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AN UNCONDITIONALLY CONVERGENT METHOD
FOR COMPUTING ZEROS OF SPLINES AND POLYNOMIALS

KNUT MØRKEN AND MARTIN REIMERS

Abstract. We present a simple and efficient method for computing zeros of
spline functions. The method exploits the close relationship between a spline
and its control polygon and is based on repeated knot insertion. Like Newton’s
method it is quadratically convergent, but the new method overcomes the
principal problem with Newton’s method in that it always converges and no
starting value needs to be supplied by the user.

1. Introduction

B-splines is a classical format for representing univariate functions and paramet-
ric curves in many applications, and the toolbox for manipulating such functions
is rich, both from a theoretical and practical point of view. A commonly occurring
operation is to find the zeros of a spline, and a number of methods for accomplishing
this have been devised. One possibility is to use a classical method like Newton’s
method or the secant method [2], both of which leave us with the question of how
to choose the initial guess(es). For this we can exploit a very nice feature of spline
functions, namely that every spline comes with a simple, piecewise linear approxi-
mation, the control polygon. It is easy to show that a spline whose control polygon
is everywhere of one sign cannot have any zeros. Likewise, a good starting point
for an iterative procedure is a point in the neighbourhood of a zero of the con-
trol polygon. More refined methods exploit another important feature of splines,
namely that the control polygon converges to the spline as the spacing of the knots
(the joins between adjacent polynomial pieces) goes to zero. One can then start by
inserting knots to obtain a control polygon where the zeros are clearly isolated and
then apply a suitable iterative method to determine the zeros accurately. Although
hybrid methods of this type can be tuned to perform well, there are important
unanswered problems. Where should the knots be inserted in the initial phase?
How many knots should be inserted in the initial phase? How should the starting
value for the iterations be chosen? Will the method always converge?

In this paper we propose a simple method that provides answers to all the above
questions. The method is very simple: Iteratively insert zeros of the control poly-
gon as new knots of the spline. It turns out that all accumulation points of this
procedure will be zeros of the spline function, and we prove below that the method
is unconditionally convergent. In addition it is essentially as efficient as Newton’s
method, and asymptotically it behaves like this method. A similar strategy for
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Bézier curves was used in [6]; however, no convergence analysis was given. Another
related method is “Bézier clipping”; see [5]. The “Interval Newton” method pro-
posed in [3] is, as our method, unconditionally quadratically convergent and avoids
the problem of choosing an initial guess. It is based on iteratively dividing the
domain into segments that may contain a zero, using estimates for the derivatives
of the spline. For an overview of a number of other methods for polynomials; see
[8].

2. Background spline material

The method itself is very simple, but the analysis of convergence and convergence
rate requires knowledge of a number of spline topics which we summarise here.

Let f =
∑n

i=1 ciBi,d,t be a spline in the n-dimensional spline space Sd,t spanned
by the n B-splines {Bi,d,t}n

i=1. Here d denotes the polynomial degree, and the non-
decreasing sequence t = (t1, . . . , tn+d+1) denotes the knots (joins between neigh-
bouring polynomial pieces) of the spline. We assume that ti < ti+d+1 for i = 1,
. . . , n which ensures that the B-splines are linearly independent. We also make the
common assumption that the first and last d + 1 knots are identical. This causes
no loss of generality as any spline can be converted to this form by inserting the
appropriate number of knots at the two ends; see page 847 below. Without this
assumption the ends of the spline will have to be treated specially in parts of our
algorithm.

The control polygon Γ = Γt(f) of f relative to Sd,t is defined as the piecewise
linear function with vertices at (ti, ci)n

i=1, where ti = (ti+1 + . . . + ti+d)/d is called
the ith knot average. This piecewise linear function is known to approximate f itself
and has many useful properties that can be exploited in analysis and development
of algorithms for splines. One such property which is particularly useful when it
comes to finding zeros is a spline version of Descartes’ rule of signs for polynomials:
A spline has at most as many zeros as its control polygon (this requires the spline
to be connected; see below). More formally,

(1) Z(f) ≤ S−(Γ) = S−(c) ≤ n − 1,

where Z(f) is the number of zeros, counting multiplicities, and S−(Γ) and S−(c)
are the number of strict sign changes (ignoring zeros) in Γ and c respectively; see
[4]. We say that z is a zero of f of multiplicity m if f (j)(z) = 0 for j = 0, . . . , m− 1
and f (m)(z) �= 0. A simple zero is a zero of multiplicity m = 1. The inequality (1)
holds for splines that are connected, meaning that for each x ∈ [t1, tn+d+1) there is
at least one i such that ciBi,d,t(x) �= 0. This requirement ensures that f is nowhere
identically zero.

The derivative of f is a spline in Sd−1,t which can be written in the form f ′ =∑n+1
j=1 ∆cjBj,d−1,t where

(2) ∆cj =
cj − cj−1

tj − tj−1
= d

cj − cj−1

tj+d − tj

if we use the conventions that c0 = cn+1 = 0 and ∆cj = 0 whenever tj − tj−1 = 0.
This is justified since tj − tj−1 = 0 implies tj = tj+d and hence Bj,d−1,t ≡ 0.
Note that the jth coefficient of f ′ equals the slope of segment number j − 1 of the
control-polygon of f .
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The second derivative of a spline is obtained by differentiating f ′ which results
in a spline f ′′ of degree d − 2 with coefficients

(3) ∆2cj = (d − 1)
∆cj − ∆cj−1

tj+d−1 − tj
.

We will need the following well-known stability property for B-splines. For all
splines f =

∑
ciBi,d,t in Sd,t the two inequalities

(4) K−1
d ‖c‖∞ ≤ ‖f‖∞ ≤ ‖c‖∞

hold for some constant Kd that depends only on the degree d; see e.g. [4]. Here
the norm of f is taken over the interval [t1, tn+d+1].

Suppose that we insert a new knot x in t and form the new knot vector t1 =
t∪{x}. Since Sd,t ⊆ Sd,t1 , we know that f =

∑n
i=1 ciBi,d,t =

∑n+1
i=1 c1

i Bi,d,t1 . More
specifically, if x ∈ [tp, tp+1) we have c1

i = ci for i = 1, . . . , p − d;

(5) c1
i = (1 − µi)ci−1 + µici with µi =

x − ti
ti+d − ti

for i = p − d + 1, . . . , p; and c1
i = ci−1 for i = p + 1, . . . , n + 1; see [1]. (If the

new knot does not lie in the interval [td+1, tn+1), the indices must be restricted
accordingly. This will not happen when the first and last knots occur d + 1 times
as we have assumed here.) It is not hard to verify that the same relation holds for
the knot averages,

(6) t
1
i = (1 − µi)ti−1 + µiti

for i = p − d + 1, . . . , p. This means that the corners of Γ1, the refined control
polygon, lie on Γ. This property is useful when studying the effect of knot insertion
on the number of zeros of Γ.

