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Abstract. A semilinear reaction-diffusion equation with multiple solutions
is considered in a smooth two-dimensional domain. Its diffusion parameter
ε2 is arbitrarily small, which induces boundary layers. Constructing discrete
sub- and super-solutions, we prove existence and investigate the accuracy of
multiple discrete solutions on layer-adapted meshes of Bakhvalov and Shishkin
types. It is shown that one gets second-order convergence (with, in the case
of the Shishkin mesh, a logarithmic factor) in the discrete maximum norm,
uniformly in ε for ε ≤ Ch. Here h > 0 is the maximum side length of mesh
elements, while the number of mesh nodes does not exceed Ch−2. Numerical
experiments are performed to support the theoretical results.

1. Introduction

Consider the singularly perturbed semilinear reaction-diffusion boundary-value
problem

Fu ≡ −ε2�u + b(x, u) = 0, x = (x1, x2) ∈ Ω ⊂ R
2,(1.1a)

u(x) = g(x), x ∈ ∂Ω,(1.1b)

where ε is a small positive parameter, � = ∂2/∂x2
1+∂2/∂x2

2 is the Laplace operator,
and Ω is a bounded two-dimensional domain whose boundary ∂Ω is sufficiently
smooth. Assume also that the functions b and g are sufficiently smooth. We
shall examine solutions of (1.1) that exhibit boundary layer behaviour. In general,
solutions of (1.1) may also have interior transition layers, which we will consider in
a future paper.

The reduced problem of (1.1) is defined by formally setting ε = 0 in (1.1a), viz.,

(1.2) b(x, u0(x)) = 0 for x ∈ Ω.

Note that any solution u0 of (1.2) does not in general satisfy the boundary condition
in ( 1.1b).
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Figure 1. Multiple boundary-layer solutions of model problem
(4.1); in the interior subdomain u(x) ≈ ū0(x) (left) or u(x) ≈
−ū0(x) (right), where ±ū0(x) are stable solutions of the reduced
problem (1.2).

In the numerical analysis literature it is often assumed (see, e.g., [15, 2]) that
bu(x, u) > γ2 > 0 for all (x, u) ∈ Ω × R

1, for some positive constant γ. Under this
condition the reduced problem has a unique solution u0 that is sufficiently smooth
in Ω̄, as can be seen by using the implicit function theorem and the compactness
of Ω̄. This global condition is nevertheless rather restrictive. E.g., mathematical
models of biological and chemical processes frequently involve problems related to
(1.1) with b(x, u) that is non-monotone with respect to u [11, §14.7], [7, §2.3]. Hence
we consider problem (1.1) under the following weaker assumptions from [6, 12]:

• it has a stable reduced solution, i.e., there exists a sufficiently smooth solu-
tion u0 of (1.2) such that

(A1) bu(x, u0) > γ2 > 0 for all x ∈ Ω;

• the boundary condition satisfies

(A2)
∫ v

u0(x)

b(x, s) ds > 0 for all v ∈
(
u0(x), g(x)

]′
, x ∈ ∂Ω.

Here the notation (a, b]′ is defined to be (a, b] when a < b and [b, a) when
a > b, while (a, b]′ = ∅ when a = b.

Note that if g(x) ≈ u0(x), then (A2) follows from (A1) combined with (1.2), while
if g(x) = u0(x) at some point x ∈ ∂Ω, then (A2) does not impose any restriction
on g at this point.

Conditions (A1), (A2) intrinsically arise from the asymptotic analysis of problem
(1.1) and guarantee that there exists a boundary-layer solution u of (1.1) such that
u ≈ u0 in the interior subdomain of Ω away from the boundary, while the boundary
layer is of width O(ε| ln ε|) [6, 12]; see Theorem 2.2 for a precise statement and [8]
for a detailed discussion of (A1), (A2) in one dimension. Note that assumption
(A1) is local, i.e., the reduced problem (1.2) is permitted to have more than one
stable solution. Furthermore, if multiple stable solutions of the reduced problem
satisfy (A2), problem (1.1) has multiple boundary-layer solutions; see Figure 1.

We discretize the domain as in Figure 2 (see §3.1 for details) using layer-adapted
meshes of Bakhvalov and Shishkin types whose number of mesh nodes does not
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Figure 2. Layer-adapted mesh.

exceed Ch−2. Here h > 0 is the maximum side length of mesh elements of the
layer-adapted meshes that we consider.

Then we discretize equation (1.1a) combining finite differences on the curvilin-
ear tensor-product part of the mesh and lumped mass linear finite elements on a
quasiuniform Delaunay triangulation in the interior region. The key feature of our
method is that it uses an M -matrix discretization of the operator −�.

Constructing discrete sub- and super-solutions, we prove existence and investi-
gate the accuracy of multiple discrete solutions of problem (1.1). Our main result is
Theorem 3.20 that states second-order convergence (with, in the case of the Shishkin
mesh, a logarithmic factor) in the discrete maximum norm, uniformly in ε.

We make two further simplifying assumptions to facilitate our presentation. To
avoid considering cases, assume that

(A3) u0(x) < g(x) for all x ∈ ∂Ω.

Throughout our analysis take

(A4) ε ≤ Ch.

This is not a practical restriction, and from a theoretical viewpoint the analysis of
a non-linear problem such as (1.1) would be very different if ε were not small.

