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ON INTERPOLATORY DIVERGENCE-FREE WAVELETS

KAI BITTNER AND KARSTEN URBAN

Abstract. We construct interpolating divergence-free multiwavelets based on
cubic Hermite splines. We give characterizations of the relevant function spaces
and indicate their use for analyzing experimental data of incompressible flow
fields. We also show that the standard interpolatory wavelets, based on the
Deslauriers-Dubuc interpolatory scheme or on interpolatory splines, cannot be
used to construct compactly supported divergence-free interpolatory wavelets.

1. Introduction

Wavelets are by now a widely accepted tool in signal and image processing as
well as in numerical simulation. Divergence-free vector fields have obvious possi-
ble applications for the analysis and numerical simulation of incompressible flows
typically modeled by the Stokes system or by the incompressible Navier-Stokes
equations. This has lead to the construction of divergence-free wavelets. The first
construction was introduced in [3] leading to an orthonormal wavelet basis for the
space of divergence-free vector fields on R

n. These functions were used in [17] to
show an existence result for the instationary, incompressible Navier-Stokes equa-
tions on R

n. For numerical purposes, in particular for bounded domains, these
wavelet bases are not appropriate since they are globally supported. In fact, it was
shown in [27] that no orthonormal, compactly supported divergence-free wavelet
basis exists.

In [26, 32] compactly supported biorthogonal wavelets have been constructed
and these functions have been used for the analysis of the Navier-Stokes equations
[28], the numerical simulation of the Stokes equations on rectangular domains [34]
and also for the analysis of experimental data of incompressible turbulent flows [1].
There are also generalizations to multiwavelets [24, 25].

However, the application of divergence-free wavelets in numerical simulations
is so far restricted to rather academic simple domains such as rectangles. This
is mainly due to the necessity of a rather technically complicated construction of
biorthogonal divergence-free wavelet bases on general domain geometries. This is
one reason for considering collocation methods; see e.g. [22, 23, 35, 37]. In this case,
interpolatory wavelets are required, which can easily be adapted to complicated
domains. However, to our knowledge, there are no divergence-free interpolatory
wavelets available, which is the reason why, e.g. in [22], an additional projection
method has to be performed.
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Another motivation for our investigation comes from applications of wavelets
in data analysis. Since wavelets are a widely accepted tool for signal and image
processing, denoising and compression, it is a natural idea to use wavelet methods
also for the analysis of incompressible flow data. Of course, for incompressible flows,
divergence-free wavelets would be appropriate. However, since typically the data
in terms of point values is approximated by scaling function coefficients this does
not only invent an approximation error, it also adds artificial compressibility (as
in [1]). This could be avoided if point values and expansion coefficients coincide,
which is the case for interpolatory functions.

The remainder of this paper is organized as follows. In Section 2 we collect some
preliminaries, notation, and basics on interpolatory wavelets and we review the
main construction idea for divergence-free wavelets. It is a natural idea to consider
the most frequently used interpolatory wavelet bases as a starting point for the con-
struction of interpolatory divergence-free wavelets. We show in Section 2.2.2 that
this approach does not work. Thus, we consider a multiwavelet construction based
on cubic Hermite splines in Section 3. We show in Section 4 how our construction
can be used within the lifting scheme. Further generalization to arbitrary grids and
domains as well as the numerical applications are devoted to a forthcoming paper.

2. Preliminaries

In this section, we collect some preliminary facts that are needed in the remainder
of the paper. Let us first set our notation. Let Ω ⊆ R

n be a domain, Lp(Ω) the
standard Lebesgue space, and

(2.1) Lp(Ω) := Lp(Ω)n := {v = (v1, . . . , vn)T : vi ∈ Lp(Ω), i = 1, . . . , n}
the corresponding space of vector fields. We will always denote vector fields by
boldface characters and real-valued functions in the standard font. For example,
Hk(Ω) is the space of n-dimensional vector fields whose components are functions
in Hk(Ω).

The spaces of vector-fields induced by the divergence operator are denoted by

H(div ; Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},(2.2)
V (div ; Ω) := {v ∈ H(div ; Ω) : div v = 0}.(2.3)

Since we consider interpolatory functions, we will also need the spaces Ck(Ω) and

C(div ; Ω) := {v ∈ C(Ω) : div v ∈ C(Ω)},(2.4)
N(div ; Ω) := {v ∈ C(div ; Ω) : div v = 0}.(2.5)

We will frequently use the notation A � B to abbreviate that A is bounded by
a constant multiple of B. A � B is defined as B � A and A ∼ B means A � B
and A � B.

2.1. How to construct divergence-free wavelets. A standard tool for the con-
struction of wavelet bases for L2(R), i.e., on the whole real line, is a multiresolution
analysis (MRA), which is a nested sequence of spaces Vj ⊂ Vj+1 ⊂ L2(R), j ∈ Z,
whose union is dense in L2(R), while the intersection contains only the zero func-
tion. Moreover, V0 is shift-invariant and Vj arises from V0 by scaling in the sense
that v ∈ V0 if and only if v(2j ·) ∈ Vj . Finally, these spaces are generated by a
scaling function ξ in the sense that

Vj = closL2 span{ξj,k : k ∈ Z},
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where ξj,k(x) := 2j/2ξ(2jx − k), x ∈ R, is a scaled and shifted version of ξ. From
V0 ⊂ V1 it follows immediately that ξ is refinable, i.e.,

(2.6) ξ(x) =
∑
k∈Z

ak ξ(2x − k), x ∈ R.

The translates of ξ should be orthonormal or at least stable, in the sense that∥∥∥∥∑
k∈Z

ck ξ(2 · −k)
∥∥∥∥

L2(R)

∼ ‖c‖�2(Z), c = (ck)k∈Z ∈ �2(Z).

A MRA can also be constructed on bounded domains Ω ⊂ R
n, involving more

technicalities and renouncing shift-invariance, of course; see, e.g. [6, 7, 10, 12, 13,
14].

Once a MRA (or two in the case of biorthogonal wavelets) is known, there are
several general techniques to construct a corresponding wavelet basis.

Thus, it would be an immediate idea to construct a divergence-free wavelet basis
from a MRA in V (div ; Ω). However, as shown in [26], there is no stable divergence-
free compactly supported scaling function generating a MRA. Instead, one uses an
appropriate MRA {Vj : j ∈ Z} in H(div ; Ω) and then splits the detail spaces

(2.7) Wj := Vj+1 � Vj = W∇
j ⊕ W ∆

j

into the divergence-free part W∇
j = Wj∩V (div ; Ω) and a stable complement W ∆

j .
Then, one needs to construct a wavelet basis {ψ∇

j,k : k} for W∇
j and the collection

over all levels j gives the desired basis of divergence-free wavelets.

Biorthogonal wavelets, differentiation, and integration. Next, we need to describe
what an “appropriate” MRA in H(div ; Ω) is. In order to avoid unnecessary tech-
nicalities we restrict ourselves to the case Ω = R

n and refer to [33, 34] for the
construction on general bounded domains. Keeping in mind that any divergence-
free wavelet ψ∇

j,k is a linear combination of the basis functions of Vj+1, the spaces

V div
j := div (Vj) ⊂ L2(Rn)

play an important role in the construction. Recall that Vj is a vector-valued mul-
tiresolution space, i.e., the spaces are of the form

Vj = V 1
j × · · · × V n

j ,

where each V i
j is a real-valued multiresolution space. Hence, a natural condition is

to require that

(2.8)
∂

∂xi
V i

j = V div
j , i = 1, . . . , n,

where V div
j is a multiresolution space, too.

In turn, if we use a standard tensor product construction to obtain a MRA on
R

n from n MRA on R, (2.8) reduces to a relation of the form

(2.9)
d

dx
V +

j = V −
j

for two multiresolution spaces V +
j , V −

j of functions fj : R → R. Indeed, one can
choose V div

j := V −
j ⊗ . . . ⊗ V −

j and V i
j := V −

j ⊗ . . . ⊗ V −
j ⊗ V +

j ⊗ V −
j ⊗ . . . ⊗ V −

j

with V +
j as the i-th factor in the above tensor product.
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For the corresponding compactly supported scaling functions this implies the
relation

d

dx
ξ+(x) =

d∑
k=−d

αk ξ−(x − k),

for some finite d ∈ N and coefficients αk ∈ R. Note that d < ∞ because ξ±

are assumed to be compactly supported and stable. We will use ξ to indicate a
univariate scaling function while ϕ will always denote a multivariate function.

It is proven in [26] that for a biorthogonal pair ξ+ ∈ H1(R), ξ̃+ ∈ L2(R) of
compactly supported scaling functions there always exists another biorthogonal
pair ξ− ∈ L2(R), ξ̃− ∈ H1(R) of compactly supported scaling functions such that

(2.10)
d

dx
ξ+(x) = ξ−(x) − ξ−(x − 1),

d

dx
ξ̃−(x) = ξ̃+(x + 1) − ξ̃+(x).

Note that ξ̃± denotes the dual of ξ± in order to avoid the more cumbersome notation
ξ̃±. Moreover, the corresponding biorthogonal wavelets satisfy the relation

(2.11)
d

dx
η+(x) = 4 η−(x),

d

dx
η̃−(x) = −1

4
η̃+(x).

From the above remarks, it should be clear that the latter equations are the heart
of the construction of divergence-free wavelets. We will come back to this point
later in Section 2.2.2.

Now, we define for any subset of indices I ⊆ {1, . . . , n},

(2.12) V I
j :=

n⊗
ν=1

V
(I,ν)
j , where V

(I,ν)
j :=

{
V +

j , if ν ∈ I,
V −

j , if ν �∈ I.

