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GOOD LATTICE RULES BASED ON
THE GENERAL WEIGHTED STAR DISCREPANCY

VASILE SINESCU AND STEPHEN JOE

Abstract. We study the problem of constructing rank-1 lattice rules which
have good bounds on the “weighted star discrepancy”. Here the non-negative
weights are general weights rather than the product weights considered in most
earlier works. In order to show the existence of such good lattice rules, we use
an averaging argument, and a similar argument is used later to prove that
these lattice rules may be obtained using a component-by-component (CBC)
construction of the generating vector. Under appropriate conditions on the
weights, these lattice rules satisfy strong tractability bounds on the weighted
star discrepancy. Particular classes of weights known as “order-dependent”
and “finite-order” weights are then considered and we show that the cost of
the construction can be very much reduced for these two classes of weights.

1. Introduction

We consider rank-1 lattice rules for the approximation of integrals over the d-
dimensional unit cube given by

Id(f) =
∫

[0,1]d
f(x) dx.

These rank-1 lattice rules are quadrature rules of the form

1
n

n−1∑
k=0

f

({
kz

n

})
,

where z ∈ Z
d is the generating vector whose components are conveniently assumed

to be relatively prime with n and the braces around a vector indicate that we take
the fractional part of each component of the vector.

Many research papers have been concerned with finding “good” lattice rules. In
order to compare the quality of different lattice rules, some criterion needs to be
chosen. A number of criteria are based on the idea of “discrepancy”. In general
terms, the discrepancy may be viewed as a measure of the deviation from the
uniform distribution of the quadrature points. In some settings, it may also be
considered to be a worst-case error in certain function spaces. Such discrepancy
measures have been considered in [3], [4], [8], and [12], or in a more general work
such as [13]. A classic example is the star discrepancy which appears in the well-
known Koksma-Hlawka inequality (for example, see [13] or [18]). In [12] it was
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proved that there exist d-dimensional rank-1 lattice rules whose star discrepancy is
O

(
n−1(lnn)d

)
with the implied constant depending only on d. A component-by-

component (CBC) construction of the generating vectors for such rules was given
in [8].

In this paper we are interested in constructing rank-1 lattice rules by using a
weighted star discrepancy as a criterion of goodness. In [9] it was shown that lattice
rules with good bounds on the weighted star discrepancy exist and can be obtained
by using a CBC construction of z in the situation when n is a prime number and
the weights are of a “product” form (see below). In Sections 3 and 4 we extend
these results to the general situation where the weights do not necessarily have
this product form. Such general weights have been considered in [2], where it was
shown that good lattice rules can be obtained for integrands belonging to weighted
Korobov spaces. In these spaces the integrands were assumed to be periodic. For
the general weighted star discrepancy considered here, the functions belonging to
the associated function spaces have no such periodicity assumption.

In [5] it is shown that weighted integrals over possibly unbounded domains may
be approximated by suitably transforming points in [0, 1]d. As we shall explain
later in Section 2, the CBC construction presented here will lead to lattice rules
that are appropriate for such weighted integrals.

There are some applications in which it is the low dimensional projections that
are the most important. In such cases, it is useful to introduce general weights that
allow us to model the relative importance of each group of variables. For example,
in some financial applications (see [17] for further details), such a model may be
considered. As indicated in [2], weights which are “order-dependent” and/or “finite-
order” often provide reasonable assumptions which also present the advantage that
computations are very much simplified. The definition of these particular classes
of weights and the analysis of their computational costs for the CBC construction
are given in Sections 5 and 6.

2. General weighted star discrepancy

Let us consider first the concept of the local discrepancy of a point set in [0, 1]d.
This can be described as the difference between the proportion of the points that
lie in a subset of [0, 1]d and the measure of that subset. If Pn is a set of n points in
[0, 1]d, then the local star discrepancy of the point set Pn at x ∈ [0, 1]d is defined
by

(1) discr(x, Pn) :=
A([0, x), Pn)

n
−

d∏
j=1

xj .

Here A([0, x), Pn) represents the counting function, namely the number of points
in Pn which lie in [0, x) with x = (x1, x2, . . . , xd). The unweighted star discrepancy
of the point set Pn is then defined as

(2) D∗(Pn) := sup
x∈[0,1]d

|discr(x, Pn)| .

This is the star discrepancy that arises in the Koksma-Hlawka inequality mentioned
above.

In order to introduce the general weighted star discrepancy, now let u be an
arbitrary non-empty subset of D := {1, 2, . . . , d−1, d} and denote its cardinality by
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|u|. For the vector x ∈ [0, 1]d, let xu denote the vector from [0, 1]|u| containing the
components of x whose indices belong to u. By (xu,1) we mean the vector from
[0, 1]d whose j-th component is xj if j ∈ u and 1 if j �∈ u.

