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A LOCALLY DIVERGENCE-FREE
NONCONFORMING FINITE ELEMENT METHOD

FOR THE TIME-HARMONIC
MAXWELL EQUATIONS

SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG

Abstract. A new numerical method for computing the divergence-free part

of the solution of the time-harmonic Maxwell equations is studied in this paper.
It is based on a discretization that uses the locally divergence-free Crouzeix-
Raviart nonconforming P1 vector fields and includes a consistency term in-
volving the jumps of the vector fields across element boundaries. Optimal
convergence rates (up to an arbitrary positive ε) in both the energy norm and
the L2 norm are established on graded meshes. The theoretical results are
confirmed by numerical experiments.

1. Introduction

Let Ω ⊂ R
2 be a bounded polygonal domain, f ∈ [L2(Ω)]2 and k ≥ 0. Consider

the variational problem of the time-harmonic Maxwell equations with the perfectly
conducting boundary condition:

Find u ∈ H0(curl; Ω) such that

(1.1) (∇× u,∇× v) − k2(u, v) = (f , v) ∀v ∈ H0(curl; Ω),

where (·, ·) denotes the inner product of L2(Ω) (or [L2(Ω)]2),

H(curl; Ω) =
{

v =
[
v1

v2

]
∈ [L2(Ω)]2 : ∇× v =

∂v2

∂x1
− ∂v1

∂x2
∈ L2(Ω)

}

and
H0(curl; Ω) = {v ∈ H(curl; Ω) : n×v = 0 on ∂Ω}.

Here the vector n denotes the unit outer normal on ∂Ω. We assume that k2 is not
one of the Maxwell eigenvalues and hence (1.1) has a unique solution in H0(curl; Ω).

The space H0(curl; Ω) admits the well-known Helmholtz-Hodge decomposition
[12, 15]

(1.2) H0(curl; Ω) = [H0(curl; Ω) ∩ H(div0; Ω)] ⊕∇H1
0 (Ω),
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where

H(div0; Ω) =
{

v =
[
v1

v2

]
∈ [L2(Ω)]2 : ∇ · v =

∂v1

∂x1
+

∂v2

∂x2
= 0

}
,

and the direct sum is orthogonal with respect to the inner product of [L2(Ω)]2.
According to (1.2), we can write

u =
◦
u + ∇φ,

where
◦
u ∈ H0(curl; Ω) ∩ H(div0; Ω) and φ ∈ H1

0 (Ω). From (1.1) we see that
◦
u and

φ satisfy the following equations:

(1.3) (∇× ◦
u,∇× v) − k2(

◦
u, v) = (f , v)

for all v ∈ H0(curl; Ω) ∩ H(div0; Ω),

(1.4) −k2(∇φ,∇ψ) = (f ,∇ψ)

for all ψ ∈ H1
0 (Ω).

Since φ can be obtained from the Poisson equation (1.4), we will focus on (1.3),
which will be referred to as the reduced time-harmonic Maxwell (RTHM) equations.
Under the assumption that k2 is not a Maxwell eigenvalue, the RTHM equations
have a unique solution in H0(curl; Ω) ∩ H(div0; Ω). Note that the strong form of
the RTHM equations is given by

(1.5) ∇× (∇× ◦
u) − k2 ◦

u = Qf ,

where Q is the orthogonal projection operator from [L2(Ω)]2 onto the space
H(div0; Ω). In particular, (1.5) implies that the scalar function ∇ × ◦

u ∈ H1(Ω)
and

(1.6) ‖∇ × ◦
u‖H1(Ω) ≤ CΩ,k‖f‖L2(Ω).

Remark 1.1. The assumption that f ∈ [L2(Ω)]2 is weaker than the assumption f ∈
H(div; Ω) required for numerical schemes for the time-harmonic Maxwell equations.

In this paper we introduce a numerical method for the RTHM equations using
locally divergence-free Crouzeix-Raviart nonconforming P1 vector fields [9]. Note
that a straightforward discretization of (1.1) using such nonconforming vector fields
does not converge (cf. [15], page 200 and Table 7.2 below). Therefore a consistency
term involving the jumps of the nonconforming vector fields across interelement
boundaries is included in our discretization. We will show that the order of con-
vergence of our method is optimal (up to an arbitrarily small ε) in both the energy
norm and the L2 norm, provided properly graded meshes are used. In the spirit
of [8], one can say that the results of this paper rehabilitate nonconforming nodal
finite elements for the Maxwell equations.

The rest of the paper is organized as follows. We introduce the space of lo-
cally divergence-free nonconforming P1 vector fields in Section 2, together with a
description of the graded meshes necessary for recovering the optimal convergence
rates. The discretization of the RTHM equations is given in Section 3, where an
abstract discretization error estimate is also derived. The choice of the grading
parameters and the convergence analysis of our method on graded meshes depend
on the nature of the singularities at the corners of Ω, which is discussed in Sec-
tion 4. Section 5 contains four preliminary estimates for the convergence analysis,
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which is carried out in Section 6. Results of numerical experiments are reported in
Section 7, followed by some concluding remarks in Section 8.

2. Locally divergence-free vector fields on graded meshes

Let Th be a family of triangulations of Ω. We define the space Vh of locally
divergence-free Crouzeix-Raviart nonconforming P1 vector fields [9] by

Vh = {v ∈ [L2(Ω)]2 : vT = v
∣∣
T
∈ [P1(T )]2 and ∇ · vT = 0 ∀T ∈ Th,

v is continuous at the midpoints of the interior edges of Th

and n × v = 0 at the midpoints of the edges of Th along ∂Ω}.

Remark 2.1. For a simply connected Ω, there exists a completely local basis for Vh

consisting of vector fields tangential to the edges of Th and vector fields representing
rotations around the vertices of Th [18, 10]. For a multiply connected domain, the
basis of Vh involves vector fields along cuts that reduce Ω to a simply connected
domain, in addition to local vector fields. The dimension of Vh is ≈ (4/3)× (the
number of edges in Th) for a general polygonal domain Ω.

For any s > 1
2 there is a natural weak interpolation operator ΠT : [Hs(T )]2 −→

[P1(T )]2 defined by

(2.1) (ΠT ζ)(mei
) =

1
|ei|

∫
ei

ζ ds for i = 1, 2, 3,

where mei
is the midpoint of the edge ei of T . It follows immediately from (2.1)

and Green’s theorem that∫
T

∇× (ΠT ζ)dx =
∫

T

∇× ζ dx ∀ ζ ∈ [Hs(T )]2,(2.2)
∫

T

∇ · (ΠT ζ)dx =
∫

T

∇ · ζ dx ∀ ζ ∈ [Hs(T )]2.(2.3)

Furthermore, given s ∈ (1/2, 2], we have the following interpolation error estimates
[9]:

(2.4) ‖ζ − ΠT ζ‖L2(T ) + h
min(s,1)
T |ζ − ΠT ζ|Hmin(s,1)(T ) ≤ CT hs

T |ζ|Hs(T )

for all ζ ∈ [Hs(T )]2, where hT = diam T , and the positive constant CT depends on
the minimum angle of T (and also on s when s is close to 1/2). Here and below we
use C (with or without subscripts) to denote a generic positive constant that can
take different values at different occurrences.

Since the solution
◦
u of the RTHM Maxwell equations belongs to [Hs(Ω)]2 for

some s > 1
2 (cf. [15] and Remark 4.1 below), we can define a global interpolant of

◦
u by

(Πh
◦
u)T = ΠT

◦
uT ∀T ∈ Th,

where
◦
uT =

◦
u

∣∣
T
. It follows from (2.3) and ∇ · ◦

u = 0 that Πh
◦
u ∈ Vh.