We count the number of zeros of Γ as the number of strict sign changes in the
coefficient sequence (ci)n

i=1. The position of a zero of the control polygon is obvious
when the two ends of a line segment have opposite signs. However, the control
polygon can also be identically zero on an interval in which case we associate the
zero with the left end point of the zero interval. More formally, if ck−1ck+� < 0
and ck+i = 0 for i = 0, . . . , � − 1, we say that k is the index of the zero z, which is
given by

z = min
{
x ∈ [tk−1, tk+�] | Γ(x) = 0

}
.

Note that in this case ck−1 �= 0 and ck−1ck ≤ 0.
We let S−

i,j(Γ) denote the number of zeros of Γ in the half-open interval (ti, tj ].
It is clear that S−

1,n(Γ) = S−(Γ) and that S−
i,k(Γ) = S−

i,j(Γ) + S−
j,k(Γ) for i, j, k such

that 1 ≤ i < j < k ≤ n. We note that if Γ1 is the control polygon of f after
inserting one knot, then for any k = 2, . . . , n

(7) S−(Γ1) ≤ S−(Γ) − S−
k−1,k(Γ) + S−

k−1,k+1(Γ
1).

To prove this we first observe that the two inequalities

S−
1,k−1(Γ

1) ≤ S−
1,k−1(Γ),

S−
k+1,n+1(Γ

1) ≤ S−
k,n(Γ),

are true since the corners of Γ1 lie on Γ; see (5). The inequality (7) follows from
the identity

S−(Γ1) = S−
1,k−1(Γ

1) + S−
k−1,k+1(Γ

1) + S−
k+1,n+1(Γ

1),

and the two inequalities above.
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The rest of this section is devoted to blossoming which is needed in later sec-
tions to prove convergence and establish the convergence rate of our zero finding
algorithm. The ith B-spline coefficient of a spline is a continuous function of the d
interior knots ti+1, . . . , ti+d of the ith B-spline,

(8) ci = F (ti+1, . . . , ti+d),

and the function F is completely characterised by three properties:

• it is affine (a polynomial of degree 1) in each of its arguments,
• it is a symmetric function of its arguments,
• it satisfies the diagonal property F (x, . . . , x) = f(x).

The function F is referred to as the blossom of the spline and is often written as
B[f ](y1, . . . , yd).

The affinity of the blossom means that F (x, . . .) = ax + b where a and b depend
on all arguments but x. From this it follows that

(9) F (x, . . .) =
z − x

z − y
F (y, . . .) +

x − y

z − y
F (z, . . .).

Strictly speaking, blossoms are only defined for polynomials, so when we refer to
the blossom of a spline we really mean the blossom of one of its polynomial pieces.
However, the relation ci = B[fj ](ti+1, . . . , ti+d) remains true as long as fj is the
restriction of f to one of the (nonempty) intervals [tj , tj+1) for j = i, i + 1, . . . ,
i + d.

We will use the notation F ′ = B[f ′] and F ′′ = B[f ′′] for blossoms of the deriva-
tives of a spline, i.e.

(10) ∆ci = F ′(ti+1, . . . , ti+d−1)

and

(11) ∆2ci = F ′′(ti+1, . . . , ti+d−2).

By differentiating (9) with respect to x we obtain

(12) DF (x, . . .) =
F (z, . . .) − F (y, . . .)

z − y
.

More generally, we denote the derivative of F (x1, . . . , xd) with respect to xi by
DiF . The derivative of the blossom is related to the derivative of f by

(13) dDiF (y1, . . . , yd) = F ′(y1, . . . , yi−1, yi+1, . . . , yd).

This relation follows since both sides are symmetric, affine in each of the arguments
except yi and agree on the diagonal. The latter property follows from the relation
(shown here in the quadratic case)

f(x + h) − f(x)
h

=
F (x + h, x + h) − F (x, x)

h

=
F (x + h, x + h) − F (x, x + h)

h
+

F (x, x + h) − F (x, x)
h

= D1F (x, x + h) + D2F (x, x)

which tends to f ′(x) = 2DF (x, x) when h → 0.
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Higher order derivatives will be indicated by additional subscripts as in
Di,jF (y1, . . . , yd), but note that the derivative is zero if differentiation with respect
to the same variable is performed more than once.

We will need a nonstandard, multivariate version of Taylor’s formula. This is
obtained from the fundamental theorem of calculus which states that

(14) g(x) = g(a) +
∫ 1

0

Dtg(a + t(x − a)) dt = g(a) + (x − a)g′(a)

when g is an affine function. Suppose now that F is a function that is affine in each
of its d arguments. Repeated application of (14) then leads to

(15)

F (y1, . . . , yd) = F (a1, . . . , ad) +
d∑

i=1

(yi − ai)DiF (a1, . . . , ad)

+
d∑

i=2

i−1∑
j=1

(yi − ai)(yj − aj)Di,jF (a1, . . . , ai, yi+1, . . . , yd).

Finally, we will need bounds for the second derivatives of the blossom in terms
of the spline. Results in this direction are well-known folklore, but a proof of a
specific result may be difficult to locate. We have therefore included a short proof
here.

Lemma 1. There is a constant Kd−2 such that for all y1, . . . , yd and 1 ≤ i, j ≤ d,

(16) |Di,jF (y1, . . . , yd)| ≤
Kd−2

d(d − 1)
‖D2f‖∞.

Proof. Two applications of (13) yield

Di,jF (y1, . . . , yd) =
1

d(d − 1)
F ′′((y1, . . . , yd) \ {yi, yj}

)
.

By (4) we have that
∣∣F ′′((y1, . . . , yd) \ {yi, yj}

)∣∣ ≤ Kd−2‖D2f‖∞, and (16) follows.
�

3. Root finding algorithm

The basic idea of the root finding algorithm is to exploit the close relationship
between the control polygon and the spline, and we do this by using the zeros of
the control polygon as an initial guess for the zeros of the spline. In the next step
we refine the control polygon by inserting these zeros as knots. We can then find
the zeros of the new control polygon, insert these zeros as knots and so on. The
method can be formulated in a particularly simple way if we focus on determining
the left-most zero. There is no loss in this since once the left-most zero has been
found, we can split the spline at this point by inserting a knot of multiplicity d into
t and then proceed with the other zeros.

Note that the case where f has a zero at the first knot t1 can easily be detected a
priori; the spline is then disconnected at t1; see page 846 for a definition of discon-
nectedness. In fact, disconnected splines are degenerate, and this degeneracy is easy
to detect. We therefore assume that the spline under consideration is connected.

We give a more refined version of the method in Algorithm 2 which focuses on
determining an arbitrary zero of f .
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Figure 1. Our algorithm applied to a cubic spline with knot vec-
tor t = (0, 0, 0, 0, 1, 1, 1, 1) and B-spline coefficients c =
(−1,−1, 1/2, 0).

