
MATHEMATICS OF COMPUTATION
Volume 76, Number 258, April 2007, Pages 597–614
S 0025-5718(06)01930-2
Article electronically published on December 7, 2006

ANALYSIS OF A FINITE PML APPROXIMATION
FOR THE THREE DIMENSIONAL TIME-HARMONIC

MAXWELL AND ACOUSTIC SCATTERING PROBLEMS

JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

Abstract. We consider the approximation of the frequency domain three-
dimensional Maxwell scattering problem using a truncated domain perfectly
matched layer (PML). We also treat the time-harmonic PML approximation
to the acoustic scattering problem. Following work of Lassas and Somersalo
in 1998, a transitional layer based on spherical geometry is defined, which
results in a constant coefficient problem outside the transition. A truncated
(computational) domain is then defined, which covers the transition region.
The truncated domain need only have a minimally smooth outer boundary
(e.g., Lipschitz continuous). We consider the truncated PML problem which
results when a perfectly conducting boundary condition is imposed on the outer
boundary of the truncated domain. The existence and uniqueness of solutions
to the truncated PML problem will be shown provided that the truncated

domain is sufficiently large, e.g., contains a sphere of radius Rt. We also show
exponential (in the parameter Rt) convergence of the truncated PML solution
to the solution of the original scattering problem inside the transition layer.

Our results are important in that they are the first to show that the trun-
cated PML problem can be posed on a domain with nonsmooth outer bound-
ary. This allows the use of approximation based on polygonal meshes. In
addition, even though the transition coefficients depend on spherical geome-
try, they can be made arbitrarily smooth and hence the resulting problems
are amenable to numerical quadrature. Approximation schemes based on our
analysis are the focus of future research.

1. Introduction

In this paper, we consider the acoustic and electromagnetic scattering problem
in three spatial dimensions. Simulations involving these problems are inherently
difficult for a number of reasons. First, although the problems are symmetric,
they are indefinite. Second, the problems have a scale related to the wavenumber
k, so standard discretizations require mesh sizes proportional to k−1. Third, the
problems are posed on infinite domains.

The focus of this paper is on the third issue above, i.e., how to deal with the
boundary condition at infinity in a computationally effective way. Specifically, we
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shall study perfectly matched layer (PML) approximations to acoustic and elec-
tromagnetic problems. The goal is to demonstrate both the solvability of the con-
tinuous PML approximations and the convergence of the resulting solutions to the
solutions of the original acoustic/electromagnetic problem.

Recently, there has been intensive computational and theoretical research to-
ward understanding the properties of PML approximations. The research into the
computational aspects of these methods is the subject of many papers in the engi-
neering literature and we shall not attempt to discuss them here. There is evidence
to suggest that this approach is very competitive with standard techniques for com-
putational domain truncation. In the paper by Petropoulos [14] he refers to recent
numerical results in [9], which “indicate our reflectionless sponge layer provides
levels of numerical reflection from ∂Ωc that are comparable to those obtained with
the exact ABC [8] for vector spherical waves scattering from a dielectric sphere but
at a substantial savings in computational cost.”

The original PML method was suggested by Bérenger in [3] and [2]. The obser-
vation that a PML method could be considered as a complex change of variable
was made by Chew and Weedon [4]. Using this technique, Collino and Monk [5]
derived PML equations based on rectangular and polar coordinates. There, they
also showed the existence and uniqueness of solutions of the truncated acoustic
PML except for a countable number of wave numbers. The formulation of PML
equations for (2.1) in spherical coordinates can be found in [12]. Lassas and Som-
ersalo [10] proved the existence and uniqueness of the PML acoustic approximation
on a truncated domain where the outer boundary was circular. In a later paper
[11], they extended these results to smooth convex domains in R

n.
To date, there has been relatively little analysis of the truncated electromagnetic

PML equations. Techniques for the acoustic problem do not carry over directly to
the electromagnetic problem. This stems from the fact that the acoustic problem
is strongly elliptic (up to perturbation) while the electromagnetic operator has an
infinite dimensional kernel consisting of functions which are gradients. For example,
Collino and Monk [5] use a perturbation analysis to derive their existence result.
Carrying this argument over to the electromagnetic PML poses significant analytical
difficulties requiring the analysis of vector decompositions involving the complex-
valued PML coefficient. We will present a new analytical approach for the study of
the electromagnetic PML equation in this paper.

Let Ω (the scatterer) be a domain in R
3. We shall first consider the acoustic

scattering problem with a sound-soft obstacle. This involves a scalar function u
defined on Ωc, the complement of Ω̄, satisfying

(1.1)

∆u + k2u = 0 in Ωc,

u = g on ∂Ω,

lim
ρ→∞

ρ(∇u · x̂ − iku) = 0.

Here ρ = |x|, x̂ = x/ρ, and k is a real positive constant. We have absorbed the
medium properties into the constant k.

We will also consider the time-harmonic electromagnetic scattering problem. In
this case, we shall assume, for convenience, that Ω is simply connected with only
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one boundary component. We seek vector fields E and H defined on Ωc satisfying

(1.2)

−ikµH + ∇×E = 0, in Ωc,

−ikεE − ∇×H = 0, in Ωc,

n × E = n × g, on ∂Ω,

lim
ρ→∞

ρ(µH × x̂ − E) = 0.

Here g results from a given incidence field, µ is the magnetic permeability, ε is the
electric permitivity, and n is the outward unit normal on ∂Ω. The last line corre-
sponds to the Silver-Müller condition at infinity. We assume that the coefficients µ
and ε are real valued, bounded away from zero and constant outside of some ball.

We introduce some notation that will be used in the remainder of the paper. For
a domain D, let L2(D) be the space of (complex-valued) square integrable functions
on D and L2(D) = (L2(D))3 the space of vector-valued L2-functions. We shall use
(·, ·)Ω to denote the (vector or scalar Hermitian) L2(Ω) inner product and 〈·, ·〉Γ
to denote the (vector or scalar Hermitian) L2(Γ) boundary inner product. When
the inner product is on all of R

3, we will use the notation (·, ·). The scalar and
vector Sobolev spaces on D will be denoted Hs(D) and Hs(D), respectively. Let
H(curl; D) be the set of vector-valued functions, which along with their curls, are
in L2(D). H0(curl; D) denotes the functions f in H(curl; D) satisfying n×f = 0
on ∂Ω. We assume that n×g above is the trace n×ĝ of a function ĝ ∈ H(curl; Ωc)
supported close to ∂Ω.

