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HEURISTICS FOR CLASS NUMBERS
AND LAMBDA INVARIANTS

JAMES S. KRAFT AND LAWRENCE C. WASHINGTON

Abstract. Let K = Q(
√
−d) be an imaginary quadratic field and let Q(

√
3d)

be the associated real quadratic field. Starting from the Cohen-Lenstra heuris-
tics and Scholz’s theorem, we make predictions for the behaviors of the 3-parts
of the class groups of these two fields as d varies. We deduce heuristic pre-
dictions for the behavior of the Iwasawa λ-invariant for the cyclotomic Z3-
extension of K and test them computationally.

The Cohen-Lenstra heuristics [1] give predictions for frequencies of class numbers
and class groups of number fields. In the following, we investigate a related situation
and a more specific question:

I. Are there heuristics for the Iwasawa lambda invariants, similar to those of
Cohen and Lenstra for class groups of number fields? The λ2-invariants of imaginary
quadratic fields are given by a simple formula of Ferrero [4] and Kida [5] and are
correspondingly not suitable for a heuristic analysis. We therefore consider the
first nontrivial case, namely the λ-invariant for the cyclotomic Z3-extension of an
imaginary quadratic field K as K varies. When 3 does not split in K, the frequency
of λ = 0 is easy to treat. We give a prediction for the frequency of λ = 1 in this
case. We also compute numerical data that agrees fairly well with the prediction;
however, it is well known that the convergence of empirical data to the Cohen-
Lenstra heuristics is quite slow, and we presumably have a similar slowness in
the present situation. Therefore, any numerical agreement or disagreement cannot
necessarily be regarded as decisive. We also collect data for the case when 3 splits
in the imaginary quadratic field. In this case, we always have λ ≥ 1. It appears
that the frequencies of a given λ are similar to those for λ− 1 in the nonsplit case.
We regard this as pointing towards some type of theoretical model for λ heuristics,
similar to the idea of weighting by the inverse of the size of automorphism groups
in the Cohen-Lenstra setting.

II. It was proved in [6] that if 3 splits in an imaginary quadratic field Q(
√
−d) and

if 3 divides the class number of Q(
√

3d), then λ ≥ 2. Since it might be suspected
that λ tends to be small, this could indicate that 3 divides the class number of
Q(

√
3d), with d ≡ 2 (mod 3), with less than the frequency predicted by Cohen-

Lenstra heuristics for class numbers of all real quadratic fields. Nevertheless, our
numerical experiments do not indicate the presence of any such bias.

In Section 9, we give some data for the distribution of λ3-invariants of imaginary
quadratic fields Q(

√
−d). As our analysis shows, it is natural to break into cases
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according to the power of 3 dividing the class number h+ of the corresponding real
quadratic field Q(

√
3d). After introducing some basic machinery in Section 1 and

Section 2, we describe the Cohen-Lenstra heuristics in Section 3. The 3-part of the
class group of an imaginary quadratic field Q(

√
−d) is closely related to that of the

associated real quadratic field Q(
√

3d) by Scholz’s theorem, which says that their
3-ranks differ by at most one. We need to consider the effect of this result in our
study of λ. Therefore, in Section 4, we give several heuristic predictions related
to Scholz’s theorem. These are possibly of independent interest. In Section 5, we
give a naive prediction for the probability that λ = 1 and then, in Section 6, a
more refined analysis. These two methods yield slightly different predictions, but
they are close enough that it appears computationally impossible to differentiate
between them. However, we give data for all of the steps that comprise the refined
heuristics and therefore we believe that these give the correct prediction. In the
last section, we briefly discuss the methods of calculating the data.

1. Basic notation

Let K be an imaginary quadratic field of discriminant −d �= −3 with Dirichlet
character χ and class number h−. Let L = K(

√
−3) and L+ = Q(

√
3d). Then L+

has discriminant

D = 3d or d/3.

Let ε, χ+, and h+ be the fundamental unit, Dirichlet character, and class number
of L+, respectively. Let

f(T ) = f(T, χ+) = a0 + a1T + a2T
2 + · · · ∈ Z3[[T ]]

be the Iwasawa power series such that

L3(s, χ+) = f(4s − 1)

is the 3-adic L-function for χ+. Then

f(0) = a0 = (1 − χ(3))h−, f(3) =
(

1 − χ+(3)
3

)
2h+ log3 ε√

D
.

Let λ be the Iwasawa λ3 invariant for K. Then λ is the smallest n such that
an �≡ 0 (mod 3). When d ≡ 2 (mod 3), so 3 splits in K/Q, we have χ(3) = 1 and
consequently a0 = 0. In this case, therefore, we have λ ≥ 1.

2. Units and class numbers

Let A+ and A− be the 3-Sylow subgroups of the ideal class groups of L+ and
K. Let r be the 3-rank of A+ and s be the 3-rank of A−. A theorem of Scholz [7]
says that r ≤ s ≤ r + 1.

Lemma 1. λ ≥ s.

Proof. Let Kn be the n-th layer of the cyclotomic Z3-extension of K. Since Kn/K
is totally ramified for all n, the norm map on the ideal class groups is surjective.
Therefore, A− = A0 is a quotient of X− = lim← A−

n . By [8, Corollary 13.29],
X− � Zλ

3 . The result follows easily. �
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Dutarte [3] has predicted that the probability that s = r + 1 is 3−(r+1) and has
shown that this is consistent with the Cohen-Lenstra heuristics. Since [3] is not
widely available, and since we need the ideas of that paper, we briefly sketch the
argument.

