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STRUCTURED DATA-SPARSE APPROXIMATION
TO HIGH ORDER TENSORS ARISING FROM

THE DETERMINISTIC BOLTZMANN EQUATION

BORIS N. KHOROMSKIJ

Abstract. We develop efficient data-sparse representations to a class of high
order tensors via a block many-fold Kronecker product decomposition. Such
a decomposition is based on low separation-rank approximations of the cor-
responding multivariate generating function. We combine the Sinc interpola-
tion and a quadrature-based approximation with hierarchically organised block
tensor-product formats. Different matrix and tensor operations in the gener-
alised Kronecker tensor-product format including the Hadamard-type product
can be implemented with the low cost. An application to the collision inte-
gral from the deterministic Boltzmann equation leads to an asymptotical cost
O(n4 logβ n) - O(n5 logβ n) in the one-dimensional problem size n (depend-
ing on the model kernel function), which noticeably improves the complexity

O(n6 logβ n) of the full matrix representation.

1. Introduction

In large-scale applications one deals with algebraic operations on high-dimen-
sional, densely populated matrices or tensors which require considerable computa-
tional resources. For example, we mention the numerical approximation to multi-
dimensional integral operators, the Lyapunov matrix equation in control theory,
density matrix calculation for solving the Schrödinger equation for many-particle
systems, deterministic numerical methods for the Boltzmann equation, as well as
various applications in chemometrics, psychometrics and stochastic models.

This paper is motivated by the problem of extensive matrix calculations arising
in computational dilute gas dynamics. The bottleneck of the modern numerical
methods based on the deterministic Boltzmann equation is the expensive computa-
tion of the collision integral defined on the six-dimensional rectangular grid in the
coordinate-velocity space [4, 19]. On the algebraic level the problem is equivalent to
the evaluation of certain matrix operations including standard and Hadamard-type
products of large fully populated tensors. Our prime interest here is the efficient
data-sparse representation of arising tensor operations. We focus on the case when
the corresponding tensors can be obtained as traces of an explicitly given multivari-
ate function on a tensor-product lattice (see Definition 2.1 of a function-generated
tensor). The important feature of the generating function is its good approxima-
bility by a separable expansion.
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Our approach is based on generalized three- or multifold Kronecker tensor-
product decompositions1 of a high order tensor A (see definitions in §2) that include
data-sparse hierarchically classified matrix blocks of the Kronecker tensor-product
format (cf. (1.1)). Specifically, given p, q, n ∈ N, we approximate A ∈ Rnpq

(or
certain blocks in A) by a qth order tensor Ar of the Kronecker product form

(1.1) Ar =
r∑

k=1

ckV 1
k ⊗ · · · ⊗ V q

k ≈ A, ck ∈ R,

where the low-dimensional components V �
k ∈ Rnp

can be further represented in a
structured data-sparse format (say, in the H-matrix, Kronecker product or Toeplitz
format). Here and in the following ⊗ denotes the Kronecker product operation.
The Kronecker rank r, the number of products in (1.1), is supposed to be small.
Therefore, Ar can be represented with the low cost qrnp compared with npq. The
tensor-product format (1.1) has plenty of other merits.

In general, the fully populated target tensor A has npq nonzero entries, which re-
quire O(npq) arithmetical operations (at least) to perform the corresponding tensor-
tensor arithmetics. However, in many applications the representation by a fully
populated tensor A appears to be highly redundant. Hence we are interested in
accurate decompositions (1.1) with possibly small Kronecker rank r which depends
only logarithmically on both the tolerance ε > 0 and the problem size N = np.
This will reduce the complexity of tensor operations to O(np logβ n) or even to
O(n logβ n), but inheriting the important features of the original tensor A. The
Kronecker product approximation to a certain class of function-generated matrices
was introduced in [18, 23] (specifically, for translation-invariant functions). Several
methods and numerical algorithms for the hierarchical tensor-product approxima-
tion to the multi-dimensional nonlocal operators (dense matrices) are described in
[2, 18, 11, 10, 12, 14, 16, 15]. Tensor-product approximations were shown as a
promising tool in many-body system calculations [1, 8, 9, 20].

In this paper, we apply the format (1.1) as well as its block version to treat
the special class of high-order function-generated tensors (cf. §2). We describe cer-
tain tensor-tensor operations and present the complexity analysis for the low-rank
tensors. In §3 this data-sparse tensor format is applied for numerical calculations
of the collision integral from the discrete Boltzmann equation (particularly, in the
case q = 2, p = 3). We make use of the discretization scheme for the collision
integral described in [19]. The proposed method is based on a low separation rank
approximation to the non–shift-invariant kernel functions of the form g1(‖u‖, ‖v‖)
or g2(‖u‖, ‖v‖, | 〈u, v〉 |), u, v ∈ R

p. Here and in the following, 〈·, ·〉 denotes the
scalar product in Rp and ‖u‖ :=

√
〈u, u〉. For a function of the type g1 correspond-

ing to the so-called variable hard spheres model, our algorithm is proved to have
the computational cost O(np+1 logβ n), which improves drastically the complexity
bound O(n2p logβ n) of the full matrix arithmetics. For the more general kernel
function of the type g2 (cf. §3.1), we are able to reduce the asymptotical com-
plexity to O(n2p−1 logβ n). Note that our algorithms are applicable in the case of
nonuniform grids. In Appendix A, we address the error analysis and discuss some
numerical methods for the separable approximation to multivariate functions.

1In traditional literature on chemometrics, psychometrics and data mining, such representa-
tions are known as three- and multiway decompositions.
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2. Arithmetics of tensor-product matrix formats

The matrix arithmetic in the tensor-product format is well presented in the
literature (cf. [24] and references therein). In this section we recall the properties
of standard matrix/tensor operations and then consider in more detail some special
topics related to the Hadamard tensor product. The latter will be used in our
particular application in §3.

2.1. Definitions and examples. First, we define the function-generated tensors.
Let us introduce the product index set I� = I�

1⊗· · ·⊗I�
p, where we use multi-indices

i� = (i�,1, . . . , i�,p) ∈ I�, � = 1, . . . , q, with the components i�,m ∈ {1, . . . , NI�}, for
m = 1, . . . , p. In the following we simplify the considerations and set NI� = n, � =
1, . . . , q, which implies #I� = np, where # denotes the cardinality of an index set
and NI� = n is the one-dimensional problem size.

Let {ζ1
i1

, . . . , ζq
iq
} with i� ∈ I�, � = 1, . . . , q, be a set of collocation points living

on the uniform tensor-product lattice ωd = ω1 × · · · ×ωq, where ω�, � = 1, . . . , q, is
the uniform rectangular grid on [−L, L]p indexed by I�. We also define the index
set Id = I1 ⊗ · · · ⊗ Iq. For the ease of presentation, we consider a uniform lattice,
however, all the constructions are applicable for a quasi-uniform distribution of
collocation points.

Definition 2.1. Given the multivariate function

(2.1) g : R
d → R with d = qp, p ∈ N, q ≥ 2,

defined in a hypercube Ω = {(ζ1, . . . , ζq) ∈ Rd : ‖ζ�‖∞ ≤ L, � = 1, . . . , q} ∈
R

d, L > 0, where ‖ · ‖∞ means the �∞-norm of ζ� ∈ R
p, R

d, on the index set Id,
we introduce the function-generated qth order tensor

(2.2) A ≡ A(g) := [ai1···iq ] ∈ R
Id

with ai1···iq := g(ζ1
i1 , . . . , ζ

q
iq

).