For a subdomain D ⊂ Ω∞, by extension by zero, we identify H1
0 (D) (respectively,

H0(curl; D)) with {v ∈ H1
0 (Ωc) (respectively, H0(curl; Ωc)) : supp(v) ⊆ D̄}.

2. The Bérenger layer

For convenience, we shall take µ = ε = 1 in (1.2) as all of our results extend
to the more general case as long as the coefficients are constant outside of a ball
of radius r0. We can reduce to a single equation involving E by eliminating H in
(1.2). This gives

(2.1)

− ∇× ∇×E + k2E = 0 in Ωc,

n × E = n × g on ∂Ω,

lim
ρ→∞

ρ((∇×E) × x̂ − ikE) = 0.

Throughout this paper, we shall use a sequence of finite subdomains of Ωc with
spherical outer boundaries. Let r0 < r1 < . . . < r4 be an increasing sequence of
real numbers and let Ωi denote (interior of) the open ball Bi of radius ri excluding
Ω̄ (we assume that r0 is large enough so that the corresponding ball contains Ω̄
and that the origin is contained in Ω). We denote the outer boundary of Ωi by Γi.
The values of r0, r1, . . . , r4 are independent of the computational outer boundary
scaling parameter Rt (introduced below).

As discussed in [5], the PML problem can be viewed as a complex coordinate
transformation. Following [10], a transitional layer based on spherical geometry
is defined, which results in a constant coefficient problem outside the transition.
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Given σ0, r1, and r2, we start with a function σ̃ ∈ C2(R+) satisfying

σ̃(ρ) = 0 for 0 ≤ ρ ≤ r1,

σ̃(ρ) = σ0 for ρ ≥ r2,

σ̃(ρ) increasing for ρ ∈ (r1, r2).

We define
ρ̃ = ρ(1 + iσ̃) ≡ ρd̃.

One obvious construction of such a function σ̃ in the transition layer r1 ≤ ρ ≤ r2

with the above properties is given by the fifth order polynomial,

σ̃(ρ) = σ0

( ∫ ρ

r1

(t− r1)2(r2− t)2 dt

)(∫ r2

r1

(t− r1)2(r2− t)2 dt

)−1

for r1 ≤ ρ ≤ r2.

A smoother σ̃ can be constructed by increasing the exponents in the above formula.
Each component of the solution E of (2.1) satisfies the Helmholtz equation with

Sommerfeld radiation condition, i.e.,

(2.2)
∆u + k2u = 0 for ρ > r0,

lim
ρ→∞

ρ(∇u · x̂ − iku) = 0.

Of course, this also holds for the acoustic problem (1.1). It follows that the solution
of (2.1) can be expanded

(2.3) E =
∞∑

n=1

n∑
m=−n

an,mh1
n(kρ)Y m

n (θ, φ) for ρ ≥ r0.

Here h1
n(r) are spherical Bessel functions of the third kind (Hankel functions),

Y m
n are spherical harmonics (see, e.g., [12] for details) and an,m are vector-valued

constants. The solution of the acoustic scattering problem satisfies (2.3) as well with
E replaced by u and the vector coefficients {an,m} replaced by scalar coefficients
{an,m}.

The PML solution in either case is developed in a similar fashion. We illustrate
the development in the case of Maxwell’s equations. The (infinite domain) PML
solution is defined by

Ẽ =

⎧⎪⎨
⎪⎩

E(x) for |x| ≤ r1,
∞∑

n=1

n∑
m=−n

an,mh1
n(kρ̃)Y m

n (θ, φ) for ρ = |x| ≥ r1.

By construction Ẽ and E coincide on Ω1. Furthermore, the complex shift in the
argument of h1

n above guarantees exponential decay of Ẽ.
The PML solution defined above satisfies a differential equation involving ρ̃ and

dρ̃
dρ . A simple computation shows that

dρ̃

dρ
= (1 + iσ(ρ)) ≡ d

where
σ(ρ) = σ̃(ρ) + ρσ̃′(ρ).
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It follows that σ is in C1(R+) and satisfies

σ(ρ) = 0 for 0 ≤ ρ ≤ r1,

σ(ρ) > σ̃(ρ) for ρ ∈ (r1r2),

σ(ρ) = σ0 for ρ ≥ r2

The solution Ẽ satisfies Maxwell’s equations using the spherical coordinates
(ρ̃, θ, φ) [12]. More precisely,

(2.4)

−∇̃ × ∇̃ × Ẽ + k2Ẽ = 0 in Ωc,

n × Ẽ = n × g on ∂Ω,

Ẽ bounded at ∞.

For Ẽ expanded in spherical coordinates,

Ẽ = Ẽρeρ + Ẽθeθ + Ẽφeφ,

we have

(2.5)

∇̃ × Ẽ =
1

d̃ρ sin θ

(
∂

∂θ
(sin θ Ẽφ) − ∂Ẽθ

∂φ

)
eρ

+
1

ρd̃

(
1

sin θ

∂Ẽρ

∂φ
− 1

d

∂

∂ρ
(d̃ρẼφ)

)
eθ

+
1

d̃ρ

(
1
d

∂

∂ρ
(d̃ρẼθ) −

∂Ẽρ

∂θ

)
eφ.

The PML approximation in the acoustic case is given by

(2.6)
∆̃ũ + k2ũ = 0 in Ωc,

ũ = g on ∂Ω,

ũ bounded at ∞.

In polar coordinates (ρ, θ, φ),

(2.7) ∆̃v =
1

d̃2dρ2

∂

∂ρ

(
d̃2ρ2

d

∂v

∂ρ

)
+

1

d̃2ρ2 sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)
+

1

d̃2ρ2 sin2 θ

∂2v

∂φ2
.

Since the solutions of (2.4) and (2.6) coincide with those of (2.1) and (1.1),
respectively, on Ω1 while rapidly decaying as ρ tends to infinity, it is natural to
truncate to a finite computational domain Ω∞ and impose convenient boundary
conditions on the outer boundary of Ω∞ (which we denote by Γ∞). We shall
always require that the transitional region is contained in Ω∞, i.e., Ω̄2 ⊂ Ω∞. We
introduce the parameter Rt and assume that Ω∞ contains the sphere of radius Rt.
Our analysis will require only a fixed (Lipshitz continuous) outer boundary shape
(but one that we enlarge by our dilation parameter Rt). Of course, in practice, it
is often convenient to take a polyhedral outer boundary.

It will be critical to keep track of the relation between constants appearing in
the inequalities and the scaling parameter Rt. Our constants are independent of
Rt and will be denoted generically with the letter C.
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The truncated PML approximations are then given as follows. In the case of
Maxwell’s problem, we consider the truncated PML problem involving a vector
function Ẽt defined on Ω∞ and satisfying

(2.8)

−∇̃ × ∇̃ × Ẽt + k2Ẽt = 0 in Ω∞,

n × Ẽt = n × g on ∂Ω,

n × Ẽt = 0 on Γ∞.