Suppose Qn,d is the quadrature rule given by

Qn,d(f) =
1
n

∑
x∈Pn

f(x).

Then from Zaremba’s identity (see for instance [16] or [18]), we obtain

(3) Qn,d(f) − Id(f) =
∑

∅�=u⊆D
(−1)|u|

∫
[0,1]|u|

discr((xu,1), Pn)
∂|u|

∂xu

f((xu,1)) dxu.

Now let us introduce a set of non-negative weights {γu}u⊆D and consider γu as the
weight associated with the set u. We also assume that the weights are independent
of the dimension d. Previous research papers such as [9] have assumed that the
weights are of a product form, that is, γu =

∏
j∈u

γj for each subset u ⊆ D, where
γj is the weight associated with the variable xj . Using (3) we see that we can write

Qn,d(f) − Id(f) =
∑

∅�=u⊆D
(−1)|u|γu

∫
[0,1]|u|

discr((xu,1), Pn)γ−1
u

∂|u|

∂xu

f((xu,1)) dxu.

Applying Hölder’s inequality for integrals and sums, we obtain

|Qn,d(f) − Id(f)| ≤
(

max
∅�=u⊆D

sup
xu∈[0,1]|u|

γu |discr((xu,1), Pn)|
)

×

⎛⎝ ∑
∅�=u⊆D

γ−1
u

∫
[0,1]|u|

∣∣∣∣ ∂|u|

∂xu

f((xu,1))
∣∣∣∣ dxu

⎞⎠ .

Thus the weighted star discrepancy D∗
n,γ of the point set Pn may be defined by

(4) D∗
n,γ := max

∅�=u⊆D
γu sup

xu∈[0,1]|u|
|discr((xu,1), Pn)| .

We observe that some of these formulae make sense only for strictly positive weights.
If there are some sets u ⊆ D for which γu = 0, then we adopt the convention that
0 · ∞ = 0 (the same convention has been used in [2]). As our interest is in rank-1
lattice rules, from now on we shall assume that Pn is the point set {{kz/n}, 0 ≤ k ≤
n − 1}. The corresponding weighted star discrepancy is then denoted by D∗

n,γ(z).
As mentioned earlier, there are applications for which the lower dimensional

projections are the most important. This suggests that the weight associated with
a set should not be bigger than the weights associated with any of its subsets. So
we shall make the reasonable assumption that for any non-empty subset u ⊆ D, we
have

(5) γu ≤ γg for any ∅ �= g ⊆ u.

The next section presents bounds for the general weighted star discrepancy,
which allows us to prove the existence of good lattice rules, while in Section 4 we
present a CBC construction of z.
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3. Bounds on the general weighted star discrepancy

Let us first define

E∗
n,m := {h ∈ Z

m, h �= 0 : −n/2 < hj ≤ n/2, 1 ≤ j ≤ m},

for any positive integer m.
From [13, Theorem 5.6], we obtain the following inequality:

(6) sup
xu∈[0,1]|u|

|discr((xu,1), Pn)| ≤ 1 − (1 − 1/n)|u| +
Rn(z, u)

2
,

where

Rn(z, u) :=
∑

h∈E∗
n,|u|

h·zu≡0 (mod n)

∏
j∈u

1
max(1, |hj |)

.

Note that under the assumption that gcd(zj , n) = 1 for 1 ≤ j ≤ d, then zu is the
generating vector for a |u|-dimensional lattice rule having n points. This result,
together with (4), shows that the general weighted star discrepancy satisfies the
inequality

(7) D∗
n,γ(z) ≤ max

∅�=u⊆D
γu

(
1 − (1 − 1/n)|u| +

Rn(z, u)
2

)
.

As an aside, let us remark that the bound in (6) also holds for the extreme
discrepancy of [13]. This extreme discrepancy is based on the local discrepancy

discr(w, x, Pn) :=
A([w, x), Pn)

n
−

d∏
j=1

(xj − wj),

where 0 ≤ wj ≤ xj ≤ 1, 1 ≤ j ≤ d. The local star discrepancy of (1) is the
special case when wj = 0. In [5] and [6] it is shown that it is appropriate to approx-
imate weighted integrals over possibly unbounded domains by suitably transforming
points in [0, 1]d that have what is termed a low weighted L∞ unanchored discrep-
ancy. Since this latter quantity is a weighted version of the extreme discrepancy of
[13], it follows that the CBC construction presented here will produce lattice rules
that also have a low weighted L∞ unanchored discrepancy. So such lattice rules
are appropriate for these weighted integrals.

Bernoulli’s inequality or a simple direct calculation yields

(1 − 1/n)|u| ≥ 1 − |u|
n

and so 1 − (1 − 1/n)|u| ≤ |u|
n

.