A one-dimensional version of problem (1.1) was studied in [5, 17, 8]. The present
paper extends the analysis [8] to two dimensions. Linear analogues of the two-
dimensional problem (1.1) were considered in [10, 4]. Melenk [10] gives energy
norm error estimates for hp-finite element methods on layer-adapted meshes in a
curvilinear polygon. Clavero et al. [4] present maximum norm error estimates for
finite differences on Shishkin meshes in the unit square. The semilinear problem
(1.1) under the condition bu > γ2 > 0 for all (x, u) was considered in [15, 2, 3].
Schatz and Wahlbin [15] derive pointwise error estimates for the Galerkin finite ele-
ments on quasiuniform unrefined meshes in polygonal domains. Blatov [2, 3] proves
second-order convergence in the discrete maximum norm of a finite element method
on a Bakhvalov-type mesh in a smooth domain (under the condition ε| ln ε| ≤ Ch
similar to (A4)). Note that the meshes that are considered in the present paper
resemble the mesh [2, 3], while our numerical method is different. In [2, 3] bilinear
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elements are used on the curvilinear tensor-product part of the mesh. Further-
more, our analysis is completely different from the analysis by Blatov. To be more
precise, Blatov estimates the error in terms of the interpolation error, which in-
volves rather technical arguments, while we obtain error bounds using modified
asymptotic expansions for problem (1.1) and then invoking the theory of Z-fields.

The paper is organized as follows. In §2 we discuss asymptotic properties of so-
lutions of (1.1) and construct sub- and super-solutions. In §3 layer-adapted meshes
and a numerical method for solving (1.1) are described, and discrete analogues of
the sub- and super-solutions are used to obtain tight upper and lower bounds on
the computed solutions. Precise convergence results for the numerical method are
then derived on Bakhvalov and Shishkin meshes. Finally, in §4, numerical results
illustrate the sharpness of our convergence bounds.

Notation. Throughout this paper we let C denote a generic positive constant that
may take different values in different formulas, but is always independent of h
and ε. A subscripted C (e.g., C1) denotes a positive constant that is independent
of h and ε and takes a fixed value. For any two quantities w1 and w2, the notation
w1 = O(w2) means |w1| ≤ Cw2. For any function g ∈ C(Ω̄), the notation gi or gij

means g(Xi) or g(xij), respectively, where Xi ∈ Ω̄ and xij ∈ Ω̄ are mesh nodes.

2. Asymptotic analysis, sub- and super-solutions

We start this section by sketching the asymptotic expansion from [12]; see also
[19, §4], [18, §3.1.1] for the linear case. Furthermore, we modify it to construct
certain sub- and super-solutions that provide tight control on the solutions of (1.1).

2.1. Local curvilinear coordinates. Let the boundary ∂Ω be parametrized by

x1 = ϕ(l), x2 = ψ(l), 0 ≤ l ≤ L,

where (ϕ(0), ψ(0)) = (ϕ(L), ψ(L)) and as l increases, the domain remains on the
left. Any functions that are defined for l beyond [0, L] should be understood as
extended L-periodically. We shall use the magnitude τ > 0 of the tangent vector
(ϕ′, ψ′) and the curvature κ of the boundary at (ϕ(l), ψ(l)) that are defined by

τ =
√

ϕ′2 + ψ′2, κ = κ(l) =
ϕ′ψ′′ − ψ′ϕ′′

τ3
.

In a narrow neighbourhood of ∂Ω that will be specified later, introduce the curvi-
linear local coordinates (r, l) by

(2.1) x1 = ϕ(l) + rn1(l), x2 = ψ(l) + rn2(l),

where (n1, n2) is the inward unit normal to ∂Ω at (ϕ(l), ψ(l)), i.e., it is orthogonal
to the tangent vector (ϕ′, ψ′) and is defined by

n1 =
−ψ′

τ
, n2 =

ϕ′

τ
.

Since ∂Ω is smooth, there exists a sufficiently small constant C1 such that in the
subdomain Ω̄C1 = {0 ≤ r ≤ C1} the new coordinates are well-defined and the
mapping (r, l) �→ (x1, x2) is one-to-one and invertible. Throughout the paper we
shall use a smooth positive cut-off function ω(x) that equals 1 for r ≤ C1/2 and
vanishes in Ω̄\Ω̄C1 .
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Lemma 2.1. The curvilinear coordinates (2.1) are orthogonal, and for the Laplace
operator we have

(2.2) �u = η−1 ∂

∂r

(
η
∂u

∂r

)
+ ζ

∂

∂l

(
ζ
∂u

∂l

)
, where η := 1 − κr, ζ := (τη)−1.

We defer the proof of this lemma to Appendix A.

2.2. First-order asymptotic expansion. To construct an asymptotic expansion,
introduce the stretched variable

(2.3) ξ := r/ε

and the functions v0(ξ, l) and v1(ξ, l) defined by

− ∂2v0

∂ξ2
+ b(x̄, u0(x̄) + v0) = 0,(2.4)

−∂2v1

∂ξ2
+ v1bu(x̄, u0(x̄) + v0) = −ξ

d

dr
b
(
x, u0(x) + t

)∣∣∣
x=x̄,t=v0

−κ
∂v0

∂ξ
(2.5)

for ξ > 0, with the boundary conditions

(2.6) v0(0, l) = g(x̄) − u0(x̄), v1(0, l) = 0, v0(∞, l) = v1(∞, l) = 0.

Here x = x(r, l) is defined by (2.1),

x̄ = x̄(l) := (ϕ(l), ψ(l)), η−1 ∂η

∂r

∣∣∣
r=0

=
−κ

1 − κr

∣∣∣
r=0

= −κ.