In order to recover optimal order convergence for the finite element method
introduced in Section 3, the triangulation Th is graded around the corners c1, . . . , cL

of Ω so that

(2.5) hT ≈ hΦµ(T ) ∀T ∈ Th,

where h is the mesh parameter, µ = (µ1, . . . , µL), and
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Figure 2.1. A graded mesh on an L-shaped domain

(2.6) Φµ(T ) = ΠL
�=1|c� − cT |1−µ� .

The point cT is the center of T and µ� (1 ≤ � ≤ L) is the grading parameter at the
corner c�, whose choice will be addressed in Section 4. Observe that

(2.7) Φµ(T ) � 1 ∀T ∈ Th.

To prevent the proliferation of constants, henceforth we also use the notation
A � B (or B � A) to represent the inequality A ≤ (constant) × B, where the
positive constant is independent of the mesh parameter h and the parameter ε
that appears in some of the elliptic regularity estimates. The statement A ≈ B is
equivalent to A � B and B � A.

The construction of Th that satisfies condition (2.5) is discussed for example in
[1, 4]. (A graded mesh on an L-shaped domain is depicted in Figure 2.1 where
the grading parameter equals 1/3 at the re-entrant corner and 1 at all the other
corners.) Here we note that for a fixed µ = (µ1, . . . , µL), the family Th is regular
(i.e., it satisfies the minimum angle condition) and that (2.5)–(2.7) in particular
imply

hT � h ∀T ∈ Th,(2.8)

hT ≈ h1/µ� if c� ∈ ∂T.(2.9)

3. Discretization and an abstract error estimate

Before we discretize (1.3), we first introduce some notation. The piecewise curl
of v ∈ Vh is given by

(3.1) (∇h × v)
∣∣
T

= ∇× vT ∀v ∈ Vh, T ∈ Th,

the set of the interior (resp. boundary) edges of Th is denoted by E i
h (resp. Eb

h),
and Eh = E i

h ∪ Eb
h. We use me and |e| to denote the midpoint and the length of an

edge e respectively.
Let e ∈ E i

h be shared by the two triangles T1, T2 ∈ Th (cf. Figure 3.1) and let n1

(resp. n2) be the unit normal of e pointing towards the outside of T1 (resp. T2).
We define, on e,

[[n × v]] = n1 × vT1

∣∣
e
+ n2 × vT2

∣∣
e
,(3.2a)

[[n · v]] = n1 · vT1

∣∣
e
+ n2 · vT2

∣∣
e
.(3.2b)
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T1

T2

n2
n1

e

Figure 3.1. Triangles and normals in the definitions of [[n × v]]
and [[n · v]]

For an edge e ∈ Eb
h, we take ne to be the unit normal of e pointing towards the

outside of Ω and define

(3.3) [[n × v]] = ne × v
∣∣
e
.

The discrete problem for the RTHM equations is:
Find

◦
uh ∈ Vh such that

(3.4) ah(
◦
uh, v) = (f , v) ∀v ∈ Vh,

where

ah(w, v) = (∇h × w,∇h × v) − k2(w, v)

+
∑
e∈Eh

[Φµ(e)]2

|e|

∫
e

[[n × w]] [[n × v]] ds(3.5)

+
∑
e∈Ei

h

[Φµ(e)]2

|e|

∫
e

[[n · w]][[n · v]]ds,

Φµ(e) = ΠL
�=1|c� − me|1−µ� .(3.6)

Observe that, by comparing (2.6) and (3.6), we have

(3.7) Φµ(e) ≈ Φµ(T ) if e ⊂ ∂T.

Remark 3.1. The term involving [[n × w]] [[n × v]] also appears in discontinuous
Galerkin methods for the time-harmonic Maxwell equations [16, 14]. However, its
role here is to ensure the consistency of the scheme (3.4) and there is no need for
a penalty parameter.

We will measure the discretization error in terms of the norm ‖ · ‖h defined by

‖v‖2
h = ‖∇h × v‖2

L2(Ω) + ‖v‖2
L2(Ω) +

∑
e∈Eh

[Φµ(e)]2

|e| ‖[[n × v]]‖2
L2(e)

(3.8)

+
∑
e∈Ei

h

[Φµ(e)]2

|e| ‖[[n · v]]‖2
L2(e)

.

Observe that

(3.9) ‖v‖L2(Ω) ≤ ‖v‖h ∀v ∈ Vh

and ah(·, ·) is bounded with respect to ‖ · ‖h, i.e.,

(3.10) ah(v, w) ≤ (k2 + 1)‖v‖h‖w‖h
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for all v, w ∈ [H0(curl; Ω) ∩ H(div0; Ω)] + Vh. Furthermore, we have a trivial
G̊arding (in)equality,

(3.11) ah(v, v) + (k2 + 1)(v, v) = ‖v‖2
h

for all v ∈ [H0(curl; Ω) ∩ H(div0; Ω)] + Vh.
The following lemma provides an abstract discretization error estimate under

the assumption that (3.4) is solvable.

Lemma 3.2. Let
◦
u ∈ H0(curl; Ω)∩H(div0; Ω) satisfy (1.3) and let

◦
uh be a solution

of (3.4). It holds that

‖ ◦
u − ◦

uh‖h ≤ (2k2 + 3) inf
v∈Vh

‖ ◦
u − v‖h

+ sup
w∈Vh\{0}

ah(
◦
u − ◦

uh, w)
‖w‖h

(3.12)

+ (k2 + 1)‖ ◦
u − ◦

uh‖L2(Ω).

Proof. From (3.9) and (3.11) we have

‖v‖h =
ah(v, v)
‖v‖h

+ (k2 + 1)
(v, v)
‖v‖h

≤ sup
w∈Vh\{0}

ah(v, w)
‖w‖h

+ (k2 + 1)‖v‖L2(Ω)

for all v ∈ Vh \ {0}. It follows that

(3.13) ‖v‖h ≤ sup
w∈Vh\{0}

ah(v, w)
‖w‖h

+ (k2 + 1)‖v‖L2(Ω) ∀v ∈ Vh.

Let v ∈ Vh be arbitrary. Using (3.9), (3.10) and (3.13) we find

‖ ◦
u − ◦

uh‖h ≤ ‖ ◦
u − v‖h + ‖v − ◦

uh‖h

≤ ‖ ◦
u − v‖h + sup

w∈Vh\{0}

ah(v − ◦
uh, w)

‖w‖h

+ (k2 + 1)‖v − ◦
uh‖L2(Ω)

≤ (2k2 + 3)‖ ◦
u − v‖h + sup

w∈Vh\{0}

ah(
◦
u − ◦

uh, w)
‖w‖h

+ (k2 + 1)‖ ◦
u − ◦

uh‖L2(Ω),

which implies (3.12). �

In what follows we consider k to be fixed and simply write (3.12) as

‖ ◦
u − ◦

uh‖h � inf
v∈Vh

‖ ◦
u − v‖h + sup

w∈Vh\{0}

ah(
◦
u − ◦

uh, w)
‖w‖h

+ ‖ ◦
u − ◦

uh‖L2(Ω).