This then leads to

(8) max
∅�=u⊆D

γu

(
1 − (1 − 1/n)|u|

)
≤ 1

n
max

∅�=u⊆D
|u|γu.

It follows from the error theory of lattice rules (for example, see [13, Chapter 5] or
[14, Chapter 4]) that we may write Rn(z, u) as

(9) Rn(z, u) =
1
n

n−1∑
k=0

∏
j∈u

⎛⎝1 +
∑′

−n/2<h≤n/2

e2πihkzj/n

|h|

⎞⎠ − 1,
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where the ′ on the sum indicates we omit the h = 0 term. Now by defining

Ck(z) :=
∑′

−n/2<h≤n/2

e2πihkz/n

|h| , 0 ≤ k ≤ n − 1,

and using the expansion ∏
j∈u

(1 + aj) = 1 +
∑

∅�=g⊆u

∏
j∈g

aj ,

we have from (9) that

Rn(z, u) =
1
n

n−1∑
k=0

∏
j∈u

[1 + Ck(zj)] − 1 =
1
n

n−1∑
k=0

∑
∅�=g⊆u

∏
j∈g

Ck(zj)

=
∑

∅�=g⊆u

1
n

n−1∑
k=0

∏
j∈g

Ck(zj) =
∑

∅�=g⊆u

R̃n(z, g),

where

(10) R̃n(z, g) :=
1
n

n−1∑
k=0

∏
j∈g

⎛⎝ ∑′

−n/2<h≤n/2

e2πihkzj/n

|h|

⎞⎠ .

For later use, we note that the theory of lattice rules shows that with

Ẽ∗
n,m := {h ∈ Z

m : −n/2 < hj ≤ n/2, hj �= 0, 1 ≤ j ≤ m},

we may write R̃n(z, g) as

(11) R̃n(z, g) =
∑

h∈Ẽ∗
n,|g|

h·zg≡0 (mod n)

∏
j∈g

1
|hj |

≥ 0.

Hence we have for any ∅ �= u ⊆ D that

γuRn(z, u) = γu

∑
∅�=g⊆u

R̃n(z, g).

Under the assumption given by (5), we obtain

γuRn(z, u) ≤
∑

∅�=g⊆u

γgR̃n(z, g) ≤
∑

∅�=g⊆D
γgR̃n(z, g).

As a consequence, we then conclude that

max
∅�=u⊆D

γuRn(z, u) ≤
∑

∅�=u⊆D
γuR̃n(z, u).

This inequality combined with (7) and (8) then yield the following result:

Lemma 1. If the weights γu satisfy (5) for any ∅ �= u ⊆ D, then

D∗
n,γ(z) ≤ 1

n
max

∅�=u⊆D
|u|γu +

1
2
e2
n,d(z),

where

(12) e2
n,d(z) :=

∑
∅�=u⊆D

γuR̃n(z, u).
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This lemma shows we can then analyse the weighted star discrepancy by consid-
ering the quantity e2

n,d(z).
From now on, we shall assume that n is a prime number. Since we only consider

the fractional part of each component of kz/n, we see that we may take each
component of the generating vector z as belonging to the set Zn = {1, 2, . . . , n−1}.
We can obtain bounds on e2

n,d(z) for the case in which n is prime by obtaining an
expression for a certain mean value of e2

n,d(z). The mean is taken over all integer
vectors z ∈ Zd

n. Thus the mean Mn,d,γ is defined by

Mn,d,γ :=
1

(n − 1)d

∑
z∈Zd

n

e2
n,d(z).

An expression for the mean is given in the next theorem:

Theorem 2. Let n be a prime number. Then

Mn,d,γ =
1
n

∑
∅�=u⊆D

γuS|u|
n +

n − 1
n

∑
∅�=u⊆D

γu

(
− Sn

n − 1

)|u|
,

where
Sn :=

∑′

−n/2<h≤n/2

1
|h| .

Proof. From the definition of the mean and (10) and (12), we have

Mn,d,γ =
1

(n − 1)d

∑
z∈Zd

n

∑
∅�=u⊆D

γu

⎛⎝ 1
n

n−1∑
k=0

∏
j∈u

⎛⎝ ∑′

−n/2<h≤n/2

e2πihkzj/n

|h|

⎞⎠⎞⎠ .

By separating out the k = 0 term, we obtain

(13) Mn,d,γ =
1
n

∑
∅�=u⊆D

γuS|u|
n + Tn,d,γ ,

where

Tn,d,γ =
1

(n − 1)d

∑
z∈Zd

n

∑
∅�=u⊆D

γu

⎛⎝ 1
n

n−1∑
k=1

∏
j∈u

⎛⎝ ∑′

−n/2<h≤n/2

e2πihkzj/n

|h|

⎞⎠⎞⎠
=

1
n

∑
∅�=u⊆D

γu

⎛⎝n−1∑
k=1

∏
j∈u

⎛⎝ 1
n − 1

n−1∑
zj=1

∑′

−n/2<h≤n/2

e2πihkzj/n

|h|

⎞⎠⎞⎠ .

