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TWO CHAIN RULES FOR DIVIDED DIFFERENCES
AND FAÀ DI BRUNO’S FORMULA

MICHAEL S. FLOATER AND TOM LYCHE

Abstract. In this paper we derive two formulas for divided differences of a
function of a function. Both formulas lead to other divided difference formulas,
such as reciprocal and quotient rules. The two formulas can also be used to
derive Faà di Bruno’s formula and other formulas for higher derivatives of
composite functions. We also derive a divided difference version of Faà di
Bruno’s determinant formula.

1. Introduction

Faà di Bruno’s formula [3] is the higher chain rule for differentiation: it expresses
an arbitrary derivative of a composite function g = f ◦ φ in terms of derivatives
of f and φ. Though not as well known as the Leibniz formula, it has appeared in
various branches of mathematics, notably in mathematical statistics; see the survey
paper of Johnson [8].

The formula has also played a useful role in geometric modelling. A parametric
curve f : [a, b] → R

d, with d ≥ 2, can be parameterized in many different ways. If
φ : [α, β] → R is an increasing function such that φ(α) = a and φ(β) = b, then
the curve represented by f can be equally well represented by g : [α, β] → R

d

where g = f ◦ φ. Since it is frequently necessary to express the derivatives of the
new representation, g, in terms of the old, f , it is hardly surprising that Faà di
Bruno’s formula will sooner or later play a role in any consideration of derivatives
of g of arbitrarily high order. For example, the formula was used by Goodman [6],
Gregory [5] and Dyn and Micchelli [2] in dealing with the continuity of spline curves.

More recently, the formula has turned out to be an essential tool in the error
analysis of various curve interpolation methods [11, 4]. In this application, the
formula has been used to bound the size (the Euclidean norm) of a derivative
g(k)(t) in terms of the sizes of f ′(φ(t)), f ′′(φ(t)), . . . , f (k)(φ(t)) and the sizes (absolute
values) of φ′(t), φ′′(t), . . . , φ(k)(t).

In fact, what was required in [11, 4] was a bound on certain divided differences
of g, and even though this task could be reduced there to bounding the size of a
derivative of g, there might be situations in future work of this kind where switching
from divided differences to derivatives might not be valid (for example if g is not
smooth enough). Even if the switch is valid, more precise results might nevertheless
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follow from a more direct approach: bounding divided differences of g in terms of
divided differences of f and φ.

It was this that motivated this paper: to derive an explicit formula that expresses
an arbitrary divided difference of a composite function g = f ◦φ in terms of divided
differences of f and φ. No such formula seems to exist in the literature (see [13],
[18], [7, Chap 6], and [1]) and we derive two natural formulas of this kind. In one
the divided differences of f are at consecutive points while in the other the divided
differences of φ are at consecutive points. Both of these divided difference chain
rules lead to other divided difference formulas, such as reciprocal and quotient rules.
The two chain rules also have the attractive feature that they both provide a simple
proof of Faà di Bruno’s formula. We also derive a divided difference version of Faà
di Bruno’s determinant formula.

2. The first chain rule

As with derivatives there are several notations currently in use for divided differ-
ences. In this paper we will denote the divided difference of a real-valued function
φ at the real values t0, t1, . . . , tn by [t0, t1, . . . , tn]φ; see de Boor [1] for a discussion
of divided differences and alternative notations. We have [ti]φ = φ(ti), and when t0
and tn are distinct we have [t0, . . . , tn]φ = ([t1, . . . , tn]φ− [t0, . . . , tn−1]φ)/(tn − t0).
We can allow any of the ti to be equal if φ has sufficiently many derivatives to allow
it. In particular, if all the ti are equal to t say, then [t0, t1, . . . , tn]φ = φ(n)(t)/n!.
We will make use of the product rule

