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TRACTABILITY OF QUASILINEAR PROBLEMS II:
SECOND-ORDER ELLIPTIC PROBLEMS

A. G. WERSCHULZ AND H. WOŹNIAKOWSKI

Abstract. In a previous paper, we developed a general framework for estab-
lishing tractability and strong tractability for quasilinear multivariate problems
in the worst case setting. One important example of such a problem is the
solution of the Helmholtz equation −∆u + qu = f in the d-dimensional unit
cube, in which u depends linearly on f , but nonlinearly on q. Here, both f
and q are d-variate functions from a reproducing kernel Hilbert space with
finite-order weights of order ω. This means that, although d can be arbitrarily
large, f and q can be decomposed as sums of functions of at most ω variables,
with ω independent of d.

In this paper, we apply our previous general results to the Helmholtz equa-
tion, subject to either Dirichlet or Neumann homogeneous boundary condi-
tions. We study both the absolute and normalized error criteria. For all four
possible combinations of boundary conditions and error criteria, we show that
the problem is tractable. That is, the number of evaluations of f and q needed
to obtain an ε-approximation is polynomial in ε−1 and d, with the degree of
the polynomial depending linearly on ω. In addition, we want to know when
the problem is strongly tractable, meaning that the dependence is polynomial
only in ε−1, independently of d. We show that if the sum of the weights
defining the weighted reproducing kernel Hilbert space is uniformly bounded
in d and the integral of the univariate kernel is positive, then the Helmholtz
equation is strongly tractable for three of the four possible combinations of
boundary conditions and error criteria, the only exception being the Dirichlet

boundary condition under the normalized error criterion.

1. Introduction

The worst case complexity of solving many important d-dimensional problems,
such as integration, approximation, and elliptic partial differential equations, is
known to be exponential in d when the input functions belong to standard Sobolev
spaces; see, e.g., [11, Chapter 3] and [7] for discussion and references. This curse
of dimensionality means that such problems are intractable. One major goal of
information-based complexity research has been to vanquish the curse of dimen-
sionality by shrinking the class of input functions, so that such problems can be
made tractable in the worst case setting.
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Much attention has been lavished on the tractability of linear multivariate prob-
lems; see, e.g., [12] and the references contained therein. However, many important
problems are nonlinear. Perhaps the simplest kinds of nonlinear problems to ana-
lyze are problems that appear to be linear, but have “hidden” nonlinearities. For
example, consider the solution of the Helmholtz equation −∆u + qu = f on the
d-dimensional unit cube, with Dirichlet or Neumann boundary conditions. If we
treat q as a fixed known function, then we are only interested in the dependence
of u on f ; this is a linear problem. However, if we treat both f and q as unknown
functions, the nonlinear dependence of u on q means that we now have a nonlinear
problem.

The Helmholtz equation is an example of a quasilinear problem. A quasilin-
ear multivariate problem is determined by giving, for each positive integer d, an
operator Sd : Fd × Qd → Gd, where

(1) Fd and Qd are sets of d-variate functions,
(2) Fd and Gd are normed spaces,
(3) Sd(·, q) is a linear operator for each q ∈ Qd, and
(4) Sd satisfies a Lipschitz condition with respect to its two variables.

Note that the presence of Qd distinguishes quasilinear problems from well-posed
linear problems, as defined in [10]. For example, a linear partial differential equation
Lu = f yields a linear problem if we are only interested in how u depends on f ;
however, if we also want to study how u depends on the coefficients of L, we will
have a quasilinear problem.

In this paper, we consider algorithms that use the values of linear functionals
of f and q. We will be interested in algorithms that allow the evaluation of any
linear functionals of f and q, as well as those that only allow the evaluation of f
and q at points of the unit cube. Let card(ε, Sd) denote the minimal number of
such evaluations needed to compute an ε-approximation in the worst case setting.1

A family S = {Sd}∞d=1 of problems is said to be tractable if card(ε, Sd) is bounded
by a polynomial in ε−1 and d. If this bound is independent of d, then S is said to
be strongly tractable.

Of course, tractability results depend on how we choose Fd and Qd. One idea
that has worked well for linear problems has been to choose weighted spaces. These
are spaces for which the dependence on successive variables or groups of variables is
moderated by corresponding weights; see [9] where this idea was probably studied
for the first time, and [7] for a survey. Recently, spaces with finite-order weights
have been thoroughly analyzed. These spaces were introduced in [4] for the inte-
gration problem; they were first studied for general linear problems in [12], and for
quasilinear problems in [14].

The main idea behind finite-order weights is as follows. We want to solve prob-
lems Sd, where d may be arbitrarily large. This means that we want to approximate
Sd(f, q), where the functions f and q depend on d variables. However, we restrict
our attention to spaces for which f and q can be decomposed as sums of functions
that depend on at most ω variables, where ω is independent of d. We stress that
algorithms using function values of f and q do not use the values of the terms
appearing in the decomposition of f and q. These decompositions only serve as a
theoretical tool to prove error bounds and tractability.

1These concepts, among others, will be precisely defined in Section 2.
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By considering only input functions belonging to spaces of finite-order weights,
we find that the number of evaluations needed to obtain an ε-approximation is at
most Cω(1/ε)aωdbω , which is polynomial in 1/ε and d. The degrees aω and bω

depend at most linearly on ω; however, the leading coefficient Cω may depend
exponentially on ω. Thus, we would hope that ω is relatively small. As an example,
in quantum mechanics, one commonly encounters sums

q(x1, . . . ,xd/3) =
∑

1≤i<j≤d/3

1
(‖xi − xj‖2

�2(R3) + α2)1/2

of modified2 Coulomb pair potentials; see, e.g., [6, pg. 71]. Here, each xi belongs
to R

3, so that q depends on d scalar variables; however, each term of q only depends
on 6 variables. Hence, ω = 6 for this example.

The paper [12] developed a general framework for studying the tractability of lin-
ear multivariate problems over reproducing kernel Hilbert spaces with finite-order
weights. One of the main results of [12] is that such problems are always tractable,
and they are sometimes even strongly tractable. In a recent paper [14], we showed
how the framework of [12] can be extended to cover quasilinear problems. Using
this framework, we presented general conditions for determining when quasilinear
multivariate problems are tractable or strongly tractable.

In this paper, we verify these general conditions for specific important multivari-
ate problems. Namely, for a nonnegative function q on Id, where I = (0, 1), we
study the variational formulation of the Helmholtz equation

(1.1) −∆u + qu = f in Id,

subject to one of two kinds of homogeneous boundary conditions:
(1) Dirichlet boundary conditions

u = 0 on ∂Id.

In this case, we will take Gd = H1
0 (Id).

(2) Neumann boundary conditions

∂νu = 0 on ∂Id,

where ∂ν is the outer-directed normal derivative. In this case, we will take
Gd = H1(Id).

Hence we will be measuring the error in the H1-sense.
As already mentioned, we assume that we can compute function values of f

and q or, more generally, arbitrary linear functionals of f and q. The set Fd of
right-hand-side functions f will be a reproducing kernel Hilbert space H(Kd), and
Qd will be chosen so that the variational form of the solution u = Sd(f, q) exists
for all f ∈ H(Kd) and q ∈ Qd. We consider the worst case setting, in which
we want to compute an ε-approximation to the solution u for all f ∈ H(Kd) and
q ∈ Qd ∩H(Kd), assuming additionally that the norms of f and q are bounded by
given numbers.

We study two error criteria:
(1) The absolute error criterion: Here, we want to guarantee that the worst

case error of an algorithm is at most ε.

2The modification is the inclusion of the positive term α. Physicists often include a small α
as a regularization parameter to make q smooth.
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(2) The normalized error criterion: Here, we want to guarantee that the worst
case error is at most ε times the initial error. (By the initial error, we mean
the minimal error we can attain without sampling the functions f and q.)

Combining the two kinds of boundary conditions with the two error criteria, we see
that there are four different combinations to consider. Furthermore, each of these
four combinations is considered, both for algorithms using function values and for
algorithms using continuous linear functionals.

We consider reproducing kernel Hilbert spaces spaces H(Kd) with finite-order
weights of order ω and prove tractability results for both the Dirichlet and Neumann
problems. Moreover, we find that the problem is strongly tractable in three of
the four possible combinations mentioned above, provided that the sum of the
finite-order weights is uniformly bounded in d and the integral of the univariate
kernel is positive; the only exception is the Dirichlet boundary condition under the
normalized error criterion, which is open.

We now present the main results of this paper in more precise terms. Let Λ ∈
{Λall, Λstd}, where Λall denotes the case where we use arbitrary linear functionals
and Λstd denotes the case where we only use function evaluations. As before,
card(ε, Sd) = card(ε, Sd, Λ) denotes the minimal number of evaluations needed
to compute an ε-approximation in the worst case setting under the absolute or
normalized error criterion.

To prove our tractability results, we use a maximum principle. For the Dirichlet
problem, we use the result found in [5], which bounds the L∞-norm of the solution
by the L∞-norm of the right-hand-side function. For the Neumann problem, we
could not find such a result in the literature, and so a proof (based on suggestions
of T. I. Seidman) is provided in this paper.

Let perr and pdim denote ε- and d-exponents of tractability, so that

card(ε, Sd, Λ) ≤ C

(
1
ε

)perr

dpdim ∀ ε ∈ (0, 1), d ∈ Z
++,

and let pstrong denote the exponent of strong tractability, so that

card(ε, Sd, Λ) ≤ C

(
1
ε

)pstrong

.

Here, C is an absolute constant, independent of both ε and d.
We assume that the reproducing kernel Kd of the weighted RKHS H(Kd) has

the form

Kd(x,y) =
∑

u∈{1,...,d}, |u|≤ω

γd,u

∏
j∈u

K(xj , yj),

where K is the reproducing kernel of a Hilbert space H(K) of univariate functions,
and γd,u are nonnegative numbers (weights). Let

κ2 =
∫ 1

0

∫ 1

0

K(x, y) dx dy < ∞.