Remark 3.3. The first term on the right-hand side of (3.12) measures the approxi-
mation property of Vh with respect to the norm ‖ · ‖h. The second term measures
the consistency error of the nonconforming discretization. The third term addresses
the indefiniteness of the RTHM equations.
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Ωδ

c
�

N�,δ

δ

Figure 4.1. Ωδ and N�,δ

4. Singularities of the RTHM equations and grading parameters

Since Qf ∈ [L2(Ω)]2 and ∇ · ◦
u = 0, elliptic regularity and (1.5) imply that

(4.1)
◦
u ∈ [H2(Ωδ)]2,

where Ωδ is the domain obtained from Ω by excising δ-neighborhoods (cf. Fig-
ure 4.1) at the corners of Ω, and

(4.2) ‖ ◦
u‖H2(Ωδ) ≤ Cδ‖f‖L2(Ω).

The regularity of
◦
u stated in (4.1) allows optimal approximation by the piecewise P1

vector fields in Vh away from the corners of Ω. Therefore the choices of the grading
parameters µ� for 1 ≤ � ≤ L are determined by the nature of the singularities of

◦
u

at the corners of Ω. Details of the discussion below can be found in [2, 7].
Let (r, θ) be the polar coordinates at c� such that the two edges of Ω emanating

from c� are given by θ = 0 and θ = ω�, where ω� is the interior angle of Ω at c�,
and

(4.3) ψ�,j(r, θ) = rj(π/ω�)−1

[
sin(j(π/ω�) − 1)θ
cos(j(π/ω�) − 1)θ

]
.

In the δ-neighborhood (cf. Figure 4.1)

(4.4) N�,δ = {x ∈ Ω : |x − c�| < δ}

of c� in Ω, we have a singular vector field representation for
◦
u:

(4.5)
◦
u =

◦
uR +

J�∑
j=1

κ�,jψ�,j .

The precise form of the representation (4.5) can be divided into several cases. In
the first case we have

(4.6) J� = 0 and
◦
uR =

◦
u ∈ [H2−ε(N�,δ)]2 if ω� ≤

π

2
,

where ε is any positive number, and

(4.7) ‖ ◦
u‖H2−ε(N�,δ) ≤ C�,ε‖f‖L2(Ω).

In the second case we have

(4.8) J� = 1 and
◦
uR ∈ [H2(N�,δ)]2 if

π

2
< ω� < π.
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Furthermore, it holds that

(4.9) |κ�,1| + ‖ ◦
uR‖H2(N�,δ) ≤ C�‖f‖L2(Ω).

In the third case we have

(4.10) J� = 2 and
◦
uR ∈ [H2−ε(N�,δ)]2 if π < ω� ≤

3
2
π,

where ε is any positive number, and

(4.11) |κ�,1| + |κ�,2| + ‖ ◦
uR‖H2−ε(N�,δ) ≤ C�,ε‖f‖L2(Ω).

In the final case we have

(4.12) J� = 3 and
◦
uR ∈ [H2(N�,δ)]2 if

3
2
π < ω� < 2π,

and

(4.13) |κ�,1| + |κ�,2| + |κ�,3| + ‖ ◦
uR‖H2(N�,δ) ≤ C�‖f‖L2(Ω).

In the first case where ω� ≤ π
2 , there is no need for a graded mesh around c� and

we can take µ� = 1. For the other three cases we take µ� to be less than π
2ω�

, i.e.,
the grading parameters µ� for 1 ≤ � ≤ L satisfy

µ� = 1 if ω� ≤
π

2
,

µ� <
π

2ω�
if ω� >

π

2
.

(4.14)

The key observation is that, for ω� > π
2 , (4.3) and (4.14) imply

(4.15)
∑

T∈Th, T⊂N�,δ

∫
T

|c� − x|4(1−µ�)|D2ψ�,j |2 dx < ∞,

where |D2v|2 =
2∑

i,j,k=1

( ∂2vi

∂xj∂xk

)2

, because

∫ 1

0

r4(1−µ�)r2((π/ω�)−3)r dr < ∞ if µ� <
π

2ω�
.

Remark 4.1. The singular vector field representation (4.5) implies
◦
u ∈ [Hs(N�,δ)]2

for any s < π
ω�

. Therefore
◦
u belongs to [Hs(Ω)]2 for any s < min1≤�≤L

π
ω�

. In
particular, we can choose s to be strictly greater than 1

2 .

Remark 4.2. In the case where ω� > π
2 , since 2µ� < π

ω�
, it follows from well-known

results [13, 11] for the singular vector fields ψ�,j that
◦
u ∈ [H2µ�(N�,δ)]2 and, in

view of (4.5) and (4.8)–(4.13), the following regularity estimate is valid:

(4.16) ‖ ◦
u‖H2µ�(N�,δ) � ‖f‖L2(Ω).

Remark 4.3. When ω is larger than π/2, the solution
◦
u does not belong to H2(N�,δ)

since π/ω� < 2 (cf. Remark 4.1). This is the reason why local refinement is required
when ω� > π/2. Otherwise the results in Lemma 5.2 and Lemma 6.5 will fail to
hold, and the optimal error estimates for the energy norm and the L2 norm in
Theorem 6.6 are no longer valid.
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5. Preliminary estimates

In this section we establish some preliminary estimates that are needed for the
convergence analysis in Section 6. We assume that a positive δ has been chosen.
Let Th,� be the set of the triangles of Th that share the corner c� as a common
vertex. Without loss of generality, we may assume that h � δ and hence T ∈
Th,� ⇒ T ⊂ N�,δ, where N�,δ is the neighborhood of c� defined in (4.4). We will
use the notation T c

h =
⋃L

�=1 Th,� and T i
h = Th \ T c

h in the proofs of the first two
lemmas.

Lemma 5.1. Let
◦
u ∈ H0(curl; Ω) ∩ H(div0; Ω) be the solution of (1.3). It holds

that

(5.1) ‖ ◦
u − Πh

◦
u‖L2(Ω) ≤ Cεh

2−ε‖f‖L2(Ω) for any ε > 0.

Proof. We can write

(5.2) ‖ ◦
u − Πh

◦
u‖2

L2(Ω) =
∑

T∈T i
h

‖ ◦
u − ΠT

◦
u‖2

L2(T ) +
∑

T∈T c
h

‖ ◦
u − ΠT

◦
u‖2

L2(T ).

We have, by (2.4) (with s = 2), (2.8), (4.1) and (4.2),

(5.3)
∑

T∈T i
h , T �⊂

⋃L
�=1 N�,δ

‖ ◦
u − ΠT

◦
u‖2

L2(T ) � h4‖f‖2
L2(Ω).

On the other hand, near a corner c� of Ω we can use (4.5) to obtain

∑
T∈T i

h , T⊂N�,δ

‖ ◦
u − ΠT

◦
u‖2

L2(T )

�
∑

T∈T i
h , T⊂N�,δ

[
‖ ◦
uR − ΠT

◦
uR‖2

L2(T )(5.4)

+
J�∑

j=1

|κ�,j |2 ‖ψ�,j − ΠT ψ�,j‖2
L2(T )

]
.

The estimates (2.4) (with s = 2 − ε), (2.8), (4.7), (4.9), (4.11) and (4.13) imply

(5.5)
∑

T∈T i
h , T⊂N�,δ

‖ ◦
uR − ΠT

◦
uR‖2

L2(T ) ≤ Cεh
4−ε‖f‖2

L2(Ω)

for any ε > 0.
Note that (2.5) and the regularity of Th imply that

|c� − cT | ≈ |c� − x| ∀x ∈ T ∈ T i
h and T ⊂ N�,δ,

and hence

(5.6) Φµ(T ) ≈ |c� − x|1−µ� ∀x ∈ T ∈ T i
h and T ⊂ N�,δ.