(1) [t0, . . . , tn](φψ) =
n∑

i=0

[t0, . . . , ti]φ[ti, . . . , tn]ψ

due to Popoviciu [12, 13] and Steffensen [18]. This formula is often called the
Leibniz rule [1] since it generalizes the Leibniz formula for differentiation. Now
define the composition g = f ◦ φ given by g(t) = f(φ(t)) and let φi = φ(ti). We
will prove

Theorem 1. For n ≥ 1 and for φ and f smooth enough,

(2) [t0, . . . , tn]g =
n∑

k=1

[φ0, . . . , φk]f Ak,nφ,

where

(3) Ak,nφ = [tk, . . . , tn]([t0, ·]φ · · · [tk−1, ·]φ).

In order to get a more explicit expression for Ak,nφ, we can use the product rule
(1) extended to the product of r functions, namely,

(4) [t0, . . . , tn](ψ1ψ2 · · ·ψr) =
∑

0=α0≤α1≤···≤αr=n

r−1∏
β=0

[tαβ
, . . . , tαβ+1 ]ψβ+1,

the sum being over integers α1, . . . , αr−1 such that 0 ≤ α1 ≤ · · · ≤ αr−1 ≤ n. Since
Ak,nφ is a divided difference of the product of the k functions [t0, ·]φ, . . . , [tk−1, ·]φ,
the extended product rule (4) yields

(5) Ak,nφ =
∑

k=α0≤α1≤···≤αk=n

k−1∏
β=0

[tβ , tαβ
, . . . , tαβ+1 ]φ.
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Using (5) the first three cases of the formula are

[t0, t1]g = [φ0, φ1]f [t0, t1]φ,(6)

[t0, t1, t2]g = [φ0, φ1, φ2]f [t0, t2]φ [t1, t2]φ + [φ0, φ1]f [t0, t1, t2]φ,(7)

[t0, t1, t2, t3]g = [φ0, φ1, φ2, φ3]f [t0, t3]φ [t1, t3]φ [t2, t3]φ

+ [φ0, φ1, φ2]f
(
[t0, t2]φ [t1, t2, t3]φ + [t0, t2, t3]φ [t1, t3]φ

)
+ [φ0, φ1]f [t0, t1, t2, t3]φ.(8)

Proof. Assume initially that the ti are distinct and consider the polynomial that
interpolates f at φ0, . . . , φn in Newton form,

(9) p(x) =
n∑

k=0

(x − φ0) · · · (x − φk−1)[φ0, . . . , φk]f,

valid whether or not the φi are distinct as long as f is smooth enough. Then we
find that g(ti) = f(φi) = p(φi) for 0 ≤ i ≤ n, and therefore

[t0, . . . , tn]g = [t0, . . . , tn](p ◦ φ).

Thus replacing x in (9) by φ(t) and applying [t0, . . . , tn] gives (2) where

(10) Ak,nφ = [t0, . . . , tn]
(
(φ − φ0) · · · (φ − φk−1)

)
.

But
(φ(t) − φ0) · · · (φ(t) − φk−1) = ωk−1(t)[t0, t]φ · · · [tk−1, t]φ,

where ωk−1(t) = (t − t0) · · · (t − tk−1), and so the product rule (1) gives

Ak,nφ =
n∑

i=0

[t0, . . . , ti]ωk−1 [ti, . . . , tn]([t0, ·]φ · · · [tk−1, ·]φ).

Since moreover ωk−1 is a polynomial of degree k which is zero at t0, . . . , tk−1, and
whose leading coefficient is 1, we have [t0, . . . , ti]ωk−1 = δik, and this gives equation
(3). Finally, we can let the ti coalesce in the formula provided φ (and therefore also
g) is smooth enough. �

We note that Popoviciu already made some progress in [13] towards finding the
expression (5). He found A2,nφ using equation (10), but for general k he only
deduced the number of terms in Ak,nφ. Due to equation (3), Ak,n is invariant to
permutations of the values t0, . . . , tk−1 and to permutations of tk, . . . , tn. For n ≥ 3
this leads to alternatives to equation (5). For example, by permuting t0 and t1 in
(3) before applying the product rule gives the expression

A2,3φ = [t1, t2]φ [t0, t2, t3]φ + [t1, t2, t3]φ [t0, t3]φ,

as an alternative to the coefficient of [φ0, φ1, φ2]f in (8).