In various applications, the function g is analytic in all variables except the
“small” set of singularity points given by a hyperplane S(g) := {ζ ∈ Ω : ζ1 = ζ2 =
· · · = ζq} or by a single point S(g) := {ζ ∈ Ω : ζ1 = ζ2 = · · · = ζq = 0}.

In numerical calculations for the Boltzmann equation, n may vary from several
tens to several hundreds, therefore, one arrives at a challenging computational prob-
lem (cf. [4, 19]). Indeed, the storage required for a naive “pointwise” representation
to the tensor A in (2.2) amounts to O(nqp), which for p = 3, q ≥ 2, and n ≥ 102 is
no longer tractable. We are interested in the efficient storage of A and in a fast cal-
culation of sums involving the tensor A, which is algorithmically equivalent to the
evaluation of an associated bilinear form 〈A·, ·〉 and certain tensor-tensor products.

A multifold decomposition (1.1) can be derived by using a corresponding sepa-
rable expansion of the generating function g (see the Appendix for more details).
In this section the existence of such an expansion will be postulated.

Assumption 2.2. Suppose that a multivariate function g : R
d → R can be approx-

imated by a separable expansion

(2.3) gr(ζ1, . . . , ζq) :=
r∑

k=1

ckΦ1
k(ζ1) · · ·Φq

k(ζq) ≈ g, ζ� ∈ R
p, � = 1, . . . , q,

where ck ∈ R and with a given set of functions {Φ�
k : Rp → R}.
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In computationally efficient algorithms a separation rank r is supposed to be as
small as possible, while the set of functions {Φ�

k : Rp → R} can be fixed or chosen
adaptively to the problem.

Under Assumption 2.2, we can introduce the multifold decomposition (1.1) gen-
erated by gr via Ar := A(gr), which corresponds to

V �
k = {Φ�

k(ζ�
i�
)}i�∈I� ∈ R

np

, � = 1, . . . , q, k = 1, . . . , r,

where ζ�
i�

belongs to the set of collocation points in variable ζ�. It can be proven
that the accuracy of such a decomposition can be estimated by the approximation
error g − gr (cf. §2.3 and the discussion in [18]).

Though in general the construction of an approximation (2.3) with small sep-
aration rank r is a complicated numerical task, in many interesting applications
efficient and elegant algorithms are available (cf. §3 and the Appendix).

2.2. Matrix and tensor operations. We recall that the Kronecker product op-
eration A ⊗ B of two matrices A = [aij ] ∈ Rm×n, B ∈ Rh×g is an mh × ng matrix
that has the block-representation [aijB] (corresponding to p = 2).

For the Kronecker product format (1.1), the commonly used tensor-tensor op-
erations can be performed with low cost. For the moment, we assume that the
cost related to V �

k is linear-logarithmic in np, namely the required memory and the
complexity of tensor-vector multiplication is bounded by W(V �

k ) = O(np logβ n).
Here and in the following, W(B) denotes the complexity of tensor-vector multipli-
cation for the tensor B. For the index set I� = I�

1 ⊗ · · · ⊗ I�
p we assume #I�

m = n
for m = 1, . . . , p. Given p1 such that 1 ≤ p1 < p, we further use the factorisation
I� = I�

x ⊗ J �
y , where

I�
x = I�

1 ⊗ · · · ⊗ I�
p1

, J �
y = I�

p1+1 ⊗ · · · ⊗ I�
p.

This naturally induces the representation Id = Ix ⊗Jy, where Ix = I1
x ⊗ · · · ⊗ Iq

x,
Jy = J 1

y ⊗ · · · ⊗ J q
y . One can write A = [aij ]i∈Ix, j∈Iy

; then the elements in RIx

and in RJy can be interpreted as vectors. In the following, if this does not lead to
ambiguity, we shall omit indices x, y.

Given vectors x ∈ RIx , y ∈ RJy , one can introduce the products xT A ∈ RIy and
Ay ∈ R

Jx . The associated bilinear form 〈x, Ay〉 is approximated by 〈x, Ary〉, which
still amounts to O(rN1+1/q) arithmetic operations with N = np. A simplification
is possible if both x and y are, in turn, of tensor form, i.e.,

x =
rx∑

m=1

x(1)
m ⊗ · · · ⊗ x(q)

m , x(�)
m ∈ R

I�
x ,(2.4)

y =
ry∑

s=1

y(1)
s ⊗ · · · ⊗ y(q)

s , y(�)
s ∈ R

I�
y , � = 1, . . . , q.

Now one can calculate the products xT Ar and Ary by

xT Ar =
∑r

k=1

∑rx

m=1
(x(1)

m )T V 1
k ⊗ · · · ⊗ (x(q)

m )T V q
k ,(2.5)

Ary =
∑r

k=1

∑ry

s=1
V 1

k y(1)
s ⊗ · · · ⊗ V q

k y(q)
s ,(2.6)
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which requires O(qr max{rx, ry}max
k,�

W(V �
k )) operations. Computing the bilinear

form, we replace the general expression by

(2.7) 〈x, Ary〉 =
∑r

k=1

∑ry

s=1

∑rx

m=1

〈
x(1)

m , V 1
k y(1)

s

〉
· · ·

〈
x(q)

m , V q
k y(q)

s

〉
involving only qrxryr terms to be calculated. This requires only

O(qrxryr max
k,�

W(V �
k ))

operations.
The following lemma indicates the simple (but important) duality between mul-

tiplication of functions and the Hadamard product2 of the corresponding function
generated tensors.

Lemma 2.3. Given tensors A, B ∈ R
Id

generated by the multivariate functions g1

and g2, respectively, then the function generated tensor G12 ∈ RId

corresponding
to the product function g12 = g1 · g2, equals the Hadamard product G12 = A � B.

Let both A and B be represented in the form (1.1) with the Kronecker rank rA,
rB and with V �

k substituted by A�
k ∈ RI�

and B�
k ∈ RI�

, respectively. Then A � B
is a tensor with the Kronecker rank rArB given by

A � B =
rA∑

k=1

rB∑
m=1

ckcm(A1
k � B1

m) ⊗ · · · ⊗ (Aq
k � Bq

m).

Proof. By definition we have

G12 := [g12(ζ1
i1 , . . . , ζ

q
iq

)] = [g1(ζ1
i1 , . . . , ζ

q
iq

) · g2(ζ1
i1 , . . . , ζ

q
iq

)] = A � B.