If p is a prime ideal of L, let U
(j)
p be the units of the completion of L at p that

are congruent to 1 mod pj . Let U (j) =
∏

U
(j)
p , where the product is over the

primes of L above 3. Then u ∈ U (3) if and only if u ≡ 1 (mod 3
√
−3) (that is, each

component of u satisfies this congruence). It can be shown that U (1)/U (3) breaks
into a direct sum of four eigenspaces for the action of Gal(L/Q), each of which is
cyclic of order 3. If I is relatively prime to 3 and represents an ideal class of order
3 of L, then I3 = (α) and α8 (embedded diagonally) lies in U (1). Moreover, if
α8 ∈ U (1), then L(α1/3)/L is unramified if and only if α8 ∈ U (3). If I comes from
K or L+, then α8 lies in a corresponding eigenspace of U (1)/U (3). Similarly, if ε is
the fundamental unit of L, or of L+, then ε8 ∈ U (1), so we obtain an element of
U (1)/U (3) lying in the cyclic eigenspace corresponding to L+. Dutarte assumed that
this element is trivial with probability 1/3. Moreover, if there are independent ideal
classes I1, . . . , Ir generating the elements of order 3 in L+, then the probability that
the corresponding α8

1, . . . , α
8
r and ε8 generate the trivial subgroup of U (1)/U (3) is

3−r−1. In Scholz’s theorem, if the subgroup generated by these elements is trivial,
then s = r + 1. If the subgroup is nontrivial (hence is the full eigenspace of order
3), then s = r. Therefore, s = r + 1 with probability 3−r−1.

Lemma 2. (i) (
1 − χ+(3)

3

)
2 log3 ε√

D
∈ Z3.

(ii) Assume 3 is not split in K/Q (equivalently, d �≡ 2 (mod 3)). Let ε be the
fundamental unit of L+. Then (1 − χ+(3)/3)(2 log3 ε)/

√
D ≡ 0 (mod 3) if and

only if ε8 ∈ U (3).

Proof. (i) The expression lies in the completion of L+ at a prime above 3. If this
completion is not Q3, then the nontrivial element of the Galois groupof L+/Q3

inverts ε (up to sign) and changes the sign of
√

D. Therefore, the expression is
fixed by the Galois group, hence lies in Q3.

Since the residue fields for the primes above 3 have order 3 or 9, we have ε2 or
ε8 congruent to 1 mod the primes above 3. For simplicity of exposition, we always
work with ε8.

Suppose d �≡ 0 (mod 3). Let ε8 = 1 +
√

3dα, with α ∈ Z3[
√

3d]. Then

log3(ε
8) ≡

√
3dα − 1

2
(3d) α2 +

1
3
(3d)

√
3dα3 ≡ 0 (mod

√
3d),

which yields the result, since χ+(3) = 0. Now, suppose d ≡ 0 (mod 3). Then
ε8 ≡ 1 (mod 3), so log3(ε8) ≡ 0 (mod 3), which again yields the result.

(ii) Suppose ε8 ≡ 1 (mod 3
√
−3). Then log3 ε ≡ 0 (mod 3

√
−3), as in (i).

If d ≡ 1 (mod 3), then χ+(3) = 0, so the result follows immediately. If d ≡ 0
(mod 3), then 3 � D, but (1 − χ+(3)/3) contributes 3 to the denominator. We find
that (

1 − χ+(3)
3

)
2 log3 ε√

D
≡ 0 (mod

√
−3).

But the left side is in Z3, so it must be congruent to 0 mod 3.
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Conversely, suppose (1−χ+(3)/3)(2 log3 ε)/
√

D ≡ 0 (mod 3). If d ≡ 1 (mod 3),
then log3 ε ≡ 0 (mod 3

√
−3), and if d ≡ 0 (mod 3), then log3 ε ≡ 0 (mod 9).

In both cases, η = exp(8 log3 ε) converges, with η ≡ 1 (mod 3
√
−3). Moreover,

ε8 = ζη for some root of unity ζ because log3 ε8 = log3 η. Since ζ = ε8/η ≡ 1
(mod

√
−3), it follows that ζ is a 3-power root of unity, which must be trivial or

a cube root of unity since it is in the completion of L. But ε8 and η lie in the
completion of L+. Since this completion does not contain a nontrivial cube root of
unity, ζ = 1. It follows that ε8 ≡ 1 (mod 3

√
−3), as desired. �

Remark. Calculations indicate that part (ii) of the lemma is also true when d ≡ 2
(mod 3), but we do not have a proof of this.

The main results that we need for our computations are contained in the follow-
ing.

Theorem 1. Let ε8 = x + y
√

D, with 2x, 2y ∈ Z, and let ε = x1 + y1

√
D with

2x1, 2y1 ∈ Z.
(i) Suppose d ≡ 0 (mod 3), so 3 � D. Then ε8 ∈ U (3) if and only if y ≡ 0

(mod 9).
(ii) Suppose d ≡ 0 (mod 3). Then λ = 0 if and only if 3 � h−. If 3|h−, then

λ > 1 if and only if

2χ+(3) h+ y

3
≡ h− (mod 9).

If this congruence does not hold, then λ = 1.
(iii) Suppose d �≡ 0 (mod 3). Then ε8 ∈ U (3) if and only if y ≡ 0 (mod 3), which

happens if and only if y1 ≡ 0 (mod 3).
(iv) Suppose that d ≡ 1 (mod 3) and assume that 3 � h+. We have λ = 0 if and

only if 3 � h−. If 3|h−, then λ > 1 if and only if h+y + h− ≡ 0 (mod 9). If 9|h−,
then λ > 1 if and only if y1 ≡ 0 (mod 9).

(v) Suppose d ≡ 1 (mod 3) and assume that 3|h+. Then λ > 1 if and only if

h+y ≡ h− (mod 9).

If this congruence does not hold, then λ = 1.

Proof. (i) Write ε8 = 1 + 3α with α integral in L+ and 3α = x − 1 + y
√

D. Since
x2 − Dy2 = 1 and x ≡ 1 (mod 3), we must have y ≡ 0 (mod 3), hence x ≡ 1
(mod 9). Therefore,

α =
x − 1

3
+

y

3

√
D ≡ y

3

√
D (mod 3).

It follows that ε8 ∈ U (3) if and only if y ≡ 0 (mod 9). This proves (i).
(ii) Since a0 = h− when d ≡ 0 (mod 3), we have λ = 0 ⇔ 3 � h−. Now assume

3|h−. First, suppose 3 � h+. Then s = 1 > r = 0, so ε8 ∈ U (3). By (i), y ≡ 0
(mod 9). Since x2 − Dy2 = 1 and x ≡ 1 (mod 3), we have x ≡ 1 (mod 81).
Therefore, ε8 ≡ 1 + y

√
D (mod 81). It follows that

log3 ε =
1
8

log3 ε8 ≡ 1
8
y
√

D (mod 81).

