined
over Q which is ramified only at ∞ and p. By Pizer [12, Proposition 5.1], there is a
canonical embedding of B∞, p into B. Therefore, B can only ramify at primes that
lie above ∞ and p. But B clearly ramifies above the two primes v1 and v2. And,
since p is inert or ramified in F and Ram(B) must have even cardinality, we see
that Ram(B) can only consist of {v1, v2}. �
Remark 3. To kick start our algorithm, we need to exhibit a maximal order R in
B. There is a result in Socrates and Whitehouse [15] which does this. The proof
which is valid only for quadratic field with discriminant D ≡ 5(8) is essentially
computational in nature. One can always write an easy algorithm which searches
for the basis of a maximal order. As a starting point, if we need a quaternion
algebra B in which the prime p is inert, we can take the basis of the quaternion
algebra B∞, p given by Pizer [12, Proposition 5.2], and look for a maximal order
in B such that the transition matrix to its basis is in Hermite normal form. Then,
we only need to do an efficient search for coefficients in the finite field Fp2 . We see
that one needs to choose p as small as possible.

6.2. Computing representatives for the (right) R-ideal classes. Once we
have chosen the quaternion algebra B and the maximal order R, the steps of the
algorithm follow more or less the ones in Pizer [12] and Consani and Scholten [1].
We recall some of the results in those two papers, which can be very useful.

Proposition 6. Let I and J be two right R-ideals. Then, I and J belong to the
same class if and only if there is an element γ ∈ IJ̄ such that N(γ) = N(I)N(J).

Proof. See Pizer [12, Proposition 1.18], and Consani and Scholten [1, Proposition
8.1]. �
Remark 4. We can use this proposition to search for ideals in the form I = aR,
where a is an ideal in some quadratic extension K = F [α], where α ∈ B−F . That
we can always find representatives of ideal classes in this form follows from [15,
Theorem 7.2]. The search can be made more efficient by first comparing the theta
series of the ideals. This is discussed at length in [15, Chap. 7], see also [1, 12].
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6.3. Computing the Brandt matrices. The computation of the global elements
in Iα, β necessary for the calculation of the Hecke operators relies on the efficiency of
the algorithm that represents an element of F by the quadratic form that gives the
scaled norm of an element in B. Again, we refer to Pizer [12, sec. 6] and Consani
and Scholten [1, sec. 8], and Socrates and Whitehouse [15, Chap. 6 and 7]. We
only add that there are now many procedures in Magma which facilitate working
with lattices (see the pages on lattices in [9]).

6.4. Computing the local embeddings. The computation of the local embed-
dings is fairly easy. This amounts to finding basis elements in M2(O/N) satisfying
the same relations as the ones by the elements in the basis of the corresponding
maximal order. Most of time, the denominators of the basis elements are units in
O/N, so we can just take a basis of M2(O/N) satisfying the same relations as i, j.
Otherwise, we need to do the same work starting with a basis of the maximal order.

Remark 5. The implementation of the algorithm proceeds as in [4]. The main
difference between our algorithm and the modular symbol algorithm for classical
modular forms resides in Step 1 which is not needed when working with the matrix
algebra M2(Q). The computations in Step 1 can, however, be performed and the
results stored in a database for each quadratic field. Our algorithm then becomes as
efficient as the modular symbols one. One of our goals is to create a huge database
of quadratic fields that can be used in a package similar to the Hecke package of
Stein [16] in Magma.

7. Numerical examples

In this section, we present two numerical examples on real quadratic fields. We
think that the algorithm given here should be easy to rewrite for any totally real
number field of narrow class number one. In the computations of this section,
the results in Socrates and Whitehouse [15] were very helpful, especially the one
relating the type number and the class number of certain quaternion algebras over
real quadratic fields. We have chosen two quadratic fields with the prime 2 inert
in them. So, the unique (up to isomorphism) totally definite quaternion algebra
ramified only at both infinite places is the Hamilton quaternion algebra B. We
consider its canonical basis {1, i, j, k}, with i2 = j2 = −1, k = ij = −ji. For any
quadratic field F of discriminant D, we will let ωD be a generator of its maximal
order OF .

7.1. F = Q(
√

29). From Socrates and Whitehouse [15], we know that B has class
number h = 2. We chose the maximal order whose basis is given in Socrates and
Whitehouse:

R := 〈1 + i + j + k

2
,

i + ω29j + (1 + ω29)k
2

, j, k〉.