Furthermore, it is easy to check that

(A1 ⊗ B1) � (A2 ⊗ B2) = (A1 � A2) ⊗ (B1 � B2),

and similar for q-term products. Applying the above relations, we obtain

A � B =

(
rA∑

k=1

ck

q⊗
�=1

A�
k

)
�

(
rB∑

m=1

cm

q⊗
�=1

B�
m

)

=
rA∑

k=1

rB∑
m=1

ckcm

(
q⊗

�=1

A�
k

)
�

(
q⊗

�=1

B�
m

)
,

and the second assertion follows. �

Next we introduce and analyse the more complicated Hadamard-type tensor
operations. We consider tensors defined on the index sets I, J , L, as well as on
certain of their products, where each of the above-mentioned index sets again has
an intrinsic p-fold tensor structure. Let us be given tensors U ⊗ Y ∈ R

I×J with
U ∈ RI , Y ∈ RJ , and B ∈ RI×L, and let T : RL → RJ be the linear operator
(which, in turn, admits a certain tensor representation) that maps tensors defined
on the index set L into those defined on J . We introduce the Hadamard “scalar”

2We define the Hadamard product C = A�B = {ci1···iq}(i1···iq)∈Id of two tensors A, B ∈ RId

by the entry-wise multiplication ci1···iq = ai1···iq · bi1···iq .
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product [D, C]I ∈ RK of two tensors D := [Di,k] ∈ RI×K and C := [Ci,k] ∈ RI×K

with K ∈ {I,J ,L} by

[D, C]I :=
∑
i∈I

[Di,K] � [Ci,K],

where � denotes the Hadamard product on the index set K and [Di,K] := [Di,k]k∈K.
Now we are able to prove the following lemma.

Lemma 2.4. Let U, Y, B and T be given as above. Then, with K = J , the following
identity is valid:

(2.8) [U ⊗ Y, T · B]I = Y � (T · [U, B]I) ∈ R
J .

Proof. By definition of the Hadamard scalar product we have

[U ⊗ Y, T · B]I =
∑
i∈I

[U ⊗ Y ]i,J � [T · B]i,J

=
∑
i∈I

[[U ]i · Y ]i,J � [T · B]i,J

= Y �
(∑

i∈I
[U ]i[T · B]i,J

)

= Y �
(

T ·
∑
i∈I

[U ]i[B]i,L

)
;

then the assertion follows. �

Identity (2.8) is of great importance in the forthcoming applications, since on
the right-hand side the operator T is removed from the scalar product and, hence,
it applies only once.

We summarize that the Kronecker tensor-product format possesses the following
numerical complexity:

• Data compression. The storage for the V �
k matrices of (1.1) is only O(qrnp)

with r = O(logα n) for some α > 0, while that for the original (dense)
tensor A is O(nqp).

• Matrix-by-vector complexity. Instead of O(nqp) operations to compute Ay,
y ∈ RIy , we now need only O(qrnp+1) operations. If the vector can be
represented in a tensor-product form (cf. (2.4)), the corresponding cost is
reduced to O(qrrynp) operations, while the calculation of the bilinear form
〈x, Ary〉 requires O(qrrxrynp) flops.

• Matrix-by-matrix complexity. To compute AB, we need only O(qr2np+1)
operations.

• The Hadamard matrix product. In general, the Hadamard product A � B

of two qth order tensors A, B ∈ RId

requires O(nqp) multiplications, while
for tensors A, B represented by the Kronecker product ansatz (1.1) we need
only O(qr2np) arithmetical operations (cf. Lemma 2.3).

Note that if V �
k allows a certain data-sparse representation (say, the H-matrix

format), then all the complexity estimates might be correspondingly improved.
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2.3. Error analysis. We consider a low Kronecker rank approximation Ar to A =
A(g) defined by Ar := A(gr). To address the approximation issue for A − Ar, we
assume that the error g − gr can be estimated in the L∞(Ω)- or L2(Ω)-norm (see
the Appendix). We also apply the weighted L2-norm defined by

‖u‖L2,w :=

√∫
Ω

w(ζ)u2(ζ)dζ, w(ζ) > 0.

For the error analysis we make use of the Euclidean and ‖ · ‖∞ tensor norms

‖x‖2 :=
√∑

i∈I
x2
i , ‖x‖∞ := max

i∈I
|xi|, x ∈ R

I ,

respectively. Let us use the abbreviations I = Ix, J = Jy, Id = I × J , if this
does not lead to ambiguity. Let g − gr be smooth enough. For the above-defined
tensor norms and for a quasi-uniform distribution of collocation points we have

(2.9) ‖A(g) − A(gr)‖2 ≤ C
N

1/2
I N

1/2
J

Lq/2
‖g − gr‖L2 .

The following lemma describes relations between the approximation error ‖g − gr‖
evaluated in different norms and the corresponding error of the Kronecker product
representation.

Lemma 2.5. We have ‖A − Ar‖∞ ≤ ‖g − gr‖L∞(Ω). For any vectors x ∈ RI ,
y ∈ R

J , the following bounds on the consistency error A − Ar hold:

|〈(A − Ar)x, y〉| ≤ ‖g − gr‖L∞(Ω) ‖x‖1‖y‖1(2.10)

≤ N
1/2
I N

1/2
J ‖g − gr‖L∞(Ω) ‖x‖2‖y‖2,

|〈(A − Ar)x, y〉| ≤ C
N

1/2
I N

1/2
J

Lq/2
‖g − gr‖L2(Ω) ‖x‖2‖y‖2,

|〈(A − Ar)x, y〉| ≤ C
N

1/2
I N

1/2
J

Lq/2
‖g − gr‖L2(Ω),w ‖w̄−1/4

x x‖2‖w̄−1/4
y y‖2,

where w̄x, w̄y are traces of w(ζ) > 0 on the corresponding grids.

Proof. The first assertion follows by the construction of Ar. Indeed,

‖A − Ar‖∞ = max{|g(ζ1
i1 , . . . , ζ

q
iq

) −
r∑

k=1

Φ1
k(ζ1

i1) · · ·Φ
q
k(ζq

iq
)| : (i1, . . . , id) ∈ Id}

≤ ‖g − gr‖L∞(Ω) .

Now we readily obtain

|〈(A − Ar)x, y〉| ≤ ‖g − gr‖L∞(Ω)

∑
i∈I, j∈J

|xiyj| ≤ ‖g − gr‖L∞(Ω) ‖x‖1‖y‖1,

which proves (2.10) since ‖x‖1 ≤ N
1/2
I ‖x‖2 and ‖y‖1 ≤ N

1/2
J ‖y‖2. On the other

hand, applying the Cauchy-Schwarz inequality we have

|〈(A − Ar)x, y〉| ≤
∑

i∈I, j∈J
|(aij − ar,ij)xiyj| ≤ ‖A − Ar‖2‖x‖2‖y‖2.

Then the second bound follows from (2.9). The rest of the proof is based on similar
arguments. �
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In many applications the generating function g(ζ) actually depends on a few
scalar variables which are functionals of ζ (see examples in §3). As a simple example,
one might have a function depending on only one scalar parameter, g(ζ) = G(ρ(ζ)),
where G : [0, a] → R with ρ : [−L, L]p → [0, a], a = a(L) > 0. In the following,
we focus on the case ρ(ζ) = ‖ζ‖2, where a =

√
pL. The desired separable approx-

imation gr(ζ) can be derived from a proper approximation Gr to the univariate
function G(ρ), ρ ∈ [0, a], by exponential sums (cf. [5, 16] for more details). It is
easy to see that the approximation error g − gr arising in Lemma 2.5 (in general,
measured in different norms on Ω) can be estimated via the corresponding error
G − Gr. Concerning the weight function, we further assume that w(ζ) = w(‖ζ‖2).