582 SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG

Using (2.4) (with s = 2), (2.5), (4.15) and (5.6) we obtain the following estimate
for the term involving the singular vector fields:∑

T∈T i
h , T⊂N�,δ

‖ψ�,j − ΠT ψ�,j‖2
L2(T ) �

∑
T∈T i

h , T⊂N�,δ

h4
T |ψ�,j |2H2(T )

≈ h4
∑

T∈T i
h , T⊂N�,δ

[Φµ(T )]4|ψ�,j |2H2(T )(5.7)

≈ h4
∑

T∈T i
h , T⊂N�,δ

∫
T

|c� − x|4(1−µ�)|D2ψ�,j |2 dx � h4.

Combining (4.9), (4.11), (4.13), (5.3)–(5.5) and (5.7), we arrive at

(5.8)
∑

T∈T i
h

‖ ◦
u − ΠT

◦
u‖2

L2(T ) ≤ Cεh
4−ε‖f‖2

L2(Ω) for any ε > 0.

It remains to estimate the second term on the right-hand side of (5.2). For the
case where ω� ≤ π

2 , it follows from (2.4) (with s = 2 − ε) and (4.5)–(4.7) that

(5.9)
∑

T∈Th,�

‖ ◦
u − ΠT

◦
u‖2

L2(T ) ≤ Cεh
4−ε‖f‖2

L2(Ω) if ω� ≤
π

2
.

For the case where ω� > π
2 , since

◦
u ∈ [H2µ�(Ω)]2 (cf. Remark 4.2), we obtain from

(2.4) (with s = 2µ�), (2.9) and (4.16) the estimate

(5.10)
∑

T∈Th,�

‖ ◦
u − ΠT

◦
u‖2

L2(T ) � h4µ�

T ‖f‖2
L2(Ω) ≈ h4‖f‖2

L2(Ω)

if ω� > π/2. Combining (5.9) and (5.10), we have

(5.11)
∑

T∈T c
h

‖ ◦
u − ΠT

◦
u‖2

L2(Ω) ≤ Cεh
4−ε‖f‖2

L2(Ω) for any ε > 0.

The estimate (5.1) follows from (5.2), (5.8) and (5.11). �

Lemma 5.2. Let
◦
u ∈ H0(curl; Ω) ∩ H(div0; Ω) be the solution of (1.3). It holds

that

(5.12)
∑
e∈Eh

[Φµ(e)]2

|e| ‖[[ ◦u − Πh
◦
u]]‖2

L2(e)
≤ Cεh

2−ε‖f‖2
L2(Ω)

for any ε > 0, where [[
◦
u − Πh

◦
u]] is the jump of

◦
u − Πhu across the interior edges

of Th and [[
◦
u − Πh

◦
u]] =

◦
u − Πh

◦
u on the boundary edges of Th.

Proof. Let e ∈ Eh and Te be the set of the triangles in Th having e as an edge. We
have

(5.13)
1
|e| ‖[[

◦
u − Πh

◦
u]]‖2

L2(e)
�

∑
T∈Te

|e|−1‖ ◦
u − ΠT

◦
u‖2

L2(e)
.

If T ∈ Te belongs to T i
h , we can use the trace theorem (with scaling) and the

Bramble-Hilbert lemma [3, 5] to obtain

|e|−1‖ ◦
u − ΠT

◦
u‖2

L2(e)
� h−2

T ‖ ◦
u − ΠT

◦
u‖2

L2(T ) + | ◦u − ΠT
◦
u|2H1(T )(5.14)

� | ◦u − ΠT
◦
u|2H1(T ).
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If T ∈ Te belongs to Th,� and ω� ≤ π
2 , then we have, by (2.4) (with s = 2 − ε),

(4.5) and (4.6),

|e|−1‖ ◦
u − ΠT

◦
u‖2

L2(e)
� h−2

T ‖ ◦
u − ΠT

◦
u‖2

L2(T ) + | ◦u − ΠT
◦
u|2H1(T )(5.15)

≤ Cεh
2(1−ε)
T | ◦u|2H2−ε(T )

for any ε > 0.
On the other hand, if T ∈ Te belongs to Th,� and ω� > π

2 , we have, by the trace
theorem (with scaling) and (2.4) (with s = 2µ� (cf. Remark 4.2)),

|e|−1‖ ◦
u − ΠT

◦
u‖2

L2(e)
� h−2

T ‖ ◦
u − ΠT

◦
u‖2

L2(T )

+ h
2(min(2µ�,1)−1)
T | ◦u − ΠT

◦
u|2

Hmin(2µ�,1)(T )
(5.16)

� h
2(2µ�−1)
T | ◦u|2H2µ�(T ).

It follows from (3.7) and (5.13)–(5.16) that

∑
e∈Eh

[Φµ(e)]2

|e| ‖[[ ◦u − Πh
◦
u]]‖2

L2(e)

≤ Cε

{ ∑
T∈T i

h

[Φµ(T )]2| ◦u − ΠT
◦
u|2H1(T )

+
∑

ω�≤π
2

∑
T∈Th,�

[Φµ(T )]2h2(1−ε)
T | ◦u|2H2−ε(T )(5.17)

+
∑

ω�> π
2

∑
T∈Th,�

[Φµ(T )]2h2(2µ�−1)
T | ◦u|2H2µ�(T )

}

for an ε > 0. As in the proof of Lemma 5.1, the three terms on the right-hand side
of (5.17) can be analyzed as follows.

We can write the first term as

∑
T∈T i

h

[Φµ(T )]2| ◦u − ΠT
◦
u|2H1(T )

=
∑

T∈T i
h ,T �⊂

⋃L
�=1 N�,δ

[Φµ(T )]2| ◦u − ΠT
◦
u|2H1(T )(5.18)

+
∑

T∈T i
h ,T⊂

⋃L
�=1 N�,δ

[Φµ(T )]2| ◦u − ΠT
◦
u|2H1(T ).

It follows from (2.4) (with s = 2), (2.5), (2.7), (2.8), (4.1) and (4.2) that

(5.19)
∑

T∈T i
h ,T �⊂

⋃L
�=1 N�,δ

[Φµ(T )]2| ◦u − ΠT
◦
u|2H1(T ) � h2‖f‖2

L2(Ω).
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Near a corner c� of Ω, we can use (4.5) to obtain∑
T∈T i

h ,T⊂N�,δ

[Φµ(T )]2| ◦u − ΠT
◦
u|2H1(T )

�
∑

T∈T i
h ,T⊂N�,δ

[Φµ(T )]2
[
| ◦uR − ΠT

◦
uR|2H1(T )(5.20)

+
J�∑

j=1

|κ�,j |2 |ψ�,j − ΠT ψ�,j |2H1(T )

]
.

From (2.4) (with s = 2 − ε), (2.5), (2.7), (4.7), (4.9), (4.11), (4.13), we have

(5.21)
∑

T∈T i
h ,T⊂N�,δ

[Φµ(T )]2| ◦uR − ΠT
◦
uR|2H1(T ) � Cεh

2−ε‖f‖2
L2(Ω).

Furthermore, (2.4) (with s = 2) and the arguments in the derivation of (5.7) imply
that ∑

T∈T i
h ,T⊂N�,δ

[Φµ(T )]2|ψ�,j − ΠT ψ�,j |2H1(T )

�
∑

T∈T i
h ,T⊂N�,δ

[Φµ(T )]2h2
T |ψ�,j |2H2(T )(5.22)

≈ h2
∑

T∈T i
h ,T⊂N�,δ

[Φµ(T )]4|ψ�,j |2H2(T ) � h2.