Since K is a reproducing kernel we know that κ2 ≥ 0. Our results depend on
whether κ2 is positive or zero, and whether we are dealing with the general case for
finite-order weights of order ω or whether we are dealing with finite-order weights
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of order ω with a uniformly bounded sum, i.e., for which

sup
1≤d<∞

∑
u∈{1,...,d}

|u|≤ω

γd,u < ∞.

Then we have the following results:

(1) For the Dirichlet and Neumann problems under the absolute error criterion,
we have

General case Bounded sum
κ2 > 0 κ2 = 0 κ2 > 0

Λall perr ≤ 2, pdim ≤ 2ω perr ≤ 2, pdim ≤ 3ω pstrong ≤ 2
Λstd perr ≤ 4, pdim ≤ 4ω perr ≤ 2, pdim ≤ 6ω pstrong ≤ 4

We see that both these problems are tractable. Moreover, if the sum of
weights is uniformly bounded and κ2 > 0, then these problems are strongly
tractable.

(2) For the Dirichlet problem under the normalized error criterion, we have

κ2 > 0
Λall perr ≤ 2, pdim ≤ 2 + ω
Λstd perr ≤ 4, pdim ≤ 4 + 2ω

Hence, this problem is tractable. However, we do not know conditions that
guarantee strong tractability for this problem. The case κ2 = 0 is also
open.

(3) For the Neumann problem under the normalized error criterion, we have

General case Bounded sum
κ2 > 0 κ2 = 0 κ2 > 0

Λall perr ≤ 2, pdim ≤ ω perr ≤ 2, pdim ≤ 2ω pstrong ≤ 2
Λstd perr ≤ 4, pdim ≤ 2ω perr ≤ 2, pdim ≤ 4ω pstrong ≤ 4

Thus, this problem is tractable. Moreover, if the sum of weights is uniformly
bounded and κ2 > 0, then the problem is strongly tractable.

We stress that these results hold for the kernels Kd with any finite-order weights
of order ω and any univariate kernel K. Of course, the smoothness of func-
tions from H(Kd) will depend on the kernel K, which may be chosen arbitrarily.
Therefore, it may be possible to improve the exponents of tractability and strong
tractability for a given choice of the kernel and weights by using an algorithm
specially tailored to the particular situation.

For the class Λall, the results are constructive; that is, we know which linear func-
tionals we should use to obtain the bounds on card(ε, Sd, Λall). For the class Λstd,
the results are not constructive, since they are based on probabilistic arguments.
Making these results constructive has been an open problem for a long time.

Finally, as in [14], we emphasize that our results for the Dirichlet and Neumann
problems give bounds only on the information cost, i.e., on the number of evalua-
tions of f and q needed to obtain an ε-approximation. We have not considered the
problem of how many arithmetic operations are needed to implement the algorithms
that use these evaluations. These algorithms have the following form:

(1) Obtain approximations f̃ of f and q̃ of q.
(2) Calculate Sd(f̃ , q̃) as an appropriate ε-approximation.
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Note that the first stage uses linear algorithms to compute the needed approxi-
mations. The coefficients used by these linear algorithms may be precomputed
independently of f and q. If the cost of precomputation is not counted, the arith-
metic cost of the first stage is proportional to the information cost. However, the
second stage introduces some difficulty. Since the operator Sd is not linear, it is not
a priori clear how hard it will be to compute Sd(f̃ , q̃) or an approximation thereof.
Hence, our positive tractability results on the number of evaluations must be aug-
mented with positive results on the approximate computation of Sd(f̃ , q̃) if we wish
to claim that the quasilinear Dirichlet and Neumann problems are computationally
feasible for large d.

We have already mentioned some open problems. Let us close this Introduction
by posing two more.

(1) For simplicity’s sake, we have restricted our attention to homogeneous
Dirichlet and Neumann boundary conditions. To what extent do the results
of this paper still hold when the boundary conditions are nonhomogeneous?
To maintain the spirit of this paper, the functions describing the boundary
conditions should also belong to a space of finite-order weights on each face
of the unit cube. If such is the case, we expect that similar tractability
results will hold for both the homogeneous and nonhomogeneous cases.

(2) We have not discussed lower bounds for elliptic problems over spaces of
finite-order weights. It is easy to see that a lower bound is given by the
problem of approximating the embedding operator from H(Kd) to H−1(Id).
Note that the target space for this approximation problem is H−1(Id),
rather than the more familiar space L2(Id). Moreover, in the sequel, we
show that the Dirichlet problem is at least as hard as computing the most
difficult weighted average of H(Kd) functions, the weights coming from
H1

0 (Id); furthermore, the Neumann problem is at least as hard as computing
the integral of H(Kd) functions. The problem of finding lower bounds for
all these subsidiary problems has not yet been studied and remains open.

2. Notation and assumptions

In this section, we first recall some notation and concepts from [14, Sect. 2],
which the reader should consult for motivation and more detailed explanation. In
addition, we precisely define the Dirichlet and Neumann problems that we study.

Let us first establish a few notational conventions. If R is an ordered ring, then
R+ and R++ respectively denote the nonnegative and positive elements of R. If X
and Y are normed linear spaces, then Lin[X, Y ] denotes the space of bounded linear
transformations of X into Y . We write Lin[X] for Lin[X, X], and X∗ for Lin[X, R].
Finally, we use the standard notation for Sobolev inner products, seminorms, norms,
and spaces, found in, e.g., [8, 13].

Let K be a measurable reproducing kernel defined on Ī × Ī with I = (0, 1). We
will require that

(2.1) κ0 := ess sup
x∈I

K(x, x) < ∞,

from which it follows that

0 ≤ κ2 ≤ κ1 ≤ κ0,
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where

(2.2) κ1 =
∫ 1

0

K(x, x) dx

and

(2.3) κ2 =
∫ 1

0

∫ 1

0

K(x, y) dx dy.

Without loss of generality, we assume that κ1 is positive, since the problem will
be trivial otherwise. It then follows that κ0 is also positive. However, κ2 may be
either positive or zero. It turns out that κ2 = 0 can occur for kernels that arise in
practice; see Remark 2.2. The distinction between the cases κ2 > 0 and κ2 = 0 will
affect the error bounds for our problem.

Let Pd be the power set of {1, . . . , d}, and let

γ = { γd,u : u ∈ Pd, d ∈ Z
++ }

be a set of nonnegative numbers γd,u (which we call weights), with

γmax := sup
d∈Z++

max
u∈Pd

γd,u < ∞.

We shall assume that γ is a set of finite-order weights of order ω ∈ Z
++, see [4],

i.e., that

(2.4) γd,u 	= 0 only if |u| ≤ ω ∀ u ∈ Pd, d ∈ Z
++,

where ω is the smallest positive integer such that (2.4) holds and |u| is the cardinality
of u.

For each d ∈ Z
++, the space H(Kd) is the reproducing kernel Hilbert space

(RKHS) whose reproducing kernel is

Kd =
∑

u∈Pd

γd,uKd,u,

with
Kd,u(x,y) =

∏
j∈u

K(xj , yj) ∀x,y ∈ Īd, u ∈ Pd.

For f ∈ H(Kd) we know (see, e.g., [12]) that

(2.5) ‖f‖L2(Id) ≤ σd(κ1)‖f‖H(Kd),

where, here and elsewhere, we will often use the function

(2.6) σd(θ) =
( ∑

u∈Pd

γd,u θ|u|
)1/2

∀ θ ∈ R
+.

Hence, H(Kd) is embedded in L2(Id) for arbitrary weights γ. For finite-order
weights of order ω, we can estimate σd(θ) by

(2.7) σd(θ) ≤
√

2 max{θω, 1}γmax dω/2;

see [14, Lemma 6].
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Example 2.1. We illustrate our approach by the min-kernel

(2.8) K(x, y) = Kmin(x, y) := min{x, y} ∀x, y ∈ [0, 1],

which has been studied in many papers and is related to the Wiener measure and
the Sobolev space of univariate functions. More precisely, the space H(K) consists
of absolutely continuous functions vanishing at zero and whose first derivatives
belong to L2(I), with the inner product

〈f, g〉H(K) =
∫

I

f ′(x)g′(x) dx.

In this case, we have κ0 = 1, κ1 = 1
2 , κ2 = 1

3 .
For the d-variate case, the space H(Kd) with finite-order weights of order ω

consists of functions f : Id → R that can be uniquely decomposed as

f(x) =
∑

u∈Pd, |u|≤ω

fu(x),

with x = [x1, x2, . . . , xd], where fu(x) = f(xu) depends only on xj for j ∈ u, and
fu ∈ H(Kd,u). Furthermore,

‖f‖2
H(Kd) =

∑
u∈Pd, |u|≤ω

γ−1
d,u ‖fu‖2

H(Kd,u),

where

‖fu‖2
H(Kd,u) =

∫
I|u|

(
∂|u|

∂xu

f(xu)
)2

dxu.

Here, by convention, we have 0/0 = 0. That is, if γd,u = 0, then the corresponding
component fu = 0.

Observe that the constant function f(x) = c for all x ∈ Id belongs to H(Kd) iff
γd,∅ > 0, in which case we have ‖f‖H(Kd) = |c|/γ

1/2
d,∅ . �

Remark 2.2. As we shall see, tractability results will be different for the cases
κ2 > 0 and κ2 = 0. For the min-kernel we have κ2 > 0. For some other kernels, we
may have κ2 = 0. For instance, consider the Korobov kernel K(x, y) = B2(|x− y|),
where B2(t) = t2 − t + 1

6 is the Bernoulli polynomial of degree 2. Then the space
H(Kd) differs from the Sobolev space with the min-kernel by replacing the condition
f(0) = 0 by

∫ 1

0
f(x) dx = 0; more properties of these and similar spaces may be

found in, e.g., [9]. For the Korobov kernel, we have κ2 = 0. �

We now recall the standard variational forms of the Dirichlet and Neumann
problems for the Helmholtz equation (1.1); see (e.g.) [3, pp. 35–40]. In what follows,
we write

Bd(v, w; q) =
∫

Id

[∇v · ∇w + qvw] ∀ v, w ∈ H1(Id), q ∈ L∞(Id).