Note that for each l the equation for v0 is a nonlinear autonomous ODE. Our con-
ditions (A1), (A2) are precisely what is needed to ensure existence and asymptotic
properties of v0 and v1 [8, 12]; see Lemma 2.4.

The following result is a simplified version of [12, Theorem 3].

Theorem 2.2 ([12]). Under hypotheses (A1), (A2), for sufficiently small ε there
exists a solution u(x) of (1.1) in a neighbourhood of the zero-order asymptotic ex-
pansion u0(x)+v0(ξ, l) ω(x). Furthermore, for the first-order asymptotic expansion

uas(x) := u0(x) +
[
v0(ξ, l) + εv1(ξ, l)

]
ω(x)

we have

(2.7)
∣∣Fuas(x)

∣∣ ≤ Cε2,
∣∣u(x) − uas(x)

∣∣ ≤ Cε2 for all x ∈ Ω̄.

Remark 2.3. The asymptotic expansion from Theorem 2.2 provides an accurate
approximation of u. Note that in general it is inefficient to compute approximate
solutions in this way, because one must solve several auxiliary, possibly nonlinear
problems. It is simpler instead to apply a suitable numerical method directly to
the original singularly perturbed differential equation.

2.3. Modified asymptotic expansion, sub- and super-solutions. To con-
struct discrete sub- and super-solutions, we shall use the auxiliary function v(ξ, l; p)
that is defined by

(2.8) −∂2v

∂ξ2
+ b(x̄, u0(x̄) + v) = p v,

with the boundary conditions

(2.9) v(0, l; p) = g(x̄) − u0(x̄), v(∞, l; p)) = 0.
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Clearly v(ξ, l; p) is a generalization of v0(ξ, l) from (2.4) and v(ξ, l; 0) = v0(ξ, l).
Furthermore, set

(2.10) β(x; p) := u0(x) +
[
v(ξ, l; p) + εv1(ξ, l)

]
ω(x) + C0p,

where C0 is a sufficiently small positive constant that will be specified later. Note
that (2.10) can be rewritten as

(2.11) β(x; p) = uas(x)+w(ξ, l; p)+C0p, w(ξ, l; p) :=
[
v(ξ, l; p)−v(ξ, l; 0)

]
ω(x).

For some small p > 0 the functions β(x;−p) and β(x; p) will serve as sub- and
super-solutions respectively. The value p in the definition of v and β is a small real
number that will be chosen later and is typically o(h). Thus for h sufficiently small,
by the following lemma, β is well defined.

Lemma 2.4. Set γ2
0 := min

x∈∂Ω
bu(x, u0(x)) > 0. There exists p0 ∈ (0, γ2

0) such that

for all |p| ≤ p0 there exist v0(ξ, l), v1(ξ, l), and v(ξ, l; p) that satisfy (2.4), (2.5),
(2.6), (2.8), (2.9). Furthermore, v0 ≥ 0 and v ≥ 0. Additionally, let γ̃2

0 := γ2
0 − p0

and δ ∈ (0, γ̃0) be arbitrary but fixed; then there exists a positive constant Cδ such
that

(2.12)
∂v(ξ, l; p)

∂p
≥ 0

and

(2.13)
∣∣∣∂kv(ξ, l; p)

∂ξk

∣∣∣ +
∣∣∣∂kv1(ξ, l)

∂ξk

∣∣∣ +
∣∣∣∂v(ξ, l; p)

∂p

∣∣∣ +
∣∣∣∂2v(ξ, l; p)

∂p ∂ξ

∣∣∣ ≤ Cδe
−(γ̃0−δ)ξ

for 0 ≤ ξ < ∞, all l and k = 0, 1, . . . , 4.

Proof. The present lemma is an extended version of [8, Lemma 2.3 and (2.15)]. The
estimate for vpξ is proved similarly to the estimate for vp. �
Remark 2.5. By (A1), γ0 > γ. Choosing p0 and δ sufficiently small, we can make
γ̃0 − δ in (2.13) arbitrarily close to γ0 and γ̃0 − δ > γ.

Corollary 2.6. We have (1 + ξ)|w| + |wξ| ≤ Cp, where w is defined in (2.11).

Proof. This follows from estimates (2.13) for vp and vpξ. �
Corollary 2.7. We have β(x; p) = uas(x)+O(p) = u(x)+O(p+ε2). Furthermore,
if p ≥ 0, then β(x;−p) ≤ β(x; p).

Proof. These two statements follow from Corollary 2.6 combined with (2.7), and
(2.10) combined with (2.12), respectively. �
Lemma 2.8. We have

Fβ = C0p bu(x, u0) + [1 + C0λ(x)] p v0(ξ, l) + O(ε2 + p2)

where λ(x) := buu

(
x, u0 + ϑv0

)
with ϑ = ϑ(x) ∈ (0, 1).

Proof. To simplify the presentation, assume that the cut-off function ω equals 1 in
the whole domain Ω̄. Since this is not the case for εξ > C1/2, where the functions
v and v1 and their derivatives are negligible, this assumption will not influence our
conclusions.

Throughout the proof we use the notation x̄ := (ϕ(l), ψ(l)) and ū0 := u0(x̄),
while u0, v0, v, and w are, as usual, abbreviations for u0(x), v0(ξ, l), v(ξ, l; p), and
w(ξ, l; p) respectively. Note that v0 = v(ξ, l; 0).
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It follows from (2.7) that ε2�uas = b(x, uas) + O(ε2). Furthermore, by (2.2),
(2.3), (2.11), we get ε2�w = wξξ + O(ε|wξ|+ ε2). Recalling that, by Corollary 2.6,
|wξ| ≤ Cp, we arrive at

Fβ = −b(x, uas) − wξξ + b(x, uas + w + C0p) + O(p2 + ε2).