In particular, we set, as already mentioned above, V div
j := V ∅

j = V −
j ⊗ · · · ⊗ V −

j

and V i
j := V

{i}
j . The corresponding scaling functions are

(2.13) ϕI(x1, . . . , xn) :=
n∏

ν=1

ξI
ν(xν), where ξI

ν :=
{

ξ+, if ν ∈ I,
ξ−, if ν �∈ I.

Obviously, the vector fields

(2.14) ϕi := ϕ{i} δi,

are scaling functions in H(div ; Rn), where δi := (δ1,i, . . . , δn,i)T denotes the i-th
canonical vector in R

n. In fact,

Vj := clos span {ϕi;j,k, i = 1, . . . , n, k ∈ Z
n}

is the desired MRA, where

ϕi;j,k(x) := 2(nj)/2ϕi(2jx − k) x ∈ R
n, j ∈ Z, k ∈ Z

n.

Divergence-free wavelets. Now, we consider the corresponding wavelets. Let η+,
η− be (orthogonal or biorthogonal) wavelets according to ξ+ and ξ−, respectively.
Then, the wavelets generated by ϕI are defined for

En := {0, 1}n and E∗
n := En \ {0}

as

(2.15) ψI
e :=

n⊗
ν=1

ϑI
eν ,ν , where ϑI

�,ν :=
{

ξI
ν , if � = 0,

ηI
ν , if � = 1,
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with ηI
ν defined analogously to ξI

ν in (2.13). The vector-valued wavelets in
H(div ; Rn) are scaled translates ψe,i;j,k of the mother wavelets

ψe,i := ψ{i}
e δi, e ∈ E∗

n.

Note that for any e ∈ E∗
n, there exists an index

ie ∈ {1, . . . , n} such that eie
= 1,

i.e., at least one factor in the tensor product is a univariate wavelet. This index plays
a crucial role in the definition of divergence-free wavelets. In fact, the additional
constraint div u = 0 fixes one degree of freedom. This means that we have |E∗

n| (n−
1) = (2n − 1)(n− 1) wavelets instead of n |E∗

n| (which is the number of wavelets in
L2(Ω)). Then, we define divergence-free wavelets for e ∈ E∗

n and i �= ie component-
wise by

(2.16) ψ∇
e,i:ν :=

⎧⎪⎨⎪⎩
ψ
{i}
e , if ν = i;

−1
4

∂
∂xi

ψ
{i,ie}
e , if ν = ie;

0 otherwise.

We always denote by f:i the i-th component of a vector field f . Note that #{(e, i) :
e ∈ E∗, i �= ie} = |E∗| (n − 1) = (2n − 1)(n − 1), so that we have in fact the
correct number of divergence-free wavelets. It is easily seen that these functions
are divergence-free, i.e.,

div ψ∇
e,i =

∂

∂xi
ψ∇

e,i:i +
∂

∂xie

ψ∇
e,i:ie

=
∂

∂xi
ψ{i}

e − 1
4

∂

∂xie

∂

∂xi
ψ{i,ie}

e

=
1
4

∂

∂xi

∂

∂xie

ψ{i,ie}
e − 1

4
∂

∂xie

∂

∂xi
ψ{i,ie}

e = 0.

Note, that the index ie is chosen so that we can apply equality (2.11). Moreover,
it was shown in [26, 32] that the system

Ψ∇ := {ψ∇
e,i : e ∈ E∗, i �= ie}

generates a Riesz basis for the space V (div ; Rn) of all divergence-free vector fields
on R

n. Generalizations to more general domains can be found in [33, 34].
As already mentioned, the above system is a biorthogonal one. Let us denote

by the accent “̃ ” the dual system corresponding to all functions involved in the
construction. Then, the dual wavelets according to ψ∇

e,i are defined by

(2.17) ψ̃∇
e,i := ψ̃{i}

e δi, e ∈ E∗, i �= ie.

Note that these functions are not divergence-free which is by no means a contra-
diction. It comes from the splitting of the complement spaces in (2.7).

2.2. Interpolatory wavelets. As above, the starting point for the construction
of interpolatory wavelets is a MRA generated by an interpolatory scaling function
ξ, i.e., ξ(k) = δ0,k for all k ∈ Z. Thus, any function fj ∈ Vj has an expansion of
the form

(2.18) fj(x) =
∑
k∈Z

cj,k ξ(2jx − k), cj,k = f(2−jk),

i.e., the expansion coefficients are given in terms of point values (samples) of f

rather than by a scalar product (f, ξ̃j,k)0,Ω.
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It is readily seen that

(2.19) η(x) := 2 ξ(2x − 1)

is a possible choice for such a wavelet with interpolatory properties, [16]. This is
also the reason, why in several papers the term “interpolatory wavelet” is used for
the scaling function ξ. From (2.19) it is obvious that interpolatory wavelets do
not have vanishing moments. On the other hand, one still has fast algorithms for
decomposition and reconstruction of a signal (Fast Wavelet Transform). Finally,
one cannot hope to obtain a Riesz basis for L2. However, in [16], norm equivalences
and characterizations for Besov spaces embedded in C(R) are proven (the range of
Besov spaces depends of course on the regularity and polynomial exactness of ξ);
see also Theorem 2.1 below.

2.2.1. Characterization of function spaces. The following general characterization
result is well-known. We will derive similar results for interpolatory divergence-free
wavelets. Here Bs

q(Lp(R)) denotes the standard Besov space.

Theorem 2.1 ([16, Thm. 2.7]). Let ξ ∈ Cr(R) be a compactly supported, refinable,
interpolatory scaling function which is exact of order d, i.e.,

xm =
∑
k∈Z

αmk ξ(x − k), 0 ≤ m ≤ d, x ∈ R,

with appropriate coefficients αmk ∈ R, where the convergence of the sum is to be
understood locally. Then we have the following characterization for the interpolatory
wavelets η = ξ(2 · −1) for 1

p < s < min{r, d}, 0 < p, q ≤ ∞,

(2.20)

∥∥∥∥∥∥
∑
j,k

dj,k ηj,k

∥∥∥∥∥∥
Bs

q(Lp(R))

∼

⎛⎝∑
j

(
2j(s+ 1

2−
1
p )
∑

k

|dj,k|p
)q
⎞⎠1/q

.

Note that the above result also holds for interpolatory spline functions (which are
not compactly supported, but piecewise polynomials). In this case, one obviously
has r = d − 1.

2.2.2. Differentiation and integration. Let us now investigate the differentiation
process as described in (2.9) for the particular case of interpolatory scaling func-
tions.

Proposition 2.2. Let ξ+ ∈ C1(R) be a compactly supported, interpolatory scaling
function with refinement coefficients a+

k in (2.6). Then, the coefficients

(2.21) a−
k :=

1
2
(ak + ak−1)

define a refinable function ξ− satisfying

(2.22)
d

dx
ξ+(x) = ξ−(x) − ξ−(x − 1).

We skip the proof since it is an immediate consequence of [26, Prop. 4]. In
order to use this differentiation process as the starting point for a construction
of divergence-free interpolatory wavelets, we investigate if (2.21) gives rise to an
interpolatory scaling function ξ−. In the following we comment on three prominent
examples of interpolatory scaling functions.
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1. A sufficient but not necessary condition for ξ− to be interpolatory is a2k = δk,
k ∈ Z; see e.g. [29]. Assuming that this holds for a+

k , we obtain by (2.21)

a−
2k =

1
2
(δk + a+

2k−1)

which only coincides with δk if a+
2k−1 = δk. This, however, is only true for the

scaling function corresponding to the orthonormal Haar wavelet.
2. One popular choice for the construction of wavelets are spline functions.

Choosing the space of cardinal splines of even order d > 0 as V +
0 , we can choose the

corresponding fundamental spline as interpolatory scaling function ξ+. However,
then V −

0 is the space of splines of odd order, where the interpolation problem
at the integer knots does not have a unique solution. Thus, we cannot have an
interpolatory scaling function ξ−; i.e., splines are not suited for the construction of
interpolatory divergence-free wavelets. Moreover, ξ+ is only compactly supported
for d = 2 (i.e., the hat function).

3. The Deslauriers-Dubuc interpolatory scaling functions ξN are defined as
auto-correlation of Daubechies’ orthonormal scaling functions θN ,

(2.23) ξN (x) = (θN ∗ θN )(x) :=
∫

R

θN (t) θN (t − x) dt, x ∈ R.

If we use ξ+ = ξN (and θ+ := θN ), the arising function ξ− is not interpolatory. In
fact, we have

d

dx
ξ+ = (

d

dx
θ+) ∗ θ+ = (θ− ∗ θ+)(x) − (θ− ∗ θ+)(x − 1),

i.e., ξ− = θ− ∗ θ+. It is known that θ− is biorthogonal (and not interpolatory) and
thus ξ− is not interpolating at the integers.

3. Hermite interpolatory splines and multiwavelets

As we have seen in Section 2.2.2 above, it does not seem to be a good idea to try
to construct interpolatory divergence-free wavelets starting from a scaling system
generated by only one function ξ+. Thus, we now aim to construct two families of
functions Ξ+ = {ξ+

1 , . . . , ξ+
m} and Ξ− = {ξ−1 , . . . , ξ−m} such that

• the derivatives of Ξ+ are spanned in terms of Ξ−;
• both systems are interpolatory with respect to the integers.

This can in fact be achieved by Hermite interpolatory spline functions and leads us
to multiwavelets.