Lemma 2.6. The following estimates are valid:

‖g − gr‖L∞ = ‖G − Gr‖L∞ ,(2.11)

‖g − gr‖L2(Ω) ≤ CL
q−1
2 ‖G − Gr‖L2[0,a].(2.12)

Proof. The first bound is trivial, while the second bound is obtained by passing to
integration in the q-dimensional spherical coordinates. �

3. Collision integral from the Boltzmann equation

3.1. Setting the problem. In the case of simple, dilute gas [7], the particle density
f(t, x, v) satisfies the Boltzmann equation

ft + (v, gradxf) = Q(f, f),

which describes the time evolution of f : R+ × Ω × R3 → R+, where Ω ⊂ R3. The
deterministic modelling of the Boltzmann equation is limited by the high numerical
cost to evaluate the integral term (the Boltzmann collision integral) involved in this
equation. With fixed t, x, the Boltzmann collision integral can be split into

Q(f, f)(v) = Q+(f, f)(v) + Q−(f, f)(v), f(t, x, v) = f(v),

where the loss part Q− has the simple form

(3.1) Q−(f, f)(v) = f(v)
∫

R3
Btot(‖u‖)f(w)dw

with u = v −w being the relative velocity, and the gain part can be represented by
the double integral (cf. [19])

(3.2) Q+(f, f)(v) =
∫

R3

∫
S2

B(‖u‖, µ)f(v′)f(w′)dedw,

where v′ = 1
2 (v + w + ‖u‖e) ∈ R3, w′ = 1

2 (v + w − ‖u‖e) ∈ R3 and e ∈ S2 ⊂ R3 is
the unit vector. In the case of the inverse power cut-off potential, we have

B(‖u‖, µ) = ‖u‖1−4/νgν(µ), ν > 1, µ = cos(θ) =
〈u, e〉
‖u‖ ,

with gν being a given function of the scattering angle only, such that gν ∈ L1([−1, 1])
holds.

The integral (3.1) can be represented by a block-Toeplitz matrix, which can be
implemented in linear-logarithmic cost in np (cf. [19]). Hence, in the following
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we focus on the efficient approximation to the integral (3.2). Let F be the p-
dimensional Fourier transform in variables (v, ζ) defined by

ĥ(ζ) = Fv→ζ [h(·)](ζ) :=
∫

R3
h(v)ei〈v,ζ〉dv.

The function h(v) can be reconstructed by

h(v) = F−1
ζ→v[ĥ(·)](v) =

1
(2π)3

∫
R3

ĥ(ζ)e−i〈v,ζ〉dζ.

Then

(3.3) Q+(f, f)(v) = Fy→v

[∫
R3

g(u, y)F−1
z→y[f(z − u)f(z + u)](u, y)du

]
(v),

where we have
g(u, y) = g(‖u‖, ‖y‖, | 〈u, y〉 |)

with

g(u, y) =
∫ π

0

gν(cos θ)e−i〈u,y〉 cos θJ0(
√
‖u‖2‖y‖2 − 〈u, y〉2 sin θ) sin θdθ

up to a scaling factor, where J0(z) is the Bessel function J0(z) = 1
2π

∫ 2π

0
eiz cos ψdψ

(cf. [19]).
In this section, we dwell upon the family of kernel functions g(u, y) which depend

only on the three scalar variables ‖u‖, ‖y‖, 〈u, y〉. As a first example (cf. [19]), we
consider the variable hard spheres model specified by a function

(3.4) g1,λ(u, y) := ‖u‖λ sinc
(
‖u‖‖y‖

π

)
, u, y ∈ R

p, λ ∈ (−3, 1],

where the sinc-function is defined by

(3.5) sinc(z) =
sin(πz)

πz
, z ∈ C.

This model corresponds to the case q = 2 in (2.1). It is worth noting that g1,λ

depends solely on two scalar variables ‖u‖, ‖y‖ instead of 2p variables in the general
case.

The second example to be considered corresponds to the function3 g2,λ defined
by

g2,λ(u, y) :=
||u − y||λ

max{‖u − y‖, ‖u + y‖} , λ ∈ [0, 1].

A direct calculation shows that

max{‖u − y‖, ‖u + y‖} =
√
‖u‖2 + ‖y‖2 + 2| 〈u, y〉 |,

hence, finally, we consider the function

(3.6) g2,λ(u, y) :=
‖u − y‖λ√

‖u‖2 + ‖y‖2 + 2| 〈u, y〉 |
, u, y ∈ R

p.

Our forthcoming analysis shows that the presence of | 〈u, y〉 | in the arguments of
g2,λ(u, y) makes the approximation process much more involved compared with the
relatively easy construction in the case of the function g1,λ(u, y).

3The model problem with g = g2,λ was addressed to the author by Professor S. Rjasanow of

the University of Saarbrücken.
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3.2. Numerical algorithms adapted to some classes of kernels.

3.2.1. Implementation in the general case. The discrete version of the integral (3.3)
can be evaluated as a sequence of matrix (tensor) operations (cf. [19] for the
detailed description). Given a function Ψ(u, z) = f(z + u)f(z − u), and g(u, y),
both represented on the lattice of collocation points ωu×ωz ∈ R2p (numbered by the
index set I×L) and ωu×ωy ∈ R2p (numbered by the index set I×J ), respectively.
Note that we assume u, z ∈ [−L, L]p and y ∈ [−Y, Y ]p with #I = #J = #L = np

and Y = πn
2L . Denote by FL←J : R

np → R
np

the p-dimensional FFT matrix.
A practical choice of the parameters L, Y is based on the following observation.

Remark 3.1. It is known that a solution of the Boltzmann equation decays exponen-
tially in the velocity space (cf. asymptotic of the so-called Maxwellian distribution
[3], O(exp(−|v|2/C))).

On the index set I × J × L ∈ R3p, the discrete collision integral Q+ ∈ RL is
represented by the following tensor operations.

Setup step 1: Compute the function generated tensor B = [bil] = [Ψ(ui, zl)] ∈
RI×L (cost n2p). For any fixed i ∈ I, Bi = {bil}l∈L ∈ RL is a subtensor of B.

Algorithm 1.

(a) Compute the function generated tensor A = [aij] := [g(ui, yj)] ∈ RI×J

(cost O(n2p)).
(b) For i ∈ I, compute the inverse FFT W = [wij] =

[
F−1
J←LBi

]
j
∈ R

I×J in
the index l ∈ L (cost O(n2p log n)).

(c) Evaluate the Hadamard scalar product with respect to the index i ∈
I (cost O(n2p)):

V = A � W :=

[∑
i∈I

aijwij

]
j∈J

∈ R
J .

(d) Compute the FFT Q+ = FL←J V ∈RL in the index j∈J (cost O(np log n)).

Usually, the function g(u, y) is defined on a 2p-dimensional lattice, thus we con-
clude that the corresponding function generated tensor A can be represented with
the cost O(n2p), which is the bottleneck in numerical implementation. All in all, for
p = 3, Algorithm 1 has a complexity O(n6 log n) with a large constant in O(·). This
algorithm is awkward to implement, due to the presence of the p-dimensional FFT
with the vector-size np, applied np times. Hence, our main goal is a reduction of
the number of FFT calls in the numerical scheme which may reduce its complexity
to O(np+1 logβ n).

Note that Setup step 1 has a cost O(n2p), which will not be included into the
complexity estimate of Algorithm 1 since this calculation has nothing to do with
the matrix compression.