(1) For the Dirichlet problem, let

Q∗
d = { q ∈ L∞(Id) : q ≥ 0 }.

For f ∈ H(Kd) and q ∈ Q∗
d, a solution element u = SDIR

d (f, q) ∈ H1
0 (Id) is

defined such that

(2.9) Bd(u, w; q) = 〈f, w〉L2(Id) ∀w ∈ H1
0 (Id).
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(2) For the Neumann problem, let q0 be a positive number, independent of d.
Define

Q∗∗
d = { q ∈ L∞(Id) : q ≥ q0 }.

For f ∈ H(Kd) and q ∈ Q∗∗
d , a solution element u = SNEU

d (f, q) ∈ H1(Id)
is defined such that

(2.10) Bd(u, w; q) = 〈f, w〉L2(Id) ∀w ∈ H1(Id).

The well-definedness of SDIR
d and SNEU

d will be addressed in the sequel.
Let

(Sd, Qd, Gd) =

{(
SDIR

d , Q∗
d, H

1
0 (Id)

)
for the Dirichlet problem,(

SNEU
d , Q∗∗

d , H1(Id)
)

for the Neumann problem.

We want to efficiently compute approximations of Sd(f, q) for [f, q] ∈ Hd,ρ1 × (Qd∩
Hd,ρ2), where ρ1, ρ2 ∈ R

++ are independent of d, and

Hd,ρ = { f ∈ H(Kd) : ‖f‖H(Kd) ≤ ρ }
is the ball of H(Kd) of radius ρ > 0.

For the Neumann problem to be well-defined, we must assume that Q∗∗
d ∩Hd,ρ2 is

nonempty. This holds if 1 ∈ H(Kd), i.e., the constant function 1 belongs to H(Kd),
and ‖1‖H(Kd) ≤ ρ2/q0. Then the constant function q0 belongs to Q∗∗

d ∩ Hd,ρ2 .
It is known, see [2], that 1 ∈ H(Kd) if γd,∅ > 0, and then ‖1‖H(Kd) ≤ γ

−1/2
d,∅ .

Furthermore, if 1 /∈ H(K), then ‖1‖H(Kd) = γ
−1/2
d,∅ . Hence, if q0γ

−1/2
d,∅ ≤ ρ2, then

Q∗∗
d ∩ Hd,ρ2 is nonempty.
Let Ad,n be an algorithm using n information evaluations from a class Λ of

linear functionals on H(Kd). Here, Λ is either the class Λall of all continuous
linear functionals on H(Kd), or the class Λstd of standard information consisting
of function evaluations.

The worst case error of Ad,n is given by

e(Ad,n, Sd, Λ) = sup
[f,q]∈Hd,ρ1×Qd∩Hd,ρ2

‖Sd(f, q) − Ad,n(f, q)‖Gd
,

and the nth minimal error is defined to be

e(n, Sd, Λ) = inf
Ad,n

e(Ad,n, Sd, Λ),

the infimum being over all algorithms using at most n information evaluations
from Λ. Note that the operator Sd(·, q) : H(Kd) → Gd is linear for any q ∈ Qd.
Hence the initial error e(0, Sd) is

(2.11) e(0, Sd) = ρ1 sup
q∈Qd∩Hd,ρ2

‖Sd(·, q)‖Lin[H(Kd),Gd].

We shall prove later that e(0, Sd) is finite.
If ε ∈ (0, 1), we say that the algorithm Ad,n provides an ε-approximation to Sd

if
e(Ad,n, Sd, Λ) ≤ ε · ErrCrit(Sd).

Here, ErrCrit will be one of the two error criteria

ErrCrit(Sd) =

{
1 for absolute error,
e(0, Sd) for normalized error.
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Let
card(ε, Sd, Λ) = min{n ∈ Z

+ : e(n, Sd, Λ) ≤ ε · ErrCrit(Sd) }
denote the minimal number of information evaluations from Λ needed to compute
an ε-approximation to Sd. The family S = {Sd}d∈Z++ is said to be tractable in the
class Λ if there exist nonnegative numbers C, perr, and pdim such that

(2.12) card(ε, Sd, Λ) ≤ C

(
1
ε

)perr

dpdim ∀ ε ∈ (0, 1), d ∈ Z
++.

Numbers perr = perr(S, Λ) and pdim = pdim(S, Λ) such that (2.12) holds are called
ε- and d-exponents of tractability ; these need not be uniquely defined. If pdim = 0
in (2.12), then S is strongly tractable in Λ, and we define

pstrong(Λ) = inf
{

perr ≥ 0 : ∃C ≥ 0 such that

card(ε, Sd, Λ) ≤ C

(
1
ε

)perr

∀ ε ∈ (0, 1), d ∈ Z
++

}
to be the exponent of strong tractability.

Of course, a problem’s tractability or strong tractability will depend on the error
criterion used. Hence in the sequel, we will write pabs

err , pabs
dim, and pabs

strong for the ε-
and d-exponents of tractability and the exponent of strong tractability under the
absolute error criterion; these exponents will be denoted by pnor

err , pnor
dim, and pnor

strong

when we are using the normalized error criterion.
We will establish tractability of the Dirichlet and Neumann problems by using

the results of [14]. Suppose that the following conditions hold:
(1) Sd is quasilinear. That is, there exists a function φ : H(Kd) → Qd, as well

as a nonnegative number Cd, such that

(2.13) ‖Sd(f, q) − Sd(f̃ , φ(q̃))‖Gd
≤ Cd

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
∀ [f, q] ∈ Hd,ρ1 × Qd, [f̃ , q̃] ∈ H(Kd) × H(Kd).

(2) There exists α ≥ 0 such that

(2.14) Nα := sup
d∈Z++

Cd‖Appd ‖Lin[H(Kd),L2(Id)]

dα ErrCrit(Sd)
< ∞.

Here, Cd is from (2.13) and Appd is the embedding, Appd f = f , of H(Kd)
into L2(Id).

Under these assumptions, [14, Theorem 3] tells us that the quasilinear problem
S = {Sd}d∈Z++ is tractable if α > 0 and strongly tractable if α = 0. More specific
estimates with the exponents of tractability or strong tractability will be presented
later.

The first assumption (2.13) establishes a Lipschitz condition for Sd. It also
implies that for any q ∈ Qd, the linear operator Sd(·, q) : H(Kd) → Gd is continuous.
To see this, note that if we take q̃ = q and f̃ = 0, then Sd(f̃ , φ(q̃)) = 0, so that
(2.5) and (2.13) imply that

‖Sd(f, q)‖Gd
≤ Cd‖f‖L2(Id) ≤ Cdσd(κ1)‖f‖H(Kd),

as claimed.
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To verify that the second assumption (2.14) holds, we will need to estimate the
norm of Appd. Note that (2.5) implies that the embedding Appd is well-defined,
with

(2.15) ‖Appd ‖Lin[H(Kd),L2(Id)] ≤ σd(κ1).

More precise results for ‖Appd ‖Lin[H(Kd),L2(Id)] are given in [12]:
(1) There exists cd ∈ [κ2, κ1] such that

‖Appd ‖Lin[H(Kd),L2(Id)] = σd(cd).

This result holds for any value of κ2 ≥ 0.
(2) When κ2 = 0, we have the explicit formula

‖Appd ‖Lin[H(Kd),L2(Id)] = max
u∈Pd

[
γd,u‖W‖|u|Lin[H(K)]

]1/2

,

where the operator W ∈ Lin[H(K)] is defined as

(2.16) Wf =
∫ 1

0

K(x, ·)f(x) dx ∀f ∈ H(K).

Since K is nonzero, the norm of W is positive.

3. The Dirichlet problem

We now apply the machinery of [14] to the problem of approximating solutions
to the variational form of the Dirichlet problem for the Helmholtz equation.

3.1. Some preliminary bounds. We already know that H(Kd) is embedded
in L2(Id). Using condition (2.1), it is easy to see that H(Kd) is also embedded
in L∞(Id).

Lemma 3.1.

‖g‖L∞(Id) ≤ σd(κ0)‖g‖H(Kd) ∀ g ∈ H(Kd).

Proof. For any g ∈ H(Kd) and x ∈ Id, we have

g(x) = 〈g, Kd(·,x)〉H(Kd),

and thus

|g(x)| ≤ ‖g‖H(Kd)‖Kd(·,x)‖H(Kd) = ‖g‖H(Kd)

√
Kd(x,x).

Moreover,

Kd(x,x) =
∑

u∈Pd

γd,u

∏
j∈u

K(xj , xj) ≤
∑

u∈Pd

γd,uκ
|u|
0 = σ2

d(κ0)

for almost every x ∈ Id. Thus

‖g‖L∞(Id) ≤ ‖g‖H(Kd) sup
x∈Id

√
Kd(x,x) ≤ σd(κ0)‖g‖H(Kd),

as claimed. �

Although it is known that the bilinear form Bd(·, ·; q) is strongly H1
0 (Id)-coercive

and bounded for any q ∈ Q∗
d, we include a formal proof of this fact, so that we can

establish values of the coercivity and bounding factors.
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Lemma 3.2. For any q ∈ Q∗
d, we have

Bd(v, v; q) ≥ 2
3‖v‖

2
H1

0 (Id) ∀ v ∈ H1
0 (Id),

and

|Bd(v, w; q)| ≤ max{1, ‖q‖L∞(Id)} ‖v‖H1
0 (Id)‖w‖H1

0 (Id) ∀ v, w ∈ H1
0 (Id).

Proof. Let v, w ∈ H1
0 (Id). From the proof of Poincaré’s inequality [1, Lemma 6.30],

we see that

(3.1) ‖ · ‖L2(Id) ≤
1√
2
| · |H1(Id) on H1

0 (Id).