Algorithm 1. Let f be a connected spline in Sd,t and set t0 = t. Repeat the
following steps for j = 0, 1, . . . , until either the sequence (xj) is found to converge
or no zero of the control polygon can be found.

1. Determine the first zero xj+1 of the control polygon Γj of f relative to the
space Sd,tj .

2. Form the knot vector tj+1 = tj ∪ {xj+1}.

We will show below that if f has zeros, this procedure will converge to the first
zero of f , otherwise it will terminate after a finite number of steps. A typical
example of how the algorithm behaves is shown in Figure 1.

In the following, we only discuss the first iteration through Algorithm 1 and
therefore omit the superscripts. In case d = 1 the control polygon and the spline
are identical, and so the zero is found in the first iteration. We will therefore assume
d > 1 in the rest of the paper. The first zero of the control polygon is the zero
of the linear segment connecting the two points (tk−1, ck−1) and (tk, ck) where k
is the smallest zero index, i.e. k is the smallest integer such that ck−1ck ≤ 0 and
ck−1 �= 0; see page 847 for the definition of zero index. The zero is characterised
by the equation

(1 − λ)ck−1 + λck = 0

which has the solution

λ =
−ck−1

ck − ck−1
.
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The control polygon therefore has a zero at

(17)
x1 = (1 − λ)tk−1 + λtk = tk−1 −

ck−1(tk+d − tk)
d(ck − ck−1)

= tk − ck(tk+d − tk)
d(ck − ck−1)

.

Using the notation (2) we can write this in the simple form

(18) x1 = tk − ck

∆ck
= tk−1 −

ck−1

∆ck
,

from which it is apparent that the method described by Algorithm 1 resembles a
discrete version of Newton’s method.

When x1 is inserted in t, we can express f on the resulting knot vector via a new
coefficient vector c1 as in (5). The new control points lie on the old control polygon,
and hence this process is variation diminishing in the sense that the number of
zeros of the control polygon is nonincreasing. In fact, the knot insertion step in
Algorithm 1 either results in a refined control polygon that has at least one zero in
the interval (t1k−1, t

1
k+1] or the number of zeros in the refined control polygon has

been reduced by at least 2 compared with the original control polygon.

Lemma 2. If k is the index of a zero of Γ and S−
k−1,k+1(Γ

1) = 0, then S−(Γ1) ≤
S−(Γ) − 2.

Proof. From (7) we see that the number of sign changes in Γ1 is at least one less
than in Γ, and since the number of sign changes has to decrease in even numbers
the result follows. �

This means that if Γ1 has no zero in (t1k−1, t
1
k+1], the zero in (tk−1, tk] was a false

warning; there is no corresponding zero in f . In fact, we have accomplished more
than this since we have also removed a second false zero from the control polygon.
If we still wish to find the first zero of f we can restart the algorithm from the
left-most zero of the refined control polygon. However, it is useful to be able to
detect that zeros in the control polygon have disappeared so we reformulate our
algorithm with this ingredient. In addition, we need this slightly more elaborate
algorithm to carry out a detailed convergence analysis.

Algorithm 2. Let f be a connected spline in Sd,t, and set t0 = t and c0 = c. Let
k0 = k be a zero index for Γ. Repeat the following steps for j = 0, 1, . . . , or until
the process is halted in step 3:

1. Compute xj+1 = t
j
kj

− cj
kj

/∆cj
kj

.

2. Form the knot vector tj+1 = tj ∪ {xj+1} and compute the B-spline coeffi-
cients cj+1 of f in Sd,tj+1 .

3. Choose kj+1 to be the smallest of the two integers kj and kj + 1, but such
that kj+1 is the index of a zero of Γj+1. Stop if no such number can be
found or if f is disconnected at xj+1.

Before turning to the analysis of convergence, we establish a few basic facts
about the algorithm. We shall call an infinite sequence (xj) generated by this
algorithm a zero sequence. We also introduce the notation t̂

j
= (tjkj

, . . . , tjkj+d) to
denote what we naturally term the active knots at level j. In addition we denote
by aj =

∑d−1
i=1 tjkj+i/(d − 1) the average of the interior, active knots.
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Lemma 3. The zero xj+1 computed in Algorithm 2 satisfies the relations xj+1 ∈
(tjkj−1, t

j
kj

] ⊆ (tjkj
, tjkj+d], and if xj+1 = tjkj+d, then f is disconnected at xj+1 with

f(xj+1) = 0.

Proof. Since cj
k−1 �= 0 we must have xj+1 ∈ (tjk−1, t

j
k]. Since we also have (tjk−1, t

j
k]

⊆ (tjk, tjk+d], the first assertion follows.
For the second assertion, we observe that we always have xj+1 ≤ t

j
k ≤ tjk+d.

This means that if xj+1 = tjk+d we must have xj+1 = t
j
k and cj

k = 0. But then
xj+1 = tjk+1 = · · · = tjk+d so f(xj+1) = cj

k = 0. �

Our next result shows how the active knots at one level are derived from the
active knots on the previous level.

Lemma 4. If kj, then t̂
j+1

= t̂
j ∪ {xj+1} \ {tjkj+d}. Otherwise, if kj+1 = kj + 1,

then t̂
j+1

= t̂
j ∪ {xj+1} \ {tjkj

}.

Proof. We know that xj+1 ∈ (tjkj
, tjkj+d]. Therefore, if kj+1 = kj the latest zero

xj+1 becomes a new active knot while tjkj+d is lost. The other case is similar. �

4. Convergence

We now have the necessary tools to prove that a zero sequence (xj) converges;
afterwards we will then prove that the limit is a zero of f .

We first show convergence of the first and last active knots.

Lemma 5. Let (xj) be a zero sequence. The corresponding sequence of initial active
knots (tjkj

)j is an increasing sequence that converges to some real number t− from

below, and the sequence of last active knots (tjkj+d) is a decreasing sequence that
converges to some real number t+ from above with t− ≤ t+.

Proof. From Lemma 3 we have xj+1 ∈ (tjkj
, tjkj+d], and due to Lemma 4 we have

tj+1
kj+1

≥ tjkj
and tj+1

kj+1+d ≤ tjkj+d for each j. Since tjkj
≤ tjkj+d the result follows. �

This lemma implies that xj ∈ (t�k�
, t�k�+d] for all j and � such that j > �. Also,

the set of intervals
{
[tjkj

, tjkj+d]
}∞

j=0
in which we insert the new knots is nested and

these intervals tend to a limit,

[tk0 , tk0+d] ⊇ [t1k1
, t1k1+d] ⊇ [t2k2

, t2k2+d] ⊇ · · · ⊇ [t−, t+].