Because n is prime, we have

(14)
1

n − 1

n−1∑
zj=1

∑′

−n/2<h≤n/2

e2πihkzj/n

|h| = − Sn

n − 1

for 1 ≤ k ≤ n−1 (a complete proof might be found, for instance, in [9]). This leads
to

Tn,d,γ =
1
n

∑
∅�=u⊆D

γu

n−1∑
k=1

(
− Sn

n − 1

)|u|
=

n − 1
n

∑
∅�=u⊆D

γu

(
− Sn

n − 1

)|u|
.

Now replacing the last term in (13) with this expression, we obtain the desired
result. �
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In the case d = 1, it is easy to verify that Mn,1,{γ{1}} = 0. This is to be expected
since it is also easy to verify (by using (10)) that R̃n(z, g) = 0 whenever |g| = 1.

Corollary 3. Let n be a prime number. Then there exists a generating vector z
such that

e2
n,d(z) ≤ Mn,d,γ ≤ 1

n − 1

∑
∅�=u⊆D

γuS|u|
n .

Proof. The first inequality is obvious. The proof of the second inequality is based on
the proof of the second assertion in Theorem 1 of [2]. We can write the expression
for Mn,d,γ as

Mn,d,γ =
1
n

∑
∅�=u⊆D

γuS|u|
n (1 + Wn(u)),

where

Wn(u) = (−1)|u|(n − 1)
(

1
n − 1

)|u|
.

If |u| is odd, then Wn(u) ≤ 0. On the other hand, if |u| is even, then |u| ≥ 2 and

Wn(u) ≤ (n − 1)
(

1
n − 1

)2

=
1

n − 1
.

So for |u| either odd or even, we have

Mn,d,γ ≤ 1
n

∑
∅�=u⊆D

γuS|u|
n

(
1 +

1
n − 1

)
=

1
n − 1

∑
∅�=u⊆D

γuS|u|
n ,

which completes the proof. �

This corollary and Lemma 1 then lead to the following result:

Corollary 4. Suppose the weights satisfy (5) and suppose that n is a prime number.
Then there exists a vector z ∈ Zd

n such that the general weighted star discrepancy
satisfies the bound

D∗
n,γ(z) ≤ 1

n
max

∅�=u⊆D
|u|γu +

1
2(n − 1)

∑
∅�=u⊆D

γuS|u|
n .

From [12, Lemmas 1 and 2] we have

Sn ≤ 2 ln n + 2ω − ln 4 +
1
n2

,

where ω is the Euler-Mascheroni constant defined by ω = lim
m→∞

(
m∑

k=1

1
k − ln m

)
. An

approximate value for 2ω − ln 4 is −0.2319. So for any n ≥ 3, we have Sn ≤ 2 ln n.
In fact, a direct calculation shows that this inequality also holds for n = 2. Hence,
we conclude that for any prime n, there exists a vector z ∈ Zd

n such that the general
weighted star discrepancy satisfies the following bound:

(15) D∗
n,γ(z) ≤ 1

n
max

∅�=u⊆D
|u|γu +

1
2(n − 1)

∑
∅�=u⊆D

γu(2 lnn)|u|.
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Let Γ = max
1≤j≤d

γ{j}. Since γu ≤ Γ for all ∅ �= u ⊆ D (because of (5)), then in

general, we have max
∅�=u⊆D

|u|γu ≤ Γd. Hence from (15) we have

D∗
n,γ(z) ≤ Γd

n
+

1
2(n − 1)

∑
∅�=u⊆D

γu(2 lnn)|u|.

Moreover, we have∑
∅�=u⊆D

γu(2 lnn)|u| ≤ Γ
∑

∅�=u⊆D
(2 lnn)|u| = Γ

d∑
j=1

(
d

j

)
(2 lnn)j ≤ Γ(1 + 2 lnn)d.

This yields

(16) D∗
n,γ(z) = O

(
n−1(lnn)d

)
,

with the implied constant depending only on d and Γ.
In the situation when all the weights are equal to 1, then

D∗
n,γ(z) = max

∅�=u⊆D
sup

xu∈[0,1]|u|
|discr((xu,1), Pn)| = sup

x∈[0,1]d
|discr(x, Pn)|

is the unweighted star discrepancy defined in (2). For this quantity, the rate of
O

(
n−1(lnn)d

)
is essentially the best possible (see [10] or [13]). Hence the bound

for the weighted star discrepancy given in Corollary 3 is essentially the best possible
and so, we consider such a bound to be “good”.