Definition 3.1. The space of cardinal splines of order d, d ≥ 0, with knots of
multiplicity i (splines with deficiency i − 1) is defined by

Sd,i :=
{

f ∈ Cd−i−1(R) : f
∣∣
[k,k+1)

∈ Πd−1, k ∈ Z

}
.

A stable basis of Sd,i is induced by the B-splines

Bd,i
k (x) = (ti,k+d − ti,k)

[
ti,k, . . . , ti,k+d

]
(· − x)d−1

+ , k ∈ Z,

with knots ti,k := �k
i � (see e.g. [30]). In fact, the B-spline basis can be represented

by integer translates of the i successive B-splines Bd,i
k , . . . , Bd,i

k+i−1. Splines with
knots of multiplicity i can be used to interpolate not only function values but also
the values of derivatives up to order i− 1 if the splines are sufficiently smooth, i.e.,
if d ≥ 2i.
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Figure 1. Original (left) and differentiated system of Hermite
interpolatory splines.

3.1. Interpolatory Hermite splines and differentiation. In the sequel we con-
sider cubic Hermite splines defined as follows:

ξ+
1 (x) :=

⎧⎨⎩
1 − 3x2 − 2x3, if x ∈ [−1, 0];
1 − 3x2 + 2x3, if x ∈ [0, 1];
0 otherwise,

(3.1)

ξ+
2 (x) :=

⎧⎨⎩
x + 2x2 + x3, if x ∈ [−1, 0];
x − 2x2 + x3, if x ∈ [0, 1];
0 otherwise,

(3.2)

as well as the quadratic Hermite splines

ξ−1 (x) :=
{

−6x − 6x2, if x ∈ [−1, 0];
0 otherwise,(3.3)

ξ−2 (x) :=

⎧⎨⎩
1 + 4x + 3x2, if x ∈ [−1, 0];
1 − 4x + 3x2, if x ∈ [0, 1];
0 otherwise.

(3.4)

The corresponding functions are displayed in Figure 1. These functions have been
investigated in several papers. Biorthogonal multiwavelets on the interval [0, 1]
generated by ξ+

1 , ξ+
2 have been introduced in [11]. It is well known that the integer

translates of ξ+
1 , ξ+

2 generate the space of C1-continuous piecewise cubic functions
on R which interpolate function values and first derivatives at the integers. Based
on these functions, biorthogonal divergence-free multiwavelets (also on rectangular
domains) have been constructed in [24, 25]. There, the system ξ+

1 , ξ+
2 plays a role

as part of a whole family of multiwavelets that can be linked by differentiation and
integration similar to (2.10).

The above functions are fundamental interpolants in the sense that

(3.5)
dν

dxν
ξ+
m(k) = δk0 δm−1,ν , k ∈ Z, ν ∈ {0, 1}, m ∈ {1, 2},

and

(3.6) ξ−m(k) = δk0 δm2,

∫ k

k−1

ξ−m(x) dx = δk0 δm1, k ∈ Z, m ∈ {1, 2}.
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Furthermore, it is easily seen that we have the following relation for the derivatives

(3.7)
d

dx
ξ+
1 (x) = ξ−1 (x) − ξ−1 (x − 1),

d

dx
ξ+
2 (x) = ξ−2 (x),

which will turn out to be crucial later.
It is well known, that {ξ+

1 (· − k), ξ+
2 (· − k) : k ∈ Z} is a stable basis for S4,2.

Indeed, this property follows immediately from ξ+
1 = B4,2

−1 +B4,2
−2 and ξ+

2 = 1
3 (B4,2

−1−
B4,2

−2). Furthermore, from ξ−1 (x) = 3B3,2
−2 and ξ−2 = 3(B3,2

−1 − B3,2
0 − B3,2

0 (· + 1)) it
follows immediately that {ξ−1 (· − k), ξ−2 (· − k) : k ∈ Z} is a stable basis for S3,2.

For our further investigations we will need the cubic Hermite spline interpolant
defined as

(3.8) Λ+
j f :=

∑
k∈Z

(
f(2−jk)ξ+

1;j,k + 2−jf ′(2−jk)ξ+
2;j,k

)
,

as well as the generalized quadratic Hermite spline interpolant

Λ−
j f :=

∑
k∈Z

(
2j

∫ 2−jk

2−j(k−1)

f(t) dt ξ−1;j,k + f(2−jk) ξ−2;j,k

)
,

where ξ±m;j,k(x) := ξ±m(2jx − k), x ∈ R, j, k ∈ Z, (i.e., ξ±m;j,k is normalized in L∞),
i.e., by f;j,k we denote the L∞-normalized shifted scaling of a real-valued function
f . Obviously, Λ±

j is a projection onto the space

V ±
j := closL2 span

{
ξ±m;j,k : m ∈ {1, 2}, k ∈ Z

}
and we have for all j ∈ Z,

(Λ±
j f)(2−jk) = f(2−jk),(3.9)

(Λ+
j f)′(2−jk) = f ′(2−jk),(3.10) ∫ 2−jk

2−j(k−1)

Λ−
j f(x) dx =

∫ 2−jk

2−j(k−1)

f(x) dx, k ∈ Z.(3.11)

It will be convenient to express the above interpolants in terms of dual functionals

(3.12) Λ±
j f =

∑
k∈Z

2∑
m=1

〈f, ξ̃±m;j,k〉 ξ±m;j,k,

where 〈·, ·〉 denotes the dual pair. It is readily seen that, in the sense of distributions,

ξ̃+
1 = δ0, i.e., 〈f, ξ̃+

1;j,k〉 = f(2−jk),

ξ̃+
2 = −δ′0, i.e., 〈f, ξ̃+

2;j,k〉 = 2−j f ′(2−jk),

ξ̃−1 = χ[−1,0), i.e., 〈f, ξ̃−1;j,k〉 = 2j

∫ 2−jk

2−j(k−1)

f(x) dx,

ξ̃−2 = δ0, i.e., 〈f, ξ̃−2;j,k〉 = f(2−jk).

Note, that the dual functionals are (L∞-normalized) scaled and shifted versions of
ξ̃±m, in the sense that

(3.13) 〈f, ξ̃±m;j,k〉 =
〈
f
( ·+k

2j

)
, ξ̃±m

〉
.

Then, we have the following relations.
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Proposition 3.2. It holds that:

(a)
d

dx
ξ̃−1 = ξ̃+

1 (· + 1) − ξ̃+
1 ,

d

dx
ξ̃−2 = −ξ̃+

2 in the sense of distributions.

(b)
〈
f ′, ξ̃−1;j,k

〉
=
〈
f, 2j(ξ̃+

1;j,k − ξ̃+
1;j,k−1)

〉
,
〈
f ′, ξ̃−2;j,k

〉
=
〈
f, 2j ξ̃+

2;j,k

〉
.

(c)
d

dx
Λ+

j f = Λ−
j (f ′), if f ∈ C1(R).

(d) 〈ξ±m′;j,k′ , ξ̃
±
m;j,k〉 = δm,m′ δk,k′ .

Proof. Claim (a) is obvious, and also the second part of (b). By definition, we have

〈f ′, ξ̃−1;j,k〉 = 2j

∫ 2−jk

2−j(k−1)

f ′(x) dx = 2j(f(2−jk) − f(2−j(k − 1)))

= 〈f, 2j(ξ̃+
1;j,k − ξ̃+

1;j,k−1)〉,

which proves (b). Finally, for f ∈ C1(R), we have by (a), (b) and (3.7)

d

dx
Λ+

j f =
∑
k∈Z

(
〈f, ξ̃+

1;j,k〉 2j (ξ−1;j,k − ξ−1;j,k+1) + 〈f, ξ̃+
2;j,k〉 2j ξ−2;j,k

)
=

∑
k∈Z

(
〈f, 2j(ξ̃+

1;j,k − ξ̃+
1;j,k−1)〉 ξ−1;j,k + 〈f, 2j ξ̃+

2;j,k〉 ξ̃−2;j,k

)

=
∑
k∈Z

2∑
m=1

〈f ′, ξ̃−m;j,k〉 ξ̃−i;j,k = Λ−
j f ′.

Finally (d) follows from (3.5) and (3.6). �

Often, one collects the two generating functions in one vector:

ξ+ :=
(

ξ+
1

ξ+
2

)
, ξ− :=

(
ξ−1
ξ−2

)
.

Such a vector is called a multigenerator if the integer translates form an L2-stable
basis and ξ satisfies a refinement equation

(3.14) ξ(x) =
∑
k∈Z

Ak ξ(2x − k), x ∈ R a.e.,

with mask A := {Ak}k∈Z, Ak ∈ R
2×2.

Applying the projectors Λ+
1 to ξ+

i ( ·
2 ) ∈ S4,2, i = 1, 2, it follows that ξ+ satisfies

the refinement equation (3.14) with mask matrices

A+
−1 =

(
1
2

3
4

−1
8 −1

8

)
, A+

0 =

(
1 0
0 1

2

)
, A+

1 =

(
1
2 −3

4
1
8 −1

8

)
,

(see also [11, 21]) and the application of Λ−
1 to ξ−i ( ·

2 ) ∈ S3,2 yields that ξ− is
refinable with mask matrices

A−
−2 =

(
0 0

−1
4 0

)
, A−

−1 =

(
0 0
1
4

1
4

)
, A−

0 =

(
1
2 0
1
4 1

)
, A−

1 =

(
1
2

3
2

−1
4 −1

4

)
.
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Next, we define interpolating wavelets

(3.15)
η+

m := ξ+
m(2 · −1), m = 1, 2,

η−
1 := ξ−1 (2 · −1) − ξ−1 (2 · −2), η−

2 := ξ−2 (2 · −1).