3. The second chain rule

While the divided differences of f in (2) are over consecutive points φi, the
divided differences of φ in (5) are not at consecutive points ti. We now give an
alternative formula in which the opposite is true.
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Theorem 2. For n ≥ 1 and for φ and f smooth enough,

(11) [t0, . . . , tn]g =
n∑

k=1

∑
0=i0<···<ik=n

[φi0 , . . . , φik
]f

k−1∏
j=0

[tij
, . . . , tij+1 ]φ.

This formula is fairly easy to remember. We sum over the
(
n−1
k−1

)
choices of k− 1

strictly increasing integers {i1, . . . , ik−1} from the set {1, 2, . . . , n − 1}. Summing
over k we see that the divided difference of g contains 2n−1 terms, the same number
as in the first chain rule (2) using (5). The f differences are of order k and the first
and last point φ0 and φn are always included. For the product terms making up
the φ differences we simply fill the gaps between each tij

and tij+1 . The first three
cases are

[t0, t1]g = [φ0, φ1]f [t0, t1]φ,(12)

[t0, t1, t2]g = [φ0, φ2]f [t0, t1, t2]φ

+ [φ0, φ1, φ2]f [t0, t1]φ [t1, t2]φ,(13)

[t0, t1, t2, t3]g = [φ0, φ3]f [t0, t1, t2, t3]φ

+ [φ0, φ1, φ3]f [t0, t1]φ [t1, t2, t3]φ

+ [φ0, φ2, φ3]f [t0, t1, t2]φ [t2, t3]φ

+ [φ0, φ1, φ2, φ3]f [t0, t1]φ [t1, t2]φ [t2, t3]φ.(14)

Proof. It is enough to prove (11) for distinct t0, . . . , tn and φ0, . . . , φn since a divided
difference is a continuous function of its arguments and also of the function we
apply it to. We use induction on n. Using (12) it is easily seen that (11) holds
for n = 1. Suppose that (11) holds for divided differences of order n and consider
[t0, . . . , tn+1]g. Using the last two points to reduce the order of the divided difference
we have

(15) [t0, . . . , tn+1]g =
[t0, . . . , tn−1, tn+1]g − [t0, . . . , tn]g

tn+1 − tn
.

By the induction hypothesis

[t0, . . . , tn−1, tn+1]g =
n∑

k=1

∑
0=i0<···<ik−1<n

[φi0 , . . . , φik−1 , φn+1]f

× [tik−1 , . . . , tn−1, tn+1]φ
k−2∏
j=0

[tij
, . . . , tij+1 ]φ,

[t0, . . . , tn−1, tn]g =
n∑

k=1

∑
0=i0<···<ik−1<n

[φi0 , . . . , φik−1 , φn]f

× [tik−1 , . . . , tn−1, tn]φ
k−2∏
j=0

[tij
, . . . , tij+1 ]φ.

(16)

Consider the difference between the two sums in (16). For each choice of
(i0, . . . , ik−1) we have a common product term multiplying a difference of the form
A1B1 − A0B0 where

Aj := [φi0 , . . . , φik−1 , φn+j ]f, Bj = [tik−1 , . . . , tn−1, tn+j ]φ, j = 0, 1.
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Now

A1B1 − A0B0

tn+1 − tn
=

A1(B1 − B0) + (A1 − A0)B0

tn+1 − tn
= [φi0 , . . . , φik−1 , φn+1]f [tik−1 , . . . , tn+1]φ

+ [φi0 , . . . , φik−1 , φn, φn+1]f [tik−1 , . . . , tn]φ [tn, tn+1]φ.