Hence

(3.2)

Bd(v, v; q) =
∫

Id

[|∇v|2 + qv2] ≥
∫

Id

|∇v|2

= 1
3

∫
Id

|∇v|2 + 2
3

∫
Id

|∇v|2 ≥ 2
3

[ ∫
Id

|v|2 +
∫

Id

|∇v|2
]

= 2
3‖v‖

2
H1

0 (Id).

On the other hand,

(3.3) Bd(v, v; q) ≤ max{1, ‖q‖L∞(Id)}‖v‖2
H1

0 (Id).

Using (3.2) and (3.3), we see that Bd(·, ·; q) is an inner product on H1
0 (Id); its

associated norm B
1/2
d (·, ·; q) is equivalent to the usual norm ‖ ·‖H1

0 (Id). Hence using
the Cauchy-Schwarz inequality, along with (3.3), we find that

|Bd(v, w; q)| ≤
√

Bd(v, v; q)
√

Bd(w, w; q) ≤ max{1, ‖q‖L∞(Id)}‖v‖H1
0 (Id)‖w‖H1

0 (Id)

holds, as required. �

Since H(Kd) is embedded in L2(Id), the Lax-Milgram Lemma [3, pg. 29] and
Lemma 3.2 tell us that for any [f, q] ∈ H(Kd) × Q∗

d, the problem (2.9) has a
unique solution u = SDIR

d (f, q) ∈ H1
0 (Id). In other words, the solution operator

SDIR
d : H(Kd) × Q∗

d → H1
0 (Id) is well-defined.

We now show that SDIR
d satisfies a Lipschitz condition.

Lemma 3.3. Let

(3.4) CDIR
d = 3

2 max{1, ρ1(e − 1)σd(κ0)}.

For any [f, q] ∈ Hd,ρ1 × Q∗
d and [f̃ , q̃] ∈ H(Kd) × Q∗

d, we have

‖SDIR
d (f, q) − SDIR

d (f̃ , q̃)‖H1
0 (Id) ≤ CDIR

d

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
.

Proof. Let u = SDIR
d (f, q) and ũ = SDIR

d (f̃ , q̃). For any w ∈ H1
0 (Id), we have

〈f − f̃ , w〉L2(Id) = Bd(u, w; q) − Bd(ũ, w; q̃)

=
∫

Id

[∇(u − ũ) · ∇w + q̃(u − ũ)w] + 〈q − q̃, uw〉L2(Id)

= Bd(u − ũ, w; q̃) + 〈q − q̃, uw〉L2(Id).

Taking w = u − ũ, we have

Bd(w, w; q̃) = 〈f − f̃ , w〉L2(Id) − 〈q − q̃, uw〉L2(Id).
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From Lemma 3.2, we have

Bd(w, w; q̃) ≥ 2
3‖w‖2

H1
0 (Id),

and thus

(3.5) ‖w‖2
H1

0 (Id) ≤ 3
2

[∣∣∣〈f − f̃ , w〉L2(Id)

∣∣∣+ ∣∣〈q − q̃, uw〉L2(Id)

∣∣] .
Now

(3.6)
∣∣∣〈f − f̃ , w〉L2(Id)

∣∣∣ ≤ ‖f − f̃‖L2(Id)‖w‖H1
0 (Id).

Theorem 3.7 of [5] allows us to estimate the L∞-norm of the solution u in terms of
the same norm of the right-hand-side function f . More precisely, we have

‖u‖L∞(Id) ≤ (e − 1)‖f‖L∞(Id).

Applying Lemma 3.1, we obtain

‖u‖L∞(Id) ≤ (e − 1)σd(κ0)‖f‖H(Kd) ≤ ρ1(e − 1)σd(κ0),

and thus

(3.7)

∣∣〈q − q̃, uw〉L2(Id)

∣∣ ≤ ‖q − q̃‖L2(Id)‖u‖L∞(Id)‖w‖L2(Id)

≤ ρ1(e − 1)σd(κ0)‖w‖H1
0 (Id)‖q − q̃‖L2(Id).

Substituting (3.6) and (3.7) into (3.5) and remembering that w = u− ũ, we imme-
diately get

‖u − ũ‖H1
0 (Id) ≤ 3

2

[
‖f − f̃‖L2(Id) + ρ1(e − 1)σd(κ0)‖q − q̃‖L2(Id)

]
≤ 3

2 max{1, ρ1(e − 1)σd(κ0)}
[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
,

as claimed. �

Since H(Kd) is embedded in L∞(Id), we can define a mapping φ : H(Kd) → Q∗
d

by
φ(v)(x) = v+(x) := max{v(x), 0} ∀x ∈ Id, v ∈ H(Kd).

We are now ready to show that SDIR
d for our elliptic Dirichlet problem is quasilinear,

i.e., (2.13) holds.

Lemma 3.4. Let CDIR
d be defined as in Lemma 3.3. Then

‖SDIR
d (f, q) − SDIR

d (f̃ , φ(q̃))‖H1
0 (Id) ≤ CDIR

d

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
∀ [f, q] ∈ Hd,ρ1 × Q∗

d, [f̃ , q̃] ∈ H(Kd) × H(Kd).

Hence, SDIR
d is quasilinear.

Proof. We first claim that

‖q − φ(q̃)‖L2(Id) ≤ ‖q − q̃‖L2(Id).

Indeed, let

A = {x ∈ Id : q̃(x) ≥ 0 } and B = {x ∈ Id : q̃(x) < 0 },
so that

φ(q̃)(x) =

{
q̃(x) if x ∈ A,

0 if x ∈ B.
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Now for any x ∈ B, we have q̃(x) < 0 and q(x) ≥ 0, and thus 0 ≤ q(x) < q(x)−q̃(x).
Hence ‖q‖2

L2(B) ≤ ‖q − q̃‖2
L2(B), and so

‖q − φ(q̃)‖2
L2(Id) = ‖q − q̃‖2

L2(A) + ‖q‖2
L2(B) ≤ ‖q − q̃‖2

L2(A) + ‖q − q̃‖2
L2(B)

= ‖q − q̃‖2
L2(Id),

as claimed. Using this inequality along with Lemma 3.3, we have

‖SDIR
d (f, q) − SDIR

d (f̃ , φ(q̃))‖H1
0 (Id) ≤ CDIR

d

[
‖f − f̃‖L2(Id) + ‖q − φ(q̃)‖L2(Id)

]
≤ CDIR

d

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
,

as required. This proves that SDIR
d is quasilinear, as claimed. �

3.2. The absolute error criterion. We are now ready to begin establishing
tractability results for the elliptic Dirichlet problem. Our first result establishes
tractability under the absolute error criterion. Since ErrCrit(Sd) = 1, finding α for
which (2.14) is satisfied means that we need to determine α such that

CDIR
d ‖Appd ‖Lin[H(Kd),L2(Id)] = O(dα).

Theorem 3.5. The elliptic Dirichlet problem, defined for the spaces H(Kd) with
finite-order weights of order ω, is tractable for the absolute error. More precisely,
for Nω defined by (2.14), we have

(3.8) Nω ≤ 3
2 max

{
1, ρ1(e − 1)

√
2 max{1, κω

0 }γmax

}√
2 max{1, κω

1 }γmax ,

and the following bounds hold:

(1) Suppose that κ2 > 0.
(a) For the class Λall, we have

cardabs(ε, SDIR
d , Λall) ≤ 2(ρ1 + ρ2)2N2

ω

(
κ1

κ2

)ω (1
ε

)2

d2ω.

Hence

pabs
err (SDIR, Λall) ≤ 2 and pabs

dim(SDIR, Λall) ≤ 2ω.

(b) For the class Λstd, we have

cardabs(ε, SDIR
d , Λstd) ≤

⌈
8(ρ1 + ρ2)4N4

ω

(
κ1

κ2

)2ω (1
ε

)4

d4ω

⌉
+ 1,

and so

pabs
err (SDIR, Λstd) ≤ 4 and pabs

dim(SDIR, Λstd) ≤ 4ω.

(2) Suppose that κ2 = 0, and let

(3.9) Γ =
max{1, κ1}

min{1, ‖W‖Lin[H(K)]}
.

Then we have the following results:
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(a) For the class Λall, we have

cardabs(ε, SDIR
d , Λall) ≤ 4(ρ1 + ρ2)2N2

ωΓω

(
1
ε

)2

d3ω,

and so

pabs
err (SDIR, Λall) ≤ 2 and pabs

dim(SDIR, Λall) ≤ 3ω.

(b) For the class Λstd, we have

cardabs(ε, SDIR
d , Λstd) ≤

⌈
32(ρ1 + ρ2)4N4

ωΓ2ω

(
1
ε

)4

d6ω

⌉
+ 1,

and so

pabs
err (SDIR, Λstd) ≤ 4 and pabs

dim(SDIR, Λstd) ≤ 6ω.

Proof. Using (2.7), (2.15), and (3.4), we find that

CDIR
d ‖Appd ‖Lin[H(Kd),L2(Id)]

≤ 3
2 max

{
1, ρ1(e − 1)

√
2 max{1, κω

0 }γmax

}√
2 max{1, κω

1 }γmax · dω.

Hence setting α = ω in (2.14), we obtain (3.8). The remaining results of this
theorem now follow from [14, Theorem 7], with α = ω. �

Example 3.6. Suppose that K is the min-kernel Kmin. Since κ0 = 1 and κ1 = 1
2 ,

we have
Nω ≤ 3

2 max
{

1, ρ1(e − 1)
√

2γmax

}√
2γmax

from (3.8). Furthermore, since κ2 = 1
3 	= 0, we see that case 1 holds in Theorem 3.5.

Hence we find that the elliptic Dirichlet problem is now tractable under the absolute
error criterion, with

pabs
err (SDIR, Λall) ≤ 2 and pabs

dim(SDIR, Λall) ≤ 2ω

for continuous linear information, and

pabs
err (SDIR, Λstd) ≤ 4 and pabs

dim(SDIR, Λstd) ≤ 4ω

for standard information. �

Theorem 3.5 tells us that the elliptic Dirichlet problem for the absolute error
criterion is tractable for any finite-order weighted RKHS, no matter what set of
weights is used. The reason we are unable to establish strong tractability in this
case is that the Lipschitz constant CDIR

d and ‖Appd ‖Lin[H(Kd),L2(Id)] are expressed
in terms of σd(κ0) and σ(κ1), whose product is bounded by a polynomial of degree ω
in d. Hence we can only guarantee that Nω is finite. It is proved in [14, Theorem 7]
that strong tractability holds if κ2 > 0 and if N0 is finite. We can guarantee that
N0 is finite if we follow the approach taken in [14, Theorem 8].