The following interpolation relations follow from (3.5) and (3.6):
dν

dxν
η+

m(k
2 ) = 2νδk1δm−1,ν , ν ∈ {0, 1},

η−
m(k

2 ) = δk1 δm2,∫ (k+1)/2

k/2

η−
m(x) dx =

1
2
δm1(δk0 − δk1), k ∈ Z, i ∈ {1, 2}.

Note that we obtain the following crucial property

(3.16)
d

dx
η+

m(x) = 2 η−
m(x), m = 1, 2.

By the interpolation properties one sees immediately that the wavelet spaces

W±
j := closL2 span

{
η±

m;j,k : m ∈ {1, 2}, k ∈ Z
}

satisfy V ±
j ∩ W±

j = {0} and V ±
j ∪ W±

j = V ±
j+1. In particular, we have

(3.17)
g(2−jk) = g′(2−jk) = 0, if g ∈ W+

j ,

g(2−jk) =
∫ 2−j(k+1)

2−jk

g(x) dx = 0, if g ∈ W−
j ,

i.e., 〈g, ξ̃±µ;j,k〉 = 0 and Λ±
j g = 0 if g ∈ W±

j . In order to compute the wavelet
expansion of a function, we are also interested in dual wavelets.

Theorem 3.3. The functionals η̃±
m;j,k defined as 〈f, η̃±

m;j,k〉:=〈f−Λ±
j f, ξ̃±m;j+1,2k+1〉

satisfy the biorthogonality conditions

〈η±
m′;j′,k′ , η̃

±
m;j,k〉 = δm,m′δj,j′δk,k′(3.18)

〈η±
m′;j,k′ , ξ̃

±
m;j,k〉 = 〈ξ±m′;j,k′ , η̃

±
m;j,k〉 = 0(3.19)

for all m, m′ = 1, 2 and j, j′, k, k′ ∈ Z. Furthermore, η̃±
m;j,k is a shifted translate of

η̃±
m in the sense that

(3.20) 〈f, η̃±
j,k〉 =

〈
f
( ·+k

2j

)
, η̃±〉 ,

where

η̃+
1 := δ 1

2
− 1

2δ0 − 1
2δ1 + 1

8δ′0 − 1
8δ′1,

η̃+
2 := 3

4δ0 − 3
4δ1 − 1

2δ′1
2
− 1

8δ′0 − 1
8δ′1,

η̃−
1 := χ[0, 1

2 ] − χ[ 12 ,1] − 1
4δ0 + 1

4δ1,

η̃−
2 := δ 1

2
+ 1

4δ0 + 1
4δ1 − 3

2χ[0,1].

Proof. The equalities in (3.17) yield Λ±
j η±

m;j,k = 0, i.e.,

〈η±
m′;j′,k′ , η̃

±
m;j,k〉 = 〈η±

m′;j′,k′ − Λ±
j η±

m′;j′,k′ , ξ̃
±
m;j+1,2k+1〉 = 〈η±

m′;j′,k′ , ξ̃
±
m;j+1,2k+1〉.

Now (3.18) follows from the definition of η̃±
m in (3.15) and biorthogonality for the

scaling functions in Proposition 3.2 (d). The equalities in (3.19) follow immediately
from the definitions of η±

m;j,k and η̃±
m;j,k.
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Furthermore, (3.13) gives

〈f, η̃±
m;j,k〉 =

〈
f
( ·+k

2j

)
− Λ±

j f
( ·+k

2j

)
, ξ̃±m;1,1

〉
.

With (3.12), we obtain the representations of the particular dual functionals by

〈f, η̃±
m〉 = 〈f, ξ̃±m;1,1〉 −

∑
k∈Z

〈f, ξ̃±m;0,k〉 〈ξ
±
m;0,k, ξ̃±m;1,1〉. �

The dual functionals lead to a fast decomposition algorithm. For a given function
f =

∑
m,k cm;j+1,kξ±m;j+1,k ∈ V ±

j+1 we want to compute the coefficients c±m;j,k and
d±m;j,k of the expansion

(3.21) f =
∑
m,k

c±m;j,kξ±m;j,k +
∑
m,k

d±m;j,kη±
m;j,k.

Applying ξ̃±m;j,k to f we obtain with (3.19) that c±m;j,k = 〈f, ξ̃±m;j,k〉, i.e.,

c+
1;j,k = c+

1;j+1,2k, c+
2;j,k = 2c+

2;j+1,2k,

c−2;j,k = c−2;j+1,2k, c−1;j,k = 1
2 (c−1;j+1,2k−1 + c−1;j+1,2k).

Analogously, the wavelet coefficients can be obtained by d±m;j,k = 〈f, η̃±
m;j,k〉, i.e.,

d+
1;j,k := c+

1;j+1,2k+1 − 1
2c+

1;j+1,2k − 1
2c+

1;j+1,2k+2 − 1
4c+

2;j+1,2k + 1
4c+

2;j+1,2k+2,

d+
2;j,k := 3

4c+
1;j+1,2k − 3

4c+
1;j+1,2k+2 + c+

2;j+1,2k+1 + 1
4c+

2;j+1,2k + 1
4c+

2;j+1,2k+2,

d−1;j,k := 1
2c−1;j+1,2k+1 − 1

2c−1;j+1,2k+2 − 1
4c−2;j+1,2k + 1

4c−2;j+1,2k+2,

d−2;j,k := c−2;j+1,2k+1 + 1
4c−2;j+1,2k + 1

4c−2;j+1,2k+2 − 3
4c−1;j+1,2k+1 − 3

4c−1;j+1,2k+2.

Finally, relation (3.16) implies an analogous relation d
dx η̃−

m = −1
2 η̃+

m for the duals
in the sense of distributions, i.e.,

(3.22) 〈f ′, η̃−
m;j,k〉 = −2j−1〈f, η̃+

m;j,k〉.

3.2. Characterization of function spaces. For any function f ∈ C1(R) (f ∈
C(R)) we can compute the coefficients 〈f, η̃+

m;j,k〉 (〈f, η̃−
m;j,k〉). An interesting ques-

tion is, in which sense the expansion
∑

j,k〈f, η̃±
m;j,k〉η

±
m;j,k is to be understood. In

this section we show that Hermite interpolatory wavelets form unconditional bases
for certain Besov spaces, which are contained in the space of continuous (differen-
tiable) functions.

In the sequel we will use the following standard definition of Besov spaces. For
0 < p, q ≤ ∞ and s > 0 we define a semi-norm

(3.23) |f |Bs
q (Lp(Ω)) :=

⎧⎪⎪⎨⎪⎪⎩
(∑

j∈Z

2jqs ωm(f, 2−j , Lp(Ω))q
) 1

q

, if 1 ≤ q < ∞,

sup
j∈Z)

2js ωd(f, 2−j , Lp(Ω)), if q = ∞,

with m := �s�+1, where ωm(f, t, Lp(Ω)) is the m-th order modulus of smoothness.
The Besov space Bs

p,q(Ω) is the set of all f ∈ Lp(Ω) such that |f |Bs
q(Lp(Ω)) is finite.

A norm is defined by

‖f‖Bs
q(Lp(Ω)) := ‖f‖Lp(Ω) + |f |Bs

q(Lp(Ω)).
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There are numerous equivalent norms in the literature. Here, we only need that
an equivalent norm is obtained if m in (3.23) is replaced by any integer d > s (see
e.g. [9]).

Furthermore, we need the following discrete norms for coefficient sequences. For
the sequences β = (βk)k∈Zn , α = (αjk)j≥j0,k∈Zn , and αj = (αjk)k∈Zn , we define

‖β‖�p
:=

⎧⎨⎩
(∑

k |βk|p
) 1

p

, if 0 < p < ∞,

supk |βk|, if p = ∞,

‖α‖�s
pq

:=

⎧⎨⎩
(∑

j

(
2j(s−n

p )‖αj‖�p

)q) 1
q

, if 0 < q < ∞,

supj 2js‖αj‖�p
, if q = ∞,

for p ∈ (0,∞]. In [16], Besov spaces on the real line are characterized in terms of the
wavelet expansion with respect to interpolatory wavelets (see Theorem 2.1). Here
we need more general results for the characterization of Besov spaces on R

n with
Hermite interpolatory wavelets. Our characterization is essentially based on results
reported in [9]. Even though, the following results are not reported in the literature
in the presented form, the techniques used therein are more or less standard. Hence,
we collected the proofs in Appendix A.

The Besov norm of a multiscale representation can be estimated by the corre-
sponding discrete norm of the coefficients.

Lemma 3.4. If φ ∈ Bσ
∞(Lp(Rn)) is compactly supported, 0 < p, q ≤ ∞, and

0 < s < σ, then ∥∥∥∥ ∑
k∈Zn

βk φ(2j · −k)
∥∥∥∥

Bs
q(Lp(Rn))

� 2(s−n
p )j‖β

∥∥
�p

,(3.24)

∥∥∥∥ ∞∑
j=j0

∑
k∈Zn

αj,k φ(2j · −k)
∥∥∥∥

Bs
q(Lp(Rn))

� ‖α‖�s
pq

.(3.25)

Applying Lemma 3.4 to our interpolatory wavelets we obtain by the facts ξ+
m ∈

B
2+1/p
∞ (Lp(R)) and ξ−m ∈ B

1+1/p
∞ (Lp(R)) the following corollary.

Corollary 3.5. Let 0 < s < 2 + 1
p and 0 < p, q ≤ ∞. Then∥∥∥∥∥

2∑
m=1

(∑
k∈Z

βm,kξ+
m;j0,k+

∞∑
j=j0

∑
k∈Z

αm;j,kη+
m;j,k

)∥∥∥∥∥
Bs

q(Lp(R))

�
2∑

m=1

(
‖βm‖�p

+‖αm‖�s
pq

)
.