Analogously, for the acoustics problem, we consider ũt defined on Ω∞ satisfying

(2.9)
∆̃ũt + k2ũt = 0 in Ω∞,

ũt = g on ∂Ω,

ũt = 0 on Γ∞.

Remark 2.1. It is possible to use and analyze other conditions on the outer bound-
ary. We choose Dirichlet conditions for convenience.

3. Analysis of the truncated acoustic PML (2.9)

In this section, we will prove that the truncated PML acoustic problem (2.9)
has a unique weak solution which converges exponentially to the solution of (1.1)
near the obstacle. We will first prove uniqueness for (2.9). To do this we will use
a duality argument. A similar technique was used in [7] for the exterior Helmholtz
problem to estimate the effect of truncating the infinite domain and imposing an
approximate absorbing boundary condition.

We first consider a weak formulation of (2.6). Define the sesquilinear form,

(3.1)
b(v, χ) = k2(d̃2v, χ)Ωc −

(
d̃2

d

∂v

∂ρ
,

∂

∂ρ

(
χ

d̄

))
Ωc

−
(

1
ρ2

∂v

∂θ
,
∂χ

∂θ

)
Ωc

−
(

1
ρ2 sin2 θ

∂v

∂φ
,
∂χ

∂φ

)
Ωc

.

This form is well defined for v ∈ H1(Ωc) and χ ∈ H1(Ωc) and results from (2.6)
and integration by parts. For g ∈ H1/2(∂Ω), let ĝ be an H1(Ωc) bounded extension
of g supported in Ω0. The weak solution of (2.6) is the function ũ = ĝ − w where
w ∈ H1

0 (Ωc) satisfies

(3.2) b(w, φ) = b(ĝ, φ) for all φ ∈ H1
0 (Ωc).

We will subsequently show that the variational problem (3.2) is well posed and that
ũ is well defined and independent of the particular extension ĝ.

To employ the duality technique, we need to consider the adjoint source problem
on the infinite domain. For Φ ∈ L2(Ωc), let ẑ ∈ H1

0 (Ωc) satisfy

(3.3) b(χ, ẑ) = (χ, Φ)Ωc for all χ ∈ H1
0 (Ωc).

It is immediate that ẑ = d̄z̄ (z̄ denotes the complex conjugate of z), where z satisfies

(3.4) b(z, χ) = (Φ̄/d, χ)Ωc for all χ ∈ H1
0 (Ωc).

The above problems are well posed as is shown in the following theorem.
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Theorem 3.1. Let Φ be in L2(Ωc). Problems (3.4) and (3.3) have unique solutions
z, ẑ ∈ H1

0 (Ωc) satisfying

(3.5) ‖z‖H1(Ωc) ≤ C‖Φ‖L2(Ωc) and ‖ẑ‖H1(Ωc) ≤ C‖Φ‖L2(Ωc).

To prove the above theorem and subsequent results, we shall require the following
theorem which follows easily from a theorem due to Peetre [13] and Tartar [15] (see,
e.g. Theorem 2.1 of [6]).

Theorem 3.2. Let A0(·, ·), I(·, ·) be bounded sesquilinear forms on a complex
Hilbert space V with norm ‖ · ‖V . Let W be another Hilbert space with V com-
pactly imbedded in W . Suppose that

|I(v, v)| ≤ C1‖v‖V ‖v‖W for all v ∈ V

and
‖v‖2

V ≤ C2|A0(v, v)| for all v ∈ V.

Set A = A0 + I and assume that the only u ∈ V satisfying

A(u, v) = 0 for all v ∈ V

is u = 0. Then, there exists C3 > 0 such that for all u ∈ V ,

‖u‖V ≤ C3 sup
v∈V

|A(u, v)|
‖v‖V

.

Proof of Theorem 3.1. We will use Theorem 3.2 to show that the form (3.1) satisfies
an inf-sup condition on H1

0 (Ωc). To this end we break the form into two parts as
follows:

(3.6) b(v, χ) = b1(v, χ) + I(v, χ)

where
(3.7)

b1(v, χ) = k2(d2
0u, χ)Ωc −

(
d̃2

d2

∂v

∂ρ
,
∂χ

∂ρ

)
Ωc

−
(

1
ρ2

∂v

∂θ
,
∂χ

∂θ

)
Ωc

−
(

1
ρ2 sin2 θ

∂v

∂φ
,
∂χ

∂φ

)
Ωc

,

and

(3.8) I(v, χ) =
(

d̃2d′

d3

∂v

∂ρ
, χ

)
Ωc

+ k2((d̃2 − d2
0)v, χ)Ωc .

Notice that d′ and (d̃2 − d2
0) both vanish for ρ ≥ r2. Hence

(3.9) |I(v, v)| ≤ C‖v‖L2(Ω2)‖v‖H1(Ωc).

Recall that d0 = 1 + iσ0, d̃ = 1 + iσ̃, d = 1 + iσ and σ ≥ σ̃. It follows easily that
there is a positive real number α such that

(3.10) Re[d2
0(1 + iα)] ≤ −C1 < 0 and Re

[
d̃2

d2
(1 + iα)

]
≥ C2 > 0,

for α large enough. In fact, it suffices to choose α > max[(1− σ2
0)/2σ0, σM ], where

σM is the maximum of σ. It follows from (3.7) and (3.10) that

(3.11) (1 + α2)1/2|b1(v, v)| ≥ |Re[(1 + iα)b1(v, v)]| ≥ C‖v‖2
H1(Ωc).
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Now, using the argument in [5] we have the uniqueness property that if v ∈
H1

0 (Ωc) and b(v, φ) = 0 for all φ ∈ C∞
0 (Ωc), then v = 0. Theorem 3.2 then gives

the inf-sup condition

(3.12) ‖v‖H1(Ωc) ≤ C sup
φ∈C∞

0 (Ωc)

|b(v, φ)|
‖φ‖H1(Ωc)

for all v ∈ H1
0 (Ωc).

The corresponding inf-sup condition for the adjoint problem follows from the iden-
tity

(3.13) b(φ, v) = b(v̄/d, d̄φ̄).

Hence, by the generalized Lax-Milgram Lemma, there exists a unique z ∈ H1
0 (Ωc)

satisfying (3.4). Moreover,

‖z‖H1(Ωc) ≤ C sup
φ∈C∞

0 (Ωc)

|b(z, φ)|
‖φ‖H1(Ωc)

≤ C‖Φ‖L2(Ωc).