Proposition 6. A zero sequence converges to either t− or t+.

The proof of convergence goes via several lemmas; however in one situation the
result is quite obvious: From Lemma 5 we deduce that if t− = t+, the active knots
and hence the zero sequence must all converge to this number, so there is nothing
to prove. We therefore focus on the case t− < t+.

Lemma 7. None of the knot vectors (tj)∞j=0 have knots in (t−, t+).

Proof. Suppose that there is at least one knot in (t−, t+); by the definition of t−
and t+ this must be an active knot for all j. Then, for all j sufficiently large,
the knot tjkj

will be so close to t− and tjkj+d so close to t+ that the two averages
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tkj−1 and t
j
kj

will both lie in (t−, t+). Since xj+1 ∈ (tjkj−1, t
j
kj

], this means that
xj+1 ∈ (t−, t+). As a consequence, there are infinitely many knots in (t−, t+). But
this is impossible since for any given j only the knots (tjkj+i)

d−1
i=1 can possibly lie in

this interval. �

Lemma 8. Suppose t− < t+. Then there is an integer � such that for all j ≥ �

either tjkj
, . . . , tjkj+d−1 ≤ t− and tjkj+d = t+ or tjkj+1, . . . , t

j
kj+d ≥ t+ and tjkj

= t−.

Proof. Let K denote the constant K = (t+ − t−)/(d − 1) > 0. From Lemma 5 we
see that there is an � such that tjkj

> t− − K and tjkj+d < t+ + K for j ≥ �. If the

lemma was not true, it would be easy to check that t
j
kj−1 and t

j
kj

would have to
lie in (t−, t+) and hence xj+1 would lie in (t−, t+) which contradicts the previous
lemma. �

Lemma 9. Suppose that t− < t+. Then the zero sequence (xj) and the sequences
of interior active knots (tjkj+1), . . . , (tjkj+d−1) all converge and one of the following
is true: Either all the sequences converge to t− and xj ≤ t− for j larger than some
�, or all the sequences converge to t+ and xj ≥ t+ for all j larger than some �.

Proof. We consider the two situations described in Lemma 8 in turn. Suppose that
tjkj

, . . . , tjkj+d−1 ≤ t− for j ≥ �. This means that t
j
kj

< t+ and since xj+1 cannot
lie in (t−, t+), we must have xj+1 ≤ t− for j ≥ �. Since no new knots can appear to
the right of t+ we must have tjkj+d = t+ for j ≥ �. Moreover, since tjkj

< xj+1 ≤ t−,
we conclude that (xj) and all the sequences of interior active knots converge to t−.
The proof for the case tjkj+1, . . . , t

j
kj+d ≥ t+ is similar. �

Lemma 9 completes the proof of Proposition 6. It remains to show that the limit
of a zero sequence is a zero of f .

Lemma 10. Any accumulation point of a zero sequence is a zero of f .

Proof. Let z be an accumulation point for a zero sequence (xj), and let ε be any
positive, real number. Then there must be positive integers � and k such that
t�k+1, . . . , t

�
k+d and x�+1 all lie in the interval (z − ε/2, z + ε/2). Let t = t

�
k and

let Γ = Γt�(f) be the control polygon of f in Sd,t� . We know that the derivative
f ′ =

∑
i ∆ciBi,d−1,t� is a spline in Sd−1,t� , and from (4) it follows that ‖(∆ci)‖∞ ≤

Kd−1‖f ′‖∞ for some constant Kd−1 depending only on d. From this we note that
for any real numbers x and y we have the inequalities

∣∣Γ(x) − Γ(y)
∣∣ ≤

∫ y

x

∣∣Γ′(t)
∣∣ dt ≤

∥∥(∆ci)
∥∥
∞|y − x| ≤ Kd−1‖f ′‖∞|y − x|.

In particular, since Γ(x�+1) = 0 it follows that
∣∣Γ(t)

∣∣ =
∣∣Γ(t) − Γ(x�+1)

∣∣ ≤ Kd−1‖f ′‖∞ ε.

In addition it follows from Theorem 4.2 in [4] that
∣∣f(t) − Γ(t)

∣∣ ≤ C(t�k+d − t�k+1)
2 ≤ Cε2,



854 KNUT MØRKEN AND MARTIN REIMERS

where C is another constant depending on f and d, but not on t�. Combining these
estimates we obtain∣∣f(z)

∣∣ ≤ ∣∣f(z) − f(t)
∣∣ +

∣∣f(t) − Γ(t)
∣∣ +

∣∣Γ(t)
∣∣

≤ ‖f ′‖ε + Cε2 + Kd−1‖f ′‖ε.

Since this is valid for any positive value of ε we must have f(z) = 0. �

Lemmas 5, 9 and 10 lead to our main result.

Theorem 11. A zero sequence converges to a zero of f .

Recall that the zero finding algorithm does not need a starting value and there
are no conditions in Theorem 11. On the other hand all control polygons of a spline
with a zero must have at least one zero. For such splines the algorithm is therefore
unconditionally convergent (for splines without zeros the algorithm will detect that
the spline is of one sign in a finite number of steps).

5. Some further properties of the algorithm

Before turning to an analysis of the convergence rate of the zero finding al-
gorithm, we need to study the limiting behavior of the algorithm more closely.
Convergence implies that the coefficients of the spline converge to function values.
A consequence of this is that the algorithm behaves like Newton’s method in the
limit.

Proposition 12. Let (xj) be a zero sequence converging to a zero z of f . Then
at least one of ckj−1 and ckj

converges to f(z) = 0 when j tends to infinity.
The divided differences also converge in that ∆cj

kj
→ f ′(z), ∆2cj

kj
→ f ′′(z) and

∆2cj
kj+1 → f ′′(z).

Proof. We have seen that all the interior active knots tjkj+1, . . . , tjkj+d−1 and at

least one of tjkj
and tjkj+d all tend to z when j tends to infinity. The first statement

therefore follows from the diagonal property and the continuity of the blossom. By
also applying Lemma 9 we obtain convergence of some of the divided differences. In
particular we have ∆cj

kj
= F ′(tjkj+1, . . . , t

j
kj+d−1) → f ′(z) and similarly for ∆2cj

kj

and ∆2cj
kj+1. �

Our next lemma gives some more insight into the method.

Lemma 13. Let f be a spline in Sd,t and let G : R
d �→ R denote the function

(19) G(y1, . . . , yd) = y − F (y1, . . . , yd)
F ′(y1, . . . , yd−1)

where y = (y1 + · · ·+yd)/d and F and F ′ are the blossoms of f and f ′ respectively.
Let z be a simple zero of f and let zd be the d−vector (z, . . . , z). The function G
has the following properties:

1. G is continuous at all points where F ′ is nonzero.
2. G(y, . . . , y) = y if and only if f(y) = 0.
3. The gradient satisfies ∇G(zd) = 0.
4. G(y1, . . . , yd) is independent of yd.