Now, by (2.8) combined with v = v0 + w and w = O(p), we get

wξξ = [b(x̄, ū0 + v0 + w) − b(x̄, ū0 + v0)] − pv0 + O(p2).

Hence

Fβ = −b(x, uas) − [b(x̄, ū0 + v0 + w) − b(x̄, ū0 + v0)] + pv0

+b(x, uas + w + C0p) + O(p2 + ε2).

Introducing the function

µ(t) := b(x, uas + t) − b(x̄, ū0 + v0 + t),

we can rewrite this as

(2.14) Fβ = [b(x, uas +w+C0p)−b(x, uas +w)]+[µ(w)−µ(0)]+pv0 +O(p2 +ε2).

Since uas = u0 + v0 + O(ε) and w = O(p), we have

(2.15) b(x, uas + w + C0p) − b(x, uas + w) = [bu(x, u0 + v0) + O(ε + p)]C0p,

where

(2.16) bu(x, u0 + v0) C0p = [bu(x, u0) + λ(x)v0]C0p.

Furthermore,

µ(w) − µ(0) = wµ′(ϑ̄w) = [bu(x, uas + ϑ̄w) − bu(x̄, ū0 + v0 + ϑ̄w)]w,

where ϑ̄ = ϑ̄(x) ∈ (0, 1). Now by Corollary 2.6, we get

(2.17) µ(w) − µ(0) = O(ε)[1 + ξ]|w| = O(εp).

Combining (2.14)-(2.17), we complete the proof. �

Corollary 2.9. There exists C0 > 0 such that for all |p| ≤ p0 we have

Fβ ≥ C0p γ2 + O(ε2 + p2), if p > 0,
Fβ ≤ −C0|p| γ2 + O(ε2 + p2), if p < 0.

Proof. Recall (A1) and that v0 ≥ 0, by Lemma 2.4. Now choose 0 < C0 ≤ |λ(x)|−1

for all x so that 1 + C0λ(x) ≥ 0. �

Thus if p > 0 and C0p γ2 dominates O(ε2+p2) in Corollary 2.9, then Fβ(x;−p) ≤
0 ≤ Fβ(x; p), while, by Corollary 2.7, β(x;−p) ≤ β(x; p). Such functions β(x;−p)
and β(x; p) are called sub- and super-solutions of problem (1.1).
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3. Analysis of the numerical method

3.1. Layer-adapted meshes. Introduce a small positive parameter σ that will be
specified later. Let σ ≤ C1 so that the closed curve ∂Ωσ that is defined by the
equation r = σ does not intersect itself. Furthermore, let Ωσ be the interior of
∂Ωσ. Our problem will be discretized separately in Ωσ and Ω \ Ωσ, to which we
shall refer as the interior region and the layer region respectively; see Figure 2.

The boundary-layer region Ω\Ωσ is the rectangle (0, σ)×[0, L] in the coordinates
(r, l). Hence in this subdomain introduce the tensor-product mesh {(ri, lj), i =
0, . . . , N, j = −1, . . .Nl}, where, as usual, r0 = 0, rN = σ, l0 = 0, and lNl

= L,
while l−1 = lNl−1 − L. Furthermore, let {lj} be a quasiuniform mesh on [0, L],
i.e., C−1h ≤ lj − lj−1 ≤ Ch. The choice of the layer-adapted mesh {ri} on [0, σ] is
crucial and will be discussed later; see (a), (b). Now assume only that ri−ri−1 ≤ h
and

(3.1) C−1h−1 ≤ N ≤ Ch−1.

In the interior region Ωσ introduce a quasiuniform Delaunay triangulation, i.e.,
the maximum side length of any triangle is at most h, the area of any triangle
is bounded below by Ch2, and the sum of the angles opposite to any edge is less
than or equal to π (while any angle opposite to ∂Ωσ does not exceed π/2). Then
the piecewise linear finite element discretization of the operator −� yields an M -
matrix.

Furthermore, let the union of all the triangles define a polygonal domain Ωh
σ

whose boundary vertices lie on ∂Ωσ. Note that we do not replace our original
domain Ω by a similar polygonal domain Ωh, since a significant part of the boundary
layer would be lost in Ω\Ωh. We also require that both the interior and layer meshes
have the same sets of nodes on ∂Ωσ.

We focus on two particular choices of {ri}:
3.1(a) Bakhvalov mesh [1]. Set σ := 2γ−1ε| ln ε| and define the mesh by

ri := r
(
[1 − ε] i/N

)
, i = 0 . . . , N, r(t) := −2γ−1ε ln(1 − t) for t ∈ [0, 1 − ε].

3.1(b) Shishkin mesh [16]. Set σ = 2γ−1ε ln N and introduce a uniform mesh
{ri}N

i=0 on [0, σ], i.e., ri − ri−1 = σ/N = 2γ−1εN−1ln N .
Note that if ε is sufficiently small (recall (A4)) the condition σ ≤ C1 is satisfied

and the meshes (a) and (b) are well-defined.

Remark 3.1. If (A4) is not satisfied, but (a) σ ≤ C1 and ε ≤ 1/2, or (b) σ ≤ C1,
the meshes 3.1(a) and 3.1(b) remain well-defined. Otherwise we have ε > C, i.e.,
our problem is not singularly perturbed. Hence imitating [1, 16], extend the mesh
definitions 3.1(a) and 3.1(b) by using the mesh (b) with σ := C1. Alternatively,
one can simply use linear finite elements on a quasiuniform Delaunay triangulation
of the whole domain Ω̄.