Therefore,

h− + 3a1 = a0 + 3a1 ≡
(

1 − χ+(3)
3

)
2h+ log3 ε√

D
≡ 3 − χ+(3)

3
1
4
h+y (mod 9).
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Since 9|y, the right-hand side of this congruence becomes 2χ+(3)(h+)(y/3) (mod 9).
Therefore, λ > 1 ⇔ 3|a1 ⇔ 2χ+(3)(h+)(y/3) ≡ h− (mod 9).

Now suppose that 3|h+. In this case, we have log3 ε ≡ y
√

D/8 (mod 9). Since
(1 − χ+(3)/3)h+ is integral,(

1 − χ+(3)
3

)
2h+ log3 ε√

D
≡

(
1 − χ+(3)

3

)
2h+ y

8
≡ 2χ+(3)h+ y

3
(mod 9).

Since h− = a0, it follows that

h− + 3a1 ≡ 2χ+(3)h+ y

3
(mod 9).

Therefore, h− is congruent to the right-hand side of this congruence if and only if
3|a1, which happens if and only if λ > 1. This completes the proof of (ii).

(iii) Write ε8 = 1 + (x − 1) + y
√

3d, with x ≡ 1 (mod 3). If ε8 ∈ U (3), then
y ≡ 0 (mod 3). Conversely, suppose y ≡ 0 (mod 3). Since x2 − 3dy2 = 1, we
have x ≡ 1 (mod 27), so ε8 ∈ U (3). The binomial theorem applied to x1 + y1

√
3d

yields y ≡ 8x7
1y1 (mod 3). Since x2

1 − 3dy2
1 = ±1, we must have x1 �≡ 0 (mod 3).

Therefore, y ≡ 0 (mod 3) if and only if y1 ≡ 0 (mod 3).
(iv) Since a0 = 2h− when d ≡ 1 (mod 3), we have λ = 0 ⇔ 3 � h−. Now

suppose 3|h−. Then s = 1 > r = 0, so ε8 ∈ U (3). By (iii), y ≡ y1 ≡ 0 (mod 3).
Since x2 − 3dy2 = 1 and x ≡ 1 (mod 3), we have x ≡ 1 (mod 27). Therefore,
ε8 ≡ 1 + y

√
3d (mod 27). It follows that

log3 ε =
1
8

log3 ε8 ≡ 1
8
y
√

3d (mod 27).

Therefore,

2h− + 3a1 = a0 + 3a1 ≡ 2h+ log3 ε√
3d

≡ 2h+y

8
≡ −2h+y (mod 9).

Consequently,
λ > 1 ⇔ 3|a1 ⇔ h+y + h− ≡ 0 (mod 9).

If 9|h−, this becomes λ > 1 ⇔ 9|y. The binomial expansion of (x1 + y1

√
3d)8

yields y ≡ y1(−x2
1 + 6y2

1) (mod 9). As in (iii), x1 �≡ 0 (mod 3), so we find y ≡ 0
(mod 9) ⇔ y1 ≡ 0 (mod 9). This completes the proof of (iv).

(v) We have ε8 = 1 + (x − 1 + y
√

3d) ≡ 1 + y
√

3d (mod 3), so

log3 ε ≡ 1
8

(
y
√

3d +
1
3
(y
√

3d)3
)

≡ −(y + y3d)
√

3d ≡ y
√

3d (mod 3),

since d ≡ 1 (mod 3). Therefore, since 3|h+ and χ+(3) = 0,(
1 − χ+(3)

3

)
2h+ log3 ε√

3d
≡ 2h+y (mod 3

√
−3),

hence mod 9, since both sides are in Z3. In the present case, a0 = (1 − χ(3))h− =
2h−, so

2h− + 3a1 ≡ 2h+y (mod 9).
The results of part (v) follow easily. �

Note that, when d ≡ 2 (mod 3) and 3|h+, if we try to obtain information on λ
as in (ii) and (v), we obtain 0 ≡ 0 since log3 ε ≡ 0 (mod 3) and a0 = 0. However,
λ > 1, so the analogue of (ii) and (v) is trivially true.
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For part (ii), computing ε, raising to the eighth power to obtain ε8, and then
extracting y causes a significant slowdown in the computations for large discrimi-
nants. However, this can be avoided by computing ε and then raising it to the 8th
power mod 27.

3. Cohen-Lenstra heuristics

The Cohen-Lenstra heuristics predict the following, where

η =
∞∏

i=1

(1 − 3i) ≈ .5601.

Let G be a finite abelian 3-group. The probability that the 3-Sylow subgroup of
the ideal class group of K is G is

Prob(A− � G) =
η

#Aut(G)
.

The probability that the 3-Sylow subgroup of the ideal class group of L+ is G is

Prob(A+ � G) =
3η

2#G #Aut(G)
.

Throughout the following, we assume that these heuristic predictions are correct.
This yields the following corollaries:

Prob(3 ‖ h−) = η/2 ≈ .2801,

Prob(3 ‖ h+) = η/4 ≈ .1400,

Prob(9 | h+) = 1 − 7
4
η ≈ .0198.

Prob(A+ is cyclic ≥ 9) = η/32 ≈ .0175

(we write “cyclic ≥ 9” for “cyclic of order ≥ 9”).
The first and second of these follow immediately by letting G = Z/3Z. The third

follows by evaluating 1 − Prob(3 � h+) − Prob(3 ‖ h+). The fourth is obtained by
summing the appropriate geometric series.

Throughout the paper, we make the assumption that these heuristic predictions
hold when d is restricted to a fixed congruence class mod 3. Numerical calculations
support this hypothesis.

4. Predictions for class groups

Throughout this paper, we make the assumption that the only constraint that
A+ puts on A− is via Scholz’s theorem. Namely, the rank of one group affects
the rank of the other, but the exponent of one group does not affect the other. In
particular, if we know that A− has rank 1, then the distribution of possible orders
of A− is the same whether or not we assume in addition that 9 divides h+.

For example, we assume the equality of the conditional probabilities

Prob
(
3 ‖ h− ∣∣ A+ cyclic ≥ 3

)
= Prob

(
3 ‖ h− ∣∣ A+ cyclic ≥ 9

)
= Prob

(
3 ‖ h− ∣∣ 3 ‖ h+

)
.