3.2.2. Modifications of Algorithm 1 in the case of a low-rank tensor A. In the
following we let p = 3. To fix the idea, we suppose that the function g(u, y) can be
represented (with required tolerance) by the low separation rank expansion

(3.7) g(u, y) =
r∑

k=1

ak(u)bk(y), u ∈ [−L, L]3, y ∈ [−Y, Y ]3,
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with some continuous functions ak, bk and with certain constant Y > 0. Then the
target tensor A takes the form

(3.8) A =
r∑

k=1

Uk ⊗ Yk, with Yk ∈ R
J , Uk ∈ R

I ,

where
Uk = [ak(ζ1

i )], Yk = [bk(ζ2
j )], ζ1

i ∈ ωu, ζ2
j ∈ ωy.

By a minor modification of the Setup step 1 (cf. Algorithm 1), this assumption now
leads to a simplified scheme, which achieves a tremendous speed-up of Algorithm
1, reducing its overall complexity to O(rnp log n).

Setup step 1′: Evaluate the function generated tensor B = [bil] = [Ψ(ui, zl)] ∈
RI×L (cost n2p), and for i ∈ I, define the restriction Bi = B|(i,l),l∈L by Bi =
{bil}l∈L ∈ R

L. For k = 1, . . . , r, precompute the tensors Ck =
∑

i∈I Uk,iBi

∈ R
L (cost O(rn2p)).

Algorithm 1′.

(a′) Compute the function generated tensor by (3.8) (cost O(rnp)).
(b′) For k = 1, . . . , r, compute the inverse FFT Wk = F−1

J←LCk ∈ RJ in the
index l (cost O(rnp log n)).

(c′) Evaluate the Hadamard product V =
∑r

k=1 Yk � Wk ∈ R
J in the index j

(cost O(rnp)).
(d′) Compute the FFT Q+ = FL←J V ∈ RL in the index j, (cost O(np log n)).

Lemma 3.2. Under assumption (3.7), Algorithm 1′ is algebraically equivalent to
Algorithm 1. The overall cost of Algorithm 1′ is estimated by O(rnp log n).

Proof. The equivalence of above algorithms follows from applying Lemma 2.4 with
U = Uk, Y = Yk, T = F−1

J←L. In fact, let W be defined as in Algorithm 1, item
(b). Then we have

V =

(
r∑

k=1

Uk ⊗ Yk

)
� W =

r∑
k=1

[Uk ⊗ Yk, T · B]I

=
r∑

k=1

Yk � (T · [Uk, B]I) =
r∑

k=1

Yk � Wk.

The complexity bound is obtained by summing the corresponding cost estimates
over all four steps (a′)–(d′). �

To reduce the cost of Setup step 1′, we make use of a certain product decom-
position of the tensor B when available.

Remark 3.3. The tensor B can be presented as B = F+ � F−, where the Hankel–
Toeplitz-type tensors F± are generated by functions f(z±u), respectively. However,
in Algorithm 1 this beneficial property has not been taken into account.

In view of Remark 3.3, any separable expansion of the function f(z ± u) ≈∑m
q=1 fq(±u)hq(z) results in a tensor-product representation of B with the Kro-

necker rank at most r′ = m2. The detailed discussion of this issue is beyond the
scope of our paper and will be elaborated elsewhere.



1302 BORIS N. KHOROMSKIJ

Lemma 3.4. Assume that

(3.9) B =
r′∑

q=1

Dq ⊗ Zq, Dq ∈ R
I , Zq ∈ R

L,

with small Kronecker rank r′. Then the target tensors Ck, k = 1, . . . , r, can be
computed in O(rr′np) operations (instead of O(rn2p)).

Proof. Relation (3.9) implies Bi =
∑r′

q=1[Dq,i] Zq ∈ R
L. Then

Ck =
∑
i∈I

Uk,iBi =
r′∑

q=1

ck,qZq ∈ R
L.

Since all rr′ coefficients ck,q can be computed with cost O(rr′np), the assertion
follows. �

The beneficial feature of Algorithm 1′ is the reduced number of FFTs (in fact,
it requires only r + 1 calls of FFT). However, the existence of expansion (3.7) is
crucial for the applicability of Algorithm 1′. Next, we extend Algorithm 1′ to the
case when (3.8) is available only block-wise. For our modified algorithm the number
of FFT calls equals the number of blocks in the corresponding block partitioning
of the target tensor A.

3.2.3. Modification for the block-low-rank tensors. Let P(Id) be a block partition-
ing of Id = I × J with equal-sized blocks bν = τν × σν ∈ P, ν ∈ IP , and let
NP = #IP be the number of blocks in P. Moreover, we assume that on each geo-
metrical image X(b) := {ζα : α ∈ b} with b ∈ P there is a separable approximation

(3.10) g(u, y) =
r∑

k=1

ak(u)bk(y), (u, y) ∈ X(b),

with some continuous functions ak, bk depending in general on b. This implies that
the target tensor A has a block Kronecker tensor-product representation, i.e.,

(3.11) A|bν
:=

r∑
k=1

Uk,ν ⊗ Yk,ν , with Yk,ν ∈ R
σν , Uk,ν ∈ R

τν ∀bν ∈ P,

where
Uk,ν = [ak(ζ1

i )], Yk,ν = [bk(ζ2
j )], ζ1

i ∈ X(τν), ζ2
j ∈ X(σν).

In a natural way, this induces the matrix-to-matrix agglomeration operation
⋃

ν∈IP
associated with P by

A :=
⋃

ν∈IP

Bν defined by Bν = A|bν
.

Furthermore, we also need the matrix-to-vector agglomeration procedure
⊎

defined
as follows. For each ν ∈ IP and any yν ∈ Rσν associated with the block bν = τν×σν ,
define

y :=
⊎

{ν∈IP}→J
yν ∈ R

J by yj :=
∑

ν: j∈σν

yν,j.

By a proper modification of the Setup step 1′ (cf. Algorithm 1′), representation
(3.11) now leads to a scheme with the overall complexity O(rNPnp log n).
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Setup step 1′′: Given the function-generated tensor B = [bil] = [Ψ(ui, zl)] ∈
RI×L, we define its restriction in the first index to τν by B|τν

:= {bil}i∈τν ,l∈L ∈
Rτν×L. For k = 1, . . . , r, ν ∈ IP , precompute the tensors

Ck,ν =
∑
i∈τν

(Uk,ν)|i
(
B|τν

)
i
∈ R

L (cost O(rNPn2p)).

Algorithm 1′′.
(a′′) Compute (by agglomeration) the function generated tensor

A =
⋃

ν∈IP

r∑
k=1

Uk,ν ⊗ Yk,ν ∈ R
I×J

with Uk,ν , Yk,ν given in (3.11) (cost O(rNPnp)).
(b′′) For k = 1, . . . , r, ν ∈ IP , compute the inverse FFT (in the index l),

Wk,ν =
(
F−1
J←LCk,ν

)
|σν

∈ R
σν (cost O(rNPnp log n)).

(c′′) Evaluate the agglomerated Hadamard product (in the index j),

V =
⊎

{ν∈IP}→J

r∑
k=1

Yk,ν � Wk,ν ∈ R
J (cost O(rNPnp)).

(d′′) Compute the FFT Q+ = FL←J V ∈ RL in the index j (cost O(np log n)).

Lemma 3.5. Under assumption (3.7), Algorithm 1′′ is algebraically equivalent to
Algorithm 1 and has the overall cost O(rNPnp log n).