We insert these expressions in (15) and (16) and obtain, with ik = n + 1,

[t0, . . . , tn+1]g

=
n∑

k=1

∑
0=i0<···<ik−1<n

[φi0 , . . . , φik−1 , φn+1]f
k−1∏
j=0

[tij
, . . . , tij+1 ]φ

+
n+1∑
k=2

∑
0=i0<···<ik−1=n

[φi0 , . . . , φik−1 , φn+1]f
k−1∏
j=0

[tij
, . . . , tij+1 ]φ

=
n+1∑
k=1

∑
0=i0<···<ik=n+1

[φi0 , . . . , φik
]f

k−1∏
j=0

[tij
, . . . , tij+1 ]φ

which is (11) with n replaced by n + 1. �

4. Reciprocal and quotient rules

We can use the two chain rules to obtain further formulas that might be of
interest. It is easily shown by induction that the divided difference of the function
f(x) = 1/x is [t0, . . . , tn]f = (−1)n/(t0 · · · tn); see [17, p. 20] and [1]. Thus, applying
the first chain rule (2) with this f gives a reciprocal rule for divided differences of
order n ≥ 1,

[t0, . . . , tn]
1
φ

=
n∑

k=1

(−1)kAk,nφ

φ0 · · ·φk
.

Combining this with the product rule (1) gives a quotient rule for divided differ-
ences. For smooth enough functions φ and ψ we get

[t0, . . . , tn]
ψ

φ
=

1
φ0

[t0, . . . , tn]ψ +
n∑

r=1

r∑
k=1

(−1)kAk,rφ

φ0 · · ·φk
[tr, . . . , tn]ψ.

Alternatively we could apply the second chain rule (11) giving, for n ≥ 1, the
reciprocal rule

[t0, . . . , tn]
1
φ

=
n∑

k=1

(−1)k
∑

0=i0<···<ik=n

∏k−1
j=0 [tij

, . . . , tij+1 ]φ
φi0φi1 · · ·φik

,

and the quotient rule

[t0, . . . , tn]
ψ

φ
=

1
φ0

[t0, . . . , tn]ψ

+
n∑

r=1

r∑
k=1

(−1)k
∑

0=i0<···<ik=r

∏k−1
j=0 [tij

, . . . , tij+1 ]φ [tr, . . . , tn]ψ
φi0φi1 · · ·φik

.
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5. Faà di Bruno’s formula

Equation (6) is familiar because for t0 �= t1 and φ0 �= φ1 it is simply

(17)
g(t1) − g(t0)

t1 − t0
=

f(φ1) − f(φ0)
φ1 − φ0

φ1 − φ0

t1 − t0
,

from which the chain rule

(18) g′(t) = f ′(φ(t))φ′(t)

follows as the limiting case t0 = t1 = t. The limiting cases ti = t of equations (7)
and (8) (or (13) and (14)) are, after cancellation of factorials,

g′′(t) = f ′(φ(t))φ′′(t) + f ′′(φ(t))(φ′(t))2.

g′′′(t) = f ′(φ(t))φ′′′(t) + 3f ′′(φ(t))φ′(t)φ′′(t) + f ′′′(φ(t))(φ′(t))3.

These would normally be found by differentiating (18). It was Faà di Bruno who
first found the general formula (without proof) in 1857 in [3]:

(19) g(n)(t) =
∑ n!

b1! · · · bn!
f (k)(φ(t))

(
φ(1)(t)

1!

)b1

· · ·
(

φ(n)(t)
n!

)bn

,

where the sum is over all k = 1, . . . , n and solutions b1, . . . , bn ≥ 0 to

(20) b1 + 2b2 + · · · + nbn = n, b1 + · · · + bn = k.