This completes the proof of the theorem. �
Remark 3.1. Applying a standard trace estimate, the proof of the above theorem
implies that the solution ũ of (2.6) satisfies

‖ũ‖H1(Ωc) ≤ C‖ĝ‖H1(Ω0) ≤ C‖g‖H1/2(∂Ω).

In addition, the inf-sup condition proved above immediately implies that ũ is inde-
pendent of the choice of extension ĝ.

We will first prove uniqueness for (2.9). In order to do this we will need the
following two propositions. These propositions will be used extensively throughout
the remainder of this paper. The first is a classical interior estimate for the solution
of an elliptic equation. The proof is elementary.

Proposition 3.1. Suppose that w satisfies the Helmholtz equation

(3.14) ∆w + βw = 0

in a domain D with a (possibly complex) constant β. If D1 is a subdomain, whose
closure is contained in D, then

(3.15) ‖w‖H2(D1) ≤ C‖w‖L2(D).

We also need the following proposition.

Proposition 3.2. Assume that w is bounded at infinity and satisfies (3.14) in
Ωc \ Ω̄2 with β = k2d2

0. Set Sγ = {x : dist(x, Γ∞) < γ} with γ fixed independent
of Rt > r4 and small enough such that S̄γ is in Ωc \ Ω̄4. Then

‖w‖L2(Sγ) ≤ Ce−σ0kRt‖w‖L2(Ω4).

Proof. The fundamental solution of (3.14) with β = k2d2
0 is

ψ(x, y) = −exp(ikd0|x − y|)
4π|x − y| .

For any point x in Sγ

(3.16) w(x) =
∫

Γ3

w(y)
∂ψ(x, y)

∂ry
dSy −

∫
Γ3

∂w(y)
∂ry

ψ(x, y) dSy.
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Note that there is no contribution above from infinity. Indeed, since w is bounded
at infinity, it can be written as a (scalar) expansion of the form of (2.3) with k
replaced by d0k. In addition, ψ decays rapidly at infinity since d0 has a positive
imaginary part and so the outer boundary contribution limits to zero.

Using Schwarz’s inequality and the properties of ψ it is easy to see that

(3.17) |w(x)|2 ≤ Ce−2σ0kRt

(
‖w‖2

L2(Γ3)
+

∥∥∥∥∂w

∂r

∥∥∥∥2

L2(Γ3)

)( ∫
Γ3

dSy

|x − y|2

)
.

Integrating over Sγ , using a standard trace inequality and Proposition 3.1 we obtain
Proposition 3.2. �

We can now prove the following theorem.

Theorem 3.3. Let u be in H1
0 (Ω∞) and satisfy (2.9) with g = 0. Then, for Rt

large enough, u = 0. That is to say, if u ∈ H1
0 (Ω∞) satisfies b(u, ψ) = 0 for all

ψ ∈ H1
0 (Ω∞), then u = 0.

Proof. Let u be in H1
0 (Ω∞) satisfy (2.9) with g = 0, let Φ be in L2(Ωc) with support

in Ω4, and let ẑ ∈ H1
0 (Ωc) be the solution of (3.3). Then

(3.18) (u, Φ)Ω4 = b(u, ẑ) = 〈 ∂u

∂n
, ẑ〉Γ∞ .

Let H̃1(Ω∞ \ Ω̄3) denote the set of functions in H1(Ω∞ \ Ω̄3) which vanish on
Γ3. Define the norm

‖w‖H−1/2(Γ∞) = sup
φ∈H̃1(Ω∞\Ω̄3)

|〈w, φ〉Γ∞ |
‖φ‖H1(Ω∞\Ω̄3)

.

Let χ be a smooth cutoff function with support D̄1 in Sγ (of Proposition 3.2), which
is one on Γ∞. Applying Propositions 3.1 and 3.2 to z and (3.5), it follows that

(3.19)

|(u, Φ)Ω4 | ≤ C
|〈 ∂u

∂n , χẑ〉Γ∞ |
‖χẑ‖H1(Sγ)

‖ẑ‖H1(D1)

≤ C
|〈 ∂u

∂n , χẑ〉Γ∞ |
‖χẑ‖H1(Sγ)|

‖ẑ‖L2(Sγ)

≤ Ce−σ0kRt‖Φ‖L2(Ω4)

∥∥∥∥ ∂u

∂n

∥∥∥∥
H−1/2(Γ∞)

.

We next estimate the negative norm on the right hand side above. Let ĥ be in
H̃1(Ω∞ \ Ω̄2) and be equal to zero in Ω3 \ Ω̄2. Let ψ ∈ H1

0 (Ω∞ \ Ω̄2) satisfy

(∇ψ,∇θ)Ω∞\Ω̄2
− k2d̄2

0(ψ, θ)Ω∞\Ω̄2
= (∇ĥ,∇θ)Ω∞\Ω̄2

− k2d̄2
0(ĥ, θ)Ω∞\Ω̄2

for all θ ∈ H1
0 (Ω∞\Ω̄2). This problem is well posed since d2

0 has a nonzero imaginary
part. It follows that

‖ψ‖H1(Ω∞\Ω̄2) ≤ C‖ĥ‖H1(Ω∞\Ω̄2).

We set h = ĥ − ψ. Note that both u and h satisfy homogeneous equations in
Ω∞ \ Ω̄2, i.e.,

(3.20) ∆u + k2d2
0u = 0, ∆h + k2d̄2

0h = 0.
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Now, using Green’s identity,

(3.21) 〈 ∂u

∂n
, ĥ〉Γ∞ = 〈 ∂u

∂n
, h〉Γ∞ = −〈 ∂u

∂n
, h〉Γ3 + 〈u,

∂h

∂n
〉Γ3 .

Finally, using Proposition 3.1 (with D1 a domain containing Γ3 whose closure is
in Ω4 \ Ω̄2), we get

(3.22)

|〈 ∂u

∂n
, h〉Γ3 − 〈u,

∂h

∂n
〉Γ3 | ≤ C‖u‖H2(D1)‖h‖H2(D1)

≤ C‖u‖L2(Ω4)‖h‖L2(Ω4)

≤ C‖u‖L2(Ω4)‖ĥ‖H1(Ω∞\Ω̄3).