Remark 3.2. In the mesh definitions 3.1(a) and 3.1(b) the constant γ from (A1)
can be replaced by an arbitrary constant γ̃ ∈ (0, γ0), where γ0 is from Lemma 2.4;
see Remark 2.5.

3.2. Z-fields.

Definition 3.3. An operator H : R
n → R

n is a Z-field if for all i �= j the mapping
xj �→

(
H(x1, x2, . . . , xn)

)
i
is a monotonically decreasing function from R to R when

x1, . . . , xj−1, xj+1, . . . , xn are fixed.
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Remark 3.4. If H is differentiable, then H is a Z-field if and only if its Jacobian
matrix has non-positive off-diagonal entries.

Remark 3.5. An M -function [13, Def. 13.5.7] is a particular case of a Z-field. To
be precise, a mapping H is an M -function if H is an inverse-isotone Z-field.

We shall use the following unpublished result of Lorenz [9], whose proof is also
given in [8].

Lemma 3.6 ([9]). Let H : R
n → R

n be continuous and a Z-field. Let r ∈ R
n be

given. Assume that there exist α, β ∈ R
n such that α ≤ β and Hα ≤ r ≤ Hβ.

(The inequalities are understood to hold true component-wise.) Then the equation
Hy = r has a solution y ∈ R

n with α ≤ y ≤ β.

Remark 3.7. The functions α and β of Lemma 3.6 are called sub- and super-solutions
of the discrete problem Hy = r.

Remark 3.8. Let X1, X2, . . . , Xn be interior points of Ω, while X̄1, X̄2, . . . , X̄m are
on ∂Ω, and let U ∈ R

n+m be a discrete function defined at these points. Suppose
that Fh : R

n+m → R
n has the form

(3.2) FhU = ε2 ΛU +
[
b(Xi, Ui)

]n

i=1
,

where Λ is an M -matrix discretization of the operator −�. Then the mapping
(X1, . . . , Xn, X̄1, . . . , X̄m) �→

(
FhU1, . . . , F

hUn, g(X̄1), . . . , g(X̄m)
)

is a Z-field.

Remark 3.9. Thus to invoke the theory of Z-fields we require the following: (i) an
M -matrix discretization of −�; (ii) the discretization of b(x, u) at any interior mesh
point Xi involves only Uk with k = i. Hence we use finite differences in the layer
region and lumped mass linear finite elements on Delaunay triangulations in the
interior region.

3.3. Discretization in the interior of the boundary-layer region. Recall
that Ω \ Ωσ is the rectangle (0, σ) × [0, L] in the coordinates (r, l). Hence rewrite
(1.1a) in (r, l) coordinates, by (2.2), and then discretize it using the standard finite
differences on the tensor-product mesh {(ri, lj)} [14]. In the interior of Ω \Ωσ, i.e.,
for i = 1, . . . , N − 1, j = 0, . . . , Nl − 1, set

(3.3) FhUij := −ε2η−1
ij Dr[η̃ijD

−
r Uij ] − ε2ζijDl[ζ̃ijD

−
l Uij ] + b(xij , Uij) = 0,

Ui,Nl
= Ui,0, Ui,−1 = Ui,Nl−1, U0,j = g(x0,j).

Here Uij is the discrete computed solution at the mesh node xij ,

D−
r vij :=

vij − vi−1,j

ri − ri−1
, Drvij :=

vi+1,j − vij

(ri+1 − ri−1)/2
,

D−
l vij :=

vij − vi,j−1

lj − lj−1
, Dlvij :=

vi,j+1 − vij

(lj+1 − lj−1)/2
,

and

ηij := η(ri, lj), ζij := ζ(ri, lj), xij := x(ri, lj),

η̃ij := η(ri−1/2, lj), ζ̃ij := ζ(ri, lj−1/2).

Remark 3.10. Discretization (3.3) is of type (3.2).
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Lemma 3.11. Let β(x; p) be defined by (2.10), and let the mesh {ri}N
i=0 be either

the Bakhvalov mesh of §3.1(a), or the Shishkin mesh of §3.1(b). Then for all |p| ≤ p0

at all interior mesh nodes xij , i = 1, . . . , N − 1, j = 0, . . . , Nl − 1 we have∣∣Fhβij − Fβ(xij)
∣∣ ≤ Ch2| ln h|m,

where m = 0 for the Bakhvalov mesh (a) and m = 2 for the Shishkin mesh (b).

Proof. Note that the term ε2ζ(ζβl)l in Fβ and its discrete analogue in Fhβ are
O(ε2) ≤ O(h2), by (A4). Now imitate the argument of [8, Lemma 3.3 and §3.4.2]
and recall (3.1). �

3.4. Discretization in the boundary-layer region on the interface bound-
ary ∂Ωσ. On the interface boundary ∂Ωσ introduce the fictitious Neumann bound-
ary condition

(3.4)
∂u

∂r
= φ(x) for x ∈ ∂Ωσ,

which will be eliminated when we compile the two discretizations.
For i = N , j = 0, . . . , Nl − 1, following [14], we discretize (1.1a), (2.2) combined

with (3.4) as follows:

(3.5) Fh
−UNj := −ε2 δ2

rUNj − ε2 ζNj Dl[ ζ̃Nj D−
l UNj ] + b(xNj , UNj) = 0,

UN,Nl
= UN,0, UN,−1 = UN,Nl−1,

where

(3.6) δ2
rUNj := η−1

Nj

ηNj φj − η̃Nj D−
r UNj

hN/2
=

2
hN

φj − η−1
Nj

2
hN

η̃Nj D−
r UNj ,

hN := rN − rN−1, φj := φ(xNj).
The notation Fh

− reflects the fact that this is the contribution to the discretization
on ∂Ωσ from the r = σ− part of Ω. Furthermore, Fh

− involves an auxiliary unknown
function φ. The actual discretization will be obtained after we discretize the r = σ+

part of Ω and then compile the two discretizations by eliminating φ; see §3.6.
The following lemma presents an auxiliary result that we need to estimate the

truncation error near ∂Ωσ in Ωσ.