Various approaches to proving this formula have been proposed by Riordan in [14]
and [15, pp. 34–36], Jordan [9, Sec. 12], Knuth [10, p. 481], Roman [16], and
Johnson [8]. A nice survey of these and earlier approaches can be found in [8]. In
addition to these, the formula was also rediscovered, and a rigorous proof given,
by Goodman [6]. The “modern” proof which has emerged through the work of
Riordan, Goodman, and Johnson is to use set partitions. A partition π of a set S
is a collection of disjoint subsets of S whose union is S. The subsets are known
as the blocks of the partition. Let Pn be the collection of all partitions of the set
{1, 2, . . . , n}. For example, P2 = {π1, π2}, where

π1 = {{1}, {2}}, π2 = {{1, 2}},
and P3 = {π1, . . . , π5}, where

π1 = {{1}, {2}, {3}}, π2 = {{1, 2}, {3}}, π3 = {{1, 3}, {2}},
π4 = {{2, 3}, {1}}, π5 = {{1, 2, 3}}.

One can then show that

(21) g(n)(t) =
∑

π∈Pn

f (#π)(φ(t))
∏
B∈π

φ(#B)(t),

where π is a partition of the set {1, 2, . . . , n}, B is a block of π, and # denotes set
cardinality. Unlike (19), this “set partition” formula can be proved relatively easily
by induction on n. By differentiating (21), and using the fact that every partition
in Pn+1 can be constructed from a partition in Pn by adding the element n + 1
either to one of its blocks or as a new singleton block, one establishes the formula
with n replaced by n + 1. Once the set partition formula has been established, a
combinatorial argument can be used to collect together repeated terms to arrive at
(19).
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We can now instead deduce Faà di Bruno’s formula (19) from either of the two
chain rules for [t0, . . . , tn]g. The special case where all the ti are equal to t in the
first chain rule (2), (5) gives

(22)
g(n)(t)

n!
=

n∑
k=1

f (k)(φ(t))
k!

ck,n(t),

where

(23) ck,n(t) =
∑

k=α0≤···≤αk=n

k−1∏
β=0

φ(αβ+1−αβ+1)(t)
(αβ+1 − αβ + 1)!

.

Alternatively, letting all the ti equal t in the second chain rule (11) also gives
equation (22), but now with

(24) ck,n(t) =
∑

0=i0<···<ik=n

k−1∏
j=0

φ(ij+1−ij)(t)
(ij+1 − ij)!

.

Clearly both formulas (23) and (24) can be rewritten as

(25) ck,n(t) =
∑

j1+···+jk=n
j1,...,jk≥1

(
φ(j1)(t)

j1!

)
· · ·

(
φ(jk)(t)

jk!

)
.

Now two terms in the sum in (25) are the same whenever their corresponding
sequences (j1, . . . , jk) contain the same number of ones, the same number of twos,
and so on up to the n’s. Thus, since the number of positive integer solutions to the
equation j1 + · · ·+ jk = n containing b1 ones, b2 twos, and so on up to bn n’s is the
multinomial coefficient k!/(b1! · · · bn!), it follows that

(26) ck,n(t) =
∑ k!

b1! · · · bn!

(
φ(1)(t)

1!

)b1

· · ·
(

φ(n)(t)
n!

)bn

,

where the sum is over all solutions b1, . . . , bn ≥ 0 to (20). Substituting this into
(22) gives Faà di Bruno’s formula (19).

6. A determinant formula

The second chain rule (11) can also be expressed in the form of a determinant,
analogous to Faà di Bruno’s determinant formula [3].

Theorem 3. If f and φ are sufficiently smooth functions, g = f ◦ φ, and n ≥ 1
then

(27) [t0, . . . , tn]g =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(0, 1) (0, 2) (0, 3) · · · (0, n − 1) (0, n)
−1 (1, 2) (1, 3) · · · (1, n − 1) (1, n)
0 −1 (2, 3) · · · (2, n − 1) (2, n)
...

...
...

...
...