Combining the above results shows that∥∥∥∥ ∂u

∂n

∥∥∥∥
H−1/2(Γ∞)

≤ C‖u‖L2(Ω4)

and hence, using (3.19), we have

(3.23) ‖u‖L2(Ω4) ≤ Ce−σ0kRt‖u‖L2(Ω4),

i.e., u vanishes on Ω4 provided Rt is taken large enough. It follows by unique con-
tinuation that u vanishes on all of Ω∞. This completes the proof of the uniqueness
theorem. �

We next give a weak form of problem (2.9). For g ∈ H1/2(∂Ω) let ĝ be an
H1(Ωc) bounded extension of g with support in Ω0. The weak solution of (2.9) is
the function ũt = ĝ − w where w ∈ H1

0 (Ω∞) satisfies

(3.24) b(w, φ) = b(ĝ, φ) for all φ ∈ H1
0 (Ω∞).

The next theorem shows existence and gives error estimates for the weak solution.

Theorem 3.4. The variational problem (3.24), for Rt sufficiently large, has a
unique solution. The resulting weak solution ũt of (2.9) is well defined and inde-
pendent of the extension êg. Finally,

‖ũ − ũt‖L2(Ω4) ≤ Ce−2σ0kRt‖g‖H1/2(∂Ω).

Here ũ is the solution of (2.6).

Remark 3.2. The above theorem shows that ũt converges exponentially on Ω4 to ũ
as Rt → ∞. It follows that ũt converges exponentially to u on Ω1.

Proof. We note that (3.9) and (3.11) hold on the restricted space H1
0 (Ω∞) so the

uniqueness result of the previous theorem and Theorem 3.2 implies the inf-sup
condition

(3.25) ‖v‖H1(Ω∞) ≤ C sup
φ∈C∞

0 (Ω∞)

|b(v, φ)|
‖φ‖H1(Ω∞)

for all v ∈ H1
0 (Ω∞).

Uniqueness for the adjoint problem on H1
0 (Ω∞) follows from Theorem 3.3 and

(3.13). This implies the existence and uniqueness of solutions to (3.24). It is easy
to see that the resulting function ũt is independent of extension ĝ.

To finish the proof, we need to show that ũt converges to ũ, the solution of (2.6),
in L2(Ω4) and that the convergence is exponential as Rt increases beyond some
threshold. To see this set ẽ = ũ − ũt. As in the proof of Theorem 3.3, let Φ be
in L2(Ωc) with support in Ω4 and let ẑ ∈ H1

0 (Ωc) be the solution of (3.3). Let L
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denote the formal adjoint of the operator d̃2∆̃. Since ∆̃ is a multiple of ∆ except
on the transition layer r1 < ρ < r2, it follows that

(3.26)
(ẽ, Φ)Ω4 = −(ẽ,Lẑ)Ω∞ = −〈ũ,

∂ẑ

∂n
〉Γ∞ + b∞(ẽ, ẑ)

= 〈 ∂ẽ

∂n
, ẑ〉Γ∞ − 〈ũ,

∂ẑ

∂n
〉Γ∞ .

Here b∞(·, ·) denotes the form on H1(Ω∞)×H1(Ω∞), which results from replacing
the domain of integration Ωc in (3.1) by Ω∞. To handle the first term on the right
hand side of (3.26), we shall use estimates in the proof of Theorem 3.3 (with u
replaced by ẽ). As in (3.19),

|〈 ∂ẽ

∂n
, ẑ〉Γ∞ | ≤ Ce−σ0kRt‖Φ‖L2(Ω4)

∥∥∥∥ ∂ẽ

∂n

∥∥∥∥
H−1/2(Γ∞)

.

We estimate the negative norm again following the proof of Theorem 3.3, but replace
(3.21) with

〈 ∂ẽ

∂n
, ĥ〉Γ∞ = 〈 ∂ẽ

∂n
, h〉Γ∞

= −〈 ∂ẽ

∂n
, h〉Γ3 + 〈ẽ, ∂h

∂n
〉Γ3 + 〈ũ,

∂h

∂n
〉Γ∞ .

The first two terms on the right hand side above are estimated exactly as in (3.22).
For the last one, we note that because h satisfies (3.20),∥∥∥∥ ∂h

∂n

∥∥∥∥
H−1/2(Γ∞)

≤ C‖h‖H1(Ω∞\Ω̄2).

Thus,

|〈ũ,
∂h

∂n
〉Γ∞ | ≤ C‖ũ‖H1(D1)‖ĥ‖H1(Ω∞\Ω̄2)

where D̄1 ⊂ Sγ . Applying Propositions 3.1 and 3.2 gives

|〈ũ,
∂h

∂n
〉Γ∞ | ≤ Ce−σ0kRt‖ũ‖L2(Ω4)‖ĥ‖H1(Ω∞\Ω̄2).

Combining the above gives

(3.27)
|(ẽ, Φ)Ω4 | ≤ Ce−σ0kRt‖Φ‖L2(Ω4)(‖ẽ‖L2(Ω4)

+ e−σ0kRt‖ũ‖L2(Ω4)) + |〈ũ,
∂ẑ

∂n
〉Γ∞ |.

Now, using a standard trace inequality, Theorem 3.1, Proposition 3.1, and Propo-
sition 3.2, we obtain

(3.28) |〈ũ,
∂ẑ

∂n
〉Γ∞ | ≤ Ce−2σ0kRt‖ũ‖L2(Ω4)‖Φ‖L2(Ω4).

Thus we have

|(ẽ, Φ)Ω4 | ≤ C(e−σ0kRt‖ẽ‖L2(Ω4) + e−2σ0kRt‖ũ‖L2(Ω4))‖Φ‖L2(Ω4).

From this and Remark 3.1, it follows that

‖ẽ‖L2(Ω4) ≤ Ce−σ0kRt‖ẽ‖L2(Ω4) + Ce−2σ0kRt‖g‖H1/2(∂Ω).

Hence, for Rt large enough, we obtain the convergence estimate

‖ũ − ũt‖L2(Ω4) ≤ Ce−2σ0kRt‖g‖H1/2(∂Ω).

This completes the proof of the theorem. �
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4. Uniqueness for the truncated electromagnetic PML problem

Following [12], we define the diagonal matrices (in spherical coordinates),

Av = d̃−2vρeρ + (d̃d)−1(vθeθ + vφeφ)

and
Bv = dvρeρ + d̃(vθeθ + vφeφ).

Then, ∇̃ × Ẽ = A ∇× (BẼ).
We first define a weak form of the PML problem (2.8) by setting Ẽt = ĝ − w

and setting up a variational problem for Ξ = Bw ∈ H0(curl; Ω∞), i.e.,

(4.1) A(Ξ,Ψ) = A(Bĝ,Ψ) for all Ψ ∈ H0(curl; Ω∞).