Theorem 3.7. Suppose that κ2 > 0 and

(3.10) ρ3 := sup
d∈Z++

∑
u∈Pd

γd,u < ∞.
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The elliptic Dirichlet problem defined for the spaces H(Kd) with finite-order weights
of order ω satisfying (3.10) is strongly tractable for the absolute error. More pre-
cisely, for N0 defined by (2.14), we have

(3.11) N0 ≤ 3
2ρ

1/2
3 max{1, κ

ω/2
1 }max

{
1, ρ1ρ

1/2
3 (e − 1) max{1, κ

ω/2
0 }
}

,

and the following bounds hold:

(1) For the class Λall, we have

cardabs(ε, SDIR
d , Λall) ≤ 2(ρ1 + ρ2)2N2

0

(
κ1

κ2

)ω (1
ε

)2

.

Hence

pabs
strong(S

DIR, Λall) ≤ 2.

(2) For the class Λstd, we have

cardabs(ε, SDIR
d , Λstd) ≤

⌈
8(ρ1 + ρ2)4N4

0

(
κ1

κ2

)2ω (1
ε

)4
⌉

+ 1.

Hence

pabs
strong(S

DIR, Λstd) ≤ 4.

Proof. Using (3.10), it follows that

(3.12) σd(θ) ≤ ρ
1/2
3 max{1, θω/2} ∀ θ ∈ R

+.

From (2.14), (2.15), and (3.12), we have

N0 ≤ CDIRρ
1/2
3 max{1, κ

ω/2
1 },

where

CDIR = sup
d∈Z++

CDIR
d = 3

2 max
{

1, ρ1(e − 1) sup
d∈Z++

σd(κ0)
}

≤ 3
2 max

{
1, ρ1(e − 1)ρ1/2

3 max{1, κ
ω/2
0 }
}

by (3.4) and (3.12). Combining these results, we obtain (3.11). The desired result
now follows from [14, Theorem 8]. �

Example 3.8. Suppose once again that K = Kmin. Assume that (3.10) holds.
Then the conditions of Theorem 3.7 are satisfied with

N0 ≤ 3
2ρ

1/2
3 max{1, ρ1ρ

1/2
3 (e − 1)} and

(
κ1

κ2

)ω

=
(

3
2

)ω

.

Hence, the elliptic Dirichlet problem is now strongly tractable under the absolute
error criterion, with

pabs
strong(S

DIR, Λall) ≤ 2 and pabs
strong(S

DIR, Λall) ≤ 4. �
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3.3. The normalized error criterion. We now consider the elliptic Dirichlet
problem for finite-order weights under the normalized error criterion. For this error
criterion, we need a lower bound estimate on the initial error.

Lemma 3.9. Define the set

H1
0,∗(I) =

{
θ ∈ H1

0 (I) :
∫ 1

0

θ(x) dx = 1
}

.

Then for any d ∈ Z
++, we have

e(0, SDIR
d ) ≥ ρ1

√
2
3d

sup
θ∈H1

0,∗(I)

σd

(
τ (θ)
)

‖θ‖d−1
L2(I)‖θ′‖L2(I)

,

where

(3.13) τ (θ) =
∫ 1

0

∫ 1

0

θ(x)θ(y)K(x, y) dx dy ∀ θ ∈ L∞(I).

Proof. Since our problem is quasilinear, we may use (2.11) to see that

(3.14)
e(0, SDIR

d ) = ρ1 sup
q∈Q∗

d∩Hd,ρ2

‖SDIR
d (·, q)‖Lin[H(Kd),H1

0 (Id)]

≥ ρ1‖SDIR
d (·, 0)‖Lin[H(Kd),H1

0 (Id)].

Now let f ∈ H(Kd) and w ∈ H1
0 (Id). Let u = SDIR

d (f, 0). Then

‖u‖H1
0 (Id)‖w‖H1

0 (Id) ≥ |u|H1
0 (Id)|w|H1

0 (Id) ≥
∣∣∣∣
∫

Id

∇u · ∇w

∣∣∣∣ =
∣∣∣∣
∫

Id

fw

∣∣∣∣.
It is easy to see that

Intd,w(g) =
∫

Id

g(x)w(x) dx ∀ g ∈ H(Kd)

is a continuous linear functional. From [12, Lemma 2], we know that

(3.15) ‖ Intd,w ‖2
[H(Kd)]∗ =

∫
Id

∫
Id

w(x)w(y)Kd(x,y) dx dy.

The previous inequality may be rewritten as

‖SDIR
d (f, 0)‖H1

0(Id)

‖f‖H(Kd)
≥ 1

‖w‖H1
0 (Id)

| Intd,w(f)|
‖f‖H(Kd)

.

Since f ∈ H(Kd) and w ∈ H1
0 (Id) are arbitrary, this implies that

(3.16) ‖SDIR
d (·, 0)‖Lin[H(Kd),H1

0 (Id)] ≥ sup
w∈H1

0 (Id)

‖ Intd,w ‖[H(Kd)]∗

‖w‖H1
0 (Id)

.

Now let θ ∈ H1
0,∗(I), and define

(3.17) wd,θ(x) = θ(x1) . . . θ(xd) ∀x = (x1, . . . , xd) ∈ Īd.

Since wd,θ vanishes on ∂Id, we have wd,θ ∈ H1
0 (Id). Let us calculate an upper

bound on ‖wd,θ‖H1
0 (Id). Using (3.2), we have

(3.18) ‖wd,θ‖2
H1

0 (Id) ≤ 3
2

∫
Id

|∇wd,θ|2 = 3
2

d∑
j=1

‖∂jwd,θ‖2
L2(Id).
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Now for any j ∈ {1, . . . , d}, we have

∂jwd,θ(x) =
[ ∏
1≤i≤d

i �=j

θ(xi)
]
θ′(xj), ∀x = (x1, . . . , xd) ∈ Īd,

and so
‖∂jwd,θ‖2

L2(Id) = ‖θ‖2d−2
L2(I) ‖θ

′‖2
L2(I).

Substituting this equality into (3.18), we find

(3.19) ‖wd,θ‖H1(Id) ≤
√

3d

2
‖θ‖d−1

L2(I) ‖θ
′‖L2(I).

Using (3.15), we find that

‖ Intd,wd,θ
‖[H(Kd)]∗ =

(∫
Id

∫
Id

wd,θ(x)wd,θ(y)Kd(x,y) dx dy
)1/2

=
( ∑

u∈Pd

γd,u

∫
Id

∫
Id

d∏
j=1

θ(xj)θ(yj)
∏
j∈u

K(xj , yj) dx dy
)1/2

=

( ∑
u∈Pd

γd,u

(∫ 1

0

∫ 1

0

θ(x)θ(y)K(x, y) dx dy

)|u|
)1/2

=
( ∑

u∈Pd

γd,uτ (θ)|u|
)1/2

= σ
(
τ (θ)
)
.

Using this result, (3.16), and (3.19), we get our desired lower bound on the initial
error. �

To use Lemma 3.9, we need to choose a function θ ∈ H1
0,∗(I) for each d ∈ Z

++

and to estimate σd

(
τ (θ)
)
/
(
‖θ‖d−1

L2(I)‖θ′‖L2(I)

)
from below. One possibility is as

follows.
For δ ∈ (0, 1

2 ], let

(3.20) θδ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

δ(1 − δ)
if 0 ≤ x ≤ δ,

1
1 − δ

if δ ≤ x ≤ 1 − δ,

1 − x

δ(1 − δ)
if 1 − δ ≤ x ≤ 1.

Clearly, θδ ∈ H1
0,∗(I). A straightforward calculation yields∫ 1

0

θ2
δ(x) dx =

3 − 4δ

3(1 − δ)2

and ∫ 1

0

[θ′δ(x)]2 dx =
2

δ(1 − δ)2
.
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Hence

(3.21) ‖θδ‖d−1
L2(I)‖θ

′
δ‖L2(I) =

√(
3 − 4δ

3(1 − δ)2

)d−1 2
δ(1 − δ)2

.

We now choose δ = δd such that (3.21) is of order
√

d. It is easy to see that this
can be achieved by taking δd = Θ(d−1). Since we want to control the constants,
we need to see the details, which are as follows.

For d = 1 we choose δ = δ1 = 1
3 and obtain

‖θδ‖d−1
L2(I)‖θ

′
δ‖L2(I) = 3

2

√
6 = 3

2

√
6d.

For d ≥ 2, let

(3.22) αd =
(

4
3

)1/(d−1)

,

so that
α2 = 4

3 > α3 > · · · > 1 with lim
d→∞

αd = 1.

Let

(3.23) δd = 1 − 1
3αd

(2 +
√

4 − 3αd),

which is a solution to

(3.24)
3 − 4δd

3(1 − δd)2
= αd.

Since αd ∈ (1, 4
3 ], we see that δd ∈ (0, 1

2 ]. Clearly, for large d we have

αd ≈ 1 +
ln 4/3
d − 1

and δd ≈ 3/2 ln 4/3
d − 1

.

Now
2

δd(1 − δd)2
= ζ(αd) :=

54α3
d

(2 +
√

4 − 3αd)2(3αd − 2 −
√

4 − 3αd)
.

Moreover, we have

2
d · δd(1 − δd)2

= η(αd) :=
ζ(αd)

1 +
ln 4

3

ln αd

.

Plotting the function η, we see that η is increasing over the interval [1, 4
3 ], with

η( 4
3 ) = 8. Hence

(3.25)
2

δd(1 − δd)2
≤ 8d.