UNCONDITIONALLY CONVERGENT METHOD 855

Proof. Recall from equation (8) that the B-spline coefficient ci of f in Sd,t agrees
with the blossom F of f , that is ci = F (ti+1, . . . , ti+d). Recall also that ci − ci−1 =
DdF (ti+1, . . . , ti+d)(ti+d − ti) = F ′(ti+1, . . . , ti+d−1)/d; see (12) and (13). This
means that the computation of the new estimate for the zero in (18) can be written
as

x1 = tk − ck

∆ck
= tk − F (ti+1, . . . , ti+d)

dDdF (ti+1, . . . , ti+d)
= tk − F (ti+1, . . . , ti+d)

F ′(ti+1, . . . , ti+d−1)
.

The continuity of G follows from the continuity of F . The second property of G is
immendiate. To prove the third property, we omit the arguments to F and G, and
as before we use the notation DiF to denote the derivative of F (y1, . . . , yd) with
respect to yi. The basic iteration can then be written G = y − F/(dDdF ) while
the derivative with respect to yi is

DiG =
1
d

(
1 − DiFDdF − FDi,dF

DdF 2

)
.

Evaluating this at (y1, . . . , yd) = zd and observing that the derivative satisfies
DiF (zd) = dF ′(zd−1) = DdF (zd) while F (zd) = 0, we see that DiG(zd) = 0.

To prove the last claim we observe that Dd,dF (y1, . . . , yd) = 0 since F is an affine
function of yd. From this it follows that DdG(y1, . . . , yd) = 0. �

Since G(y1, . . . , yd) is independent of yd, it is, strictly speaking, not necessary to
list it as a variable. On the other hand, since yd is required to compute the value
of G(y1, . . . , yd) it is convenient to include it in the list.

Lemma 13 shows that a zero of f is a fixed point of G, and it is in fact possible
to show that G is a kind of contractive mapping. However, we will not make use
of this here. Our main use of Lemma 13 is the following immediate consequence of
Property 2 which is needed later.

Corollary 14. If t�k�+1 = · · · = t�k�+d−1 = z, then xj = z for all j > �.

We say that a sequence (yj) is asymptotically increasing (decreasing) if there is
an � such that yj ≤ yj+1 (yj ≥ yj+1) for all j ≥ �. A sequence that is asymptotically
increasing or decreasing is said to be asymptotically monotone. If the inequalities
are strict for all j ≥ � we say that the sequence is asymptotically strictly increasing,
decreasing or monotone.

Lemma 15. If a zero sequence is asymptotically decreasing there is some integer
� such that tjkj

= t− for all j > �. Similarly, if a zero sequence is asymptotically

increasing there is some � such that tjkj+d = t+ for all j > �.

Proof. Suppose that (xj) is decreasing and that tkj
< t− for all j. For each i there

must then be some ν such that xν ∈ (tjkj
, t−). But this is impossible when (xj) is

decreasing and converges to either t− or t+. The other case is similar. �

Lemma 16. Let (xj) be an asymptotically increasing or decreasing zero sequence
converging to a simple zero z. Then t− < t+.

Proof. Suppose (xj) is asymptotically decreasing, i.e., that xj ≥ xj+1 for all j
greater than some �, and that t− = t+ = z. Then, according to Lemma 15, we have
tjkj

= t− for large j. This implies that the active knots tjkj
, . . . , tjkj+d all tend to z,

and satisfy z = tjkj
≤ · · · ≤ tjkj+d for large j. Now consider the Taylor expansion
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(15) in the special case where ai = z for all i and yi = tjkj+i for i = 1, . . . , d. Then

F (y1, . . . , yd) = cj
kj

and f(z) = 0 so

(20) cj
kj

= f ′(z)(tjkj
− z) +

d∑
i=2

i−1∑
j=1

(yi − z)(yj − z)Di,jF (z, . . . , z, yi+1, . . . , yd).

The second derivatives of F can be bounded independently of the knots in terms
of the second derivative of f ; see Lemma 1. This means that for sufficiently large
values of j, the first term on the right in (20) will dominate. The same argument
can be applied to cj

kj−1, and hence both cj
kj−1 and cj

kj
will have the same nonzero

sign as f ′(z) for sufficiently large j. But this contradicts the general assumption
that cj

kj−1c
j
kj

≤ 0.
The case that (xj) is asymptotically increasing is similar. �

Before we continue, we need a small technical lemma.

Lemma 17. Let t1 be a knot vector obtained by inserting a knot z into t, and let
f =

∑n
j=1 cjBj,d,t =

∑n+1
j=1 c1

jBj,d,t1 be a spline in Sd,t such that sign ck−1ck < 0
for some k. If c1

k = 0, then

(21) z =
tk+1 + · · · + tk+d−1

d − 1
.

Proof. If c1
k is going to be zero after knot insertion it must obviously be a strict

convex combination of the two coefficients ck−1 and ck which have opposite signs.
From (5) we know that the formula for computing c1

k is

(22) c1
k =

tk+d − z

tk+d − tk
ck−1 +

z − tk
tk+d − tk

ck.

But we also have the relation (1 − λ)(tk−1, ck−1) + λ(tk, ck) = (z, 0) which means
that λ = (z − tk−1)/(tk − tk−1) and

(23) 0 =
tk − z

tk − tk−1
ck−1 +

z − tk−1

tk − tk−1
ck.

If c1
k = 0 the weights used in the convex combinations (22) and (23) must be the

same,
z − tk

tk+d − tk
=

z − tk−1

tk − tk−1
.

Solving this equation for z gives the required result. �

In the normal situation where f ′(z)f ′′(z) �= 0 a zero sequence behaves very
nicely.

Lemma 18. Let (xj) be a zero sequence converging to a zero z and suppose that f ′

and f ′′ are both continuous and nonzero at z. Then either there is an � such that
xj = z for all j ≥ � or (xj) is strictly asymptotically monotone.

Proof. We will show the result in the case where both f ′(z) and f ′′(z) are positive;
the other cases are similar. To simplify the notation we set k = kj in this proof. We
know from the above results that the sequences (tjk+1)j , . . . , (tjk+d−1)j all converge
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to z. Because blossoms are continuous functions of the knots, there must be an �
such that for all j ≥ � we have

∆cj
k = F ′(tjk+1, . . . , t

j
k+d−1) > 0,

∆2cj
k = F ′′(tjk+1, . . . , t

j
k+d−2) > 0,

∆2cj
k+1 = F ′′(tjk+2, . . . , t

j
k+d−1) > 0.