4. Component-by-component construction of the generating vector

Since the total number of vectors z ∈ Zd
n is (n− 1)d, it is practically impossible

to search over all these vectors to find a good one when d and n are large. In
this section we propose a cheaper construction of the generating vector, namely the
CBC construction, which means that the generating vector is found one component
at a time. When we add a new component to the generating vector, the existing
components will stay unchanged. Such a CBC construction has been successfully
used, for instance, in [2], [8], [9] and the algorithm is given below:
Component-by-component algorithm:

1. Set the value for the first component of the vector, say z1 = 1.
2. For m = 2, 3, . . . , d, find zm ∈ Zn such that e2

n,m(z1, . . . , zm) is minimized.
Here

e2
n,m(z1, . . . , zm) =

∑
∅�=u⊆{1,2,...,m}

γuR̃n((z1, . . . , zm), u).

Now we are looking to prove that this algorithm does indeed yield good lattice
rules. By good, we mean that the z found this way satisfies the bound for e2

n,d(z)
given in Corollary 3. The following theorem and corollary justify the use of the
CBC algorithm.

Theorem 5. Let n be a prime number. Suppose there exists a z ∈ Zd
n such that

(17) e2
n,d(z) ≤ 1

n − 1

∑
∅�=u⊆D

γuS|u|
n .

Then there exists zd+1 ∈ Zn such that

e2
n,d+1(z, zd+1) ≤

1
n − 1

∑
∅�=u⊆D1

γuS|u|
n ,
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where D1 := D ∪ {d + 1}. Such a zd+1 can be found by minimizing e2
n,d+1(z, zd+1)

over the set Zn.

Proof. We have

e2
n,d+1(z, zd+1) =

∑
∅�=u⊆D1

γuR̃n((z, zd+1), u)

=
∑

∅�=u⊆D
γuR̃n(z, u) +

∑
u⊆D1
d+1∈u

γuR̃n((z, zd+1), u).(18)

We recall that if |u| = 1, then R̃n(z, u) = 0, so we may assume that |u| ≥ 2 without
loss of generality. Also recall that we defined

Ck(z) =
∑′

−n/2<h≤n/2

e2πihkz/n

|h| , 0 ≤ k ≤ n − 1.

Then clearly C0(z) = Sn. For u ⊆ D1 with d + 1 ∈ u, we then have

R̃n((z, zd+1), u) =
1
n

n−1∑
k=0

∏
j∈u

Ck(zj)

=
1
n

n−1∑
k=0

⎛⎝ ∏
j∈u−{d+1}

Ck(zj)

⎞⎠ Ck(zd+1)

=
S
|u|
n

n
+

1
n

n−1∑
k=1

⎛⎝ ∏
j∈u−{d+1}

Ck(zj)

⎞⎠ Ck(zd+1),

where the k = 0 term was separated out. Substituting this in (18), we obtain

e2
n,d+1(z, zd+1) = e2

n,d(z) +
1
n

∑
u⊆D1,|u|≥2

d+1∈u

γuS|u|
n

+
∑

u⊆D1,|u|≥2
d+1∈u

γu

n

n−1∑
k=1

⎛⎝ ∏
j∈u−{d+1}

Ck(zj)

⎞⎠Ck(zd+1).

Next we average e2
n,d+1(z, zd+1) over all possible values of zd+1 ∈ Zn and consider

Avg(e2
n,d+1(z, zd+1)) =

1
n − 1

n−1∑
zd+1=1

e2
n,d+1(z, zd+1).

As the dependency of e2
n,d+1(z, zd+1) on zd+1 is only through the Ck(zd+1) factor,

we next focus on the quantity

Tn(k) =
1

n − 1

n−1∑
zd+1=1

Ck(zd+1).

From (14), we have

Tn(k) = − Sn

n − 1
, 1 ≤ k ≤ n − 1.
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It follows that

Avg(e2
n,d+1(z, zd+1))

= e2
n,d(z) +

1
n

∑
u⊆D1,|u|≥2

d+1∈u

γuS|u|
n − Sn

n(n − 1)

∑
u⊆D1,|u|≥2

d+1∈u

γu

n−1∑
k=1

∏
j∈u−{d+1}

Ck(zj).