Using (3.21)–(3.25), we find that for d ≥ 2 we have

‖θδ‖d−1
L2(I)‖θ

′
δ‖L2(I) ≤ 4

3

√
6d.

Combining the two cases for d = 1 and d ≥ 2 we write

‖θδ‖d−1
L2(I)‖θ

′
δ‖L2(I) ≤

(
3
2δd,1 + 4

3 (1 − δd,1)
)√

6d,

where δd,1 denotes the Kronecker delta.
Applying Lemma 3.9 with θ = θδd

, we have proved the following lemma.
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Lemma 3.10. Let
τ0,d = τ (θδd

) ,

where
• τ (·) is given by (3.13), and
• θδd

is given by (3.20), with

δ =

{
1
3 for d = 1,

δd as defined in (3.22)–(3.23) for d ≥ 2.

Then for any d ∈ Z
++, we have

e(0, SDIR
d ) ≥ 2ρ1σd(τ0,d)

9δd,1 + 8(1 − δd,1)
· 1
d
. �

We now find that the elliptic Dirichlet problem is always tractable for finite-order
weights, modulo one technical assumption. Recall the definitions (3.13) and (3.20)
of the functions τ and θδ, respectively. We will require that

(3.26) ∃ τ0 > 0 such that τ (θδ) ≥ τ0 ∀ δ ∈ (0, 1
2 ].

Note the following:
(1) Condition (3.26) can only hold for τ0 ≤ κ2. To see that this is true, note

that limδ→0 θδ = 1 in (0, 1). Using the Lebesgue dominated convergence
theorem, we find that

(3.27) lim
δ→0

τ (θδ) = τ (1) = κ2.

In particular, this means that (3.26) cannot hold if κ2 = 0.
(2) We claim that condition (3.26) automatically holds whenever κ2 > 0 and

the kernel K is strictly positive definite. Indeed, under these conditions,
we have τ (θδ) > 0 for all δ ∈ (0, 1

2 ] and τ (1) = κ2 > 0. Using (3.27), we see
that δ �→ τ (θδ) is a continuous function from [0, 1

2 ] → R
++. Hence (3.26)

holds, as claimed.
We are now ready to prove the following tractability result.

Theorem 3.11. Suppose that (3.26) holds, so that κ2 > 0. Then the elliptic
Dirichlet problem, defined for the spaces H(Kd) with finite-order weights of order ω,
is tractable for the normalized error. More precisely, for N1+ω/2 defined by (2.14),
we have

(3.28) N1+ω/2 ≤
27 max

{
1, ρ1(e − 1)

√
2γmax max{1, κ

ω/2
0 }
}

ρ1

(
κ1

τ0

)ω/2

,

and the following bounds hold:
(1) For the class Λall, we have

cardnor(ε, SDIR
d , Λall) ≤ 2(ρ1 + ρ2)2N2

1+ω/2

(
κ1

κ2

)ω (1
ε

)2

d2+ω.

Hence

pnor
err (SDIR, Λall) ≤ 2 and pnor

dim(SDIR, Λall) ≤ 2 + ω.
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(2) For the class Λstd, we have

cardnor(ε, SDIR
d , Λstd) ≤

⌈
8(ρ1 + ρ2)4N4

1+ω/2

(
κ1

κ2

)2ω (1
ε

)4

d4+2ω

⌉
+ 1,

and so

pnor
err (SDIR, Λstd) ≤ 4 and pnor

dim(SDIR, Λstd) ≤ 4 + 2ω.

Proof. We first prove (3.28). Using Lemmas 3.3 and 3.10, along with condi-
tion (3.26), we have

CDIR
d = 3

2 max{1, ρ1(e − 1)σd(κ0)},

e(0, SDIR
d ) ≥ 2ρ1σd(τ0)

(9δd,1 + 8(1 − δd,1)) d
.

Hence we find that

CDIR
d ‖Appd ‖Lin[H(Kd),L2(Id)]

d1+ω/2e(0, SDIR
d )

≤ 3 max{1, ρ1(e − 1)σd(κ0)}
ρ1 dω/2

σd(κ1)
σd(τ0)

(9δd,1 + 8(1 − δd,1)) .

From (2.7) we have

σd(κ0) ≤
√

2γmax max{1, κ
ω/2
0 } dω/2,

and since τ0 ≤ κ1, we have

(3.29)
σd(κ1)
σd(τ0)

=

(∑
u∈Pd, |u|≤ω γd,u κ

|u|
1∑

u∈Pd, |u|≤ω γd,u τ
|u|
0

)1/2

≤
(

κ1

τ0

)ω/2

.

Hence

N1+ω/2 = sup
d∈Z++

CDIR
d ‖Appd ‖Lin[H(Kd),L2(Id)]

d1+ω/2e(0, SDIR
d )

≤
27 max

{
1, ρ1(e − 1)

√
2γmax max{1, κ

ω/2
0 }
}

ρ1

(
κ1

τ0

)ω/2

,

establishing (3.28). The theorem now follows immediately from [14, Theorem 7],
with α = 1 + ω/2. �

Example 3.12. Let us once again consider the min-kernel K = Kmin. A straight-
forward (but tedious) calculation reveals that

τ (θδ) = 1
3 (1 + δ − δ2),

and thus (3.26) holds with τ0 = 1
3 . Since κ2 > 0, we may use Theorem 3.11 to see

that for Λall, we have

pnor
err (SDIR, Λall) ≤ 2 and pnor

dim(SDIR, Λall) ≤ 2 + ω,

whereas for Λstd, we have

pnor
err (SDIR, Λstd) ≤ 4 and pnor

dim(SDIR, Λall) ≤ 4 + 2ω. �
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Unfortunately, we are not able to provide a strong tractability result for the
elliptic Dirichlet problem under the normalized error criterion. The reason for this
is that the best lower bound we know for the initial error goes linearly with d−1

to zero. Hence, we are unable to show that N0 is finite, which is needed for strong
tractability.

4. The Neumann problem

We now apply the machinery of [14] to the problem of approximating solutions
to the variational form of the Neumann problem for the Helmholtz equation. Recall
that for the Neumann problem to be well-defined, we must assume that Q∗∗

d ∩Hd,ρ2

is nonempty. This holds, in particular, if γd,∅ > 0 and q0γ
−1/2
d,∅ ≤ ρ2, as explained

before.

4.1. Some preliminary bounds. It is known that for any q ∈ Q∗∗
d , the bilinear

form Bd(·, ·; q) is strongly H1(Id)-coercive and bounded. However, we provide a
proof of this fact, so that we can establish values for the coercivity and bounding
constants, just as we did in Section 3.1.

Lemma 4.1. For any q ∈ Q∗∗
d , we have

Bd(v, v; q) ≥ min{1, q0}‖v‖2
H1(Id) ∀ v ∈ H1(Id),

and

|Bd(v, w; q)| ≤ max{1, ‖q‖L∞(Id)}‖v‖H1(Id)‖w‖H1(Id) ∀ v, w ∈ H1(Id).

Proof. For q ∈ Q∗∗
d , we have q ≥ q0 and therefore

Bd(v, v; q) =
∫

Id

[|∇v|2 + qv2] ≥ min{1, q0}
∫

Id

[|∇v|2 + v2] = min{1, q0}‖v‖2
H1(Id).

The rest is as in Lemma 3.2. �

Note that q ∈ Q∗∗ implies that ‖q‖L∞(Id) ≥ q0. Therefore min{1, q0} ≤
max{1, ‖q‖L∞(Id)} and the bounds in Lemma 4.1 make sense.

As in Section 3.1, the Lax-Milgram Lemma [3, pg. 29] and Lemma 4.1 tell us
that for any [f, q] ∈ H(Kd) × Q∗∗

d , the problem (2.10) has a unique solution u =
SNEU

d (f, q) ∈ H1(Id). Hence the solution operator SNEU
d : H(Kd) × Q∗∗

d → H1(Id)
is well-defined.

We now show that SNEU
d satisfies a Lipschitz condition. This requires two pre-

liminary steps. First, we establish a maximum principle for our problem.

Lemma 4.2. Let f ∈ H(Kd) and q ∈ Q∗∗
d . Then

SNEU
d (f, q) ≤ M(f)

q0
a.e. in Id,

where
M(f) = ess sup

x∈Id

f(x) ≤ σd(κ0)‖f‖H(Kd).

Proof. Since the bound on M = M(f) follows immediately from Lemma 3.1, we
need only prove the inequality for u = SNEU

d (f, q). Let

A =
{

x ∈ Id : u(x) >
M

q0

}
.



TRACTABILITY OF SECOND-ORDER PROBLEMS 767

We claim that the Lebesgue measure of A is zero. Indeed, suppose otherwise, i.e.,
that A has positive measure. Define

u∗(x) = max
{

u(x) − M

q0
, 0
}

∀x ∈ Id.

By [15, Cor. 2.1.8], we have u∗ ∈ H1(Id), with

∇u∗ =

{
∇u in A,

0 in Id \ A,

noting that u∗ > 0 almost everywhere in A. Now in A, we have ∇u∗ = ∇u, and so
|∇u∗|2 = ∇u∗ ·∇u∗ = ∇u ·∇u∗. In the complement of A, we have ∇u∗ = 0, so that
|∇u∗|2 = 0 = ∇u · ∇u∗. Hence, |∇u∗|2 = ∇u · ∇u∗ everywhere in Id. Moreover,

u(x) >
M

q0
≥ f(x)

q(x)
x ∈ A,

and so
f − qu < 0 in A.

Note that the function u∗ is an admissible test function for the Neumann problem,
i.e., we can take w = u∗ in (2.10). We thus have

0 ≤
∫

A

|∇u∗|2 =
∫

Id

|∇u∗|2 =
∫

Id

∇u · ∇u∗ = Bd(u, u∗; q) −
∫

Id

quu∗

= 〈f, u∗〉L2(Id) −
∫

Id

quu∗ =
∫

Id

(f − qu)u∗ =
∫

A

(f − qu)u∗ < 0,

which is a contradiction. Thus, A has measure zero, which implies that u ≤ M/q0

a.e. in Id, establishing the lemma. �

Using this maximum principle, we can obtain an L∞-bound for the Neumann
problem:

Lemma 4.3. Let f ∈ H(Kd) and q ∈ Q∗∗
d . Then

‖SNEU
d (f, q)‖L∞(Id) ≤

1
q0

‖f‖L∞(Id) ≤
σd(κ0)

q0
‖f‖H(Kd).