Combining (4.7), (4.9), (4.11), (4.13), and (5.18)–(5.22), we arrive at the estimate

(5.23)
∑

T∈T i
h

[Φµ(T )]2| ◦u − ΠT
◦
u|2H1(T ) ≤ Cεh

2−ε‖f‖2
L2(Ω)

for any ε > 0.
Next we bound the second term on the right-hand side of (5.17) using the esti-

mates (2.7), (2.8) and (4.5)–(4.7):

(5.24)
∑

ω�≤π
2

∑
T∈Th,�

[Φµ(T )]2h2(1−ε)
T | ◦u|2H2−ε(T ) ≤ Cεh

2(1−ε)‖f‖2
L2(Ω)

for any ε > 0.
Finally we derive from (2.5), (2.9) and (4.16) the following estimate for the third

term on the right-hand side of (5.17):∑
ω�> π

2

∑
T∈Th,�

[Φµ(T )]2h2(2µ�−1)
T | ◦u|2H2µ�(T )(5.25)

≈
∑

ω�> π
2

∑
T∈Th,�

h−2h4µ�

T | ◦u|2H2µ�(T ) � h2‖f‖2
L2(Ω).

The estimate (5.12) follows from (5.17) and (5.23)–(5.25). �

Lemma 5.3. It holds that∑
e∈Eh

|e| [Φµ(e)]−2‖η − η̄
Te
‖2

L2(e)
� h2|η|2H1(Ω)) ∀ η ∈ H1(Ω),
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where

(5.26) η̄Te
=

1
|Te|

∫
Te

η dx

is the mean of η over Te, one of the triangles in Th that has e as an edge.

Proof. This is the consequence of (2.5), (3.7), the trace theorem (with scaling) and
the Bramble-Hilbert lemma [3]:∑

e∈Eh

|e| [Φµ(e)]−2‖η − η̄
Te
‖2

L2(e)

�
∑
e∈Eh

[Φµ(T )]−2
(
‖η − η̄

Te
‖2

L2(Te) + h2
T |η − η̄

Te
|2H1(Te)

)

�
∑
e∈Eh

[Φµ(T )]−2h2
T |η|2H1(Te) � h2|η|2H1(Ω). �

Recall that Q is the orthogonal projection from L2(Ω) onto H(div0; Ω).

Lemma 5.4. The following estimate is valid:

(5.27) ‖v − Qv‖L2(Ω) � h‖v‖h ∀v ∈ [H0(curl; Ω) ∩ H(div0; Ω)] + Vh.

Proof. Let v ∈ [H0(curl; Ω)∩H(div0; Ω)]+Vh be arbitrary. Since v−Qv belongs to
∇H1

0 (Ω), the orthogonal complement of H(div0; Ω) in [L2(Ω)]2, we have by duality,

‖v − Qv‖L2(Ω) = sup
η∈H1

0 (Ω)\{0}

(v − Qv,∇η)
‖∇η‖L2(Ω)

(5.28)

= sup
η∈H1

0 (Ω)\{0}

(v,∇η)
‖∇η‖L2(Ω)

.

Let η ∈ H1
0 (Ω) be arbitrary. Since ∇ · v = 0 on each triangle T ∈ Th, we find

using integration by parts and the fact that on each e ∈ E i
h the jump [[n · v]] is a

linear polynomial that vanishes at the midpoint,

(v,∇η) =
∑

T∈Th

∫
T

v · ∇η dx

=
∑
e∈Ei

h

∫
e

η[[n · v]] ds(5.29)

=
∑
e∈Ei

h

∫
e

(η − η̄
Te

)[[n · v]] ds,

where η̄
Te

is defined in (5.26). It then follows from the Cauchy-Schwarz inequality,
(3.8) and Lemma 5.3 that

(v,∇η) ≤
[ ∑

e∈Ei
h

|e|[Φµ(e)]−2‖η − η̄
Te
‖2

L2(e)

]1/2

×
[ ∑

e∈Ei
h

[Φµ(e)]2

|e| ‖[[n · v]]‖2
L2(e)

]1/2

(5.30)

� h|η|H1(Ω)‖v‖h = h‖∇η‖L2(Ω)‖v‖h.

The estimate (5.27) follows from (5.28) and (5.30). �
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6. Convergence analysis

In this section, following the approach of Schatz for indefinite problems [17], we
prove the well-posedness of the discrete problem (3.4) and estimate the discretiza-
tion errors. We begin with three lemmas that provide estimates for the three terms
on the right-hand side of (3.12).

Lemma 6.1. Let
◦
u ∈ H0(curl; Ω) ∩ H(div0; Ω) be the solution of (1.3). It holds

that

(6.1) inf
v∈Vh

‖ ◦
u − v‖h ≤ ‖ ◦

u − Πh
◦
u‖h ≤ Cεh

1−ε‖f‖L2(Ω)

for any ε > 0.

Proof. According to (3.8), we have

‖ ◦
u − Πh

◦
u‖2

h = ‖∇h × (
◦
u − Πh

◦
u)‖2

L2(Ω) + ‖ ◦
u − Πh

◦
u‖2

L2(Ω)

+
∑
e∈Eh

[Φµ(e)]2

|e| ‖[[n × (
◦
u − Πh

◦
u)]]‖2

L2(e)
(6.2)

+
∑
e∈Ei

h

[Φµ(e)]2

|e| ‖[[n · ( ◦
u − Πh

◦
u)]]‖2

L2(e)
.

The second term on the right-hand side of (6.2) has been estimated in Lemma 5.1,
and the third and fourth terms can be estimated using Lemma 5.2. Therefore it
only remains to estimate the first term.

Observe that (2.2) implies

(6.3) ∇h × (Πh
◦
u) = Π0

h(∇× ◦
u),

where Π0
h is the orthogonal projection from L2(Ω) onto the space of piecewise

constant functions with respect to Th. It then follows from (1.6), (2.8), (6.3) and a
standard interpolation error estimate [6, 5] that

‖∇h × (
◦
u − Πh

◦
u)‖2

L2(Ω) = ‖∇ × ◦
u − Π0

h(∇× ◦
u)‖2

L2(Ω)(6.4)

� h2|∇ × ◦
u|2H1(Ω) � h2‖f‖2

L2(Ω).

The estimate (6.1) follows from (6.2), (6.4) and Lemmas 5.1 and 5.2. �

Lemma 6.2. Let
◦
u ∈ H0(curl; Ω)∩H(div0; Ω) be the solution of (1.3) and

◦
uh ∈ Vh

satisfy (3.4). It holds that

(6.5) sup
w∈Vh\{0}

ah(
◦
u − ◦

uh, w)
‖w‖h

≤ Ch‖f‖L2(Ω).

Proof. Let w ∈ Vh be arbitrary. We have, by (1.5), (3.2), (3.3), (3.5), and integra-
tion by parts,

ah(
◦
u, w) =

∑
T∈Th

∫
T

(∇× ◦
u)(∇× w) dx − k2(

◦
u, w)(6.6)

= (Qf , w) +
∑
e∈Eh

∫
e

(∇× ◦
u)[[n × w]] ds.
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Subtracting (3.4) from (6.6), we find

(6.7) ah(
◦
u − ◦

uh, w) = (Qf − f , w) +
∑
e∈Eh

∫
e

(∇× ◦
u)[[n × w]] ds.

The first term on the right-hand side of (6.7) can be estimated using Lemma 5.4:

(Qf − f , w) = (f , Qw − w)(6.8)

≤ ‖f‖L2(Ω)‖Qw − w‖L2(Ω) � h‖f‖L2(Ω)‖w‖h.