Note that any two of these equalities imply the third. We will give data supporting
these assumptions.

We need to find values for these conditional probabilities.
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Prediction 1. (i) Prob
(
3 ‖ h− ∣∣ 3 ‖ h+

)
= 16

27 ≈ .5926.
(ii) Prob

(
3 ‖ h− ∣∣ A+ cyclic ≥ 9

)
= 16

27 .
(iii) Prob

(
3 ‖ h− ∣∣ A+ cyclic ≥ 3

)
= 16

27 .

Derivations. We are assuming that all three are equal, so we give the reasoning
that yields (ii). The others are essentially the same. Since

Prob(3 ‖ h−, A+ cyclic ≥ 9) = Prob(3 ‖ h−, A+ cyclic ≥ 9, r = s = 1),

it follows that

Prob(3 ‖ h− ∣∣ A+ cyclic ≥ 9)

= Prob(3 ‖ h− ∣∣ A+ cyclic ≥ 9, s = r = 1) · Prob(s = r = 1
∣∣ A+ cyclic ≥ 9).

We make two assumptions:
First, note that if s = 1, then by definition A− is cyclic. We regard A− as a

random cyclic group of order 3n with n ≥ 1 and calculate the probability that it is
cyclic of order 3:

Prob(A− cyclic 3)
Prob(A− cyclic ≥ 3)

=
η/φ(3)∑

n≥1 η/φ(3n)
=

2
3
.

This might be a dangerous assumption since we are assuming that a higher power
of 3 (namely, 9) dividing h+ has no effect. But, as discussed above, our hypothesis
is that the only effect that A+ has on A− is via the ranks, not the orders, as in
Scholz’s theorem.

Second, as mentioned above, Dutarte has predicted that

Prob(s = r = 1
∣∣ A+ is cyclic ≥ 3) =

8
9
.

We again assume that the rank is what is important here, and therefore that

Prob(s = r = 1
∣∣ A+ is cyclic ≥ 9) =

8
9
.

Putting these two assumptions together, we obtain

Prob(3 ‖ h− ∣∣ A+ is cyclic ≥ 9) =
2
3
× 8

9
=

16
27

.

This is prediction (ii). �

We can test these predictions directly, but we prefer to transform them since we
need the other forms later.

Prediction 2.

Prob
(
3 ‖ h− ∣∣ 9|h+

)
=

η/54
1 − 7η/4

≈ .5244.

Derivation. Note that if A+ is noncyclic, then A− has rank at least 2, so 9 | h−.
Therefore,

Prob(3 ‖ h−, 9|h+) = Prob(3 ‖ h−, A+ cyclic ≥ 9)

= Prob(3 ‖ h− ∣∣ A+ cyclic ≥ 9) · Prob(A+ cyclic ≥ 9)

=
16
27

× η

32
=

η

54
.

Dividing by Prob(9|h+) = 1 − 7η/4 yields the result. �
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Table 1. Prob(3‖h− | 9|h+)

109 < d < 109 + 107 9|h+ 9|h+ and 3‖h− Ratio
d ≡ 0 (mod 3) 13627 7435 .5456
d ≡ 1 (mod 3) 20941 11408 .5448
d ≡ 2 (mod 3) 20970 11345 .5410

1014 < d < 1014 + 107

d ≡ 0 (mod 3) 15065 7900 .5244
d ≡ 1 (mod 3) 22506 11796 .5241
d ≡ 2 (mod 3) 22382 11789 .5267

Note that Prediction 1(ii) and Prediction 2 are equivalent to each other under
the assumption of the Cohen-Lenstra heuristics. Both predictions can be checked
numerically, and we give data for Prediction 2 in Table 1.

The present form of Prediction 2 requires evaluating the class number h+ for
each d and the calculations proceed relatively slowly. It is possible to speed up the
empirical testing by using a Bayesian trick:

Prob(3 ‖ h− ∣∣ 9 | h+)

= Prob(9 | h+
∣∣ 3 ‖ h−)

Prob(3 ‖ h−)
Prob(9 | h+)

= Prob(9 | h+
∣∣ 3 ‖ h−)

η/2
1 − 7η/4

.

Therefore, the Cohen-Lenstra heuristics imply that Prediction 2 is equivalent to
the following.

Prediction 3. Prob(9 | h+
∣∣ 3 ‖ h−) = 1

27 ≈ .0370.

Table 2. Prob(9|h+ | 3‖h−)

109 < d < 109 + 107 3‖h− 3‖h− and 9|h+ Ratio
d ≡ 0 (mod 3) 209501 7435 .0355
d ≡ 1 (mod 3) 313102 11408 .0364
d ≡ 2 (mod 3) 314069 11345 .0361

1014 < d < 1014 + 107

d ≡ 0 (mod 3) 212523 7900 .0372
d ≡ 1 (mod 3) 318745 11796 .0370
d ≡ 2 (mod 3) 318815 11789 .0370

Table 2 indicates that the prediction of 1/27 is reasonable. The calculations to
test this prediction are faster since we evaluate h− for each d, which is faster than
evaluating h+. However, the situation is slightly more subtle than it might appear
at first. If h− is evaluated first, then η/2 ≈ 0.2801 of the values of d require an
evaluation of h+. When h+ is evaluated first, only η/32 ≈ .0198 of the values of
d require h+ to be evaluated. But the evaluation of h+ takes enough longer that
evaluating h− first is still faster.
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The prediction that

Prob
(
3 ‖ h− ∣∣ 3 ‖ h+

)
=

16
27

can be tested similarly, as follows. We have

Prob(3 ‖ h− ∣∣ 3 ‖ h+) = Prob(3 ‖ h+
∣∣ 3 ‖ h−)

Prob(3 ‖ h−)
Prob(3 ‖ h+)

= 2 Prob(3 ‖ h+
∣∣ 3 ‖ h−),

which yields the following.

Prediction 4. Prob
(
3 ‖ h+

∣∣ 3 ‖ h−)
= 8

27 ≈ .2963.

Table 3 gives data for this situation.