Lemma 3.12. Let Ω̃σ ⊃ Ωσ be the interior of the closed curve r = σ − hN , where
σ and {ri}N

i=0 are chosen as in either §3.1(a) or §3.1(b). Then for β(x; p) from
(2.10) we have ‖β‖C2(Ω̃σ) ≤ C(1 + h2/ε2).

Proof. For u0 from (1.2) we have ‖u0‖C2(Ω) ≤ C. The derivatives of v and v1 (see
(2.8), (2.5)) with respect to l are estimated similarly. To prove the desired estimate
for the derivatives of v and v1 with respect to r, combine estimates (2.13) with
r = εξ; then recall Remark 2.5 and the values of σ and hN for meshes (a) and (b),
in particular, (a) σ − hN = 2γ−1ε ln[1/O(h)] and (b) hN = O(εh| lnh|). Finally,
check that ε−2e−γ(σ−hN )/ε is bounded by Ch2/ε2. �

Lemma 3.13. Let β(x; p) be defined by (2.10), and let the mesh {ri}N
i=0 be either

the Bakhvalov mesh §3.1(a), or the Shishkin mesh §3.1(b). Then for all |p| ≤ p0 at
all interface-boundary mesh nodes xNj ∈ ∂Ωσ we have

(3.7)
(
Fh
−β − Fβ

)∣∣∣
xNj∈∂Ωσ

=
2ε2

hN

(∂β

∂r
− φ

)∣∣∣
xNj

+ O
(
h2

)
.
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Proof. First note that

Fh
−βNj − Fβ(xNj) = −ε2 δ2

rβNj + O(ε2) ‖β‖C2(Ω̃σ).

Now

δ2
rβNj =

φj − ∂β
∂r

∣∣
xNj

hN/2
+ η−1

Nj

ηNj
∂β
∂r

∣∣
xNj

− η̃Nj D−
r βNj

hN/2
,

where the second term on the right-hand side is bounded by C‖β‖C2(Ω̃σ). Combine
these with Lemma 3.12 and (A4), to complete the proof. �

3.5. Discretization in the interior part of the domain. Equation (1.1a) in
Ωσ combined with the boundary condition (3.4) has the following standard weak
form: Find u ∈ W 1

2 (Ωσ) such that ∀v ∈ W 1
2 (Ωσ) we have

ε2(∇u,∇v) + ε2

∮
∂Ωσ

φ v ds + (b(x, u), v) = 0,

where the notation (·, ·) is used for the inner product in L2(Ωσ). Here we used (3.4)
rewritten as ∂u

∂n = −φ since the outward normal is opposite to the r-direction.
Let Sh ⊂ W 1

2 (Ωh
σ) be the standard finite element space of continuous functions

that are linear on each of the triangles of our mesh in Ωh
σ. In Ωh

σ define the approx-
imate solution U ∈ Sh by

(3.8) ε2(∇U,∇χi) + ε2φi

∮
∂Ωh

σ

χi ds + b(Xi, Ui) (1, χi) = 0 ∀ χi ∈ Sh,

where Xi is a mesh node in Ω̄h
σ, while Ui = U(Xi), φi = φ(Xi), and χi ∈ Sh are

the nodal basis functions, i.e., χi(Xj) equals 1 if i = j and 0 otherwise. Here we
used the lumped mass discretization of both the boundary integral and the integral
involving b; see Remarks 3.8 and 3.9.

First, consider (3.8) at interior meshnodes Xi of Ωσ. For consistency with the
finite difference operator Fh, define

(3.9) FhUi :=
ε2

(1, χi)
(∇U,∇χi) + b(Xi, Ui) = 0 ∀ Xi ∈ Ωσ.

Remark 3.14. Since we have a Delaunay triangulation, the first term yields an
M -matrix. Hence (3.9) in the interior mesh nodes of Ωσ is of type (3.2).

Lemma 3.15. Let β = β(x; p) be defined by (2.10), and let βI ∈ Sh be its piecewise
linear interpolant such that βI(Xi) = β(Xi) at all mesh nodes Xi ∈ Ω̄σ. Further-
more, let σ be chosen as in either §3.1(a) or §3.1(b). Then for all |p| ≤ p0 we
have ∣∣FhβI

i − Fβi

∣∣ ≤ Ch2 ∀ Xi ∈ Ωσ.

Proof. We intend to estimate

FhβI
i − Fβ

∣∣
Xi

=
ε2

(1, χi)
(∇βI ,∇χi) + ε2�β

∣∣
Xi

.

Since Xi is an interior node of Ωσ, then χi = 0 on ∂Ωh
σ and hence we get

(3.10) (∇βI ,∇χi) = (∇[βI − β],∇χi) − (�β, χi).
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Combine this with the interpolation error estimate |∇[βI −β]| ≤ Ch‖β‖C2(Ω̄σ) and
the standard quasiuniform-mesh properties (1, |∇χi|) ≤ Ch and (1, χi) ≥ Ch2.
Hence

|FhβI
i − Fβi| ≤ C ε2‖β‖C2(Ω̄σ).