For any u ⊆ D1 with d + 1 ∈ u and |u| ≥ 2, we have

− 1
n

n−1∑
k=1

∏
j∈u−{d+1}

Ck(zj) = −R̃n(z, u − {d + 1}) +
S
|u|−1
n

n
≤ S

|u|−1
n

n
,

where we have subtracted and added the k = 0 term and used the fact that the
quantities R̃n(z, g) are positive (see (11)) for any subset g ⊆ D. Consequently, we
have

Avg(e2
n,d+1(z, zd+1))

≤ e2
n,d(z) +

1
n

∑
u⊆D1,|u|≥2

d+1∈u

γuS|u|
n +

1
n(n − 1)

∑
u⊆D1,|u|≥2

d+1∈u

γuS|u|
n

= e2
n,d(z) +

1
n − 1

∑
u⊆D1,|u|≥2

d+1∈u

γuS|u|
n

≤ e2
n,d(z) +

1
n − 1

∑
u⊆D1
d+1∈u

γuS|u|
n .

Using the hypothesis, we next obtain

Avg(e2
n,d+1(z, zd+1)) ≤ 1

n − 1

∑
∅�=u⊆D

γuS|u|
n +

1
n − 1

∑
u⊆D1
d+1∈u

γuS|u|
n

=
1

n − 1

∑
∅�=u⊆D1

γuS|u|
n .(19)

There exists at least one zd+1 ∈ Zn such that e2
n,d+1(z, zd+1)≤Avg(e2

n,d+1(z, zd+1))
and this zd+1 may be chosen by minimizing e2

n,d+1(z, zd+1) over the set Zn. From
(19), it is clear now that for the chosen zd+1, we have

e2
n,d+1(z, zd+1) ≤

1
n − 1

∑
∅�=u⊆D1

γuS|u|
n ,

which is the desired result. �
From this result we can deduce the following:

Corollary 6. Let n be a prime number. Then for 1 ≤ m ≤ d we can construct a
vector z ∈ Zd

n such that

e2
n,m(z1, . . . , zm) ≤ 1

n − 1

∑
∅�=u⊆{1,2,...,m}

γuS|u|
n .

We can set z1 = 1 and for 2 ≤ m ≤ d, every zm can be found by minimizing
e2
n,m(z1, . . . , zm) over the set Zn.
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Proof. Recall that R̃n(z, u) = 0 for all subsets u ⊆ D with |u| = 1. It follows that
e2
n,1(z) = 0 for any z ∈ Zn, so the inequality (17) holds for d = 1. The result then

follows immediately from Theorem 5. �

Since S2 = 1 and S3 = 2, observe that if n ≥ 3, then |u| ≤ S
|u|
n . Now suppose

that the weights are such that (5) is satisfied and∑
∅�=u⊆D

γuS|u|
n ≤ C(γ, δ)nδ,

for some δ > 0, where C(γ, δ) is independent of d and n. Then Lemma 1 shows
that for any odd prime n, the CBC algorithm yields a z for which the weighted
star discrepancy satisfies the strong tractability error bound

D∗
n,γ(z) ≤ 2C(γ, δ)n−1+δ.

An example of weights γu having this property is when the γu are product weights,
that is, γu =

∏
j∈u

γj , and the γj are summable. Further details may be found in
[9].

We remark that the approach to the general weight case used here is slightly
different to the approach used in [9] for the product weight case. If we apply the
results obtained here to that case, then the bounds on the weighted star discrepancy
are better than those in [9]. However, the approach in [9] has the advantage that
it yields bounds on the weighted Lp discrepancy, whereas here we are essentially
restricted to the L∞ case.

5. CBC construction for special classes of weights

In practical situations the weights may satisfy further assumptions. Special
classes of weights are the so-called “order-dependent” and “finite-order” weights,
which were mentioned in the first section and defined in [2]. The tractability of
multivariate integration for the latter class of weights has been studied in [15].

Assume first that the weights are order-dependent. This means that their depen-
dence on u is only through the cardinality of u. It might be reasonable to assume
that sets having the same cardinality have equal values of the associated weights.
So we assume that instead of using 2d − 1 weights, we can use just d weights, say
Γ1, Γ2, . . . , Γd, where Γ� denotes the weight associated with any set containing �
elements for 1 ≤ � ≤ d. For the bound on the weighted star discrepancy given in
Lemma 1 to hold, we require these weights to be in non-increasing order, that is,
Γ1 ≥ Γ2 ≥ · · · ≥ Γd.

The next result follows directly from Theorem 5 and Corollary 6 by taking γu =
Γ� whenever |u| = � and noting that the number of subsets of D with cardinality �

is
(
d
�

)
.

Corollary 7. Let n be a prime number and suppose the weights are order-dependent.
Then a generating vector z ∈ Zd

n may be constructed component-by-component such
that

e2
n,d(z) ≤ 1

n − 1

d∑
�=1

Γ�

(
d

�

)
S�

n ≤ 1
n − 1

d∑
�=1

Γ�

(
d

�

)
(2 lnn)�.