If 0 < s < 1 + 1
p , the estimate also holds if ξ+

m and η+
m are replaced by ξ−m and η−

m,
respectively. �

Note, that the upper bounds for s are sharp, since for s > 2+ 1
p and s > 1+ 1

p , e.g.,
‖η±

m;j,k‖Bs
q(Lp(R)) is unbounded. In order to estimate the Besov norm of a function

by a discrete norm of its wavelet coefficients we will employ the vanishing moments
of the dual functionals, which enable us to estimate the wavelet coefficients by the
error of a locally best approximation

Ed(f, Wµ
τ (σ)) := inf

P∈Πd−1
‖f − P‖W µ

τ (σ)

by a polynomial P of degree less than d, in the norm of the Sobolev space Wµ
τ (σ)

on some σ ⊂ R
n. These errors depend in turn on the Besov regularity of f .
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Lemma 3.6. Let n
p − n

τ + µ < s < d, s > 0, µ ∈ N0, 0 < p, q ≤ ∞, 1 ≤ τ ≤ ∞.
Furthermore, let σjk ⊂ 2−j(σ + k), j ∈ Z, k ∈ Z

n, with a cube σ ⊂ R
n. Then∑

j∈Z

(
2j(s−n

p + n
τ −|µ|)

( ∑
k∈Zn

Ed

(
f, Wµ

τ (σjk)
)p) 1

p

)q

� |f |qBs
q(Lp(Rn)).

We will also need an estimate for the coefficients of the scaling functions on the
coarse level. This estimate will be based on the following lemma.

Lemma 3.7. Let 1
p −

1
τ +µ < s, µ ∈ N0, 0 < p, q ≤ ∞, 1 ≤ τ ≤ ∞. For σk ⊂ σ+k,

k ∈ Z
n, where σ ⊂ R

n is an n-dimensional cube, we have( ∑
k∈Zn

∥∥f‖p
W µ

τ (σk)

) 1
p � ‖f‖Bs

q (Lp(Rn)).

For our Hermite spline wavelets we obtain from Lemma 3.6 and Lemma 3.7 the
following estimate.

Corollary 3.8. Let f ∈ Bs
q(Lp(R)), 1 + 1

p < s < 4 , 0 < p, q ≤ ∞. Then the
coefficient sequences αm :=

(
〈f, η̃+

m;j,k〉
)
j≥j0,k∈Z

, βm :=
(
〈f, ξ̃+

m;j0,k〉
)
k∈Z

, j0 ∈ Z,
m = 1, 2, satisfy

2∑
m=1

(∥∥βm

∥∥
�p

+
∥∥αm

∥∥
�s

pq

)
� ‖f‖Bs

q(Lp(R)).

If 1
p < s < 3, the estimate holds also if ξ̃+

m and η̃+
m are replaced by ξ̃−m and η̃−

m.

Again, the bounds for s are sharp. The lower bounds are necessary for the
imbedding of the Besov space in C1(R) or C0(R), which is in turn needed for the
coefficents to be well defined. On the other hand, the upper bound for s is imposed
by the maximal number of vanishing moments of the dual wavelets, i.e., by the
polynomial exactness of the corresponding spline spaces. Finally, putting all of
the pieces together, we obtain that these wavelets form unconditional bases for a
certain range of Besov spaces.

Theorem 3.9. Let 1 + 1
p < s < min(4, 2 + 1

p ) , 0 < p, q ≤ ∞. Then every
f ∈ Bs

q(Lp(R)) has the expansion

(3.26) f =
2∑

m=1

(∑
k∈Z

βm,kξ+
j0,k +

∞∑
j=j0

∑
k∈Z

αm;j,kη+
m;j,k

)
with uniquely determined coefficients βm,k = 〈f, ξ̃+

m;j0,k〉 and αm,j,k = 〈f, η̃+
m;j,k〉.

Furthermore,

‖f‖Bs
q (Lp(R)) ∼

2∑
m=1

(
‖βm‖�p

+ ‖αm‖�s
pq

)
.

If ξ+
m, η+

m are replaced by ξ−m, η−
m, then the result holds for 1

p < s < min(3, 1 + 1
p ).

Proof. The unconditional convergence of (3.26) is shown with the estimates in
Corollaries 3.5 and 3.8 and the biorthogonality relations in Proposition 3.2(d),
(3.18), and (3.19). Then the norm equivalence follows immediately from Corollar-
ies 3.5 and 3.8. �
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Note that the bounds for s are relatively narrow. In particular, we cannot choose
the same value of s for the wavelets η−

m and η+
m. This will cause some difficulties for

the divergence-free wavelets constructed in Section 3.3 below, which can be avoided
by considering anisotropic Besov spaces as is done later in Section 3.4. However,
wavelets of higher regularity might be desirable in some cases.

3.3. Divergence-free interpolatory Hermite splines. We now describe a con-
struction of divergence-free interpolatory Hermite spline wavelets based on (3.7).
We first consider the interpolatory tensor-product MRA V I

j similar to (2.12). Note
that these spaces are generated by scaled translates of

ϕI
m(x1, . . . , xn) :=

n∏
ν=1

ξI
mν ,ν(xν), m = (m1, . . . , mn)T ∈ {1, 2}n,

where

ξI
µ,ν :=

{
ξ+
µ , if ν ∈ I,

ξ−µ otherwise, µ = 1, 2.

This means that V I
j is generated by a multigenerator of dimension 2n. The corre-

sponding wavelets are

ψI
e,m(x1, . . . , xn) :=

n∏
ν=1

ϑI
eν ,mν ,ν(xν), e ∈ E∗

n, m = (m1, . . . , mn)T ∈ {1, 2}n,

where

ϑI
�,µ,ν :=

{
ξI
µ,ν , if � = 0,

ηI
µ,ν otherwise,

and ηI
i,ν is defined in a similar fashion as ξI

i,ν . Analogously, we define ϕ̃I
m and ψ̃I

e,m

as tensor product functionals. Thus, we obtain |E∗
n|2n = (2n − 1)2n wavelets, i.e.,

12 wavelets in 2D and 56 wavelets in 3D. We denote by

ΛI
j :=

n⊗
ν=1

Λν;j , Λν;j :=
{

Λ+
j , if ν ∈ I,

Λ−
j , if ν �∈ I,

the corresponding Hermite spline interpolants. Before we proceed, we collect some
properties of these interpolants.

Proposition 3.10. The following properties hold for sufficiently smooth functions
f : R

n → R:
(a)

〈
ΛI

jf, ϕ̃I
m;j,k

〉
=
〈
f, ϕ̃I

m;j,k

〉
, for k ∈ Z

n, m ∈ {1, 2}n;

(b) ∂
∂xi

ΛI
jf = ΛI\{i}

j

(
∂

∂xi
f
)
, if i ∈ I;

(c) ∂
∂xi

ψI
e,m = 2ψ

I\{i}
e,m , if i ∈ I, ei = 1.

Proof. Task (a) follows directly from (3.9)–(3.11), whereas (b) follows from Propo-
sition 3.2 (c). As for (c), by i ∈ I and ei = 1 we have ϑI

ei,mi,i
= ϑI

1,mi,i
= η+

mi
so

that the claim follows from (3.16). �

Note that (a) describes the (Hermite) interpolation properties of ΛI
j , similarly to

(3.9)–(3.11) in the univariate setting. In particular, for mi = 1, i ∈ I, and mi = 2,
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i �∈ I, statement (a) becomes ΛI
jf(2−jk) = f(2−jk). The next step is again a

vector-valued MRA for the component i similar to (2.14), i.e.,

ϕm,i := ϕ{i}
m δi, m ∈ {1, 2}n, 1 ≤ i ≤ n,

and the corresponding interpolants

Λi;j := Λ{i}
j δi.

Finally, we obtain an interpolatory MRA {Vj}j≥j0 in C(Rn) generated by

{ϕm,i : m ∈ {1, 2}n, 1 ≤ i ≤ n}
with the associated interpolant Λj :=

∑n
i=1 Λi;j . Hence, we have n 2n generators.

As an immediate consequence of Proposition 3.10 we obtain

Proposition 3.11. For a vector field f ∈ C(div ; Rn) we have

div (Λjf) = Λ∅
j (div f),

where Λ∅
j := Λ−

j ⊗ · · · ⊗ Λ−
j .

Proof. With Proposition 3.10(b), we obtain

div (Λj f) =
n∑

i=1

∂

∂xi
Λ{i}

j fi =
n∑

i=1

Λ∅
j

(
∂

∂xi
fi

)
= Λ∅

j (div f). �
The Hermite interpolant Λj is used to interpolate given sample data of a flow

field. The above proposition ensures that the interpolant of an incompressible flow
field remains divergence-free.

Now, we construct divergence-free interpolatory multiwavelets. Let us first
briefly sketch the idea, which is similar to (2.16) above. Let Wj := Vj+1 � Vj

denote the vector-valued interpolatory wavelet spaces. The road map is to decom-
pose Wj as W∇

j := Wj ∩ N(div ; Ω), W ∆
j := Wj � W∇

j in a stable way. To this

end, we define ψe,m,i := ψ
{i}
e,m δi so that

Wj = clos span {ψe,m,i;j,k : e ∈ E∗
n, m ∈ {1, 2}n, i = 1, . . . , n, k ∈ Z

n}.
This means, we have

|E∗
n| 2n n = n 2n (2n − 1)

vector-wavelets, i.e., 24 in 2D and 168 in 3D. From (3.16) we conclude that
∂

∂xi
ψe,m,i:i = 2 ψ∅

e,m, if ei = 1.