0 0 0 · · · (n − 2, n − 1) (n − 2, n)
0 0 0 · · · −1 (n − 1, n)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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where a product (i, . . . , j)(j, . . . , k) is to be interpreted as (i, . . . , j, . . . , k) and for
0 ≤ i0 < i1 < · · · < ik ≤ n we define

(i0, . . . , ik) := [φi0 , . . . , φik
]f

k−1∏
j=0

[tij
, . . . , tij+1 ]φ.

We illustrate with the first few cases of n. For n = 2 we have∣∣∣∣(0, 1) (0, 2)
−1 (1, 2)

∣∣∣∣ = (0, 1)(1, 2) + (0, 2) = (0, 1, 2) + (0, 2)

= [φ0, φ1, φ2]f [t0, t1]φ [t1, t2]φ + [φ0, φ2]f [t0, t1, t2]φ,

while for n = 3 we expand the determinant with respect to the first row and obtain∣∣∣∣∣∣
(0, 1) (0, 2) (0, 3)
−1 (1, 2) (1, 3)
0 −1 (2, 3)

∣∣∣∣∣∣ = (0, 1)(1, 2)(2, 3) + (0, 1)(1, 3) + (0, 2)(2, 3) + (0, 3)

= (0, 1, 2, 3) + (0, 1, 3) + (0, 2, 3) + (0, 3),

which gives (14).

Proof. We define D0,n = 1 and for k = 0, 1, . . . , n − 1

Dn−k,k :=

∣∣∣∣∣∣∣∣∣∣∣

(k, k + 1) (k, k + 2) · · · (k, n)
−1 (k + 1, k + 2) · · · (k + 1, n)
0 −1 · · · (k + 2, n)
...

...
...

0 0 · · · (n − 1, n)

∣∣∣∣∣∣∣∣∣∣∣
.

Then Dn,0 is the determinant in (27) and by expanding this determinant with
respect to the first row it is easy to see that Dn,0 =

∑n
k=1(0, k)Dn−k,k. The proof

follows by induction on the size of the determinants. Using the current notation
equation (11) implies that

(28) [tr, . . . , tn]g =
n−1−r∑

k=0

∑
r<i1<···<ik<n

(r, i1, . . . , ik, n), r = 0, . . . , n − 1.

Suppose that Dn−r,r = [tr, . . . , tn]g for r = 1, . . . , n − 1. Note that the orders of
these determinants are < n. Thus using (28) with a slight change of notation we
assume that

Dn−i1,i1 =
n−i1∑
k=0

∑
i1<i2<···<ik<n

(i1, i2 . . . , ik, n), i1 = 1, . . . , n − 1.

Then

Dn,0 =
n∑

i1=1

(0, i1)D(n − i1, i1) =
n∑

i1=1

(0, i1)
n−i1∑
k=0

∑
i1<i2<···<ik<n

(i1, i2, . . . , ik, n)

=
n−1∑
k=0

n−k∑
i1=1

(0, i1)
∑

i1<i2<···<ik<n

(i1, i2, . . . , ik, n)

=
n−1∑
k=0

∑
1≤i1<i2<···<ik<n

(0, i1, i2, . . . , ik, n) = [t0, . . . , tn]g.

The last equality follows from (28) with r = 0. �
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7. Other formulas

Johnson, in [8, Sec. 3], lists four other formulas for arbitrary derivatives of com-
posite functions from the literature, namely those of T.A. (believed to be an artillery
captain named J. F. C. Tiburce Abadie), Scott, Meyer, and Hoppe. The first two
formulas follow easily from our two divided difference formulas.

The special case where all the ti are equal to t in Ak,nφ in (3) gives

ck,n(t) = Ak,nφ = [t, . . . , t︸ ︷︷ ︸
n−k+1

]([t, ·]φ)k =
1

(n − k)!
dn−k

dxn−k

(
φ(x) − φ(t)

x − t

)k ∣∣∣
x=t

,

which, when substituted into (22), and after writing x = t+h, gives T.A.’s formula:

g(n)(t) =
n∑

k=1

(
n

k

)
f (k)

(
φ(t)

) dn−k

dhn−k

(
φ(t + h) − φ(t)

h

)k ∣∣∣
h=0

.