Proof. The equivalence of the above algorithms follows from applying Lemma 2.4
with U = Uk,ν , Y = Yk,ν , T = F−1

J←L. In fact, with W defined as in Algorithm 1,
item (b), we have

V =
r∑

k=1

( ⋃
ν∈IP

Uk,ν ⊗ Yk,ν

)
� W

=
r∑

k=1

[
⋃

ν∈IP

Uk,ν ⊗ Yk,ν , T · B]I

=
r∑

k=1

⊎
{ν∈IP}→J

[Uk,ν ⊗ Yk,ν , (T · B)|τν
]|τν×σν

=
⊎

{ν∈IP}→J

r∑
k=1

Yk,ν � (T · [Uk,ν , B|τν
])|σν

=
⊎

{ν∈IP}→J

r∑
k=1

Yk,ν � Wk,ν .

The complexity bound is obtained by summing the corresponding cost estimates
over all four steps (a′′)–(d′′) above. �

3.3. Model 1D case. It is instructive to discuss the case p = 1. In this situation,
the corresponding functions simplify to

g1,λ(u, y) = |u|λ sinc
(
|u| |y|

π

)
, u, y ∈ R,(3.12)

g2,λ(u, y) =
|u − y|λ√

u2 + y2 + 2|uy|
.(3.13)
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Figure 1. Functions gm,λ(u, y) for m = 2, λ = 0 (left) and m =
1, λ = 1 (right).

Note that in the case p = 1, 2, the kernel functions g1,λ(u, y), g2,λ(u, y) do not
correspond to some physically relevant models, however, the corresponding ap-
proximation results can be directly adapted to the three-dimensional case.

The full matrix representation leads to O(n2)-complexity, while our Kronecker
tensor-product approximation in the case (3.13) reduces the cost to O(n logβ n). In
the case (3.12) the corresponding scheme does not improve the full matrix repre-
sentation.

3.3.1. Kernel function g1,λ. First, we consider the family of function g1,λ(u, y),
u ∈ [−1, 1], y ∈ [−LY, LY ] with L, Y defined in (3.7). Function g1,λ(u, y) can be
approximated by sinc interpolation in the variable u (cf. Figure 1, right). We
construct a separable approximation to g1,λ(u, y) in the upper half-plane Ω+ =
[−1, 1]×R+, and then extend it to the whole plane by symmetry relations. Suppose
that λ > 0. Applying Corollary A.2, we can prove

Lemma 3.6. For each λ > 0, the function g1,λ(u, y) has a separable approximation
which converges exponentially,

(3.14)

∣∣∣∣∣g1,λ(u, y) −
M∑

k=−M

g1,λ(φ(kh), y)Sk,h(φ−1(u))

∣∣∣∣∣ ≤ C
exp(δLY )

2πδ
e−πδM/ log M ,

where Sk,h is the kth sinc function (cf. (A.2)). The tolerance ε > 0 can be achieved
with M = O(LY + | log ε|), which corresponds to the separation rank r = M + 1.

Proof. We check the conditions of Corollary A.2. We observe that the function
g1,λ(u, y) already has the required form with α = λ > 0 and g(x, y) = sinc(|x|y).
Since sinc(z), z ∈ C, is an entire function, we obtain for the transformed function
f = φ(x)λg(x, y) that for each fixed y ∈ [−LY, LY ], f ∈ H1(Dδ) with δ < π,
where the space H1(Dδ) is defined in Appendix A. Next,we estimate the constant
N(f, Dδ) depending on L. Due to the trigonometric formula

sin(x + iy) = sin(x) cosh(y) + i cos(x) sinh(y), x, y ∈ R,

we conclude that for |y| ≤ LY , the estimate N(f, Dδ) ≤ C exp(δLY ) holds. Now we
can apply the bound (A.9) to obtain (3.14). Furthermore, since the approximated
function is symmetric with respect to x = 0, we conclude that the expansion in



STRUCTURED APPROXIMATION TO HIGH ORDER TENSORS 1305

Figure 2. L∞-error of the sinc-interpolation to |x|βsinc(|x|y),
x ∈ [−1, 1], y ∈ [25, 36], β = 1.

(3.14) can be represented by only r = M + 1 terms. The bound on M is now
straightforward. �

The exponential convergence in (3.14) is illustrated by numerical example pre-
sented in Figure 2 (corresponding to the choice LY = 42, 52, 62). One can observe
the theoretical behaviour M = O(LY + | log ε|). Since Y = πn

2L , we conclude that
M = O(n). Hence for p = 1 we arrive at the asymptotical complexity O(n2).

Note that the general case λ ∈ (−3, 1] can be treated by using a proper weight
function (cf. Corollary A.2 under the condition λ + α > 0), thus all the previous
results obtained for λ > 0 remain valid.

3.3.2. Kernel function g2,λ. We proceed with the function g2,λ(u, y) defined by
(3.13). Due to Lemma 2.3 and Corollary A.6 (cf. the Appendix), the desired
separable approximation of g2,λ(u, y) can be constructed by the Hadamard product
of the expansion for ||u− y||λ and by the corresponding one designed for g2,0(u, y).
Hence, without loss of generality, we focus on the case λ = 0. Denoting ρ =
u2 + y2 + 2|uy|, we can write g2,0(u, y) = 1/

√
ρ. Note that the function g2,0(u, y)

has only a point singularity at u = y = 0 (see Figure 1, left), while in general
g2,λ(u, y), λ > 0, possesses a line singularity at u = y.

We derive the separable expansion in two steps. First, applying Lemma A.4, we
obtain the exponentially convergent quadrature representation

g2,0(u, y) ≈ h

M∑
k=−M

cosh(kh)F (ρ, sinh(kh))(3.15)

=
M∑

k=−M

ck exp(−µk(u2 + y2 + 2|uy|))

with F (ρ, u) given by (A.12) and with

ck =
2 cosh(kh)√

π[1 + exp(− sinh(kh))]
, µk = log2[1 + exp(sinh(kh))], h =

log M

M
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Figure 3. The sinc-quadrature error for 1/
√

ρ, ρ ∈ [1, 200],
where r = 31 (left), r = 61 (right).

Table 1. Best approximation to 1/
√

ρ in L∞- and L2([1, R])w-norm

R 10 50 100 200 ‖ · ‖L∞ w(ρ) = 1/
√

ρ
r = 4 3.710−4 9.610−4 1.510−3 2.210−3 1.910−3 4.810−3
r = 5 2.810−4 2.810−4 3.710−4 5.810−4 4.210−4 1.210−3
r = 6 8.010−5 9.810−5 1.110−4 1.610−4 9.510−5 3.310−4
r = 7 3.510−5 3.810−5 3.910−5 4.710−5 2.210−5 8.110−5

(cf. Remark A.7). A numerical example confirming the exponential convergence
of the quadrature (3.15) is presented in Figure 3. This quadrature is asymptoti-
cally optimal, however, the best approximation by exponential sums (cf. [5, 16])
systematically reduces the separation rank (see the discussion in §2.3 and compare
Figure 3 with Table 1).

For a comparison with the quadrature approximation, the next table gives errors
of the best r-term approximation by exponential sums in a weighted L2([1, R])-norm
for different values of R = 10, 50, 100, 200 and with W (ρ) = 1/ρ. In fact, we solve
the minimization problem (A.17) with µ = 1/2. The last column corresponds to
the weight-function W (ρ) = 1/

√
ρ and R = 200, while a column marked by ‖ · ‖L∞

corresponds to the best approximation in the ‖ ·‖L∞([1,200])-norm.4 All calculations
have been performed by the MATLAB subroutine FMINS based on the global
minimisation by direct search. The initial guess was taken from the ‖ · ‖L∞([1,200])-
norm approximation [6] with further extrapolation for the sequence of parameters
R ∈ [10, 200).