Let us assume now that the weights are finite-order. This means that there exists
a positive integer q such that γu = 0 for all u with |u| > q. We shall take q∗ to be
the smallest integer satisfying this condition. Of course, it makes sense to assume
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that q∗ < d, otherwise it will be no different from the situation already discussed.
We then obtain the following result:

Corollary 8. Let n be a prime number and suppose the weights are finite-order.
Then a generating vector z ∈ Zd

n may be constructed component-by-component such
that

e2
n,d(z) ≤ 1

n − 1

∑
u⊆D

1≤|u|≤q∗

γuS|u|
n ≤ 1

n − 1

∑
u⊆D

1≤|u|≤q∗

γu(2 lnn)|u|.

We can combine these two classes of weights to consider the situation when the
weights are both order-dependent and finite-order.

Corollary 9. Let n be a prime number and suppose the weights are both order-
dependent and finite-order. Then a generating vector z ∈ Zd

n may be constructed
component-by-component such that

e2
n,d(z) ≤ 1

n − 1

q∗∑
�=1

Γ�

(
d

�

)
S�

n ≤ 1
n − 1

q∗∑
�=1

Γ�

(
d

�

)
(2 lnn)�.

Lattice rules with order-dependent and/or finite-order weights present the ad-
vantage that the costs of the CBC construction are significantly reduced. The
computational costs of the CBC construction are analysed in the next section.

6. Computational costs of the CBC algorithm

6.1. The cost of the CBC algorithm in the general case. In this subsec-
tion we analyse the complexity of the CBC algorithm, which was presented at the
beginning of Section 4.

In order to analyse the cost of the construction, first recall from (10) that R̃n(z, u)
is given by

R̃n(z, u) =
1
n

n−1∑
k=0

∏
j∈u

Ck(zj), where Ck(z) =
∑′

−n/2<h≤n/2

e2πihkz/n

|h| .

It is easy to see that the cost of calculating each R̃n(z, u) by using this formula is
O

(
n2|u|

)
operations. However, it is shown in [7] (see also [9, Appendix A]) that this

cost can be reduced at the expense of extra storage. The idea is based on the fact
that because n is prime, then {kzj/n} = �/n for some � satisfying 0 ≤ � ≤ n − 1.
So to calculate R̃n(z, u), we need the values of

∑′

−n/2<h≤n/2

e2πih�/n

|h| ,

for 0 ≤ � ≤ n − 1. As shown in [7], these n values may be calculated at a total
cost of O(n) operations and then stored. It follows that the number of operations
required to calculate each R̃n(z, u) is of O(n|u|) operations at the expense of O(n)
extra storage.
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Recall that

e2
n,m(z1, . . . , zm) =

∑
∅�=u⊆{1,2,...,m}

γuR̃n((z1, . . . , zm), u)

= e2
n,m−1(z1, . . . , zm−1) +

∑
u⊆{1,2,...,m}

m∈u

γuR̃n((z1, . . . , zm), u)

= e2
n,m−1(z1, . . . , zm−1)

+
1
n

∑
u⊆{1,2,...,m}

m∈u

γu

n−1∑
k=0

Ck(zm)
∏

j∈u−{m}
Ck(zj).(20)

Now it may be the case that some of the 2d − 1 weights are zero. To take into
account the computational savings that arise, let τm be the number of non-zero
weights γu for which u ⊆ {1, 2, . . . , m} with m ∈ u. Then 0 ≤ τm ≤ 2m−1. Also,
let τ be the total number of non-zero weights, that is,

τ =
d∑

m=1

τm ≤ 2d − 1.

Then to find zm which minimizes e2
n,m(z1, . . . , zm), we need to calculate the last

term in (20) for all zm ∈ Zn. This requires O(nmτm) operations. Since there are
n−1 choices for zm, this means that the cost of adding a new component zm to the
already existing components is O(n2mτm) operations for each m. Taking m from
2 to d, we conclude that the total operation count of the CBC algorithm to obtain
a d-dimensional z is O(n2dτ ).

We observe that if all the weights are non-zero, we have a total of τ = 2d − 1
weights and so the total cost of the construction will be O(n2d2d). In practice such
a cost is unacceptable as 2d grows very quickly when d increases, but it can be
considerably reduced under further assumptions on the weights.

6.2. The cost of the construction for finite-order weights. Let q∗ be the
smallest integer for which γu = 0 whenever |u| > q∗. In this case the total number
of weights is τ =

∑q∗

�=1

(
d
�

)
. For d ≥ 2 and q∗ < d, it may be proved by induction

that
q∗∑

�=1

(
d

�

)
≤ dq∗

.

From the previous subsection, it will follow that the total operation count of the
CBC algorithm with finite-order weights is then O(n2dq∗+1). As pointed out in [2],
the cost of the construction is exponential in q∗, but this is not dangerous as long
as q∗ is not large.