Combining this with Lemma 3.12 and (A4), we complete the proof. �

3.6. Discretization on the interface boundary ∂Ωσ. Now consider (3.8) at
mesh nodes Xj on the interface boundary ∂Ωσ and define

(3.11) Fh
+Uj :=

ε2

(1, χj)
(∇U,∇χj) +

ε2aj

h
φj + b(Xj , Uj) = 0 ∀ Xj ∈ ∂Ωσ,

where

(3.12) aj :=
h

(1, χj)

∮
∂Ωh

σ

χj ds, 0 < C−1 < aj < C.

The second relation in (3.12) holds true for all j since in Ωσ our triangulation is
quasiuniform.

Lemma 3.16. Under the conditions of Lemma 3.15, for all |p| ≤ p0 we have

(3.13) Fh
+βI

j − Fβj = −aj
ε2

h

(∂β

∂r
− φ

)∣∣∣
Xj

+ O(h2) ∀ Xj ∈ ∂Ωσ.

Proof. We intend to estimate

Fh
+βI

j − Fβ
∣∣∣
Xj

=
ε2

(1, χj)
(∇βI ,∇χj) + ε2 aj

h
φj + ε2�β

∣∣∣
Xj

.

Imitate the argument of Lemma 3.15 with the difference that now χj does not
vanish on ∂Ωh

σ. This results in additional terms that involve integrals along ∂Ωh
σ.

Instead of (3.10) we have

(∇βI ,∇χj) = (∇[βI − β],∇χj) − (�β, χj) +
∮

∂Ωh
σ

χj
∂β

∂n
ds.

Here ∂β
∂n is the derivative in the direction of the outward normal computed at points

within O(h)-distance from Xj , for which we have

∂β

∂n
= −∂β

∂r

∣∣∣
Xj

+ O(h) ‖β‖C2(Ω̄σ).

To get this, we also noted that due to smoothness of Ωσ, the directions of −r at
Xj and the normal n to ∂Ωh

σ in the O(h)-neighbourhood of Xj differ by at most
O(h). To complete the proof, use

∮
∂Ωh

σ
χj ds ≤ Ch, Lemma 3.12, and (A4). �

Now we compile the discretizations Fh
− (3.5), (3.6) and Fh

+ (3.11), (3.12) by elim-
inating the auxiliary unknown function φ and obtaining the actual discretization
on the interface boundary ∂Ωσ:

(3.14) FhUj :=
(hN/2) Fh

−Uj + (h/aj) Fh
+Uj

hN/2 + h/aj
∀ Xj ∈ ∂Ωσ.

Remark 3.17. By (3.5), (3.6), (3.11), (3.12), the discretization (3.14) is of type
(3.2).
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Lemma 3.18. Under the conditions of Lemma 3.13, for Fh of ( 3.14) we have
∣∣Fhβj − Fβj

∣∣ ≤ Ch2 ∀ Xj ∈ ∂Ωσ.

Proof. Add (3.7) multiplied by (hN/2) to (3.13) multiplied by (h/aj) and divide
the result by (hN/2 + h/aj). �

3.7. Existence and accuracy, discrete sub- and super-solutions.

Lemma 3.19. Set p̄ := C2h
2| ln h|m, where m = 0 for the Bakhvalov mesh of

§3.1(a) and m = 2 for the Shishkin mesh of §3.1(b), while C2 > 0 is a sufficiently
large constant. Let β(x; p) be defined by (2.10) and h ≤ C3,where C3 > 0 is suffi-
ciently small. Then β(Xi ;−p̄) and β(Xi ; p̄) are discrete sub- and supers-solutions
(see Remark 3.7).

Proof. Combine Lemmas 3.11, 3.15, and 3.18 and then choose C2 sufficiently large
to get |Fhβ − Fβ| ≤ Ch2| ln h|m ≤ p̄/2 for all |p| ≤ p0. Now, by Corollary 2.9 and
(A4), if C2 is sufficiently large and h is sufficiently small, we have Fβ(x;−p̄) ≤ −p̄/2
and Fβ(x; p̄) ≥ p̄/2. Hence Fhβ(Xi ;−p̄) ≤ 0 and Fhβ(Xi ; p̄) ≥ 0. Furthermore,
by Corollary 2.7, we have β(Xi;−p̄) ≤ β(Xi, p̄). We are done; see Remark 3.7. �

The following theorem states existence and ε-uniform accuracy of multiple dis-
crete solutions.

Theorem 3.20. Let the mesh {ri}N
i=0 be either the Bakhvalov mesh of §3.1(a), or

the Shishkin mesh of §3.1(b). There exists a discrete solution U of (3.3), (3.9),
(3.14) such that for h sufficiently small,

(3.15)
∣∣U(Xi) − u(Xi)

∣∣ ≤ Ch2| ln h|m ∀ mesh nodes Xi ∈ Ω̄,

where m = 0 for the Bakhvalov mesh (a) and m = 2 for the Shishkin mesh (b).

Proof. The discrete operator Fh is a Z-field; see Remarks 3.8, 3.10, 3.14, 3.17. By
Lemma 3.19, β(Xi ;−p̄) and β(Xi ; p̄) are discrete sub- and super-solutions. Hence,
by Lemma 3.6, there exists a discrete solution U such that β(Xi ;−p̄) ≤ U(Xi) ≤
β(Xi ; p̄). Furthermore, by Corollary 2.7, U(Xi) = u(Xi)+O(p̄+ε2). Finally, recall
(A4) to get the desired error estimate. �

Remark 3.21. Theorem 3.20 is obtained under the assumption (A4) that ε ≤ Ch.
If ε > Ch, in accordance with the error estimates of Schatz and Wahlbin [15], we
expect a slightly modified version of (3.15):

|u − U | ≤ C
[
h2 ln(1 + ε/h) + h2| ln h|m

]
.