Proof. Since the second equality follows immediately from Lemma 3.1, we need
only prove the first inequality. Let u = SNEU

d (f, q). For a.e. x ∈ Id, we may use
Lemma 4.2 (once with f and once with −f) to find that

u(x) ≤ 1
q0

ess sup
y∈Id

f(y)

and
−u(x) ≤ 1

q0
ess sup
y∈Id

−f(y).

Hence
|u(x)| = max{u(x),−u(x)} ≤ 1

q0
ess sup
y∈Id

max{f(y),−f(y)}

=
1
q0

ess sup
y∈Id

|f(y)| =
1
q0

‖f‖L∞(Id),

as required. �
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Following the same ideas as in Lemma 3.3, we now show that SNEU
d satisfies a

Lipschitz condition.

Lemma 4.4. Let

CNEU
d =

max
{

1,
ρ1σd(κ0)

q0

}
min{1, q0}

.

For any [f, q] ∈ Hd,ρ1 × Q∗∗
d and [f̃ , q̃] ∈ H(Kd) × Q∗∗

d , we have

‖SNEU
d (f, q) − SNEU

d (f̃ , q̃)‖H1(Id) ≤ CNEU
d

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
.

Proof. Let w = u − ũ, where u = SNEU
d (f, q) and ũ = SNEU

d (f̃ , q̃). As in the proof
of Lemma 3.3, we have

Bd(w, w; q̃) = 〈f − f̃ , w〉L2(Id) − 〈q − q̃, uw〉L2(Id).

From Lemma 4.1, we have

Bd(w, w; q̃) ≥ min{1, q0}‖w‖2
H1(Id),

and thus

(4.1) min{1, q0}‖w‖2
H1(Id) ≤

∣∣∣〈f − f̃ , w〉L2(Id)

∣∣∣+ ∣∣〈q − q̃, uw〉L2(Id)

∣∣ .
Now

(4.2)
∣∣∣〈f − f̃ , w〉L2(Id)

∣∣∣ ≤ ‖f − f̃‖L2(Id)‖w‖H1(Id).

Using Lemma 4.3, we have

‖u‖L∞(Id) ≤
ρ1σd(κ0)

q0
,

and thus

(4.3)

∣∣〈q − q̃, uw〉L2(Id)

∣∣ ≤ ‖q − q̃‖L2(Id)‖u‖L∞(Id)‖w‖L2(Id)

≤ ρ1σd(κ0)
q0

‖w‖H1(Id)‖q − q̃‖L2(Id).

Substituting (4.2) and (4.3) into (4.1) and remembering that w = u − ũ, we
immediately get

‖u − ũ‖H1(Id) ≤
1

min{1, q0}

[
‖f − f̃‖L2(Id) +

ρ1σd(κ0)
q0

‖q − q̃‖L2(Id)

]

≤
max

{
1,

ρ1σd(κ0)
q0

}
min{1, q0}

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
,

as claimed. �

Let us define φ : H(Kd) → Q∗∗
d as

φ(q)(x) = max{q(x), q0} =
(
q(x) − q0

)
+

+ q0 ∀x ∈ Id, q ∈ H(Kd).

As in the previous section, we conclude that φ(q) belongs to Q∗∗
d . We are now ready

to show that (2.13) holds for our elliptic Neumann problem.
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Lemma 4.5. Let CNEU
d be as in Lemma 4.4. Then

‖SNEU
d (f, q) − SNEU

d (f̃ , φ(q̃))‖H1(Id) ≤ CNEU
d

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
∀ [f, q] ∈ Hd,ρ1 × Q∗∗

d , [f̃ , q̃] ∈ H(Kd) × H(Kd).

Hence, SNEU
d is quasilinear.

Proof. We use a slight variation of the proof of Lemma 3.4. We claim that

‖q − φ(̃q)‖L2(Id) ≤ ‖q − q̃‖L2(Id).

Indeed, let

A = {x ∈ Id : q̃(x) ≥ q0 } and B = {x ∈ Id : q̃(x) < q0 },
so that

φ(̃q)(x) =

{
q̃(x) if x ∈ A,

q0 if x ∈ B.

Now for any x ∈ B, we have q̃(x) < q0 and q(x) ≥ q0, and thus 0 ≤ q(x) − q0 <
q(x) − q̃(x). Hence ‖q − q0‖2

L2(B) ≤ ‖q − q̃‖2
L2(B), and so

‖q − φ(̃q)‖2
L2(Id) = ‖q − q̃‖2

L2(A) + ‖q − q0‖2
L2(B) ≤ ‖q − q̃‖2

L2(A) + ‖q − q̃‖2
L2(B)

= ‖q − q̃‖2
L2(Id),

as claimed. Using this inequality along with Lemma 4.4, we have

‖SNEU
d (f, q) − SNEU

d (f̃ , φ(̃q))‖H1(Id) ≤ CNEU
d

[
‖f − f̃‖L2(Id) + ‖q − φ(̃q)‖L2(Id)

]
≤ CNEU

d

[
‖f − f̃‖L2(Id) + ‖q − q̃‖L2(Id)

]
,

as claimed. �

4.2. The absolute error criterion. We are now ready to begin establishing
tractability results for the elliptic Neumann problem. Our first result establishes
tractability under the absolute error criterion.

Theorem 4.6. The elliptic Neumann problem, defined for the spaces H(Kd) with
finite-order weights of order ω, is tractable for the absolute error. More precisely,
for Nω defined by (2.14), we have

(4.4) Nω ≤
max

{
1,

ρ1

q0

√
2 max{1, κω

0 }γmax

}√
2 max{1, κω

1 }γmax

min{1, q0}
,

and the following bounds hold:
(1) Suppose that κ2 > 0.

(a) For the class Λall, we have

cardabs(ε, SNEU
d , Λall) ≤ 2(ρ1 + ρ2)2N2

ω

(
κ1

κ2

)ω (1
ε

)2

d2ω.

Hence

pabs
err (SNEU, Λall) ≤ 2 and pabs

dim(SNEU, Λall) ≤ 2ω.
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(b) For the class Λstd, we have

cardabs(ε, SNEU
d , Λstd) ≤

⌈
8(ρ1 + ρ2)4N4

ω

(
κ1

κ2

)2ω (1
ε

)4

d4ω

⌉
+ 1,

and so

pabs
err (SNEU, Λstd) ≤ 4 and pabs

dim(SNEU, Λstd) ≤ 4ω.

(2) Suppose that κ2 = 0. Let Γ be as in (3.9).
(a) For the class Λall, we have

cardabs(ε, SNEU
d , Λall) ≤ 4(ρ1 + ρ2)2N2

ωΓω

(
1
ε

)2

d3ω,

and so

pabs
err (SNEU, Λall) ≤ 2 and pabs

dim(SNEU, Λall) ≤ 3ω.

(b) For the class Λstd, we have

cardabs(ε, SNEU
d , Λstd) ≤

⌈
32(ρ1 + ρ2)4N4

ωΓ2ω

(
1
ε

)4

d6ω

⌉
+ 1,

and so

pabs
err (SNEU, Λstd) ≤ 4 and pabs

dim(SNEU, Λstd) ≤ 6ω.

Proof. Using (2.7), (2.15), and Lemma 4.4, we find that

CNEU
d ‖Appd ‖Lin[H(Kd),L2(Id)]

≤
max

{
1,

ρ1

q0

√
2 max{1, κω

0 }γmax

}
min{1, q0}

√
2 max{1, κω

1 }γmax dω.

Hence setting α = ω in (2.14), we obtain (4.4). The remaining results of this
theorem now follow from [14, Theorem 7], with α = ω. �

Example 4.7. Suppose that K is the min-kernel Kmin. Since κ0 = 1 and κ1 = 1
2 ,

we can use (4.4) to see that

Nω ≤
max

{
1,

ρ1

√
2γmax

q0

}√
2γmax

min{1, q0}
.

Furthermore, since κ2 > 0, we see that case 1 holds in Theorem 4.6. Hence we find
that the elliptic Neumann problem is tractable under the absolute error criterion,
with

pabs
err (SNEU, Λall) ≤ 2 and pabs

dim(SNEU, Λall) ≤ 2ω

for continuous linear information, and

pabs
err (SNEU, Λstd) ≤ 4 and pabs

dim(SNEU, Λstd) ≤ 4ω

for standard information. �
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Hence, the elliptic Neumann problem for the absolute error criterion is tractable
for any set of finite-order weights and arbitrary spaces H(Kd). The reason we are
unable to establish strong tractability in this case is the same as for the Dirichlet
problem, since the Lipschitz constant CNEU

d and ‖Appd ‖Lin[H(Kd),L2(Id)] are ex-
pressed in terms of σd(κ0) and σd(κ1), whose product is bounded by a polynomial
of degree ω in d. Hence we can only guarantee that Nω is finite. If we want to
establish strong tractability, we need to prove that N0 is finite. Just as in the
Dirichlet problem, we can do this if we assume that κ2 > 0 and the sum of the
weights is uniformly bounded.

Theorem 4.8. Suppose that κ2 > 0 and that condition (3.10) holds. Then the
elliptic Neumann problem, defined for the spaces H(Kd) with finite-order weights
of order ω satisfying (3.10), is strongly tractable under the absolute error criterion.
More precisely, for N0 defined by (2.14), we have

(4.5) N0 ≤
ρ
1/2
3 max

{
1,

ρ1ρ
1/2
3

q0
max{1, κ

1/2
0 }
}

max{1, κ
ω/2
1 }

min{1, q0}
,

and the following bounds hold:

(1) For the class Λall, we have

cardabs(ε, SNEU
d , Λall) ≤ 2(ρ1 + ρ2)2N2

0

(
κ1

κ2

)ω (1
ε

)2

.