The two representatives of the ideals classes we chose were

I1 := R and I2 := (9 + 4ω29, 19 + ω29 + 6i)R.

See Table 1 for the list of all newforms of level a prime of norm less than 100 and
whose coefficients are rational or defined over a quadratic field. The levels and the
forms are listed up to Galois conjugation.
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Table 1. Hilbert modular forms of weight (2, 2) on F = Q(
√

29).

N 1 (4, 2) (7, 0 + 1ω29) (9, 3)

N(p) p a(p, f1) a(p, f1) a(p, f1) a(p, f1)

4 2 −1 −1 −1 3 − 1ω5

9 3 1 5 −4 −1
5 1 + 1ω29 −3 1 2 0 + 2ω5

5 3 + 1ω29 −3 1 2 0 + 2ω5

7 7 + 3ω29 2 −2 −1 −1 − 2ω5

7 5 + 2ω29 2 −2 2 −1 − 2ω5

13 4 + 1ω29 −1 −1 −6 −1
13 5 − 1ω29 −1 −1 4 −1

N (13, 5 − 1ω29) (29,−1 + 2ω29) (53,−2 − 3ω29)

N(p) p a(p, f1) a(p, f1) a(p, f2) a(p, f1)

4 2 −1 −1 − 2ω8 0 −2 + 2ω5

9 3 −4 −3 − 2ω8 0 2 − 2ω5

5 1 + 1ω29 −3 −1 0 + 2ω5 0 − 1ω5

5 3 + 1ω29 2 −1 2 − 2ω5 2
7 7 + 3ω29 −3 0 + 2ω8 0 + 1ω5 2
7 5 + 2ω29 −3 0 + 2ω8 1 − 1ω5 2
13 4 + 1ω29 4 −1 + 2ω8 4 4
13 5 − 1ω29 1 −1 + 2ω8 4 −2 + 2ω5

N (59,−4 + 3ω29) (67,−10 − 3ω29)

N(p) p a(p, f1) a(p, f2) a(p, f1) a(p, f2)

4 2 −1 1 + 1ω8 −3 0 + 1ω5

9 3 5 4 5 −1 − 2ω5

5 1 + 1ω29 0 0 − 2ω8 −1 −1
5 3 + 1ω29 0 2 −3 2 − 2ω5

7 7 + 3ω29 −1 3 − 1ω8 −4 −1 + 1ω5

7 5 + 2ω29 5 0 + 2ω8 2 −1 − 1ω5

13 4 + 1ω29 −1 −4 + 2ω8 −3 −5 + 3ω5

13 5 − 1ω29 −4 −3 − 1ω8 7 −3 + 4ω5

N (67,−10 − 3ω29) (71,−9 − 2ω29)

N(p) p a(p, f3) a(p, f1) a(p, f2)

4 2 −2 + 2ω5 3 −1 + 1ω5

9 3 0 + 2ω5 1 −3
5 1 + 1ω29 2 1 3
5 3 + 1ω29 0 − 1ω5 1 −1 + 1ω5

7 7 + 3ω29 0 − 1ω5 −2 −1 + 3ω5

7 5 + 2ω29 −2 − 2ω5 2 0 + 2ω5

13 4 + 1ω29 −2 − 3ω5 3 2 − 4ω5

13 5 − 1ω29 −2 + 2ω5 −1 1 + 1ω5
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7.2. F = Q(
√

37). Again, from Socrates and Whitehouse [15], we know that B has
class number h = 2. The chosen maximal order was

R := 〈1 + i + j + k

2
,

i + ω37j + (1 + ω37)k
2

, j, k〉.

The two representatives of the ideals classes we chose were

I1 := R and I2 := (3 + ω37, 2 − 1 + i + j + k

2
)R.

See Table 2 for the list of all newforms of level a prime of norm less than 100 and
whose coefficients are rational or defined over a quadratic field. The levels and the
forms are listed up to Galois conjugation.

Table 2. Hilbert modular forms of weight (2, 2) on F = Q(
√

37).