Here the sesquilinear form A is given by

A(Θ,Ψ) ≡ −(µ−1 ∇× Θ, ∇×Ψ)Ωc + k2(µΘ,Ψ)Ωc for all Θ,Ψ ∈ H(curl; Ωc)

and µ is the three by three matrix which corresponds to the diagonal matrix
(AB)−1 in spherical coordinates. As usual, we define the form on the larger space
and consider the space H0(curl; Ω∞) as the subspace of H0(curl; Ωc) defined by
extension by zero.

Our first task is to show uniqueness when Rt is sufficiently large. That is, if Θ
is in H0(curl; Ω∞) and

(4.2) A(Θ,Ψ) = 0 for all Ψ ∈ H0(curl; Ω∞),

then Θ = 0.
As was done in the analysis of the acoustic problem, we will again use a duality

argument. We consider the adjoint source problem: For Φ ∈ L2(Ωc), find ẑ ∈
H0(curl; Ωc) satisfying

(4.3) A(Θ, ẑ) = (Θ,Φ)Ωc for all Θ ∈ H0(curl; Ωc).

It is immediate that ẑ = z̄, where z is the solution of

(4.4) A(z,Θ) = (Φ̄,Θ)Ωc for all Θ ∈ H0(curl; Ωc).

We need the following theorem.

Theorem 4.1. Let Φ be in L2(Ωc). Problems (4.4) and (4.3) have unique solutions
z, ẑ ∈ H0(curl; Ωc) satisfying

(4.5) ‖z‖H(curl;Ωc) = ‖ẑ‖H(curl;Ωc) ≤ C‖Φ‖L2(Ωc).

For the proof of this theorem, we require the following lemma whose proof ap-
pears in the appendix.

Lemma 4.1. Let D be either Ω∞ or Ωc, respectively. Set

X(D) = H0(curl; D) ∩ H0(div; µ, D),

where H0(div; µ, D) = {U ∈ L2(D) : ∇ · (µU) = 0}. Then X(D) ⊂ Hs(ω) for
some s > 1/2 where ω = Ω∞ or ω = Ω2, respectively.
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Proof of Theorem 4.1. We will prove that, for W ∈ X(Ωc),

(4.6) ‖W ‖H(curl;Ωc) ≤ C sup
V∈X(Ωc)

|A(W , V)|
‖V‖H(curl;Ωc)

.

To this end, set B(U , V) = A(U , η̄V), where η = d̃2/d. Then

(4.7)

B(U , V) = −(µ−1 ∇× U , ∇×η̄V)Ωc + k2(ηµU , V)Ωc

= −(ηµ−1 ∇× U , ∇×V)Ωc − (µ−1 ∇× U , (∇η̄) × V)Ωc

+ k2(ηµU , V)Ωc

= B1(U , V) + I(U , V).

Here
B1(U , V) = −(ηµ−1 ∇× U , ∇×V)Ωc + k2(d2

0U , V)Ωc

and
I(U , V) = −(µ−1 ∇× U , (∇η̄) × V)Ω2 − k2((d2

0I − ηµ)U , V)Ω2 .

The last two integrations are over Ω2 since both ∇η̄ and (d2
0I − ηµ) vanish for

ρ > r2. We obviously have

(4.8) |I(V , V)| ≤ C‖V‖H(curl;Ω2)‖V‖L2(Ω2).

Choosing α as in (3.10) we obtain for V ∈ H0(curl; Ωc),

(4.9) (1 + α2)1/2|B1(V , V)| ≥ |Re[(1 + iα)B1(V , V)]| ≥ C‖V‖2
H(curl;Ωc).

Multiplication by η̄ and η̄−1 are bounded operators on H(curl; Ωc) and Hs(Ω2).
Set

Xη(Ωc) = {η̄−1θ : θ ∈ X(Ωc)}.
If follows from Lemma 4.1 that Xη(Ωc) is compactly contained in L2(Ω2). More-
over,

sup
V∈X(Ωc)

|A(W , V)|
‖V‖H(curl;Ωc)

= sup
V∈Xη(Ωc)

|B(W , V)|
‖η̄V‖H(curl;Ωc)

≥ C sup
V∈Xη(Ωc)

|B(W , V)|
‖V‖H(curl;Ωc)

.

Thus, (4.6) will follow if we show that for W ∈ Xη(Ωc),

(4.10) ‖W ‖H(curl;Ωc) ≤ C sup
V∈Xη(Ωc)

|B(W , V)|
‖V‖H(curl;Ωc)

.

We apply Theorem 3.2 to prove (4.10). By the above discussion, we need only
check the uniqueness property. It is immediate that this is equivalent to: If w ∈
X(Ωc) satisfies

A(w, v) = 0 for all v ∈ X(Ωc),

then w = 0.
We note that we have the uniqueness properties for A and its adjoint in

H0(curl; Ωc) (cf. [12]), specifically, if u ∈ H0(curl; Ωc) satisfies

(4.11) A(u, w) = 0 for all w ∈ H0(curl; Ωc),

then u = 0, and if u ∈ H0(curl; Ωc) satisfies

(4.12) A(w, u) = 0 for all w ∈ H0(curl; Ωc),

then u = 0.
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We show the above uniqueness property on the restricted space X(Ωc). Suppose
that W is in X(Ωc) and satisfies

(4.13) A(W , v) = 0 for all v ∈ X(Ωc).

Let H̃1
0 (Ωc) denote the completion C∞

0 (Ωc) in the norm ‖∇u‖L2(Ωc). For any
V ∈ H0(curl; Ωc), we can decompose V as V = v + ∇ψ with v ∈ X(Ωc) and
ψ ∈ H̃1

0 (Ωc). Indeed, ψ is the solution of

(µ∇ψ,∇θ) = (µV ,∇θ) for all θ ∈ H̃1
0 (Ωc).

This problem is uniquely solvable since the real part of µ is uniformly positive
definite. Since W ∈ X(Ωc), A(W , V) = A(W , v) = 0 by (4.13) and W = 0 follows
from (4.11). The inequality (4.10) and hence (4.6) follows from Theorem 3.2.

We can now complete the proof of the theorem. For Φ ∈ L2(Ωc), define φ ∈
H̃1

0 (Ωc) by

A(∇φ,∇ψ) = k2(µ∇φ,∇ψ) = (Φ̄,∇ψ) for all ψ ∈ H̃1
0 (Ωc).

Next define W ∈ X(Ωc) to be the solution of

(4.14) A(W , v) = (Φ̄, v) − k2(µ∇φ, v) for all v ∈ X(Ωc).

As above, the uniqueness property for the adjoint on H0(curl; Ωc) implies (4.12)
on the restricted space X(Ωc). Thus, the existence of W satisfying (4.14) follows
from (4.6) and the generalized Lax-Milgram Lemma.