For e ∈ E∗
n and i �= ie, we define

(3.27) ψ∇
e,m,i := ψ{i}

e,m δi −
1
2

∂

∂xi
ψ{i,ie}

e,m δie
.

Again, it is readily seen that due to eie
= 1, we have

(3.28) div ψ∇
e,m,i =

∂

∂xi
ψ{i}

e,m − 1
2

∂

∂xie

∂

∂xi
ψ{i,ie}

e,m =
∂

∂xi
ψ{i}

e,m − ∂

∂xi
ψ{i}

e,m = 0.

In order to obtain the desired decomposition, we define

(3.29) ψ∆
e,m := ψ{ie}

e,m δie
.

The dual functionals for the divergence-free wavelets turn out to be the standard
ones, i.e.,

(3.30) ψ̃∇
e,m,i := ψ̃{i}

e,m δi, i �= ie;
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Figure 2. Interpolatory divergence-free wavelets ψ∆
e,m according

to e = (1, 1), i = 1 and the choices (from left to right) m = (1, 1),
m = (1, 2) and m = (2, 2).

Furthermore, it is easy to verify that ψ̃∆
e,m := −1

2grad ψ̃∅
e,m, where the derivatives

are meant in the sense of distributions (cf. (3.22)), i.e.,

(3.31) 〈f , ψ̃∆
e,m〉 = −1

2 〈f ,grad ψ̃∅
e,m〉 = 1

2 〈div f , ψ̃∅
e,m〉.

In Figure 2, we have depicted some divergence-free vector wavelets.

3.4. Characterization of spaces of vector fields. We will consider the spaces

B̌s
q(Lp(Rn)) := B̌s

q,p :=
{
f ∈ Bs

q(Lp(Rn)) : ∂
∂xi

fi ∈ Bs
q(Lp(Rn)), i = 1, . . . , n

}
with the semi-norm

|f |B̌s
q,p

:= max
i

∣∣∣ ∂
∂xi

fi

∣∣∣
Bs

q(Lp(Rn))

and the norm ‖f‖B̌s
q,p

:= ‖f‖Bs
q(Lp(Rn)) + |f |B̌s

q,p
. Note that equivalent norms can

be defined by replacing the maximum by any p-norm for R
n.

The components of a vector field f ∈ B̌s
q(Lp(Rn)) are from certain anisotropic

Besov spaces (see [5]). In particular, we have for f ∈ B̌s
q(Lp(Rn)) that div f ∈

Bs
q(Lp(Rn)).

Theorem 3.12. Let 0 < s < 1 + 1
p , 0 < p, q ≤ ∞ and set

g :=
∑
j≥j0

∑
e,m,k

(∑
i �=ie

α∇
e,m,i;j,k ψ∇

e,m,i;j,k + α∆
e,m;j,k ψ∆

e,m;j,k

)
.

Then, we have∥∥∥∥∥ ∑
m,i,k

βm,i;kϕm,i;j0,k+g

∥∥∥∥∥
B̌s

q,p

�
∑
m,i

‖βm,i‖�p
+
∑
e,m

(
‖α∆

e,m‖�s+1
pq

+
∑
i �=ie

‖α∇
e,m,i‖�s+1

pq

)
.

Proof. Let us choose a fixed but arbitrary ν. From the construction of the wavelets
we know that the ν-th component has the form

gν =
∑

κ

∑
j≥j0

∑
k∈Zn

ακ,j,kΦν,κ(2j · −k),

where κ represents any possible choice of e, m, i and ∆ or ∇. Furthermore,

Φν,κ =
∞⊗

�=1

φν,κ,�
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with compactly supported Hermite splines φν,κ,� ∈ S3,2 for ν �= � and φν,κ,ν ∈ S4,2.
Then

∂

∂xν
gν =

∑
κ

∑
j≥j0

∑
k∈Zn

2jακ,j,k

(
∂

∂xν
Φν,κ

)
(2j · −k),

where ∂
∂xν

Φν,κ is a tensor product of compactly supported splines from S3,2 and

therefore contained in B
1+ 1

p
∞ (Lp(Rn)). Now, Lemma 3.4 yields∥∥∥ ∂

∂xν
gν

∥∥∥
Bs

q(Lp(Rn))
�
∑

κ

‖ακ‖�s+1
pq

.

Hence,

‖g‖B̌s
q,p

�
∑
e,m

(
‖α∆

e,m‖�s+1
pq

+
∑
i �=ie

‖α∇
e,m,i‖�s+1

pq

)
.

The estimate ∥∥∥∥ ∑
m,i,k

βm,i,kϕm,i;j0,k

∥∥∥∥
B̌s

q,p

�
∑
m,i

‖βm,i‖�p

follows analogously. �

Theorem 3.13. Let n
p < s < 3, 0 < p, q ≤ ∞.

Then the sequences βm,i :=
(
〈f , ϕ̃m,i;j0,k〉

)
k∈Z

, α∇
e,m,i :=

(
〈f , ψ̃∇

e,m,i;j,k〉
)
j≥j0,k∈Z

and α∆
e,m :=

(
〈f , ψ̃∆

e,m;j,k〉
)
j≥j0,k∈Z

, j0 ∈ Z, satisfy

∑
m,i

∥∥βm,i

∥∥
�p

+
∑
e,m

(∥∥α∆
e,m

∥∥
�s+1

pq
+
∑
i �=ie

∥∥α∇
e,m,i

∥∥
�s+1

pq

)
� ‖f‖B̌s

q,p
.

Proof. If ei = 1, we have by (3.22) that

α∇
e,m,i;j,k =

〈
f , ψ̃∇

e,m,i;j,k

〉
=
〈
fi, ψ̃

{i}
e,m;j,k

〉
= 2−j−1

〈
∂

∂xi
fi, ψ̃

∅
e,m;j,k

〉
� 2−j−1E3

(
∂

∂xi
fi, L∞(σjk)

)
,

where σjk = 2−j([0, 1]d + k). Now the application of Lemma 3.6 yields

(3.32)
∥∥α∇

e,m,i

∥∥
�s+1

pq
�
∣∣∣ ∂fi

∂xi

∣∣∣
Bs

q(Lp(Rn))
� ‖f‖B̌s

q,p
.

The same estimate follows for ei = 0 and mi = 2 by Proposition 3.2. On the other
hand, for ei = 0 and mi = 1, we assume w.l.o.g. that i = 1 and then

(3.33)
〈
f , ψ̃∇

e,m,1;j,k

〉
=
〈
f1, ψ̃

{1}
e,m;j,k

〉
=
〈
f1, δ2−jk1 ⊗ ϑ−

e2,m2
⊗ . . . ⊗ ϑ−

en,mn

〉
.

Now, set X :=
{

g ∈ C1(Rn) : g
∣∣
x1=2−jk1

∈ Π3

}
. Obviously,〈

g, ψ̃
{1}
e,m;j,k

〉
=
〈
g
∣∣
x1=2−jk1

, ϑ−
e2,m2

⊗ . . . ⊗ ϑ−
en,mn

〉
= 0, g ∈ X.
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Hence, we have with Proposition 3.2,∣∣∣〈f1, ψ̃
{1}
e,m;j,k

〉∣∣∣ = inf
g∈X

∣∣∣〈f1 − g, ψ̃
{1}
e,m;j,k

〉∣∣∣
≤ inf

g∈X

(
2−j

∣∣∣〈 ∂
∂x1

(f1 − g), ψ̃∅
e,m;j,k

〉∣∣∣+ ∣∣∣〈f1 − g, ψ̃
{1}
e,m;j,k−δ1

〉∣∣∣ )
� inf

g∈X

(
2−j

∥∥∥ ∂
∂x1

(f1 − g)
∥∥∥

L∞(σjk)
+
∥∥∥(f1 − g)

∣∣
x1=2−j(k−δ1)

∥∥∥
L∞(Rn−1)

)
.

Note that ∂
∂x1

g can be chosen independently of g
∣∣
x1=2−j(k−δ1)

. In particular, for

(f1 − g)
∣∣
x1=2−j(k−δ1)

= 0 and ∂
∂x1

g ∈ Π3 one obtains∣∣∣〈f1, ψ̃
{1}
e,m;j,k

〉∣∣∣ � 2−jE3

(
∂

∂x1
f1, L∞(σjk)

)
,

which leads again to estimate (3.32). For α∆
e,m the proof is done analogously.

Finally, one shows by similar arguments and Lemma 3.7 that

∥∥βm,i

∥∥
�p

�

⎧⎨⎩
‖fi‖Bs

q(Lp(R)), if mi = 1,∥∥∥ ∂
∂xi

fi

∥∥∥
Bs

q(Lp(R))
, if mi = 2. �

Applying biorthogonality we obtain the following result.

Theorem 3.14. Let n
p < s < min(3, 1 + 1

p ) , 0 < p, q ≤ ∞. Then every f ∈
B̌s

q(Lp(Rn)) has the expansion

f =
∑

m,i,k

βm,i;kϕm,i;j0,k +
∑
j≥j0

∑
e,m,k

(∑
i �=ie

α∇
e,m,i;j,k ψ∇

e,m,i;j,k + α∆
e,m;j,k ψ∆

e,m;j,k

)
with uniquely determined coefficients, and

‖f‖B̌s
q,p

∼
∑
m,i

‖βm,i‖�p
+
∑
e,m

(
‖α∆

e,m‖�s+1
pq

+
∑
i �=ie

‖α∇
e,m,i‖�s+1

pq

)
.