N 1 (4, 2) (11, 5 − 1ω37)

N(p) p a(p, f1) a(p, f1) a(p, f1) a(p, f2)

4 2 0 −1 1 3
3 3 + 1ω37 −1 −1 + 1ω21 1 −1
3 4 − 1ω37 −1 −1 + 1ω21 2 2
25 5 6 1 + 3ω21 −1 −9
7 11 − 3ω37 3 −2 3 −3
7 8 + 3ω37 3 −2 −5 3
11 4 + 1ω37 −3 2 − 1ω21 4 0
11 5 − 1ω37 −3 2 − 1ω21 −1 −1

N (25, 5)

N(p) p a(p, f1) a(p, f2) a(p, f3) a(p, f4)

4 2 0 0 4 −1
3 3 + 1ω37 −3 1 1 0 + 2ω5

3 4 − 1ω37 1 −3 1 2 − 2ω5

25 5 1 1 −1 −1
7 11 − 3ω37 1 −3 1 0 + 2ω5

7 8 + 3ω37 −3 1 1 2 − 2ω5

11 4 + 1ω37 1 1 −3 4 − 4ω5

11 5 − 1ω37 1 1 −3 0 + 4ω5

N (37,−1 + 2ω37) (41, 5 + 3ω37)

N(p) p a(p, f1) a(p, f2) a(p, f3) a(p, f1)

4 2 −4 0 0 −3
3 3 + 1ω37 1 −3 2 −1
3 4 − 1ω37 1 −3 2 −1
25 5 −10 −6 −6 −3
7 11 − 3ω37 −1 −1 3 − 3ω5 0
7 8 + 3ω37 −1 −1 0 + 3ω5 0
11 4 + 1ω37 3 −5 0 6
11 5 − 1ω37 3 −5 0 0
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N (53,−7 + 3ω37) (67,−11 + 4ω37)

N(p) p a(p, f1) a(p, f2) a(p, f3) a(p, f1)

4 2 1 −3 2 0
3 3 + 1ω37 2 2 2 −1
3 4 − 1ω37 −1 −1 2 − 1ω5 1
25 5 −2 6 −2 + 6ω5 2
7 11 − 3ω37 5 −3 0 − 1ω5 −3
7 8 + 3ω37 0 0 2 + 1ω5 −1
11 4 + 1ω37 5 −3 0 + 4ω5 3
11 5 − 1ω37 3 3 −5 + 1ω5 5

N (71, 2 + 3ω37) (73, 14 − 3ω37) (83, 1 − 3ω37)

N(p) p a(p, f1) a(p, f2) a(p, f1) a(p, f1)

4 2 −2 −1 −2 −1 + 1ω5

3 3 + 1ω37 0 0 −3 −1
3 4 − 1ω37 2 2 3 1 + 1ω5

25 5 −3 6 4 −4 + 6ω5

7 11 − 3ω37 −4 4 0 2
7 8 + 3ω37 1 −4 4 −4 + 1ω5

11 4 + 1ω37 5 4 4 −1 + 4ω5

11 5 − 1ω37 0 6 3 2 + 1ω5

N (83, 1 − 3ω37)

N(p) p a(p, f2)

4 2 −3 + 1ω5

3 3 + 1ω37 −1
3 4 − 1ω37 1 + 1ω5

25 5 4 − 6ω5

7 11 − 3ω37 −2
7 8 + 3ω37 0 + 1ω5

11 4 + 1ω37 3 − 2ω5

11 5 − 1ω37 0 − 1ω5

Remark 6. One very amusing and pleasant thing which confirmed that our com-
putations were correct was the level one forms appearing in all subsequent levels
as oldforms. Since, those forms can be found elsewhere, this was a proof that the
algorithm was working. Indeed, the level one forms correspond to elliptic curves
with everywhere good reduction, and they can be found in several places (see, for
example, Darmon and Logan [2]). We give them below; E29 is the one defined over
Q(

√
29) and E37 is the one defined over Q

√
37.

E29 : y2 + xy + (2 + ω29)2y = x3

and
E37 : y2 + y = x3 + 2x2 − (19 + 8ω37)x + (28 + 11ω37).

Remark 7. Our final remark is that it could be better to implement a variant of
this algorithm if we know more about the cuspidal representation associated to the
form we are looking for. For example, if we know that this representation is special
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or supercuspidal at more than two primes, say p and q, we could choose instead the
quaternion algebra B to be ramified at both places at infinity and the two primes p

and q. This will have the tremendous advantage of cutting down the dimension of
the space we are looking for. This trick could have been used in [1] for example. In
the same way, one can implement a variant of this algorithm over field of odd degree
by adding an extra prime to the ramification of the quaternion algebra. Using the
Hamilton quaternion algebra over Q, for example, would give all forms that are
new at 2. This can be seen as a variant of Pizer [12].
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[18] Marie France Vignéras-Guého, Le théorème d’Eichler sur le nombre de classes d’idéaux d’un
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