Table 3. Prob(3‖h+ | 3‖h−)

109 < d < 109 + 107 3‖h− 3‖h− and 3‖h+ Ratio
d ≡ 0 (mod 3) 209501 60052 .2866
d ≡ 1 (mod 3) 313102 90361 .2886
d ≡ 2 (mod 3) 314069 90754 .2890

1014 < d < 1014 + 107

d ≡ 0 (mod 3) 212523 62583 .2945
d ≡ 1 (mod 3) 318745 94001 .2949
d ≡ 2 (mod 3) 318815 93991 .2948

The data in Tables 1, 2, and 3 agree with Predictions 2 and 3 and Prediction 4,
which are equivalent to Prediction 1(ii) and Prediction 1(i), respectively. If these
two are correct, then it follows easily that Prediction 1(iii) is also correct.

We also need to consider the probability that 3 ‖ h− given that 3 ‖ h+, but
broken into finer subsets. Recall that if ε is the fundamental unit of L+, then
ε8 ∈ U (1). A method for determining whether ε8 ∈ U (3) is given in Theorem 1.

Prediction 5. (i) Prob(3 ‖ h−, 3 ‖ h+, ε8 ∈ U (3)) = η/27 ≈ .0207.
(ii) Prob(3 ‖ h−, 3 ‖ h+, ε8 �∈ U (3)) = η/9 ≈ .0622.

Derivations. (i)

Prob(3 ‖ h−, 3 ‖ h+, ε8 ∈ U (3))

= Prob(3 ‖ h−, 3 ‖ h+, ε8 ∈ U (3), s = r = 1)

= Prob(3 ‖ h− ∣∣ 3 ‖ h+, ε8 ∈ U (3), s = r = 1)

×Prob(s = r = 1
∣∣ 3 ‖ h+, ε8 ∈ U (3))

×Prob(ε8 ∈ U (3)
∣∣ 3 ‖ h+) × Prob(3 ‖ h+).

Dutarte’s analysis shows that we should expect ε8 ∈ U (3) to happen with probability
1/3, independent of conditions on h+. Therefore, we assume that

Prob(ε8 ∈ U (3)
∣∣ 3 ‖ h+) =

1
3
.
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Dutarte’s analysis also indicates that we should have

Prob(s = r = 1
∣∣ 3 ‖ h+, ε8 ∈ U (3)) =

2
3
.

This is deduced as follows. If 3 ‖ h+, then r = 1. We are assuming ε8 is trivial
in U (1)/U (3). The underlying idea in Dutarte’s analysis is that if α comes from
a nontrivial ideal class of order 3 in L+, then the location of α8 in the group
U (1)/U (3) is independent of ε and therefore is trivial with probability 1/3. The
probability that α is nontrivial is therefore 2/3. Consequently, ε8 and α generate
the full eigenspace, hence s = r, with probability 2/3.

Table 4. Prob(3 ‖ h−, 3 ‖ h+, ε8 �∈ U (3))

109 < d < 109 + 106 Total 3 ‖ h−, 3 ‖ h+, ε8 �∈ U (3) Ratio
d ≡ 0 (mod 3) 75999 4508 .0593
d ≡ 1 (mod 3) 113999 6790 .0596
d ≡ 2 (mod 3) 113964 6750 .0592

1011 < d < 1011 + 106

d ≡ 0 (mod 3) 76012 4708 .0619
d ≡ 1 (mod 3) 113986 6781 .0595
d ≡ 2 (mod 3) 113967 6940 .0609

If s = 1, then A− is cyclic. We assume that the conditions 3 ‖ h+ and ε8 ∈ U (3)

have no additional effect and that therefore A− is a random nontrivial cyclic 3-
group, so

Prob(3 ‖ h− ∣∣ 3 ‖ h+, ε8 ∈ U (3), s = r = 1) =
2
3
,

as in the derivation of Prediction 1.
Putting everything together, we obtain

Prob(3 ‖ h−, 3 ‖ h+, ε8 ∈ U (3)) =
2
3
× 2

3
× 1

3
× η

4
=

η

27
.

We now derive (ii). The probabilities in (i) and (ii) add to give

Prob(3 ‖ h−, 3 ‖ h+) = Prob(3 ‖ h− ∣∣ 3 ‖ h+) · Prob(3 ‖ h+) =
16
27

× η

4
=

4η

27
.

Therefore, (ii) follows from (i). �

5. Naive heuristics for λ in the nonsplit case

In this section and the next, we consider the case where 3 does not split in K/Q.
The constant term a0 of the power series f(T ) is (1−χ(3))h−. Since χ(3) = 0 or −1,
the constant term is divisible by 3 if and only if 3|h−. Therefore, the Cohen-Lenstra
heuristics yield the following.

Prediction 6. If 3 does not split in K, then Prob(λ = 0) = η ≈ .5601.

It follows that 3 | a0, hence λ ≥ 1, with probability 1−η. If we assume that each
of the remaining coefficients is divisible by 3 with probability 1/3, then we have

Prob(λ = j) = (1 − η)
(

1
3

)j−1 (
2
3

)
.
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In particular,

Prob(λ = 1) =
2
3
(1 − η) ≈ 0.2932.

In the following, we give a more refined analysis that predicts that this prob-
ability should be η/2 ≈ 0.2801, which is computationally indistinguishable from
0.2932.

6. Refined heuristics for λ in the nonsplit case

In the present section, we again consider the case

d �≡ 2 (mod 3).

In other words, we assume that 3 does not split in K/Q. Our goal is to estimate
the probability that λ = 1. We divide into cases corresponding to the power
of 3 dividing h+ and show how the ideas behind Cohen-Lenstra heuristics and
Dutarte’s analysis can be combined to give an estimate for Prob(λ = 1) that is
slightly different than the naive heuristic given in the previous section.

We also assume that the heuristics derived in Section 4 hold when d runs through
a fixed residue class mod 3. This assumption agrees with the numerical data.

6.1. Case I: 9 | h+.

Lemma 3. Assume that d �≡ 2 (mod 3) and 9 | h+. Then λ = 1 ⇐⇒ 3 ‖ h−.

Proof. Since 9 | h+, Lemma 2 implies that a0+3a1 ≡ f(3) ≡ 0 (mod 9). Therefore,
3 | a1 ⇐⇒ 9 | a0. Since a0 = (1 − χ(3))h− and χ(3) �= 1, the lemma follows. �

From Prediction 2 and Lemma 3,

Prob(λ = 1
∣∣ 9 | h+) = Prob(3 ‖ h− ∣∣ 9 | h+) =

η/54
1 − 7η/4

≈ 0.5244.