On the other hand, recall equation (25). Since the Leibniz rule applied to φk gives

dn

dtn
(
φ(t)k

)
= n!

∑
j1+···+jk=n
j1,...,jk≥0

(
φ(j1)(t)

j1!

)
· · ·

(
φ(jk)(t)

jk!

)
,

it follows that

ck,n(t) =
1
n!

dn

dtn
(
φ(t)k

)∣∣∣
φ(t)=0

,

which gives Scott’s formula

(29) g(n)(t) =
n∑

k=1

f (k)
(
φ(t)

)
k!

{
dn

dtn
(
φ(t)k

)∣∣∣
φ(t)=0

}
.

From (29) one can easily derive Meyer’s formula

g(n)(t) =
n∑

k=1

f (k)
(
φ(t)

)
k!

{
dn

dhn

(
φ(t + h) − φ(t)

)k
} ∣∣∣

h=0

and subsequently Hoppe’s formula

g(n)(t) =
n∑

k=1

f (k)
(
φ(t)

)
k!

k∑
j=0

(
k

j

)
(−φ(t))k−j dn

dtn
(
φ(t)

)j
.

8. Final remarks

We found two chain rules for divided differences; (2), (5), and (11). The formulas
are the same for n = 1 and the same for n = 2 after permuting t1 and t2. For n ≥ 3
they are distinct. After we derived the two formulas, we found alternative proofs.
The first formula (2) can be proved quite easily by induction on n using the same
recursion (15) used in the proof of the second formula (11). On the other hand,
the second chain rule (11) can be derived using polynomials in the spirit of the
proof of the first rule (2). Since this latter observation could be useful for deriving
multivariate versions of (11), we will now give the derivation.

Observe that it is enough to prove (11) when f is a polynomial of degree at
most n, for if not we interpolate f with a polynomial p at φ0, . . . , φn and prove the
formula for p. Further, due to the linearity of divided differences, it is sufficient to
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prove the formula for the monomial f(x) = xr for all r, 1 ≤ r ≤ n. In this case, we
can use the extended product rule (4) to obtain

(30) [t0, . . . , tn]g = [t0, . . . , tn](φr) =
∑

0=α0≤α1≤···≤αr=n

r−1∏
β=0

[tαβ
, . . . , tαβ+1 ]φ.

Now by counting repeated terms, each sequence (α0, α1, . . . , αr) can be written as

(α0, α1, . . . , αr) = (i0, . . . , i0︸ ︷︷ ︸
1+µ0

, i1, . . . , i1︸ ︷︷ ︸
1+µ1

, . . . ik, . . . , ik︸ ︷︷ ︸
1+µk

)

for some k with 1 ≤ k ≤ r, and where 0 = i0 < i1 < · · · < ik = n and µ0+· · ·+µk =
r − k. The corresponding product in (30) then becomes

r−1∏
β=0

[tαβ
, . . . , tαβ+1 ]φ = φµ0

i0
φµ1

i1
· · ·φµk

ik

k−1∏
j=0

[tij
, . . . , tij+1 ]φ.

It follows that

[t0, . . . , tn]g =
r∑

k=1

∑
0=i0<···<ik=n

∑
µ0+···+µk=r−k

φµ0
i0

· · ·φµk

ik

k−1∏
j=0

[tij
, . . . , tij+1 ]φ

=
n∑

k=1

∑
0=i0<···<ik=n

[φi0 , . . . , φik
]f

k−1∏
j=0

[tij
, . . . , tij+1 ]φ

for f(x) = xr, which proves equation (11) for f(x) = xr and therefore for arbitrary
f .

We are planning a second paper dealing with multivariate generalizations of the
two divided difference chain rules.
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