The second term can also be estimated by arguments similar to those in the
proof of Lemma 5.4. Since w is continuous at the midpoints, we can write

∑
e∈Eh

∫
e

(∇× ◦
u)[[n × w]] ds =

∑
e∈Eh

∫
e

(∇× ◦
u − (∇× ◦

u)Te
)[[n × w]] ds,

where (∇× ◦
u)Te

is the mean of ∇ × ◦
u on Te, one of the triangles in Th that has

e as an edge. It then follows from (1.6), (3.8), the Cauchy-Schwarz inequality, and
Lemma 5.3 that∑

e∈Eh

∫
e

(∇× ◦
u)[[n × w]] ds

≤
[ ∑

e∈Eh

|e|[Φµ(e)]−2‖∇ × ◦
u − (∇× ◦

u)Te
‖2

L2(e)

]1/2

×
[ ∑

e∈Eh

[Φµ(e)]2

|e| ‖[[n × w]]‖2
L2(e)

]1/2

� h|∇ × ◦
u|H1(Ω)‖w‖h � h‖f‖L2(Ω)‖w‖h,

which together with (6.7) and (6.8) completes the proof. �

Remark 6.3. The analysis carried out in Lemma 6.2 explains why the straight-
forward discretization,

(6.9) (∇h × ◦
uh,∇h × v) − k2(

◦
uh, v) = (f , v) ∀v ∈ Vh,

without the consistency term fails to converge (cf. [15], page 200 and Table 7.2
below). Indeed, we can see from (5.29) and (6.7) that both [[n · w]] and [[n × w]]
appear naturally in the consistency analysis of the method. For the Poisson problem
the jumps of nonconforming P1 functions can be controlled by the piecewise H1

norm using the continuity at the midpoints. But for the Maxwell equations the
piecewise H(curl) norm is not strong enough to control [[n · w]] and [[n × w]], even
with the continuity of w at the midpoints.

Remark 6.4. Even though our analysis relies on the fact that ‖ · ‖h defined in
(3.8) includes the normal jumps, it is still possible that a discretization without
the normal jumps would converge. For example, we can replace the bilinear form
ah(·, ·) in (3.4) by the bilinear form

ãh(w, v) = (∇h × w,∇h × v) − k2(w, v)(6.10)

+
∑
e∈Eh

[Φµ(e)]2

|e|

∫
e

[[n × w]] [[n × v]] ds.
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The resulting scheme in fact converges. Numerical results can be found in Table 7.3
below, where the norm ||| · |||h is defined by

(6.11) |||v|||2h = ‖∇h × v‖2
L2(Ω) + ‖v‖2

L2(Ω) +
∑
e∈Eh

[Φµ(e)]2

|e| ‖[[n × v]]‖2
L2(e)

.

But we will not analyze this scheme in the current paper.

Lemma 6.5. Let
◦
u ∈ H0(curl; Ω)∩H(div0; Ω) be the solution of (1.3) and

◦
uh ∈ Vh

satisfy (3.4). It holds that

(6.12) ‖ ◦
u − ◦

uh‖L2(Ω) ≤ Cε

(
h2−ε‖f‖L2(Ω) + h1−ε‖ ◦

u − ◦
uh‖h

)
for any ε > 0.

Proof. We will establish (6.12) by a duality argument.
Let

◦
z ∈ H0(curl; Ω) ∩ H(div0; Ω) satisfy the RTHM equations

(∇× v,∇× ◦
z) − k2(v,

◦
z) = (v,

◦
u − ◦

uh) ∀v ∈ H0(curl; Ω) ∩ H(div0; Ω),

which can also be written as

(6.13) ah(v,
◦
z) = (v,

◦
u − ◦

uh) ∀v ∈ H0(curl; Ω) ∩ H(div0; Ω).

The strong form of (6.13) is

(6.14) ∇× (∇× ◦
z) − k2 ◦

z = Q(
◦
u − ◦

uh)

and we have the following analog of (1.6):

(6.15) |∇ × ◦
z|H1(Ω) � ‖ ◦

u − ◦
uh‖L2(Ω).

From (6.13) we have

(6.16) (
◦
u,

◦
u − ◦

uh) = ah(
◦
u,

◦
z).

On the other hand, it follows from (6.14) and integration by parts that the following
analog of (6.6) holds:

(6.17) ah(
◦
uh,

◦
z) =

( ◦
uh, Q(

◦
u − ◦

uh)
)

+
∑
e∈Eh

∫
e

(∇× ◦
z)[[n × ◦

uh]] ds.

Combining (6.16) and (6.17), we find

‖ ◦
u − ◦

uh‖2
L2(Ω) = (

◦
u,

◦
u − ◦

uh) − (
◦
uh,

◦
u − ◦

uh)

= ah(
◦
u − ◦

uh,
◦
z) −

( ◦
uh, (I − Q)(

◦
u − ◦

uh)
)

(6.18)

+
∑
e∈Eh

∫
e

(∇× ◦
z)[[n × ◦

uh]] ds.

We will estimate the three terms on the right-hand side of (6.18) separately.
We can write the first term as

(6.19) ah(
◦
u − ◦

uh,
◦
z) = ah(

◦
u − ◦

uh,
◦
z − Πh

◦
z) + ah(

◦
u − ◦

uh, Πh
◦
z),

and from (3.10) and Lemma 6.1 (applied to
◦
z) we immediately have the following

estimate:

ah(
◦
u − ◦

uh,
◦
z − Πh

◦
z) ≤ C‖ ◦

u − ◦
uh‖h‖

◦
z − Πh

◦
z‖h(6.20)

≤ Cεh
1−ε‖ ◦

u − ◦
uh‖h‖

◦
u − ◦

uh‖L2(Ω).
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From (6.7) we can rewrite the second term on the right-hand side of (6.19) as

(6.21) ah(
◦
u − ◦

uh, Πh
◦
z) = (Qf − f , Πh

◦
z) +

∑
e∈Eh

∫
e

(∇× ◦
u)[[n × Πh

◦
z]] ds.

Since
◦
z ∈ H(div0; Ω), we have Q

◦
z =

◦
z and, by Lemma 5.1 (applied to

◦
z),

(Qf − f , Πh
◦
z) = (f , QΠh

◦
z − Πh

◦
z)

=
(
f , Q(Πh

◦
z − ◦

z) − (Πh
◦
z − ◦

z)
)

(6.22)

≤ ‖f‖L2(Ω)‖Πh
◦
z − ◦

z‖L2(Ω)

≤ ‖f‖L2(Ω)

(
Cεh

2−ε‖ ◦
u − ◦

uh‖L2(Ω)

)
.

We can rewrite the second term on the right-hand side of (6.21) using the nota-
tion introduced in (5.26):

∑
e∈Eh

∫
e

(∇× ◦
u)[[n × Πh

◦
z]] ds =

∑
e∈Eh

∫
e

(
∇× ◦

u − (∇× ◦
u)Te

)
[[n × Πh

◦
z]] ds

=
∑
e∈Eh

∫
e

(
∇× ◦

u − (∇× ◦
u)Te

)
[[n × (Πh

◦
z − ◦

z)]] ds,

since n × Πh
◦
z is continuous at the midpoint of any edge e ∈ E i

h and vanishes
at the midpoint of any edge e ∈ Eb

h, and [[n × ◦
z]] = 0. It then follows from the

Cauchy-Schwarz inequality, (1.6), Lemma 5.2 (applied to
◦
z), and Lemma 5.3 that

∑
e∈Eh

∫
e

(∇× ◦
u)[[n × Πh

◦
z]] ds

≤
[ ∑

e∈Eh

|e|[Φµ(e)]−2‖∇ × ◦
u − (∇× ◦

u)Te
‖2

L2(e)

]1/2

×
[ ∑

e∈Eh

[Φµ(e)]2

|e| ‖[[Πh
◦
z − ◦

z]]‖2
L2(e)

]1/2

(6.23)

≤ Cε

(
h|∇ × ◦

u|H1(Ω)

)
(h1−ε‖ ◦

u − ◦
uh‖L2(Ω)

)
≤ Cεh

2−ε‖f‖L2(Ω)‖
◦
u − ◦

uh‖L2(Ω).