Note that we need the �s+1
pq -norm and not the �s

pq-norm in the statements above.
This is due to the normalization of the wavelets in B̌s

q(Lp(Rn)).
The limited regularity of the wavelets and their dual functionals permits only a

small range of smoothness parameters s. In particular, for higher spatial dimensions
n there are no admissible values for s if p becomes small. However, in many cases
one might only need a one-sided estimate. Therefore, we stated the inequalities in
Theorems 3.12 and 3.13 separately.

By the construction of the divergence-free wavelets we know that any linear
combination of the wavelets ψ∇

e,m,i;j,k, e ∈ E∗, m ∈ {1, 2}n, i ∈ ie, j, k ∈ Z

is divergence-free (cf. (3.28)). On the other hand, we know from (3.31) that
for any divergence-free vector field f the coefficients α∆

e,m;j,k := 〈f , ψ̃∆
e,m;j,k〉 are

zero. Thus, we know that a vector field f is divergence-free if and only if in
the expansion in Theorem 3.14 the coefficients α∆

e,m;j,k are zero and the coarse
part

∑
m,i,k βm,i;kϕm,i;j0,k is divergence-free. For the single-scale wavelet bases we

deduce the following result.

Proposition 3.15. The functions

2
nj
2 ψ∇

e,m,i;j,k, i �= ie, 2
nj
2 ψ∆

e,m;j,k, e ∈ E∗
n, m ∈ {1, 2}n, k ∈ Z

n
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generate a Riesz basis for Wj and 2
nj
2 ψ∇

e,m,i;0,k, i �= ie, e ∈ E∗
n, m ∈ {1, 2}n,

k ∈ Z
n, constitute a Riesz basis for W∇

j , with Riesz bounds independent of j.

Proof. It is well known that it is sufficient to show the statement for j = 0. From
the construction in Section 3.3 it is obvious that the functions ψ∇

e,m,i;0,k and ψ∆
e,m;0,k

are complete in W0. To show stability we consider

w :=
∑

e,m,k

(
d∆

e,m;k ψ∆
e,m;0,k +

∑
i �=ie

d∇e,m,i;k ψ∇
e,m,i;0,k

)
∈ W0.

Theorem 3.12 gives

‖w‖L2 � ‖w‖B̌s
2,2

� ‖d‖�2 :=
( ∑

e,m,k

|d∆
e,m;k|2 +

∑
i �=ie

|d∇e,m,i;k|2
) 1

2

.

Since ∂
∂xi

wi is continuous we have

|d∇e,m,i;k| =
∣∣〈w, ψ̃∇

e,m,i;0,k〉
∣∣ � ∥∥ ∂

∂xi
wi

∥∥
C(σ+k)

� ‖wi‖L2(σ+k),

where supp ψ̃∇
e,m,i ⊂ σ. Since ψ̃∇

e,m,i is compactly supported we conclude that∑
k∈Zn

|d∇e,m,i;k|2 � ‖wi‖2
L2(R).

With an analogous argument for the coefficients d∆
e,m;k we obtain finally that

‖d‖�2 � ‖w‖L2(R), and the first part of the proposition is shown. Furthermore,
we know from (3.28) and (3.31) that w is divergence-free if and only if d∆

e,m;k = 0
for all e ∈ E∗

n, m ∈ {1, 2}n, k ∈ Z
n, which proves the second statement. �

3.5. Quasi-interpolation. As already mentioned above, Λ± interpolates function
values and values of derivatives or primitives at the integers. This, however, is not
realistic in applications where one is interested in the analysis of experimental data
with the aid of wavelets. In fact, experimental data typically consist of measure-
ments of the velocity field at given nodes. This means, that one only has the point
values of the velocity field available and no information on the derivatives or prim-
itives. Thus, we study approximation schemes for our divergence-free interpolating
Hermite splines. Our goal is to replace f ′(k) and

∫ k+1

k
f(x) dx by linear functionals

depending only on function values f(k), k ∈ Z, in such a way that we still have a
good approximation. This condition leads to the notion of quasi-interpolation.

Definition 3.16. Let S ⊂ C(Rn). A linear operator Q : Cm(Rn) → S, is called a
quasi-interpolation operator, if:

(a) Q preserves polynomials of degree less than d ∈ N, i.e., Q(P ) = P for
P ∈ Πd−1.

(b) The operators Q are local and uniformly bounded, i.e., there is a constant
CQ and a compact set K so that for each U ⊂ R

n,

(3.34) ‖Qf‖Lp(U) ≤ CQ ‖f‖Lp(U+K).

Theorem 3.17. Let 1 ≤ p, q ≤ ∞ and m + n/p < s ≤ d. The scaled quasi-
interpolation operator Qh defined by Qhf := Q

(
f(h·)

)
( ·

h), with any Q from Defi-
nition 3.16, satisfies for any f ∈ Bs

q(Lp(Rn)) the inequality

‖Qhf − f‖Lp(R) � hs|f |Bs
q(Lp(Rn)).
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Proof. From the assumptions of the theorem we know that Bs
∞(Lp(Rn)) is embed-

ded in Cm(Rn), i.e., Qhf is well defined. With σh,k = h([0, 1]n + k) we have for
any P ∈ Π3 that

‖Qhf−f‖p
Lp(σh,k) ≤ ‖Qhf−QhP‖p

Lp(σh,k)+‖P−f‖p
Lp(σh,k) ≤ (Cq+1)‖P−f‖p

Lp(σ∗
h,k),

where σ∗
h,k = h([0, 1]n + k + K). Hence,

‖Qhf − f‖p
Lp(R) ≤

∑
k∈Zn

(Ed

(
f, Lp(σ∗

h,k)
)
)p.

Now the statement follows immediately from Lemma 3.6. �

Obviously, Λ+
0 and Λ−

0 satisfy the conditions of Definition 3.16 with m = 1, d = 4
and m = 0, d = 3, respectively. Now, we set

Q+f(x) :=
∑
k∈Z

(
f(k)ξ+

1 (x − k) + q+
k (f)ξ+

2 (x − k)
)
,

Q−f(x) :=
∑

k∈Z\{0}

(
q−k (f)ξ−1 (x − k) + f(k)ξ−2 (x − k)

)
.

Obviously, Q+ and Q− are quasi-interpolation operators with exactness d = 4 and
d = 3, respectively, if

q+
k (p) = p′(k), p ∈ Π3, q−k (p) =

∫ k

k−1

p(x) dx, p ∈ Π2,

and the functionals q±k depend only on values of f in a neighborhood of k. Since
we only know values of f at the integer points, we have to consider methods for
numerical differentiation and integration with a sufficient polynomial exactness in
order to define suitable functionals q+

k and q−k , respectively. Local functionals of
minimal support, with sufficient polynomial exactness are

q+
k (f) = 1

6

(
− f(k + 2) + 6f(k + 1) − 3f(k) − 2f(k − 1)

)
,

q+
k (f) = 1

6

(
f(k − 2) − 6f(k − 1) + 3f(k) + 2f(k + 1)

)
,

q−k (f) = 1
12

(
5f(k − 1) + 8f(k) − f(k + 1)

)
,

q−k (f) = 1
12

(
− f(k − 2) + 8f(k − 1) + 5f(k)

)
.

We also present the corresponding symmetric functionals of minimal support:

q+
k (f) = 1

12

(
f(k − 2) − 8f(k − 1) + 8f(k + 1) − f(k + 2)

)
,

q−k (f) = 1
24

(
− f(k − 2) + 13f(k − 1) + 13f(k) − f(k + 1)

)
.

By corresponding scaled versions of Q± we are able to obtain an approximation
of a smooth function f from sampled data, which has the same order of approxi-
mation as the interpolation operators Λ±

j . By tensor product methods we can also
construct quasi-interpolation operators replacing the multivariate Hermite interpo-
lation operators ΛI

j and Λj .
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4. Lifting scheme

The lifting scheme (yielding so-called second generation wavelets) has become a
popular standard tool to adapt wavelet bases to particular requirements, [31] (see
also [8] for a quite similar approach called stable completion). The adaptation and
usage of second-generation wavelets for the numerical solution of partial differential
equations by a collocation method is introduced in [22, 23, 36, 37].

For multiwavelets, the lifting scheme has been applied e.g. in [11, 18]. In
[2, 19, 20], the lifting scheme has been applied for biorthogonal multiwavelets gen-
erated from Hermite splines also yielding wavelets with arbitrary order of vanishing
moments.

In this section we show how the lifting scheme can be applied to interpolatory
divergence-free wavelets as constructed above. Let ξ, ηold be an initial pair of
scaling function and corresponding wavelet. Then, the simplest form of a lifting
scheme on R is to define a new wavelet ηnew by

(4.1) ηnew(x) := ηold(x) +
∑

k

uk ξ(x − k),

where uk ∈ R are suitably chosen coefficients. The generalization to general inter-
polation grids and domains is straightforward.

For the Hermite cubic splines the lifting scheme can be described by(
η+,new
1

η+,new
2

)
(x) =

(
η+,old
1

η+,old
2

)
(x) +

∑
k

U+
k

(
ξ+
1

ξ+
2

)
(x − k)

with U+
k ∈ R

2×2. We leave the choice of these matrices free in order to leave
freedom to achieve desirable properties.

Having fixed the wavelets η+,new
1 and η+,new

2 we want to choose wavelets η−,new
1

and η−,new
2 which permit the construction of divergence-free wavelets. The essential

relation for this construction was (3.16). Therefore, we set(
η−,new
1

η−,new
2

)
(x) =

1
2

d

dx

(
η+,new
1

η+,new
2

)
=

(
η−,old
1

η−,old
2

)
(x) +

1
2

∑
k

U+
k

(
ξ−1 (x − k) − ξ−1 (x − k − 1)

ξ−2 (x − k)

)

=
(

η−,old
1

η−,old
2

)
(x) +

∑
k

U−
k

(
ξ−1
ξ−2

)
(x − k),

where

U−
k = 1

2

(
U+

k − U+
k−1

(
1 0
0 0

))
.