Hence
pabs
strong(S

NEU, Λall) ≤ 2.

(2) For the class Λstd, we have

cardabs(ε, SNEU
d , Λstd) ≤

⌈
8(ρ1 + ρ2)4N4

0

(
κ1

κ2

)2ω (1
ε

)4
⌉

+ 1.

Hence
pabs
strong(S

NEU, Λstd) ≤ 4.

Proof. As in the proof of Theorem 3.7, we have

N0 ≤ CNEUρ
1/2
3 max{1, κ

ω/2
1 },

where
CNEU = sup

d∈Z++
CNEU

d .

Using Lemma 4.4 and (3.12), we have

CNEU
d =

max
{

1,
ρ1σd(κ0)

q0

}
min{1, q0}

≤
max

{
1,

ρ1ρ
1/2
3

q0
max{1, κ

ω/2
0 }
}

min{1, q0}
.

Combining these results, we obtain obtain (4.5). The desired result now follows
from [14, Theorem 8]. �
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Example 4.9. Suppose once again that K = Kmin. We find that the conditions
of Theorem 4.8 hold, with

N0 ≤
ρ
1/2
3 max

{
1,

ρ1ρ
1/2
3

q0

}

min{1, q0}
.

Hence the elliptic Dirichlet problem is strongly tractable under the absolute error
criterion, with

pabs
strong(S

NEU, Λall) ≤ 2 and pabs
strong(S

NEU, Λall) ≤ 4. �

4.3. The normalized error criterion. We now consider the elliptic Neumann
problem for finite-order weights under the normalized error criterion. For this
case, we will need to make an additional assumption, namely, that 1 ∈ H(Kd)
and ‖1‖H(Kd) ≤ ρ2/q0. As already mentioned in Section 2, this implies that q0 ∈
Q∗∗

d ∩ Hd,ρ2 . We need this assumption to establish a lower bound on the initial
error of the Neumann problem.

Lemma 4.10.

e(0, SNEU
d ) ≥ ρ1σd(κ2).

Proof. Define Intd ∈ [H(Kd)]∗ as

Intd(g) =
∫

Id

g(x) dx ∀ g ∈ H(Kd).

From [12, Lemma 2], we know that

‖ Intd ‖[H(Kd)]∗ = σd(κ2).

Hence, it suffices to show that

(4.6) e(0, SNEU
d ) ≥ ρ1‖ Intd ‖[H(Kd)]∗ .

As mentioned above, the constant function q0 is an element of Q∗∗
d ∩Hd,ρ2 . Choose

f ∈ H(Kd), and let u = SNEU
d (f, q0). Since q0 ∈ H1(Id), we have

‖u‖H1(Id) ≥
|〈u, q0〉H1(Id)|
‖q0‖H1(Id)

= |〈u, 1〉H1(Id)| = |Bd(u, 1; 1)| = |〈f, 1〉L2(Id)|

=
∣∣∣∣
∫

Id

f(x) dx
∣∣∣∣ = | Intd(f)|.

Hence
‖SNEU

d (f, q0)‖H1(Id)

‖f‖H(Kd)
≥ | Intd(f)|

‖f‖H(Kd)
.

Since f ∈ H(Kd) is arbitrary, this inequality and (2.11) imply that

e(0, SNEU
d ) ≥ ρ1‖SNEU

d (·, q0)‖Lin[H(Kd),H1(Id)] ≥ ρ1‖ Intd ‖[H(Kd)]∗ .

This yields (4.6), which establishes the lemma. �

We are now ready to prove the following result.
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Theorem 4.11. The elliptic Neumann problem, defined for the spaces H(Kd) with
finite-order weights of order ω, is tractable for the normalized error. More precisely
for Nω/2 defined by (2.14), we have

(4.7) Nω/2 ≤ 1
ρ1 min{1, q0}

(
κ1

κ2

)ω/2

max
{

1,
ρ1

q0

√
2 max{κω

0 , 1}γmax

}
,

and the following bounds hold:

(1) Suppose that κ2 > 0.
(a) For the Λall, we have

cardnor(ε, SNEU
d , Λall) ≤ 2(ρ1 + ρ2)2N2

ω/2

(
κ1

κ2

)ω (1
ε

)2

dω.

Hence

pnor
err (SNEU, Λall) ≤ 2 and pnor

dim(SNEU, Λall) ≤ ω.

(b) For the class Λstd, we have

cardnor(ε, SNEU
d , Λstd) ≤

⌈
8(ρ1 + ρ2)4N4

ω/2

(
κ1

κ2

)2ω (1
ε

)4

d2ω

⌉
+ 1,

and so

pnor
err (SNEU, Λstd) ≤ 4 and pnor

dim(SNEU, Λstd) ≤ 2ω.

(2) Suppose that κ2 = 0. Let Γ be as in (3.9).
(a) For the class Λall, we have

cardnor(ε, SNEU
d , Λall) ≤ 4(ρ1 + ρ2)2N2

ω/2Γ
ω

(
1
ε

)2

d2ω,

and so

pnor
err (SNEU, Λall) ≤ 2 and pnor

dim(SNEU, Λall) ≤ 2ω.

(b) For the Λstd, we have

cardnor(ε, SNEU
d , Λstd) ≤

⌈
32(ρ1 + ρ2)4N4

ω/2Γ
2ω

(
1
ε

)4

d3ω

⌉
+ 1,

and so

pnor
err (SNEU, Λstd) ≤ 4 and pnor

dim(SNEU, Λstd) ≤ 3ω.

Proof. Using Lemmas 4.4 and 4.10, we find that

CNEU
d ‖Appd ‖Lin[H(Kd),L2(Id)]

e(0, SNEU
d )

≤
max

{
1,

ρ1σd(κ0)
q0

}
σd(κ1)

ρ1 min{1, q0}σd(κ2)
.

From (3.29), we have

σd(κ1)
σd(κ2)

≤
(

κ1

κ2

)ω/2

,
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and so (2.7) yields

CNEU
d ‖Appd ‖Lin[H(Kd),L2(Id)]

e(0, SNEU
d )

≤ 1
ρ1 min{1, q0}

(
κ1

κ2

)ω/2

max
{

1,
ρ1

q0

√
2 max{1, κω

0 γmax}
}

dω/2.

Hence setting α = ω/2 in (2.14), we obtain (4.7). The remaining results of this
theorem now follow from [14, Theorem 7], with α = ω/2. �

Example 4.12. Suppose that K is the min-kernel Kmin. Since κ0 = 1, κ1 = 1
2 ,

and κ2 = 1
3 , we can use (4.7) to obtain that

Nω/2 ≤
max

{
1,

ρ1

√
2γmax

q0

}
ρ1 min{1, q0}

(
3
2

)ω/2

.

Furthermore, since κ2 	= 0, we see that case 1 holds in Theorem 4.11. Hence we
find that the elliptic Neumann problem is tractable under the normalized error
criterion, with

pnor
err (SNEU, Λall) ≤ 2 and pnor

dim(SNEU, Λall) ≤ ω

for continuous linear information, and

pnor
err (SNEU, Λstd) ≤ 4 and pnor

dim(SNEU, Λstd) ≤ 2ω

for standard information. �

Hence the elliptic Neumann problem is tractable for any set of finite-order
weights if we are using the normalized error criterion. The reason we are unable to
establish strong tractability in this case is similar to that for the Dirichlet problem,
namely, we can only establish that Nω/2 is finite. If we want to establish strong
tractability, we need to prove that N0 is finite. As before, we can do this if κ2 > 0
and the sum of the weights is uniformly bounded.

Theorem 4.13. Suppose that κ2 > 0 and that condition (3.10) holds. Then the
elliptic Neumann problem, defined for the spaces H(Kd) with finite-order weights of
order ω satisfying (3.10), is strongly tractable under the normalized error criterion.
More precisely, for N0 defined by (2.14), we have

(4.8) N0 ≤
ρ
1/2
3 max

{
1,

ρ1

q0
max{1, κ

ω/2
0 }
}

max{1, κ
ω/2
1 }

min{1, q0}
,

and the following bounds hold:

(1) For the class Λall, we have

cardnor(ε, SNEU
d , Λall) ≤ 2(ρ1 + ρ2)2N2

0

(
κ1

κ2

)ω (1
ε

)2

.

Hence
pnor
strong(S

NEU, Λall) ≤ 2.
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(2) For the class Λstd, we have

cardnor(ε, SNEU
d , Λstd) ≤

⌈
8(ρ1 + ρ2)4N4

0

(
κ1

κ2

)2ω (1
ε

)4
⌉

+ 1.

Hence

pnor
strong(S

NEU, Λstd) ≤ 4.

Proof. As in the proof of Theorem 3.7, we have

N0 ≤ CNEUρ
1/2
3 max{1, κ

ω/2
0 },

where

CNEU = sup
d∈Z++

CNEU
d .

Using Lemma 4.4, we find that

CNEU
d =

max
{

1,
ρ1σd(κ0)

q0

}
min{1, q0}

≤
max

{
1,

ρ1ρ
1/2
3 max{1, κ

ω/2
0 }

q0

}

min{1, q0}
.

Combining these results, we obtain (4.8). The desired result now follows from [14,
Theorem 8]. �

Example 4.14. Suppose once again that K = Kmin. We find that the conditions
of Theorem 4.13 hold, with

N0 ≤
ρ
1/2
3 max

{
1,

ρ1ρ
1/2
3

q0

}

min{1, q0}
.

Hence, the elliptic Dirichlet problem is strongly tractable under the normalized
error criterion, with

pabs
strong(S

NEU, Λall) ≤ 2 and pabs
strong(S

NEU, Λall) ≤ 4. �

In closing, we note that we have found conditions guaranteeing strong tractability
for the Neumann problem under the normalized error criterion when κ2 > 0. We
have only tractability results for this problem when κ2 = 0.
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