The solution of (4.4) is then given by z = W + ∇φ. Indeed, for any Θ ∈
H0(curl; Ωc), we decompose Θ = v + ∇ψ with v ∈ X(Ωc). Then

A(z,Θ) = A(W , v) + A(W ,∇ψ) + A(∇φ, v) + A(∇φ,∇ψ)

= (Φ̄, v) − k2(µ∇φ, v) + k2(µ∇φ, v) + (Φ̄,∇ψ) = (Φ̄,Θ).

Evidently,
‖z‖H(curl;Ωc) ≤ C‖Φ‖L2(Ωc),

which concludes the proof. �

Corollary 4.1. Let Ẽ be the solution of (2.4) and ĝ an H-curl extension of g with
support in Ω0. Then

‖Ẽ‖H(curl;Ωc) ≤ C‖ĝ‖H(curl;Ω0).

We can now prove the uniqueness theorem for the problem on Ω∞.

Theorem 4.2. For Rt sufficiently large, the only solution Θ ∈ H0(curl; Ω∞)
satisfying (4.2) is Θ = 0.

Proof. Suppose that Θ satisfies (4.2). For Φ ∈ L2(Ωc) with support in Ω4 let ẑ
satisfy (4.3). Both n × Θ and n × ẑ vanish on ∂Ω. Also n × Θ vanishes on Γ∞.
In addition, the components of ẑ satisfy (3.14) with β = k2d2

0 outside of Ω2 so ẑ is
in H2 near Γ∞. Thus,

(4.15) (Θ,Φ)Ω4 = A(Θ, ẑ) = d−1
0 〈n × ∇×Θ, ẑ〉Γ∞ .
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Let H̃
1
(Ω∞ \ Ω̄3) denote the set of functions in H1(Ω∞ \ Ω̄3) which vanish on

Γ3. Set

‖w‖H−1/2(Γ∞) = sup
φ∈H̃

1
(Ω∞\Ω̄3)

|〈w, φ〉Γ∞ |
‖φ‖H1(Ω∞\Ω̄3)

.

Let χ be a smooth cutoff function with support D̄1 in Sγ (of Proposition 3.2),
which is one on Γ∞. Since each component of ẑ satisfies (3.14) with β = k2d̄2

0 and
applying Propositions 3.1 and 3.2 and Theorem 4.1, it follows that

(4.16)

|(Θ,Φ)Ω4 | ≤ C
|〈n × ∇×Θ, χẑ〉Γ∞ |

‖χẑ‖H1(Sγ)

‖ẑ‖H1(D1)

≤ C
|〈n × ∇×Θ, χẑ〉Γ∞ |

‖χẑ‖H1(Sγ)

‖ẑ‖L2(Sγ)

≤ Ce−σ0kRt‖Φ‖L2(Ω4)‖n × (∇×Θ)‖H−1/2(Γ∞).

We next estimate the negative norm on the right hand side above. Let ĥ be in
H̃

1
(Ω∞ \ Ω̄3) and let ψ ∈ H0(curl; Ω∞ \ Ω̄3) satisfy

− (∇×ψ, ∇×θ)Ω∞\Ω̄3
+ k2d̄2

0(ψ, θ)Ω∞\Ω̄3

= −(∇×ĥ, ∇×θ)Ω∞\Ω̄3
+ k2d̄2

0(ĥ, θ)Ω∞\Ω̄3

for all θ ∈ H0(curl; Ω∞ \ Ω̄3). This problem is well posed since d2
0 has a nonzero

imaginary part. We set h = ĥ − ψ. It follows that

‖h‖H(curl;Ω∞\Ω̄3) ≤ C‖ĥ‖H(curl;Ω∞\Ω̄3).

Note that both Θ and h satisfy homogeneous equations in Ω∞ \ Ω̄3,

(4.17)
− ∇× ∇×Θ + k2d2

0Θ = ∆Θ + k2d2
0Θ = 0,

− ∇× ∇×h + k2d̄2
0h = 0.

It follows that ∇×Θ and ∇×h are also in H(curl; Ω∞ \ Ω̄3). Now, integrating
by parts we get

(4.18)

〈n × ∇×Θ, ĥ〉Γ∞ = 〈∇×Θ, ĥ × n〉Γ∞

= −(∇×Θ, ∇×h)Ω∞\Ω̄3
+ (∇× ∇× Θ, h)Ω∞\Ω̄3

= 〈Θ, n × ∇×h〉Γ3 − (Θ, ∇× ∇× h)Ω∞\Ω̄3

+ (∇× ∇× Θ, h)Ω∞\Ω̄3

= 〈Θ, n × ∇×h〉Γ3 .

The first integration by parts formula is justified as h = ĥ + ψ and the formula
holds for both terms. The second integration by parts above is justified because
n × Θ vanishes on Γ∞ and Θ is smooth in a neighborhood of Γ3 since it satisfies
(3.14) with β = k2d2

0 there. Finally, using (3.15) (with D1 a domain containing Γ3

and whose closure is in Ω4 \ Ω̄2), we get

|〈Θ, n × ∇×h〉Γ3 | ≤ C‖Θ‖H1(D1)‖ ∇× h‖H(curl;Ω∞\Ω̄3)

≤ C‖Θ‖L2(Ω4)‖ĥ‖H1(Ω∞\Ω̄3).

Combining the above results shows that

‖n × ∇×Θ‖H−1/2(Γ∞) ≤ C‖Θ‖L2(Ω4)
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and hence, using (4.16),

‖Θ‖L2(Ω4) ≤ Ce−σ0kRt‖Θ‖L2(Ω4).

It follows that Θ vanishes on Ω4 for Rt sufficiently large. In this case, unique
continuation implies that Θ vanishes on all of Ω∞. This completes the proof of the
theorem. �

5. Existence and convergence of solutions of the truncated

electromagnetic PML problem (2.8)

The existence and convergence of solutions to the PML problem depend on the
uniqueness result of the previous section. Accordingly, we shall assume that the
hypotheses of Theorem 4.2 are satisfied throughout this section.

We are now in position to prove the existence theorem.

Theorem 5.1. Let g admit an H(curl; Ω0)-extension ĝ supported in Ω0. Then for
Rt sufficiently large, the truncated PML problem (2.8) has a unique solution Ẽt.

Proof. The theorem will follow if we show the existence of a solution to (4.1). Now
that we have proved uniqueness of (4.2), we follow the proof of Theorem 4.1 with
Ωc replaced by Ω∞. In exactly the same way we arrive at the analogous inf-sup
condition,

(5.1) ‖W ‖H(curl;Ω∞) ≤ C

(
sup

V∈X(Ω∞)

|A(W , V)|
‖V‖H(curl;Ω∞)

)
for all v ∈ X(Ω∞).