Each factor exp(−µk(u2 + y2)) in (3.15) is separable. Hence, in a second step,
we approximate the function exp(−µk|uy|) for u2 + y2 ≥ h2, where h is the mesh
parameter of the grid ωu. By a proper scaling, we reduce this task to the separable
approximation of the function g(x, y) = exp(−|x|y) for x ∈ R+, y ∈ [1, R], where
R ≥ 1 might be a large parameter (in particular, we have R = O(Y log2 M)).

4Best approximation in L∞-norm are discussed in D. Braess and W. Hackbusch [6]. A complete
list of numerical data can be found in www.mis.mpg.de/scicomp/EXP SUM/1 x/tabelle.
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Figure 4. L∞-error of the sinc-interpolation applied to
exp(−|x|y), x ∈ [−1, 1], y ∈ [10, 100].

Again, our approach is based on the sinc-interpolation (cf. [16, Example A.6.4]
for more details). Specifically, we consider the auxiliary function

f(x, y) =
x

1 + x
exp(−xy), x ∈ R+.

This function satisfies all the conditions of [21, Example 4.2.11] with α = β = 1
(see also §2.4.2 in [12]), and hence, with the corresponding choice of interpolation
points xk := log[ekh +

√
1 + e2kh] ∈ R+, it can be approximated for y ∈ [1, R] with

exponential convergence

(3.16) sup
0<x<∞

∣∣∣∣∣f(x, y) −
M1∑

k=−M1

f(xk, y)Sk,h (log{sinh(x)})
∣∣∣∣∣ ≤ CM

1/2
1 e−cM

1/2
1 ,

where Sk,h is the kth sinc function (cf. (A.2)), h = 1/M
1/2
1 and the constant

C = C(R) depends on R. The corresponding error estimate for the initial function
g(x, y) is given by (A.10) with α = 1, while the separation rank is specified by
r1 = 2M1 + 1. A numerical example corresponding to the interval y ∈ [1, 102] is
given in Figure 4.

Substituting (3.16) in (3.15) we arrive at a separable approximation to g2,0, where
the total Kronecker rank is defined by r = rr1. Finally, we note that the expansion
derived for positive parameters x ∈ (0,∞), y ∈ [1, R], can be extended to the region
Ωh = [−L, L]× [−Y, Y ]\ [−h, h]2, which is obtained from the computational domain
[−L, L] × [−Y, Y ] by removing a small vicinity of the singularity point located at
the origin u = y = 0. The resultant expansion can be written in the form

(3.17) gr :=
r∑

k=1

Φ1
k(u)Φ2

k(y) ≈ g2,0, (u, y) ∈ Ωh,

where the set of functions {Φ�
k(·)}, � = 1, 2, is given explicitly by the previous

construction.
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3.4. Multi-dimensional approximation.

3.4.1. Application to the kernel g1,λ with p ≥ 2. Let p ≥ 2. Then the Kronecker-
product approximation Ar to A is based on the results for the 1D case. Due to
Lemma 3.6, we obtain the separable expansion (3.7) with r = 2M + 1 and with

ak(u) = Sk,h(φ−1(‖u‖)), bk(v) = g1,λ(φ(kh), ‖v‖).
Due to the results in §3.3.1, the choice r = O(| log(ε)|+n) ensures that the approx-
imation error is of order O(ε). Applying the approximation results from Lemma
2.5 we obtain

‖A − Ar‖∞ ≤ Cε

for the related Kronecker rank-r tensor Ar. Now we are in the position to apply
Algorithm 1′, hence the resultant complexity is estimated by O(rnp log n) with
r = O(n).

3.4.2. Application to the kernel g2,λ with p ≥ 2. In contrast to the conventional
tensor-product approximation applied to the original tensor A (cf. [18, 16]), in the
case of kernel function g2,λ, the representation of the form (3.8) can be valid only
for the matrix blocks corresponding to certain multilevel block decomposition of
A. Relying on Corollary A.6, we again consider the case λ = 0. Compared with
the case p = 1, the approximation process requires a more complicated hierarchical
construction, since the generating function g2,λ now depends on the scalar product
〈u, v〉. Our approximation method includes three steps.

In the first step we use the “one-dimensional” result and apply the exponentially
convergent expansion (3.15) to the function g2,λ(u, y) to obtain

(3.18) g2,0(u, y) ≈
M∑

k=−M

cke−µk(‖u‖2+‖y‖2)e−2µk|〈u,y〉|, u, y ∈ R
p,

where ck, µk ∈ R, are given explicitly (cf. §3.2.2).
In the second step, we focus on the separable approximation to the “cou-

pled” term ek(x, y) := exp(−2µk| 〈u, y〉 |), u, y ∈ Rp. We construct a multilevel
admissible block partitioning P = P(I ⊗ J ) of the index set I ⊗ J such that
#(P) = O(np−1). Moreover, on each geometrical image X(b) := {ζα ∈ ωd : α ∈ b}
with b ∈ P, there is a separable approximation

(3.19) ek(x, y) ≈
(

M1∑
k=−M1

Uk,1(u1)Yk,1(y1)

)
· · ·

(
M1∑

k=−M1

Uk,p(up)Yk,p(yp)

)
,

(u, y) ∈ X(b). To obtain the partitioning P, we construct a multilevel decom-
position of the computational domain Ω = [−L, L]p × [−Y, Y ]p. For the current
discussion we can fix L = Y = 1.

Let us introduce separation variables sm = umym ∈ [−1, 1], m = 1, . . . , p. Now
we construct a zero-level hierarchical decomposition D0 of a domain S := [−1, 1]p

with respect to the separation hyperplane Qp := {(s1, . . . , sm) : s1 + · · · + sp = 0},
which is, in fact, the singularity set for the exponential function of interest ek(x, y)
(cf. (3.18)). The decomposition is defined by a hierarchical partitioning of S using
the tensor-product binary tree Tp := T ⊗ · · · ⊗ T︸ ︷︷ ︸

p

based on a weak admissibility

criteria (cf. [17] describing the corresponding H-matrix construction). Specifically,
we have T = {t0, t1, . . . , tL0} with t0 = [−1, 1], t� := {[21−�(i−1)−1, 21−�i−1], i =
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Figure 5. Zero-level decomposition with ω = (0, 4) (left), first-
level partitioning with ω = (1, 3) (right).

1, 2, . . . , 2�}. The levels of the decomposition will be numbered by a double index
ω = (0, �), � = 0, 1, . . . , L0. A block b ∈ D0 on level � is called admissible if it
lies on one side of the separation hyperplane Qp, that is, Qp ∩ (b \ ∂b) = ∅ (cf.
Figure 5, left, corresponding to p = 2, L0 = 4; here the separation hyperplane Q2

is depicted by a diagonal line). In particular, on each level � = 0, 1, . . . , L0, we have
2� subdomains of the size 21−� × 21−�.

On every subdomain of the decomposition D0, we can fix the sign of sm, m =
1, . . . , p, as well as the sign of the scalar product 〈u, y〉 = s1 + · · · + sp, hence the
corresponding exponent will be separated.