Combining (6.19)–(6.23) we find

(6.24) ah(
◦
u − ◦

uh,
◦
z) ≤ Cε

(
h2−ε‖f‖L2(Ω) + h1−ε‖ ◦

u − ◦
uh‖h

)
‖ ◦
u − ◦

uh‖L2(Ω).

Next we estimate the second term on the right-hand side of (6.18) by Lemma 5.4:

−
( ◦
uh, (I − Q)(

◦
u − ◦

uh)
)

=
( ◦
u − ◦

uh, (I − Q)(
◦
u − ◦

uh)
)

(6.25)

≤ C‖ ◦
u − ◦

uh‖L2(Ω)

(
h‖ ◦

u − ◦
uh‖h

)
,

where we have used the fact that (I − Q)
◦
u = 0.

Finally we estimate the third term on the right-hand side of (6.18). Since n× ◦
uh

is continuous at the midpoints of the interior edges and vanishes at the midpoints
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of the boundary edges, and [[n × ◦
u]] = 0, we can write, following the notation in

(5.26),
∑
e∈Eh

∫
e

(∇× ◦
z)[[n × ◦

uh]] ds

=
∑
e∈Eh

∫
e

(
∇× ◦

z − (∇× ◦
z)Te

)
[[n × ◦

uh]] ds

=
∑
e∈Eh

∫
e

(
∇× ◦

z − (∇× ◦
z)Te

)
[[n × (

◦
uh − ◦

u)]] ds.

Using the Cauchy-Schwarz inequality, (3.8), (6.15) and Lemma 5.3 (applied to
◦
z),

we obtain ∑
e∈Eh

∫
e

(∇× ◦
z)[[n × ◦

uh]] ds

≤
[ ∑

e∈Eh

|e|[Φµ(e)]−2‖∇ × ◦
z − (∇× ◦

z)Te
‖2

L2(e)

]1/2

×
[ ∑

e∈Eh

[Φµ(e)]2

|e| ‖[[ ◦uh − ◦
u]]‖2

L2(e)

]1/2

(6.26)

≤ Ch|∇ × ◦
z|H1(Ω)‖

◦
uh − ◦

u‖h

≤ Ch‖ ◦
u − ◦

uh‖L2(Ω)‖
◦
u − ◦

uh‖h.

The estimate (6.12) follows from (6.18) and (6.24)–(6.26). �

We are now ready to prove the main result of this paper.

Theorem 6.6. There exists a positive number h∗ such that the discrete problem
(3.4) is uniquely solvable for all h ≤ h∗, in which case the following discretization
error estimates are valid :

‖ ◦
u − ◦

uh‖h ≤ Cεh
1−ε‖f‖L2(Ω) for any ε > 0,(6.27)

‖ ◦
u − ◦

uh‖L2(Ω) ≤ Cεh
2−ε‖f‖L2(Ω) for any ε > 0.(6.28)

Proof. Assuming
◦
uh satisfies (3.4), it follows from (3.12) and Lemmas 6.1, 6.2 and

6.5 that

(6.29) ‖ ◦
u − ◦

uh‖h ≤ Cεh
1−ε

(
‖f‖L2(Ω) + ‖ ◦

u − ◦
uh‖h

)
for any ε > 0.

By choosing an ε∗ > 0, we deduce from (6.29) that, for h ≤ h∗ = 1/(2Cε∗)
1/(1−ε∗),

‖ ◦
u − ◦

uh‖h ≤ Cε∗h
1−ε∗

(
‖f‖L2(Ω) + ‖ ◦

u − ◦
uh‖h

)
≤ Cε∗h

1−ε∗‖f‖L2(Ω) + Cε∗h
1−ε∗
∗ ‖ ◦

u − ◦
uh‖h

≤ Cε∗h
1−ε∗‖f‖L2(Ω) +

1
2
‖ ◦
u − ◦

uh‖h,

and hence

(6.30) ‖ ◦
u − ◦

uh‖h ≤ 2Cε∗h
1−ε∗‖f‖L2(Ω).
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Therefore, any solution
◦
zh ∈ Vh of the homogeneous discrete problem

(6.31) ah(
◦
zh, v) = 0 ∀v ∈ Vh,

which corresponds to the special case where f = 0 =
◦
z, will satisfy the following

special case of (6.30):

‖◦
zh‖h ≤ 0.

Hence the only solution of (6.31) is the trivial solution and the discrete problem
(3.4) is uniquely solvable for h ≤ h∗.

The energy error estimate (6.27) now follows from (6.30), and the L2 error esti-
mate (6.28) follows from Lemma 6.5 and (6.27). �

7. Numerical experiments

In this section we report the results of several numerical experiments that cor-
roborate our theoretical results. Besides the L2 error ‖ ◦

u− ◦
uh‖L2(Ω) and the energy

error ‖ ◦
u − ◦

uh‖h, we have also computed the error in the | · |curl semi-norm defined
by

|v|curl = ‖∇h × v‖L2(Ω).

In the first experiment we check the convergence behavior of our numerical
scheme (3.4) on the square (0, 0.5)2 with uniform meshes, where the exact solu-
tion is

(7.1)
◦
u = [y(y − 0.5) sin(ky), x(x − 0.5) cos(kx)]

for k = 0, 1, 10 and 20. The results are tabulated in Table 7.1. They agree
with the estimates (6.27) and (6.28). Observe also that finer meshes are needed
for computing satisfactory approximate solutions when the wave numbers become
larger.

In the second experiment we check the behavior of the scheme (6.9) that does
not have the consistency term. The results in Table 7.2 confirm that this scheme
does not converge.

In the third experiment we test the convergence of the scheme (3.4) with the
bilinear form ah(·, ·) replaced by the bilinear form ãh(·, ·) defined in (6.10). Com-
paring Table 7.1 and Table 7.3 (where ||| · |||h is defined by (6.11)), we see that this
scheme converges but it does not perform as well as the original scheme.

In the fourth experiment we apply our method to a problem on (0, 0.5)2 with
k = 1 and where the right-hand side f is given by

(7.2) f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 1) x > 0.25, y > 0.25,
(1, 1) x < 0.25, y > 0.25,
(−1, 1) x < 0.25, y < 0.25,
(1, 0) x > 0.25, y < 0.25.

The convergence rates in L2(Ω), computed by subtracting the numerical solutions
from consecutive grids (h = 1/10, 1/20, 1/40 and 1/80), are reported in Table 7.4.
They agree with the estimate (6.28).

Since our numerical scheme is designed for the reduced time-harmonic Maxwell
equation (1.5), its performance should not be affected by the addition to the right-
hand side of a gradient term ∇G where G ∈ H1

0 (Ω). In the fifth experiment we add
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∇G, where

(7.3) G(x, y) = xy(x − 0.5)(y − 0.5) sin(x + y),

to the right-hand side

(7.4) f = ∇× (∇× ◦
u) − ◦

u

of the problem in the first experiment (with k = 1) and compare their performance.
The results are reported in Table 7.5, which demonstrate that indeed the perfor-
mance of our method does not change if terms from ∇H1

0 (Ω) are added to the
right-hand side.