This implies that the control polygons {Γj} are convex on [tjk−2, t
j
k+1] and increasing

on [tjk−1, t
j
k+1] for j ≥ �. Recall that cj+1

k is a convex combination of cj
k−1 < 0 and

cj
k ≥ 0. There are two cases to consider. If cj+1

k ≥ 0 we have cj+1
k−1 < 0. In other

words Γj+1 must be increasing and pass through zero on the interval I = [tj+1
k−1, t

j+1
k ]

which is a subset of [tjk−2, t
j
k] where Γj is convex. But then Γj+1(x) ≥ Γj(x) on I

so xj+2 ≤ xj+1. If on the other hand cj+1
k < 0, then Γj+1 is increasing and passes

through zero on [tj+1
k , t

j+1
k+1] which is a subset of [tjk−1, t

j
k+1] where Γj is also convex.

We can therefore conclude that xj+2 ≤ xj+1 in this case as well.
It remains to show that either xj+2 < xj+1 for all j ≥ � or xp = z from some

p onwards. If for some j we have xj+2 = xj+1, then this point must be common
to Γj+1 and Γj . It turns out that there are three different ways in which this may
happen.

(i) The coefficient cj
k−1 is the last of the initial coefficients of Γj that is not

affected by insertion of xj+1. Then we must have cj
k−1 = cj+1

k−1 and xj+1 ≤
t
j+1
k which means that xj+1 ∈ [tjk+d−1, t

j
k+d). In addition we must have

cj+1
k ≥ 0 for otherwise xj+2 < xj+1. But then kj+1 = k and therefore

tj+1
kj+1+d = xj+1 = xj+2. From Lemma 3 we can now conclude that xj+p = z

for all p ≥ 1.
(ii) The coefficient cj+1

k+1 = cj
k is the first one of the later coefficients that is not

affected by insertion of xj+1 and xj+1 > t
j+1
k . This is similar to the first

case.
(iii) The final possibility is that xj+1 lies in a part of Γj+1 where all vertices are

strict convex combinations of vertices of Γj and the convexity and mono-
tonicity assumptions of the first part of the proof are valid. This means
that the zero xj+1 must be a vertex of Γj+1 since the interior of the line
segments of Γj+1 in question lie strictly above Γj . From Lemma 17 we
see that this is only possible if xj+1 = aj = (tjk+1 + · · · + tk+d−1)/(d − 1).
Without loss we may assume that all the interior active knots are old xj ’s,
and since we know that (xj) is asymptotically decreasing we must have
xj+1 ≤ tjk+1 ≤ tjk+d−1 for sufficiently large j. Then xj+1 = aj implies that
xj+1 = tjk+1 = . . . = tjk+d−1 and so xj+1 is a fixed point of G by properties 2
and 4 in Lemma 13 . Therefore xi = z for all i ≥ j.

Thus, if for sufficiently large j we have xj+1 = xj+2, then we will also have xj+p =
xj+1 for all p > 1. This completes the proof. �

Lemmas 16 and 18 are summed up in the following theorem.
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Theorem 19. Let (xj) be a zero sequence converging to a zero z of f , and suppose
that f ′ and f ′′ are both nonzero at z. Then there is an � such that either xj = z
for all j ≥ �, or one of the following two statements are true:

1. if f ′(z)f ′′(z) > 0, then t− < t+ = z and xj > xj+1 for all j ≥ �,
2. if f ′(z)f ′′(z) < 0, then z = t− < t+ and xj < xj+1 for all j ≥ �.

Proof. We first note that if f ′ or f ′′ are not continuous at z, then there must be
a knot of multiplicity at least d − 1 at z; it is then easy to see that xj = z for all
j ≥ 1. If f ′ and f ′′ are both continuous at z we can apply Lemma 18 and Lemma 16
which proves the theorem except that we do not know the location of z. But it is
impossible to have z = t− in the first case as this would require xj ∈ (t−, t+) for
large j, hence z = t+. The second case follows similarly. �

When f ′(z) and f ′′(z) are nonzero, which accounts for the most common types
of zeros, Theorem 19 gives a fairly accurate description of the behavior of the zero
sequence. If f ′(z) is nonzero, but f ′′(z) changes sign at z, we have observed a zero
sequence to alternate on both sides of z, just like Newton’s method usually does in
this situation.

The main use of Theorem 19 is in the next section where we consider the con-
vergence rate of our method; the theorem will help us to establish a strong form of
quadratic convergence.

6. Convergence rate

The next task is to analyse the convergence rate of the zero finding method. Our
aim is to prove that it converges quadratically, just like Newton’s method. As we
shall see, this is true when f ′ and f ′′ are nonzero at the zero. The development
follows the same idea as is usually employed to prove quadratic convergence of
Newton’s method, but we work with the blossom instead of the spline itself.

We start by making use of (15) to express the error x1 − z in terms of the knots
and B-spline coefficients.

Lemma 20. Let f be spline in Sd,t with blossom F that has a zero at z, and let
x1 be given as in (17). Then

x1 − z =
1

dDdF (tk+1, . . . , tk+d)

(d−1∑
i=1

(tk+i − z)2Di,dF (tk+1, . . . , tk+d)

+
d−1∑
i=2

i−1∑
j=1

(tk+i − z)(tk+j − z)Di,jF (tk+1, . . . , tk+i, z, . . . , z)
)
.

Proof. In this proof we use the shorthand notation Fk = F (tk+1, . . . , tk+d). We
start by subtracting the exact zero z from both sides of (18),

(24) x1 − z =
1

dDdFk

( d∑
i=1

(tk+i − z)DdFk − Fk

)
.

We add and subtract the linear term of the Taylor expansion (15) with yi = z and
ai = tk+i for i = 1, . . . , d, inside the brackets; this part of the right-hand side then
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becomes

−
d∑

i=1

(z − tk+i)DiFk − Fk +
d∑

i=1

(z − tk+i)DiFk −
d∑

i=1

(z − tk+i)DdFk.

The last two sums in this expression can be simplified so that the total becomes

(25) −
d∑

i=1

(z − tk+i)DiFk − Fk +
d−1∑
i=1

(z − tk+i)(tk+d − tk+i)Di,dFk.

We now make use of the Taylor expansion (15),

f(x) = F (x, . . . , x) = Fk +
d∑

i=1

(x − tk+i)DiFk

+
d∑

i=2

i−1∑
j=1

(x − tk+i)(x − tk+j)Di,jF (tk+1, . . . , tk+i, x, . . . , x),

and set x equal to the zero z so that the left-hand side of this equation is zero. We
can then replace the first two terms in (25) with the quadratic error term in this
Taylor expansion. The total expression in (25) then becomes

d∑
i=2

i−1∑
j=1

(z − tk+i)(z − tk+j)Di,jF (tk+1, . . . , tk+i, z, . . . , z)

+
d−1∑
i=1

(z − tk+i)(tk+d − tk+i)Di,dFk.