The above estimate differs from (3.15) by the term h2 ln(1+ ε/h), which we find in
the local maximum-norm error estimate [15, (1.8)]. We expect this local estimate
to work in the interior region, where a quasiuniform Delaunay triangulation is used,
with the pollution effect being O(h2| ln h|m) due to layer-adapted mesh refinement.
Note also that while h2 ln(1 + ε/h) is O(h2) when ε ≤ Ch, it gradually increases to
the classical maximum-norm finite-element error bound O(h2| lnh|) as ε gradually
increases to O(1).
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4. Numerical results

Our model problem is (1.1) in the domain Ω (see Figure 2) whose boundary ∂Ω
is parameterized by x1 = ϕ(l) := R cos θ and x2 = ψ(l) := R sin θ, where l ∈ [0, 2π],

R = R(l) = 0.4 + cos2(l/2), θ = θ(l) = l + e(l−5)/2 sin(l/2) sin l.

We use

(4.1) b(x, u) =
(
u − ū0(x)

)
u
(
u + ū0(x)

)
, ū0(x) = x2

1 + x1 + 1.

Here ±ū0(x) are two stable solutions and 0 is an unstable solution of the corre-
sponding reduced problem. The boundary condition g(x) = (x1 − x2

1)/3 satisfies
(A2) for both ±ū0; see Figure 1. We present numerical results only for the solution
u near ū0; see Figure 1 (left); the results for the solution near −ū0 are similar.

To solve the discrete nonlinear problem we used Newton’s method. Tables 1, 2
give numerical results for the Bakhvalov and Shishkin meshes with γ := 0.8γ0,
where γ0 = 3

√
2/4. They show rates of convergence and maximum nodal errors

computed as described in [8, §4].
Our results confirm the sharpness of the bound of Theorem 3.20.

Table 1. Bakhvalov mesh. Computational rates r in (N−1)r and
maximum nodal errors

N ε = 10−2 ε = 10−4 ε = 10−8

32 2.010 2.011 2.011
64 1.995 1.997 1.997
128 1.995 2.001 2.001
32 3.745e-3 3.842e-3 3.843e-3
64 9.296e-4 9.534e-4 9.536e-4
128 2.333e-4 2.388e-4 2.388e-4
256 5.854e-5 5.967e-5 5.968e-5

Table 2. Shishkin mesh. Computational rates r in (N−1 ln N)r

and maximum nodal errors

N ε = 10−2 ε = 10−4 ε = 10−8

32 2.131 2.137 2.137
64 2.210 2.045 2.045
128 2.465 2.009 2.009
32 3.915e-2 3.947e-2 3.948e-2
64 1.318e-2 1.325e-2 1.325e-2
128 4.004e-3 4.400e-3 4.401e-3
256 1.008e-3 1.430e-3 1.430e-3
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Appendix A. Proof of Lemma 2.1

Proof. The new coordinates are clearly orthogonal since[
x1,r x1,l

x2,r x2,l

]
=

[
n1 ϕ′ + rn′

1

n2 ψ′ + rn′
2

]
,

and the vector columns here are orthogonal. Hence for �u we have

(A.1) �u =
1

HrHl

[ ∂

∂r

( Hl

Hr

∂u

∂r

)
+

∂

∂l

(Hr

Hl

∂u

∂l

)]
,

where Hr and Hl are the Lamé coefficients:

(A.2) Hr :=
√

x2
1,r + x2

2,r = 1, Hl :=
√

x2
1,l + x2

2,l = (1 − κr)τ.

Here Hr = 1 because (n1, n2) is a unit vector. To prove that Hl = (1 − κr)τ , we
check that

(1 − κr)2τ2 = τ2[1 − 2κr + κ2r2]
equals

x2
1,l + x2

2,l = (ϕ′ + rn′
1)

2 + (ψ′ + rn′
2)

2 = τ2 + 2r(ϕ′n′
1 + ψ′n′

2) + r2(n′2
1 + n′2

2 ).

It is suffices to show that

(A.3) −τ2κ = ϕ′n′
1 + ψ′n′

2 and τ2κ2 = n′2
1 + n′2

2 .

The first relation here follows from

ϕ′n′
1 + ψ′n′

2 = ϕ′(−ψ′/τ )′ + ψ′(ϕ′/τ )′ = −(κτ3)/τ + (−ϕ′ψ′ + ψ′ϕ′)(1/τ )′.

To prove the second relation in (A.3), we square both sides of the first and get

τ4κ2 = (ϕ′n′
1+ψ′n′

2)
2 = (τ2−ψ′2)n′2

1 +(τ2−ϕ′2)n′2
2 +2ϕ′n′

1ψ
′n′

2 = τ2(n′2
1 +n′2

2 )−R2,

where

R := −ψ′n′
1 + ϕ′n′

2 = ψ′(ψ′/τ )′ + ϕ′(ϕ′/τ )′ = (ψ′2 + ϕ′2)′/(2τ ) − (ψ′2 + ϕ′2)τ ′/τ2

= (τ2)′/(2τ ) − τ ′ = 0.

Finally, (2.2) follows immediately from (A.1), (A.2). �
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