Table 7.1. Convergence of the scheme (3.4) on the square (0, 0.5)2

with uniform meshes and exact solution
◦
u given by (7.1)

h
‖ ◦
u − ◦

uh‖L2(Ω)

‖ ◦
u‖L2(Ω)

order || ◦u − ◦
uh||h

|| ◦u||h
order | ◦u − ◦

uh|curl

| ◦u|curl

order

k = 0
1/10 4.28e−02 − 2.89e−01 − 1.70e−01 −
1/20 9.68e−03 2.15 1.42e−01 1.02 8.52e−02 1.00
1/40 2.29e−03 2.08 7.05e−02 1.01 4.25e−02 1.00
1/80 5.56e−04 2.04 3.50e−02 1.00 2.12e−02 1.00

k = 1
1/10 3.83e−02 − 2.70e−01 − 1.64e−01 −
1/20 8.64e−03 2.15 1.33e−01 1.02 8.14e−02 1.00
1/40 2.04e−03 2.08 6.60e−02 1.01 4.09e−02 1.00
1/80 4.95e−04 2.04 3.29e−02 1.01 2.05e−02 1.00

k = 10
1/10 3.69e−01 − 8.41e−01 − 4.07e−01 −
1/20 5.30e−02 2.80 3.46e−01 1.28 1.98e−01 1.04
1/40 1.13e−02 2.23 1.67e−01 1.05 9.89e−02 1.00
1/80 2.68e−03 2.08 8.27e−02 1.02 4.93e−02 1.00

k = 20
1/10 1.20e+02 − 1.14e+02 − 3.28e+01 −
1/20 2.59e−01 − 5.95e−01 − 3.51e−01 −
1/40 6.49e−02 1.99 2.59e−01 1.20 1.59e−01 1.14
1/80 1.85e−02 1.81 1.25e−01 1.05 7.60e−02 1.06

Table 7.2. Lack of convergence of the scheme (6.9) on the square
(0, 0.5)2 with uniform meshes and exact solution

◦
u given by (7.1)

with k = 1

h
‖ ◦
u − ◦

uh‖L2(Ω)

‖ ◦
u‖L2(Ω)

order | ◦u − ◦
uh|curl

| ◦u|curl

order

1/10 3.06e+01 − 4.76e−01 −
1/20 3.07e+01 0.00 4.61e−01 0.04
1/40 3.07e+01 0.00 4.58e−01 0.01
1/80 3.07e+01 0.00 4.56e−01 0.00
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Table 7.3. Convergence of the scheme without the normal jumps
on the square (0, 0.5)2 with uniform meshes and exact solution

◦
u

given by (7.1) with k = 1

h
‖ ◦
u − ◦

uh‖L2(Ω)

‖ ◦
u‖L2(Ω)

order ||| ◦u − ◦
uh|||h

||| ◦u|||h
order | ◦u − ◦

uh|curl

| ◦u|curl

order

1/10 9.84e−02 - 3.31e−01 - 1.53e−01 -
1/20 2.37e−02 2.05 1.63e−01 1.02 7.65e−02 1.00
1/40 5.85e−03 2.02 8.11e−02 1.01 3.83e−02 1.00
1/80 1.45e−03 2.01 4.05e−02 1.00 1.91e−02 1.00

Table 7.4. L2 convergence of the scheme (3.4) on (0, 0.5)2 with
k = 1 for the piecewise constant right-hand side f given by (7.2)

‖ ◦
uh − ◦

uh/2‖L2(Ω) 5.4221e−04 1.2497e−04 2.9973e−05
order − 2.12 2.06

Table 7.5. Comparison of the performance of the scheme (3.4)
on (0, 0.5)2 with k = 1 for the right-hand sides f and f + ∇G,
where f is given by (7.4) and G is given by (7.3)

h rhs = f rhs = f + ∇G

‖ ◦
u − ◦

uh‖L2(Ω)

1/10 0.00087267620454 0.00087256448490
1/20 0.00019666340210 0.00019665421702
1/40 0.00004658328299 0.00004658320683
1/80 0.00001133188254 0.00001133212653

‖ ◦
u − ◦

uh‖h

1/10 0.03990964283043 0.03991029627634
1/20 0.01966030958140 0.01966043731358
1/40 0.00975737119215 0.00975742801172
1/80 0.00486057731557 0.00486060921228

In the final experiment we check the convergence behavior of our scheme on
the L-shaped domain (−0.5, 0.5)2 \ [0, 0.5]2 with corners (0.5, 0), (0, 0), (0, 0.5),
(−0.5, 0.5), (−0.5,−0.5) and (0.5,−0.5). We take k = 1 and the exact solution is
chosen to be

(7.5)
◦
u = ∇×

(
r2/3 cos

(2
3
θ − π

3

)
φ(r/0.5)

)
,

where (r, θ) are the polar coordinates at the origin and the cut-off function is given
by

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 r ≤ 0.25,
−16(r − 0.75)3

×
[
5 + 15(r − 0.75) + 12(r − 0.75)2

]
0.25 ≤ r ≤ 0.75,

0 r ≥ 0.75.
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The meshes are graded around the re-entrant corner with the grading parameter
equal to 1/3. The results are tabulated in Table 7.6 and they agree with the
estimates (6.27) and (6.28).

Table 7.6. Convergence of the scheme (3.4) with graded meshes
on the L-shaped domain (−0.5, 0.5)2\[0, 0.5]2 with k = 1 and exact
solution

◦
u given by (7.5)

h
‖ ◦
u − ◦

uh‖L2(Ω)

‖ ◦
u‖L2(Ω)

order ‖ ◦
u − ◦

uh‖h

‖ ◦
u‖h

order | ◦u − ◦
uh|curl

| ◦u|curl

order

1/4 1.44e+02 − 1.88e+01 − 7.77e−00 −
1/8 3.81e+01 1.92 7.39e−00 1.35 4.41e−00 0.82
1/16 3.35e−00 3.50 2.24e−00 1.73 7.87e−01 2.49
1/32 6.88e−01 2.28 1.09e−00 1.03 4.34e−01 0.86
1/64 1.51e−01 2.18 5.51e−01 0.99 2.34e−01 0.90

8. Concluding remarks

We have presented a nonconforming nodal finite element method for the two-
dimensional (reduced) time-harmonic Maxwell equations. Even though we have
only discussed the perfectly conducting boundary condition, the scheme can be
readily generalized to other boundary conditions (such as the impedance boundary
condition [15]). However, the regularity of the solution and the error analysis of the
scheme on graded meshes are then more involved and will be addressed elsewhere.

This method can be adapted for time-harmonic Maxwell equations in axisym-
metric domains in three dimensions. It can also be extended to general three-
dimensional domains, where the construction of the locally-divergence basis is more
complicated (cf. Section 9.3 of [10]).

Since our scheme computes approximations to vector fields in the space
H0(curl; Ω)∩H(div0; Ω) that is responsible for the determination of Maxwell eigen-
values under the perfectly conducting boundary condition, it is also suitable for the
computation of Maxwell eigenvalues. We have observed in preliminary numerical
tests that the eigenvalues of the discrete operator converge to the Maxwell eigen-
values and there are no spurious eigenvalues. One can also take advantage of the
theory of fast solvers for nodal nonconforming finite element methods to design
fast solvers for the scheme (3.4), or the theory of error estimators for nodal non-
conforming finite elements to develop adaptive versions of (3.4). These topics will
be treated in our ongoing projects.

More importantly, our work in this paper shows that it is possible to design
convergent nonconforming nodal finite element methods for electromagnetism. We
expect that other new methods in this direction will be discovered.
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