Table 1 contains data for this prediction (because of Lemma 3).
Also, multiplying by Prob(9|h+) = 1 − 7η/4 yields

Prob(λ = 1, 9|h+) = Prob(3 ‖ h−, 9|h+) =
η

54
≈ .0104.

This is somewhat higher than the entries .0067, .0079, .0076, .0103 in Tables 13, 14,
15, and 16. Note, however, that the total fraction of fields with 9|h+ is also smaller
than the predicted 1− 7η/4 ≈ .0198. This is an example of the slowness of conver-
gence to the Cohen-Lenstra predictions. Larger discriminants yield the values in
Table 5, which are close to the prediction.

Table 5. Prob(λ = 1, 9|h+)

109 < d < 109 + 107 Total λ = 1 and 9|h+ Ratio
d ≡ 0 (mod 3) 759907 7435 .0098
d ≡ 1 (mod 3) 1139873 11408 .0100

1011 < d < 1011 + 107

d ≡ 0 (mod 3) 759937 7621 .0100
d ≡ 1 (mod 3) 1139886 11632 .0102
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6.2. Case II: 3 � h+. Since λ = 0 ⇔ 3 � h−, and 3 � h− ⇒ 3 � h+,

Prob(λ = 0
∣∣ 3 � h+) = Prob(3 � h+

∣∣ λ = 0)
Prob(λ = 0)
Prob(3 � h+)

= 1 · Prob(3 � h−)
3η/2

=
2
3
.

This means that if 3 � h+, then 3 divides a0 with probability 1/3. It seems reason-
able to assume that in this case, for each n ≥ 1, we also have that 3 divides an with
probability 1/3. If this is the case, then

Prob(λ = 1
∣∣ 3 � h+) =

1
3
× 2

3
=

2
9
≈ .2222.

Table 6 contains numerical data for this situation.

Table 6. Prob(λ = 1 | 3 � h+)

109 < d < 109 + 106 3 � h+ λ = 1 Ratio
d ≡ 0 (mod 3) 64676 14345 .2218
d ≡ 1 (mod 3) 96669 21104 .2183

1011 < d < 1011 + 106

d ≡ 0 (mod 3) 64113 14331 .2235
d ≡ 1 (mod 3) 96365 21299 .2210

Multiplying by Prob(3 � h+) yields

Prob(λ = 1, 3 � h+) =
2
9
× 3η

2
=

η

3
≈ .1867.

This agrees well with the entries in Tables 9, 10, 11, and 12.
We remark that λ = 0 if and only if f(3) ≡ f(0) �≡ 0 (mod 3), which happens if

and only if ε8 �∈ U (3), by Lemma 2. The above prediction of 2/3 for λ = 0 agrees
with the prediction given by Dutarte for ε8 �∈ U (3).

6.3. Case III: 3 ‖ h+. We have

a0 + 3a1 ≡
(

1 − χ+(3)
3

)
2h+ log3 ε√

D
(mod 9).

By Lemma 2, (1−χ+(3)/3)2 log3(ε)/
√

D ∈ Z3. If 3 ‖ h+, then we must have 3 | a0,
so λ ≥ 1 (this also follows from Scholz’s theorem). We need to consider two cases,
depending on ε.

(1) If ε8 ∈ U (3), then Theorem 1 implies that λ = 1 ⇔ 3 ‖ h−. It follows that

Prob(λ = 1, 3 ‖ h+, ε8 ∈ U (3)) = Prob(3 ‖ h−, 3 ‖ h+, ε8 ∈ U (3)) =
η

27
,

by Prediction 5.
(2) Now suppose ε8 �∈ U (3). If 9 | h− and 3 ‖ h+, then Theorem 1 implies that

λ = 1. We therefore have

Prob(λ = 1, 9 | h−, 3 ‖ h+, ε8 �∈ U (3))

= Prob(9 | h−, 3 ‖ h+, ε8 �∈ U (3))

= Prob(3 ‖ h+, ε8 �∈ U (3)) − Prob(3‖h−, 3 ‖ h+, ε8 �∈ U (3)).
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One of Dutarte’s basic assumptions is that 3‖h+ and ε8 �∈ U (3) are independent
events. Therefore, we obtain (using Prediction 5)

Prob(3 ‖ h+) · Prob(ε8 �∈ U (3)) − η

9

=
η

4
× 2

3
− η

9
=

η

18
.

If 3 ‖ h− and 3 ‖ h+, then parts (ii) and (v) of Theorem 1 say that λ > 1 if and
only if a congruence mod 9 holds. Since ε �∈ U (3), both sides of this congruence are
divisible by 3 but not by 9, so each side is either 3 or 6 mod 9. We assume that the
two sides are congruent with probability 1/2. In Table 7, we give data to support
this assumption.

Table 7. λ when 3‖h+, 3‖h−, ε8 �∈ U (3)

109 < d < 109 + 106 λ = 1 λ ≥ 2 Ratio
d ≡ 0 (mod 3) 2308 2200 1.0491
d ≡ 1 (mod 3) 3352 3438 .9750

1011 < d < 1011 + 106

d ≡ 0 (mod 3) 2374 2334 1.0171
d ≡ 1 (mod 3) 3414 3367 1.0140

Under the assumption that the cases λ = 1 and λ ≥ 2 are equally probable, we
have

Prob(λ = 1, 3 ‖ h−, 3 ‖ h+, ε8 �∈ U (3))

=
1
2
Prob(3 ‖ h−, 3 ‖ h+, ε8 �∈ U (3)) =

η

18
.

It follows that

Prob(λ = 1, 3 ‖ h+, ε8 �∈ U (3))

= Prob(λ = 1, 9|h−, 3 ‖ h+, ε8 �∈ U (3)) + Prob(λ = 1, 3‖h−, 3 ‖ h+, ε8 �∈ U (3))

=
η

18
+

η

18
=

η

9
.

Putting together cases 1 and 2, we obtain

Prob(λ = 1, 3 ‖ h+) =
η

27
+

η

9
=

4η

27
≈ .0830.

This can also be expressed as

Prob(λ = 1
∣∣ 3 ‖ h+) =

16
27

≈ .5926.