6.3. The cost of the construction for order-dependent weights. In this case,
because there are at most d distinct weights, the cost of the construction can be
significantly reduced by using a similar technique as in [2]. First, we observe that
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the quantity e2
n,m(z1, z2, . . . , zm) can be expanded as

e2
n,m(z1, z2, . . . , zm) =

m∑
�=1

Γ�

∑
u⊆{1,2,...,m}

|u|=�

R̃n(z, u)

=
m∑

�=1

Γ�

∑
u⊆{1,2,...,m}

|u|=�

⎛⎝ 1
n

n−1∑
k=0

∏
j∈u

Ck(zj)

⎞⎠

=
1
n

n−1∑
k=0

m∑
�=1

Γ�σk(m, �),

where

σk(m, �) =
∑

u⊆{1,2,...,m}
|u|=�

∏
j∈u

Ck(zj) for 1 ≤ � ≤ m.

Then we can obtain a recursive formula to compute the quantities σk(m, �). Indeed,
we have

σk(m, �) =
∑

u⊆{1,2,...,m−1}
|u|=�

∏
j∈u

Ck(zj) + Ck(zm)
∑

u⊆{1,2,...,m−1}
|u|=�−1

∏
j∈u

Ck(zj)

= σk(m − 1, �) + Ck(zm)σk(m − 1, � − 1),

for m ≥ 2 and � ≥ 2. It is easy to see that σk(1, 1) = Ck(z1). We also have

σk(m, 1) =
m∑

j=1

Ck(zj) and σk(m, m) =
m∏

j=1

Ck(zj).

For each k, the quantities σk(m, �) may be viewed as being the elements of a
lower triangular matrix. Then to compute the quantities σk(m, �) required for
e2
n,m(z1, z2, . . . , zm), we can use the following algorithm (with σk(1, 1) = Ck(z1)):

Set σk(m, 1) =
m∑

j=1

Ck(zj).

Set σk(m, m) =
m∏

j=1

Ck(zj).

For � = 2, 3, . . . , m − 1 do:

σk(m, �) = σk(m − 1, �) + Ck(zm)σk(m − 1, � − 1).

Now it is clear that if the quantities σk(m−1, �) for � = 1, 2, . . . , m−1 have been
computed and stored using O(m) memory, then the computation of all σk(m, �) as
well as of

∑m
�=1 Γ�σk(m, �) will require only O(m) operations for each k, assuming

that the values of Ck(zm) have also been stored as indicated in Section 6.1. Since
there are n possible values for k, the amount of storage required is O(nd) for a com-
plete run of the algorithm. In conclusion, the computation of e2

n,m(z1, z2, . . . , zm)
for each zm requires O(nm) operations, and the total cost of the CBC algorithm
will be O(n2d2). This shows that the complexity of the CBC construction is smaller
for order-dependent weights than for finite-order weights.
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6.4. The cost of the construction for weights which are both order-
dependent and finite-order. If we assume that the order-dependent weights
are also finite-order, then

e2
n,d(z) =

1
n

n−1∑
k=0

q∗∑
�=1

Γ�σk(d, �).

With the assumption that q∗ < d, the total cost of the construction will be reduced
to O(n2dq∗), with additional O(nq∗) memory required for storage.

6.5. Speeding up the CBC construction. A fast CBC construction has recently
been proposed by Nuyens and Cools in [11] for shift-invariant reproducing kernel
Hilbert spaces. Their technique is based on writing the CBC algorithm appropriate
for these function spaces in terms of matrix-vector multiplications and then applying
a fast algorithm to do these multiplications. For multiplication of an n× n matrix
with an n-vector, the operation count is reduced to O(n lnn) from the normal
O(n2).

Their technique can be modified so that it applies to the CBC algorithm given in
Section 4. Thus for the case of general weights, the O(n2d2d) operation count may
be reduced to O(n ln(n)d2d), while for finite-order weights the operation count
may be reduced to O(n ln(n)dq∗+1). In the case of order-dependent weights, by
first doing a summation over all weights and then applying the fast matrix-vector
multiplication, the total operation count may actually be reduced to O(nd ln(n) +
nd2) with O(nd) additional storage as mentioned in Section 6.3. Further details of
such a fast algorithm may by found in [1, Section 4]. In that work, a function of
the form

1
n

n−1∑
k=0

d∑
�=1

Γ�

∑
u⊆D
|u|=�

∏
j∈u

ω

({
kzj

n

})

is minimized. For the weighted star discrepancy considered here, we see from
Section 6.3 that we can apply their fast algorithm by taking

ω(x) =
∑′

−n
2 <h≤n

2

e2πihx

|h| , x ∈ [0, 1].

Finally, if the weights are both order-dependent and finite-order, then the cost
of the construction will be O(nd ln(n) + ndq∗) with O(nq∗) additional storage.
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