The terms in the double sum corresponding to i = d can be combined with the sum
in the second line, and this yields

d−1∑
i=2

i−1∑
j=1

(z − tk+i)(z − tk+j)Di,jF (tk+1, . . . , tk+i, z, . . . , z)

+
d−1∑
i=1

(z − tk+i)2Di,dFk.

Replacing the terms inside the bracket in (24) with this expression gives the required
result. �

We are now ready to show quadratic convergence to a simple zero.

Theorem 21. Let (xj) be a zero sequence converging to a zero z and suppose that
f ′(z) �= 0. Then there is a constant C depending on f and d but not on t, such
that for sufficiently large j we have

|xj+1 − z| ≤ C max
i=1,...,d−1

|tjkj+i − z|2.

Proof. From Lemma 9 we have that the sequences of interior active knots (tjkj+1)j ,

. . . , (tjkj+d−1)j all converge to z. Therefore, there is an � such that for j ≥ �,

the denominator in Lemma 20 satisfies
∣∣dDdF (tjkj+1, . . . , t

j
kj+d)

∣∣ > M for some
M > 0 independent of t. Let j be an integer greater than � and let δj =
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maxi=1,...,d−1 |tjkj+i − z|. Using (16) we can estimate the error from Lemma 20
with x1 = xj+1 as

|xj+1 − z| ≤
δ2
j d(d − 1) maxp,q |Dp,qF |

2M
≤ Cδ2

j ,

where C = Kd−2‖D2f‖∞/(2M). �

This result can be strengthened in case a zero sequence (xj) converges monoton-
ically to z.

Theorem 22. Let (xj) be a zero sequence converging to a zero z, suppose that
f ′(z) and f ′′(z) are both nonzero, and set en = |xn − z|. Then there is a constant
C depending on f and d, but not on t, such that for sufficiently large j we have

ej+1 ≤ Ce2
j−d+2.

Proof. From Theorem 19 we know that (xj) is asymptotically monotone. There is
therefore an � such that for j ≥ � we have maxi=1,...,d−1 |tkj+i − z| = ej−d+2. The
result then follows from Theorem 21. �

This result implies that if we sample the error in Algorithm 2 after every d − 1
knot insertions, the resulting sequence converges quadratically to zero.

7. Stability

In this section we briefly discuss the stability properties of Algorithm 2. It is
well known that a situation where large rounding errors may occur is when a small
value is computed from relatively large values. Computing zeros of functions fall
in this category as we need to compute values of the function near the zero, while
the function is usually described by reasonably large parameters. For example,
spline functions are usually given by reasonably large values of the knots and B-
spline coefficients, but near a zero these numbers combine such that the result is
small. It is therefore particularly important to keep an eye on rounding errors when
computing zeros.

Our method consists of two parts where rounding errors potentially may cause
problems, namely the computation of xj+1 by the first step in Algorithm 2 and the
computation of the new B-spline coefficients in step 2. Let us consider each of these
steps in turn.

The new estimate for the zero is given by the formula

xj+1 = t
j
kj

−
cj
kj

(tjkj+d − tjkj
)

(cj
kj

− cj
kj−1)d

,

which is in fact a convex combination of the two numbers t
j
kj−1 and t

j
kj

; see (17).
Recall that cj

kj−1 and cj
kj

have opposite signs while tjkj
and tjkj+d are usually well

separated so the second term on the right can usually be computed without much
cancellation. This estimate xj+1 is then inserted as a new knot, and new coefficients
are computed via (5) as a series of convex combinations. Convex combinations are
generally well suited to floating-point computations except when combining two
numbers of opposite signs to obtain a number near zero. This can potentially
happen when computing the new coefficient

cj+1
k = (1 − µk)cj

k−1 + µkcj
k,
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since we know that cj
k−1 and cj

k have opposite signs. However, it turns out that
in most cases, the magnitude of one of the two coefficients tends to zero with j,
whereas the other one remains bounded away from zero.

Proposition 23. Let z be the first zero of f and suppose that f ′(z) �= 0 and
f ′′(z) �= 0. Then one of cj

kj
and cj

kj−1 will tend to zero while the other will tend to
f ′(z)(t+ − t−)/d �= 0.

Proof. When the first two derivatives are nonzero we know from Theorem 19 that
t− < t+, and tjkj+1, . . . , tjkj+d−1 will all tend to either t− or t+. For this proof

we assume that they tend to t−; the other case is similar. Then limj→∞ cj
kj−1 =

F (tjkj
, . . . , tjkj+d−1) = f(z) = 0, while

lim
j→∞

cj
kj

− cj
kj−1

tjkj+d − tjkj

= lim
j→∞

F ′(tjkj+1, . . . , t
j
kj+d−1)/d = f ′(z)/d.

Since tjkj+d−tjkj
→ t+−t− and cj

kj−1 → 0, we must have that cj
kj

→ f ′(z)(t+−t−)/d

which is nonzero. �

This result ensures that the most critical convex combination usually behaves
nicely, so in most cases there should not be problems with numerical stability. This
corresponds well with our practical experience. However, as with Newton’s method
and many others, we must expect the numerical performance to deteriorate when
f ′(z) becomes small.

8. Implementation and numerical examples

Our algorithm is very simple to implement and does not require any elaborate
spline software. To illustrate this fact we provide pseudo code for an algorithm
to compute the smallest zero of a spline, returned in the variable x. The knots
t and the coefficients c are stored in vectors (indexed from 1). For efficiency the
algorithm overwrites the old coefficients with the new ones during knot insertion.

Pseudo code for Algorithm 1.
// Connected spline of degree d
// with knots t and coefficients c given
if (c(1)==0) return t(1);
k=2;
for (it = 1; it<=max_iterations; it++) {

// Compute the index of the smallest zero
// of the control polygon
n = size(c);
while (k<=n AND (c(k-1)*c(k)>0 )) k++;
if (k>n) return NO_ZERO;

// Find zero of control polygon and check convergence
x = knotAverage(t,d,k)

- c(k) * (t(k+d)-t(k))/(c(k)-c(k-1))/d;
xlist.append(x);
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if ( converged(t,d,xlist) ) return x;

// Refine spline by Boehms algorithm
mu = k;
while (x>=t(mu+1)) mu++;
c.append(c(n)); // Length of c increased by one
for (i=n; i>=mu+1; i--) c(i) = c(i-1);
for (i=mu ; i>=mu-d+1; i--) {
alpha = (x-t(i))/(t(i+d)-t(i));
c(i) = (1-alpha)*c(i-1) + alpha*c(i);

}
t.insert(mu+1,x);

}
// Max_iterations too small for convergence

This code will return an approximation to the leftmost root of the spline unless
the total number of allowed iterations max_iterations is too low (or the tolerance
is too small; see below). Note that it is assumed that the spline is connected. In
particular, this means that the first coefficient must be nonzero.