Table 8 contains data for this situation.
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Table 8. Prob(λ = 1 | 3‖h+)

109 < d < 109 + 106 3‖h+ λ = 1 Ratio
d ≡ 0 (mod 3) 9967 6000 .6020
d ≡ 1 (mod 3) 15185 8979 .5908

1011 < d < 1011 + 106

d ≡ 0 (mod 3) 10432 6210 .5953
d ≡ 1 (mod 3) 15486 9241 .5967

7. The probability that λ = 1

Adding up the cases where 9 | h+, 3 � h+, and 3 ‖ h+, we obtain

Prediction 7.

Prob(λ = 1) =
η

54
+

η

3
+

4η

27
=

η

2

≈ .0104 + .1867 + .0830 = .2801.

Is this prediction correct? Or is the naive prediction correct? In Tables 9
through 12, we give data that agrees well with the refined prediction. However,
in most situations, the convergence to the Cohen-Lenstra heuristics is notoriously
slow, so this is not conclusive. The naive heuristics give .2932, and the refined
heuristic is the sum of three terms. Suppose that exactly one of the four numbers
.2932, .0104, .1867, .0830 is incorrect. If the .0104 is incorrect, then it would have
to be replaced by .0235, which is larger than Prob(9|h+) = 1− 7η/4 ≈ .0198. This
is impossible if we believe the Cohen-Lenstra heuristics. If the .0830 is wrong, then
it should be .0961, which is possible, but unlikely since .0830 is closer to the data.
The most questionable assumption made in the calculation of .0830 was that two
quantities agree or do not agree mod 9 with equal probabilities. This is the same
type of reasoning that is used in the naive heuristics, and in the present case the
assumption is supported fairly well by the data. If the probability of λ = 1 was
.7119 instead of .5, then the present heuristics would yield the same result as the
naive reasoning. But a probability this far from .5 is not supported by the data.
Finally, note that the .1867 was obtained by naive reasoning in the same spirit as
used to obtain the .2932, so it is very unlikely that .1867 is wrong and .2932 is
right. Moreover, the “naive” assumption used to obtain the .1867 seems more easy
to justify than the overall naive assumption, since in the case 3 � h+ we already
had 3|a0 with probability 1/3, while the overall naive assumption was made simply
on the basis of not knowing anything better. Therefore, the best guess seems to be
that the naive heuristics are incorrect.

8. The split case

The distribution of lambda invariants for the split case (d ≡ 2 (mod 3)) is very
similar to that in the other cases, except that the lambda values are one larger.
This is presumably caused by the fact that a0 = 0, so the Iwasawa power series
is T times a power series: f(T ) = Tg(T ). Moreover, Ferrero and Greenberg have
shown that g(0) �= 0, which is similar to the nonsplit case where f(0) �= 0. This
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seems to indicate that there should be a heuristic model for lambda invariants in
terms of modules

Z3[[T ]]/(g(T )),
where g(0) �= 0. We have not yet found such a model.

As mentioned in the introduction, one of our motivations for this study was
to see if the frequency of 3 � h+ is higher than expected when d ≡ 2 (mod 3).
The Cohen-Lenstra prediction is 3η/2 ≈ .8402. For 106 < d < 106 + 2 × 105 we
have .8682 and for 107 < d < 107 + 2 × 105 we have .8618. These agree fairly
well, especially since smaller values of d are usually less likely to have 3|h+, so the
frequency of 3 � h+ tends to be higher than predicted. Also, the results for d ≡ 2
(mod 3) are very similar to those for d �≡ 2 (mod 3). Therefore, we conclude that
the λ-invariant does not cause a bias in h+.

9. Data on λ invariants

In Tables 9 through 12, we gave data on lambda invariants. By restricting to
λ = 0, 1 and λ ≥ 2, we were able to use Theorem 1 to perform the computations
for much larger discriminants, since the algorithms to compute class numbers and
fundamental units are subexponential. In contrast, the methods used to compute
larger values of lambda (see the next section) are of the order of magnitude of the
discriminant. In Tables 13 through 18, we give the results of our computations that
include larger values of lambda, broken into the three congruence classes of d mod
3. We also give the fraction of the total for each entry.

Table 9. 109 < d < 109 + 106, d ≡ 0 (mod 3)

d ≡ 0 (mod 3) λ = 0 λ = 1 λ ≥ 2 Total
3 � h+ 43326 14345 7005 64676
3‖h+ 0 6000 3967 9967
9|h+ 0 750 606 1356

Totals 43326 21095 11578 75999
3 � h+ .5701 .1888 .0922 .8510
3‖h+ 0 .0789 .0522 .1311
9|h+ 0 .0099 .0080 .0178

Totals .5701 .2776 .1523 1.000

Table 10. 1011 < d < 1011 + 106, d ≡ 0 (mod 3)

d ≡ 0 (mod 3) λ = 0 λ = 1 λ ≥ 2 Total
3 � h+ 42868 14331 6914 64113
3‖h+ 0 6210 4222 10432
9|h+ 0 741 726 1467

Totals 42868 21282 11862 76012
3 � h+ .5640 .1885 .0910 .8435
3‖h+ 0 .0817 .0555 .1372
9|h+ 0 .0097 .0096 .0193

Totals .5640 .2800 .1561 1.000
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Table 11. 109 < d < 109 + 106, d ≡ 1 (mod 3)

d ≡ 1 (mod 3) λ = 0 λ = 1 λ ≥ 2 Total
3 � h+ 65155 21104 10410 96669
3‖h+ 0 8971 6214 15185
9|h+ 0 1203 942 2145

Totals 65155 31278 17566 113999
3 � h+ .5715 .1851 .0913 .8480
3‖h+ 0 .0787 .0545 .1332
9|h+ 0 .0106 .0083 .0188

Totals .5715 .2744 .1541 1.000

Table 12. 1011 < d < 1011 + 106, d ≡ 1 (mod 3)

d ≡ 1 (mod 3) λ = 0 λ = 1 λ ≥ 2 Total
3 � h+ 64547 21299 10519 96365
3‖h+ 0 9241 6245 15486
9|h+ 0 1164 971 2135