Since η+,new
m and η−,new

m satisfy (3.16) the construction of divergence-free wavelets
can be done as in Section 3.3.

That means, we have to fix either the U+
k or U−

k in order to establish certain
properties of the wavelets η+,new

m and η−,new
m , both. In the particular important

case of vanishing moments it turns out that k vanishing moments for η+,new
m with
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supp η+,new
m ⊂ [−R, R] imply∫

R

x� η−,new
m (x) dx =

⎧⎨⎩ − �

2

∫
R

x�−1 η+,new
m (x) dx = 0, � = 1, . . . , k,

η+,new
m (R) − η+,new

m (−R) = 0, � = 0,

i.e., k + 1 vanishing moments for η−,new
m .

Appendix A. Proofs from Section 3.2

In this appendix we collect the proofs of the results from Section 3.2.

Proof of Lemma 3.4. Obviously, it is sufficient to show the statement for finite
right-hand sides. Let us first assume that 1 ≤ p < ∞. For

vj :=
∑

k∈Zn

αj,k φ(2j · −k)

we have by scaling and the compact support of φ,

‖vj‖Lp(Rn) = 2−
jn
p

∥∥∥ ∑
k∈Zn

αjk φ(· − k)
∥∥∥

Lp(Rn)
� 2−

jn
p ‖αj‖�p

‖φ‖Lp(Rn).

Now, (3.24) follows from [9, Thm. 30.2]. Analogously we conclude for M ∈ N,
M > σ that

ωM (vj , t, Lp(Rn)) � 2−
jn
p ‖αj‖�p

ωM (φ, 2jt, Lp(Rn))

� 2j(σ−n
p ) tσ ‖αj‖�p

‖φ‖Bσ
∞(Lp(Rn)).

Since ωM (f, t, Lp(Rn)) � ‖f‖Lp(Rn), we conclude for 0 < q < ∞ that∣∣∣ ∞∑
j=j0

vj

∣∣∣
Bs

q(Lp(Rn))
�
(∑

r∈Z

(
2rs

∞∑
j=j0

ωM (vj , 2−r, Lp(Rn))
)q
) 1

q

�
(∑

r∈Z

(
2rs

∞∑
j=r

‖vj‖Lp(Rn)

)q
) 1

q

+
( ∞∑

r=j0

(
2r(s−σ)

r∑
j=j0

2j(σ−n
p )‖αj‖�p

)q
) 1

q

.

Furthermore, for any q ∈ (0,∞), we have∥∥∥ ∞∑
j=j0

vj

∥∥∥
Lp(Rn)

≤
∞∑

j=j0

2js‖vj‖Lp(Rn) ≤
( ∞∑

r=j0

(
2rs

r∑
j=j0

‖vj‖Lp(Rn)

)q
) 1

q

.

Thus, substituting r → −r and j → −j in the second sum we obtain∥∥∥ ∞∑
j=j0

vj

∥∥∥
Bs

q(Lp(Rn))
�

(∑
r∈Z

(
2rs

∞∑
j=r

2−
jn
p ‖αj‖�p

)q
) 1

q

+
(∑

r∈Z

(
2r(σ−s)

∞∑
j=r

2j( n
p −σ)‖α−j‖�p

)q
) 1

q

.

Now, (3.25) follows from the discrete Hardy inequality [15, Chap. 2, Lemma 3.4].
For p = ∞ or q = ∞ the proof is analogous, and for p < 1 the use of ‖x + y‖p

p ≤
‖x‖p

�p
+ ‖y‖p

p instead of Minkowski’s inequality shows the assertion. �
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Proof of Lemma 3.6. If τ < p, we can apply Hölder’s inequality to obtain

2j( n
τ −n

p )
∥∥f (α)

∥∥
Lτ (σjk)

≤
∥∥f (α)

∥∥
Lp(σjk)

, |α| ≤ µ,

i.e., it is sufficient to prove the claim for p ≤ τ . For P ∈ Πd−1 and Tjkf(x) =
f(2−j(x + k)) we have by Bµ

1 (Lτ (σ)) ⊂ Wµ
τ (σ) (e.g., [4, Sect. 6.2]), that

‖f − P‖W µ
τ (σjk) = 2j(µ−n

τ )‖Tjk(f − P )‖W µ
τ (σ) ≤ C2j(µ−n

τ )‖Tjk(f − P )‖Bµ
1 (Lτ (σ))

≤ C2jµ

(
‖f − P‖Lτ (σjk) + 2−

jn
τ

∞∑
r=0

2rµωd(Tjkf, 2−r, Lτ (σ))
)

,

with a constant C independent of j and k. Let the side length of the cube σ be 2ν .
Applying the Whitney-type inequality Ed

(
f, Lτ (σjk)

)
� ωd(f, 2ν−j , Lτ (σjk)) (see

e.g. [9, (25.24)]) and the identity ωd(Tjkf, 2−r, Lτ (σ)) = 2
jn
τ ωd(f, 2−j−r, Lτ (σjk)),

we obtain

(A.1) Ed

(
f, Wµ

τ (σjk)
)

�
∞∑

r=j

2rµωd(f, 2ν−r, Lτ (σjk)).

For µ = 0 the estimate follows immediately from the Whitney-type estimate.
From [9, Theorem 30.5] we conclude

Ed

(
f, Wµ

τ (σjk)
)

�
∞∑

r=j

2rµ
∞∑

�=r−ν

2n�( 1
p− 1

τ ) ωd(f, 2−�, Lp(σjk))

=
∞∑

�=j−ν

�+ν∑
r=j

2rµ

︸ ︷︷ ︸
�2�µ

2n�( 1
p− 1

τ ) ωd(f, 2−�, Lp(σjk)).

Together with (A.1) for τ = p we have

(A.2) Ed

(
f, Wµ

τ (σjk)
)

�
∞∑

r=j−ν

2r(µ+n
p −n

τ ) ωd(f, 2−r, Lp(σjk)).

For 1 ≤ p < ∞ we conclude by Minkowski’s inequality and [9, (26.14)] that( ∑
k∈Zn

Ed

(
f, Wµ

τ (σjk)
)p) 1

p �
∞∑

r=j−ν

2r(µ+ n
p −n

τ )

(∑
k∈Z

ωd(f, 2−r, Lp(σjk))p

) 1
p

�
∞∑

r=j−ν

2r(µ+ n
p −n

τ )ωd(f, 2−r, Lp(R)) =: bj−ν .(A.3)

Now, by the discrete Hardy inequality [15, Chap. 2, Lemma 3.4] we obtain (for
0 < q < ∞)∑

j∈Z

(
2j(s−n

p + n
τ −µ)

( ∑
k∈Zn

Ed

(
f, Wµ

τ (σjk)
)p) 1

p

)q

�
∑
j∈Z

(
2j(s−n

p + n
τ −µ)bj

)q

�
∑
j∈Z

(
2js ωd(f, 2−j , Lp(R))

)q

� |f |qBs
q(Lp(R)).

For p = ∞ or q = ∞ the estimate works analogously. For p < 1 Minkowski’s
inequality is replaced by ‖x + y‖p

p ≤ ‖x‖p
�p

+ ‖y‖p
p and the remainder of the proof

follows the above lines. �
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Proof of Lemma 3.7. By Hölders inequality we conclude that it is sufficient to prove
the result for p ≤ τ . For s > α > 1

p − 1
τ +µ we know that Bα

q (Lp(σk)) is embedded
in the Sobolev space Wµ

τ (σk), i.e.,∥∥f‖p
W µ

τ (σk)
� ‖f‖Lp(σk) + |f |Bα

q (Lp(σk)).

Now the statement follows as in the proof of Lemma 3.6. �

Proof of Corollary 3.8. Obviously
∣∣〈f, ξ̃+

m;j0,k〉
∣∣ � ‖f (m−1)‖L∞(2−j0 [k,k+1]) and since

Π3 ⊂ V +
j we know η̃+

m;j,k(P ) = 0, P ∈ Π3. Thus,∣∣(f, η̃+
m;j,k)

∣∣ = inf
P∈Π3

∣∣〈f − P, η̃+
i;j,k〉

∣∣ � E4

(
f, L∞(σjk)

)
+ 2−jE3

(
f ′, L∞(σjk)

)
� E4

(
f, W 1

∞(σjk)
)
,

with σjk = 2−j [k, k + 1]. Now, the statement follows immediately from Lemma 3.6
and Lemma 3.7.

For ξ̃−m;j0,k and η̃−
m;j,k we obtain, analogously,∣∣〈f, ξ̃−1;j0,k〉

∣∣ � ‖f‖L1(2−j0 [k−1,k]) and
∣∣〈f, ξ̃−2;j0,k〉

∣∣ � ‖f‖L∞(2−j0 [k−1,k])

as well as ∣∣〈f, η̃−
m;j,k〉

∣∣ � E3

(
f, L∞(σjk)

)
+ 2jE3

(
f, L1(σjk)

)
.

Next, Hölder’s inequality yields ‖f − P‖L1(σjk) � 2−j‖f − P‖L∞(σjk), i.e.,∣∣〈f, η̃−
m;j,k〉

∣∣ � E3

(
f, L∞(σjk)

)
.

Now the statement follows as before from Lemma 3.6 and Lemma 3.7. �
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