The function converged returns true when the last inserted knot x equals tk+d

(in which case the spline has become disconnected at x; see Lemma 3); or when
the sequence of computed zeros of the control polygons are deemed to converge in
a traditional sense. Our specific criterion for convergence is (after at least d knots
have been inserted),

maxi,j |xi − xj |
max(|tk|, |tk+d|)

< ε,

where the maximium is taken over the d last inserted knots, and ε > 0 is a small
user-defined constant. This expression measures the relative difference of the last
d knots, and ε = 10−15 is a good choice when the computations are performed in
double precision arithmetic.

In principle, our method should always converge, so there should be no need for
a bound on the number of iterations. However, this is always a good safety net, as
long as the maximum number of iterations is chosen as a sufficiently big integer.

There is of course a similar algorithm for computing the largest zero. If one needs
to compute all zeros of a spline, this can be done sequentially by first computing
the smallest zero, split the spline at that point, compute the second smallest zero
and so on. Alternatively, the computations can be done in parallel by inserting
all the zeros of the control polygon in each iteration. We leave the details to the
interested reader.

A spline with d + 1 knots at both ends and without interior knots is usually
referred to as a polynomial in Bernstein form or a Bézier polynomial. In this way,
the algorithm can obviously be used for computing real zeros of polynomials.

Before considering some examples and comparing our method with other meth-
ods, we need to have a rough idea of the complexity of the method. To determine
the correct segment of the control polygon requires a search the first time, there-
after choosing the right segment only involves one comparison. Computing the new
estimate for the zero is also very quick as it only involves one statement. What
takes time is computing the new B-spline coefficients after the new knot has been
inserted. This usually requires d convex combinations. As we saw above, we often
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Figure 2. Our test examples in reading order: cubic Bézier func-
tion, quintic spline, degree 25 spline, cubic polynomial with a dou-
ble root.

have quadratic convergence if we sample the error every d − 1 iterations, and the
work involved in d − 1 knot insertions is d(d − 1) convex combinations.

We have estimated the errors ej = |xj −z| of our algorithm for the four examples
shown in Figure 2. The first three have simple roots, while the last has a double
root. In Table 1 we have compared the errors produced by our method with those
produced by Newton’s method and the natural generalisation of the method in [6]
(see below) to B-splines. We have compared every d − 1th step in our method
with every iteration of the other methods. Quadratic convergence is confirmed for
all the methods for the first three examples, whereas all methods only have linear
convergence for the double zero (as for Newton’s method, we have observed higher
than second order convergence in cases with f ′(z) �= 0 and f ′′(z) = 0.)

We used the smallest zero of the control polygon as a starting value for Newton’s
method. Note that it is not hard to find examples where this starting point will
make Newton’s method diverge. When using Newton’s method to compute zeros
of spline functions we have to evaluate f(x) and f ′(x) in every step. With careful
coding, this requires essentially the same number of operations as inserting d knots
at a single point when f is a spline, or roughly d(d − 1)/2 convex combinations.
On the other hand, the method in [6] is based on inserting d knots at the zeros
of the control polygon, in effect splitting the curve into two pieces by Bézier sub-
division. The complexity of this is the same as for Newton’s method. Although
no convergence rate was given in that paper, it is reasonable to expect a quadratic
convergence rate (as is indicated by the numbers in Table 1). In fact, it should
be quite straightforward to prove this with the technique developed in this paper.
Bézier clipping [5], which is a method often used for ray-tracing, is very similar to
Rockwood’s method as the curve is split by inserting d knots where the convex hull
of the control polygon of the curve intersects the x-axis.
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Example Method E0 E1 E2 E3 E4 E5

Cubic Bézier

Simple root

Our 1.41e-1 1.31e-2 1.46e-4 1.70e-8 2.30e-16 4.22e-32
Rockwood 1.41e-1 2.05e-2 8.71e-4 1.80e-6 7.72e-12 1.42e-22
Newton 1.41e-1 2.05e-2 8.71e-4 1.80e-6 7.72e-12 1.42e-22

Quintic

Simple root

Our 1.34e-1 3.06e-3 1.24e-6 1.53e-13 2.21e-27 4.54e-55
Rockwood 1.34e-1 5.47e-3 2.72e-5 6.87e-10 4.39e-19 1.80e-37
Newton 1.34e-1 5.06e-3 2.33e-5 5.04e-10 2.36e-19 5.21e-38

Degree 25
spline
Simple root

Our 3.79e-3 2.64e-5 7.72e-11 2.60e-22 1.48e-45 5.10e-71
Rockwood 3.79e-3 3.50e-5 5.49e-9 1.35e-16 8.22e-32 8.22e-32
Newton 3.79e-3 7.64e-5 2.62e-8 3.08e-15 4.25e-29 8.13e-57

Cubic
polynomial
Double root

Our 5.19e-1 2.68e-1 1.37e-1 6.95e-2 3.52e-2 1.78e-2
Rockwood 5.19e-1 3.34e-1 2.23e-1 1.49e-1 9.90e-2 6.60e-2
Newton 5.19e-1 3.46e-1 2.31e-1 1.54e-1 1.03e-1 6.84e-2

Table 1. The absolute errors |xj − z| for our method (inserting
d−1 knots), Rockwoods method and Newtons method for the three
examples. The computations have been performed in extended
arithmetic in order to include more iterations.

9. Conclusion

We have proposed and analysed a simple zero finding algorithm that exploits the
close relationship between a spline and its control polygon. The main advantage
is that it overcomes the primary disadvantage of Newton’s method in that it is
unconditionally convergent at no extra cost and with the same convergence order.
Though the theoretical rate of convergence is comparable with other methods, it
appears that our method usually converges more quickly in practice.

Quadratic convergence as guaranteed by Theorems 21 and 22 only hold for sim-
ple zeros; for multiple zeros we cannot expect more than first order convergence.
However, it should be possible to adjust our method to yield second order conver-
gence even for higher order zeros, just like for Newton’s method; see [2]. If it is
known that a zero z has multiplicity m, another possibility is to apply Algorithm 2
to f (m−1); this yields a quadratically convergent algorithm for computing a zero of
multiplicity m. As with the adjustments to Newton’s method, this requires that
the multiplicity is known. One possibility is to device a method that detects the
multiplicity and then apply Algorithm 2 to the appropriate derivative. The ulti-
mate would of course be a method that is quadratically convergent irrespective of
the multiplicity. This is a topic for future research.

We believe that methods similar to the one presented here can be applied to
other systems of functions that have a control polygon, that can be subdivided
and that exhibit a variation diminishing property. Examples of such systems are
subdivision curves, Chebychev splines and L-splines; see e.g. [7].

Another topic for future research is to extend our algorithm to a method for
computing zero sets of tensor product spline surfaces. This is by no means obvious
as the idea of inserting a zero of the control polygon as a knot does not carry over
to the tensor product setting.
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