Totals 64547 31704 17735 113986
3 � h+ .5663 .1869 .0923 .8454
3‖h+ 0 .0811 .0548 .1359
9|h+ 0 .0102 .0085 .0187

Totals .5663 .2781 .1556 1.000

Table 13. 106 < d < 106 + 2 · 105, d ≡ 0 (mod 3)

d ≡ 0 (mod 3) λ = 0 λ = 1 λ = 2 λ = 3 λ ≥ 4 Total
3 � h+ 8979 2820 971 290 159 13219
3‖h+ 0 1162 432 157 60 1811
9|h+ 0 102 46 16 8 172

Totals 8979 4084 1449 463 227 15202
3 � h+ .5906 .1855 .0639 .0191 .0105 .8696
3‖h+ 0 .0764 .0284 .0103 .0039 .1191
9|h+ 0 .0067 .0030 .0011 .0005 .0113

Totals .5906 .2686 .0953 .0305 .0149 1.000

Table 14. 107 < d < 107 + 2 · 105, d ≡ 0 (mod 3)

d ≡ 0 (mod 3) λ = 0 λ = 1 λ = 2 λ = 3 λ ≥ 4 Total
3 � h+ 8838 2823 922 318 180 13081
3‖h+ 0 1132 474 181 101 1888
9|h+ 0 120 67 29 7 223

Totals 8838 4075 1463 528 288 15192
3 � h+ .5818 .1858 .0607 .0209 .0118 .8610
3‖h+ 0 .0745 .0312 .0119 .0066 .1243
9|h+ 0 .0079 .0044 .0019 .0005 .0147

Totals .5818 .2682 .0963 .0348 .0190 1.000
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Table 15. 106 < d < 106 + 2 · 105, d ≡ 1 (mod 3)

d ≡ 1 (mod 3) λ = 0 λ = 1 λ = 2 λ = 3 λ ≥ 4 Total
3 � h+ 13399 4271 1364 439 260 19733
3‖h+ 0 1706 695 241 115 2757
9|h+ 0 174 78 35 20 307

Totals 13399 6151 2137 715 395 22797
3 � h+ .5878 .1873 .0598 .0193 .0114 .8656
3‖h+ 0 .0748 .0305 .0106 .0050 .1209
9|h+ 0 .0076 .0034 .0015 .0009 .0135

Totals .5878 .2698 .0937 .0314 .0173 1.0000

Table 16. 107 < d < 107 + 2 · 105, d ≡ 1 (mod 3)

d ≡ 1 (mod 3) λ = 0 λ = 1 λ = 2 λ = 3 λ ≥ 4 Total
3 � h+ 13175 4244 1409 468 220 19516
3‖h+ 0 1769 745 258 129 2901
9|h+ 0 234 95 41 14 384

Totals 13175 6247 2249 767 363 22801
3 � h+ .5778 .1861 .0618 .0205 .0096 .8559
3‖h+ 0 .0776 .0327 .0113 .0057 .1272
9|h+ 0 .0103 .0042 .0018 .0006 .0168

Totals .5778 .2740 .0986 .0336 .0159 1.0000

Table 17. 106 < d < 106 + 2 · 105, d ≡ 2 (mod 3)

d ≡ 2 (mod 3) λ = 0 λ = 1 λ = 2 λ = 3 λ ≥ 4 Total
3 � h+ 0 13418 4242 1410 717 19787
3‖h+ 0 0 1650 672 361 2683
9|h+ 0 0 186 84 51 321

Totals 0 13418 6078 2166 1129 22791
3 � h+ 0 .5887 .1861 .0619 .0315 .8682
3‖h+ 0 0 .0724 .0295 .0158 .1177
9|h+ 0 0 .0082 .0037 .0022 .0141

Totals 0 .5887 .2667 .0950 .0495 1.0000

Table 18. 107 < d < 107 + 2 · 105, d ≡ 2 (mod 3)

d ≡ 2 (mod 3) λ = 0 λ = 1 λ = 2 λ = 3 λ ≥ 4 Total
3 � h+ 0 13351 4189 1385 724 19649
3‖h+ 0 0 1713 696 380 2789
9|h+ 0 0 198 104 59 361

Totals 0 13351 6100 2185 1163 22799
3 � h+ 0 .5856 .1837 .0607 .0318 .8618
3‖h+ 0 0 .0751 .0305 .0167 .1223
9|h+ 0 0 .0087 .0046 .0026 .0158

Totals 0 .5856 .2676 .0958 .0510 1.0000
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10. Calculating lambda

To calculate the lambda invariants, we first calculated h+. If h+ was not divisible
by 3, we computed h−. If h− was not divisible by 3, then λ = 0 when d �≡ 2 (mod 3).
In the other cases λ ≥ 1, and we used the formulas from [2]. In the cases considered
in the present paper, the formulas are as follows. Let d0 = d if 3 � d and d0 = d/3
if 3|d, and let A =

∑d0−1
j=1 jχ(4 + 9j) and B =

∑d0−1
j=1 jχ(7 + 9j).

I. If A �≡ B (mod 3), then λ = 1.
II. If A ≡ B �≡ 0 (mod 3), then λ = 2. If A ≡ B ≡ 0 (mod 3), then λ ≥ 3.
III. If λ ≥ 3, let 3 ≤ m < 9 be the least integer (if it exists) such that

8∑
l=1

2∑
k=0

Ak,l

d0−1∑
j=1

jχ(l + 9k + 27j) �≡ 0 (mod 3),

where

Ak,l =
(

−(4(9 − l2)/3)l2(1 − l2 + 9kl) + (1 − l2)3/9
m

)
.

Then λ = m.
Note that the computation becomes much longer whenever λ ≥ 3. However, a

considerable speedup is obtained by evaluating the binomial coefficients explicitly in
advance and using only those terms for which the binomial coefficients are nonzero
mod 3.

Note that the formula in [2] is missing the term (1 − l2)3/9 in the binomial
coefficient. This corresponds to the fact that a term (jp)3/3 is missing in the
calculation of logp(i) in [2, page 104]. This term is needed only when p = 3.
However, it appears that the correct formula was used in the computations in that
paper, since their values of λ agree with those we computed with the corrected
formula.

The computations were done with PARI. Most of the computations were done by
both authors with separate programs on separate machines, and the results agreed.
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