Following the proof of Theorem 4.1, we define φ ∈ H1
0 (Ω∞) by

A(∇φ,∇ψ) = A(Bĝ,∇ψ) for all ∇ψ ∈ H1
0 (Ω∞).

Clearly, A(θ, u) = 0 for all θ ∈ H0(curl; Ω∞) is the same as A(ū, θ) = 0 for all
θ ∈ H0(curl; Ω∞). As in the proof of Theorem 4.1, if u ∈ X(Ω∞) and A(θ, u) = 0
for all u ∈ X(Ω∞), then u = 0. The generalized Lax-Millgram Theorem shows
that there is a unique W ∈ X(Ω∞) satisfying

A(W , v) = A(Bĝ, v) − k2(µ∇φ, v) for all v ∈ X(Ω∞).

Then Ξ=W +∇φ satisfies (4.1). Setting Ẽt = ĝ−B−1Ξ concludes the proof. �

Finally, we want to estimate the error created in replacing the solution of the
scattering problem (2.1) by the solution of the truncated PML problem (2.8). To
do this, we compare the solutions of (2.8) and (2.4), since the solutions of (2.4) and
(2.1) coincide in Ω1. The proof follows the arguments in the proof of uniqueness.
We have the following convergence theorem.

Theorem 5.2. Let Ẽ be the solution of (2.4) and Ẽt the solution of (2.8). For
Rt sufficiently large,

(5.2) ‖Ẽt − Ẽ‖L2(Ω4) ≤ Ce−2σ0kRt‖ĝ‖H(curl;Ω0).

Proof. Let F̂ = B(Ẽt − Ẽ). We follow the proof of Theorem 4.2 replacing Θ by
F̂ . The main difference is that n × F̂ does not vanish on Γ∞.
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Let Φ and ẑ be as in the proof of Theorem 4.2. Then, as in (4.15),

(5.3)

(F̂ ,Φ)Ω4 = −(F̂ , ∇×µ̄−1 ∇× ẑ)Ω∞ + k2(F̂ , µ̄ẑ)Ω∞

= −(µ−1 ∇× F̂ , ∇×ẑ)Ω∞ + k2(µF̂ , ẑ)Ω∞

− d−1
0 〈n × Ẽ, ∇×ẑ〉Γ∞ .

= d−1
0 〈n × ∇×F̂ , ẑ〉Γ∞ − d−1

0 〈n × Ẽ, ∇×ẑ〉Γ∞ .

To bound the first term on the right hand side of (5.3), we follow the proof of
Theorem 4.2. The integration by parts on (4.18) gives an extra term, i.e.,

(5.4) 〈n × ∇×F̂ , ĥ〉Γ∞ = 〈F̂ , n × ∇×h〉Γ3 − 〈Ẽ, n × ∇×h〉Γ∞ .

For the second term of (5.4), we note that since h satisfies the homogeneous equation
(4.17),

‖n × ∇×h‖H−1/2(Γ∞) ≤ C‖h‖H(curl;Ω∞\Ω̄3);
so by Propositions 3.1 and 3.2,

(5.5) |〈Ẽ, n × ∇×h〉Γ∞ | ≤ Ce−σ0kRt‖Ẽ‖L2(Ωc)‖h‖H(curl;Ω∞\Ω̄3).

Using (5.4), (5.5), Propositions 3.1 and 3.2, and following the proof of Theorem 4.2
(below (4.18)) gives

(5.6) |〈n×∇×F̂ , ẑ〉Γ∞ | ≤ C‖Φ‖L2(Ω4)(e
−σ0kRt‖F̂ ‖L2(Ω4) + e−2σ0kRt‖Ẽ‖L2(Ω4)).

Finally, we bound the second term on the right hand side of (5.3). Using a trace
inequality we have that

|〈n × Ẽ, ∇×ẑ〉Γ∞ | ≤ C‖Ẽ‖H1(Sγ)‖ẑ‖H2(Sγ).

Note that the components Ẽ and ẑ satisfy (3.14) with β = k2d2
0 in Sγ . Thus from

Proposition 3.1, Theorem 4.1, and Proposition 3.2, we obtain

|〈n × Ẽ, ∇×ẑ〉Γ∞ | ≤ Ce−2σ0kRt‖Ẽ‖L2(Ωc)‖Φ‖L2(Ω4).

Combining the above gives

|(F̂ ,Φ)Ω4 | ≤ C‖Φ‖L2(Ω4)(e
−2σ0kRt‖Ẽ‖L2(Ωc) + e−σ0kRt‖F̂ ‖L2(Ω4)).

The theorem easily follows from the above inequality and Corollary 4.1. �

6. Appendix

We now provide a proof of Lemma 4.1. We first consider the case of Ωc and
ω = Ω2. Let χ be a smooth cutoff function which is one on Ω2 \ Ω1 and supported
in Ω3 \ Ω0. Let W be in X(Ωc) and set W 1 = (1 − χ)W . Then, W 1 is in
H0(curl; Ω2) ∩ H(div; Ω2) and therefore is in Hs(Ω2) (see [1]).

The proof in this case will be complete if we show that W is in Hs(D) where
D = Ω3\Ω0. Let Ď and D̃ extend D (D ⊂ D̃ ⊂ Ď) with the closure of Ď contained
in Ωc and let χ1 be a cutoff function, which is supported on Ď and is one on D̃.
Let φ ∈ H1

0 (Ď) be the solution of

(∇φ,∇θ)Ď = (χ1W ,∇θ)Ď for all θ ∈ H1
0 (Ď).

Then W̃ = χ1W − ∇φ is in H0(curl; Ď) ∩ H(div; Ď), i.e., it is in Hs(Ď). We
note that φ also satisfies

(6.1) (µ∇φ,∇θ)D̃ = −(µW̃ ,∇θ)D̃ for all θ ∈ H1
0 (D̃).
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Now, W̃ is in H1(D̃) (see Corollary 2.10 of [6]), so the right hand side above coin-
cides with a bounded functional on L2. Since the coefficients in µ are in W 2

∞(D̃),
the solution φ is in H2(D), i.e., ∇φ is in H1(D). Thus, W = W̃ +∇θ is in H1(D).

The proof in the case of Ω∞ is similar. The only difference is that one uses
the constant coefficient operator in the neighborhood of both the inner and outer
boundary (of Ω∞) to reduce to regularity on an overlapping interior domain.
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