Note that two subdomains on level ω = (0, 1) already have a “rectangular shape”
in the initial variables, hence each of them results in a separable representation of
the generating function ek(u, y). In turn, each subdomain on level � ≥ 2 defined by
the decomposition D0 of the parameter domain S will be further represented using
a hierarchical decomposition by tensor-product subdomains in the initial variables.

To proceed, we consider subdomains on level ω = (0, 2). For p = 2 we have
four regions in parameter domain, each of which has to be further decomposed in
terms of the initial variables. For example, the right top subdomain on this level
is described by 1/2 ≤ u2y2 ≤ 1, 0 ≤ −u1y1 ≤ 1/2. The three-level decomposition
of this domain is depicted in Figure 5, right. One has to represent each of the two
subdomains separated by the hyperbolas u1y1 = u2y2 = 1/2 by using only a few
rectangular regions (optimal packing problem). The remaining three subdomains
in level ω = (0, 2) are treated completely similar. On level ω = (0, 3) we have eight
regions, each of which is determined by a pair of hyperbolas in the variables ui, yi,
i = 1, . . . , p. For example, the right top subdomain is specified by 3/4 ≤ u2y2 ≤ 1,
1/4 ≤ −u1y1 ≤ 1/2. The example of a partitioning on level ω = (2, 4) is given in
Figure 6.

In the final third step, we represent all blocks in A corresponding to the admis-
sible partitioning P, in the format (3.8),

(3.20) A|bν
≈

M0∑
m=−M0

bmUm,ν ⊗ Ym,ν , bν ∈ P,
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Figure 6. Second-level partitioning with ω = (2, 4).

with M0 = Mp
1 . Since the block-wise representation (3.20) is valid, Algorithm 1′′

can be applied (cf. §3.2.3).
The approximation methods proposed in this section yield exponential conver-

gence in r, r1 = 2M1+1, which means that both r and r1 depend logarithmically on
the tolerance ε, i.e., r = O(| log ε|q), q ∈ [1, 2] (the same for r1). It is easy to see that
NP = O(np−1), hence Lemma 3.5 leads to the overall complexity O(n2p−1 logβ n).

Appendix A. Separable approximation to multivariate functions

If a function of ρ =
∑d

i=1 xi ∈ [a, b] ⊂ R can be written as the integral

g(ρ) =
∫

R

eρF (t)G(t)dt

and if quadrature can be applied, one obtains the separable approximation

g(x1 + · · · + xd) ≈
∑

ν
cνG(xν)

d∏
i=1

exiF (xν).

Based on the results in [16], in §§A.1, A.2, we discuss the asymptotically optimal
sinc quadratures. For a class of completely monotone functions one can employ the
best approximation by exponential sums. For the general class of analytic functions
g : R

d → R, the tensor-product sinc interpolation does the job (cf. §A.1).

A.1. Sinc interpolation and quadratures. In this section, we describe sinc-
quadrature rules to compute the integral

(A.1) I(f) =
∫

R

f(ξ)dξ,

and the sinc-interpolation method to represent the function f itself. We introduce
the family H1(Dδ) of all complex-valued functions (using the conventional notations
from [21]), which are analytic in the strip Dδ := {z ∈ C : |�m z| ≤ δ}, such that
for each f ∈ H1(Dδ), we have

N(f, Dδ) :=
∫

∂Dδ

|f(z)| |dz| =
∫

R

(|f(x + iδ)| + |f(x − iδ)|) dx < ∞.
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Let

(A.2) Sk,h(x) =
sin [π(x − kh)/h]

π(x − kh)/h
≡ sinc(

x

h
− k) (k ∈ Z, h > 0, x ∈ R)

be the kth sinc function with step size h, evaluated at x (cf. (3.5)). Given f ∈
H1(Dδ), h > 0, and M ∈ N0, the corresponding truncated sinc interpolant (cardinal
series representation) and sinc quadrature read as
(A.3)

CM (f, h)(x) =
M∑

ν=−M

f(νh)Sν,h(x), x ∈ R, and TM (f, h) = h

M∑
ν=−M

f(νh),

respectively. The issue is therefore to estimate the interpolation and quadrature
errors. Adapting the basic theory from [21], the following error estimates are proven
in [16].

Proposition A.1. Let f ∈ H1(Dδ). If, in addition, f satisfies the condition

(A.4) |f(ξ)| ≤ C exp(−bea|ξ|) for all ξ ∈ R with a, b, C > 0,

then, under the choice h = log( 2πaM
b )/ (aM), the error of TM (f, h) satisfies

(A.5) |I(f) − TM (f, h)| ≤ C N(f, Dδ)e−2πδaM/ log(2πaM/b).

Moreover, with the same choice of h as above, the error of CM (f, h) satisfies

(A.6) |f − CM (f, h)| ≤ C
N(f, Dδ)

2πδ
e−2πδaM/ log(2πaM/b).

In the case ω = R+ one has to substitute the integral (A.1) by ξ = ϕ(z) such
that ϕ : R → R+ is a bijection. This changes f into f1 := ϕ′ · (f ◦ ϕ) . Assuming
f1 ∈ H1(Dδ), one can apply Proposition A.1 to the transformed function.

For further applications, we reformulate the previous result for parameter de-
pendent functions g(x, y) defined on the reference interval x ∈ (0, 1]. Following [16],
we introduce the mapping

(A.7) ζ ∈ Dδ �→ φ(ζ) =
1

cosh(sinh(ζ))
, δ <

π

2
.

Let Dφ(δ) := {φ(ζ) : ζ ∈ Dδ} ⊃ (0, 1] be the image of Dδ. One easily checks that if
a function g is holomorphic on Dφ(δ), then

f(ζ) := φα(ζ)g(φ(ζ)) for any α > 0

is also holomorphic on Dδ.

Note that the finite sinc interpolation CM (f(·, y), h) =
∑M

k=−M f(kh, y)Sk,h,
together with the back-transformation ζ = φ−1(x) = arsinh(arcosh( 1

x )) and multi-
plication by x−α, yield the separable approximation gM of the function g(x, y) we
are interested in,

(A.8) gM (x, y) :=
M∑

k=−M

φ(kh)αg(φ(kh), y) · x−αSk,h(φ−1(x)) ≈ g(x, y)

with x ∈ (0, 1] = φ(R), y ∈ Y . Since φ(ζ) in (A.7) is an even function, the
separation rank is given by r = M +1 if g is even and by r = 2M +1 in the general
case. The error analysis is presented in the following statement.
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Corollary A.2. Let Y ∈ Rm be any parameter set and assume that for all y ∈ Y the
functions g(·, y) as well as their transformed counterparts f(ζ, y) := φα(ζ)g(φ(ζ), y)
satisfy the following conditions:

(a) g(·, y) is holomorphic on Dφ(δ), and supy∈Y N(f(·, y), Dδ) < ∞;
(b) f(·, y) satisfies (A.4) with a = 1 and certain C, b for all y ∈ Y .
Then the optimal choice h := log M

M of the step size yields the pointwise error
estimates

|EM (f, h)(ζ)| := |f(ζ, y) − CM (f, h)(ζ)| ≤ C
N(f, Dδ)

2πδ
e−πδM/ log M ,(A.9)

|g(x, y) − gM (x, y)| ≤ |x|−α ∣∣EM (f(·, y), h)(φ−1(x))
∣∣ , x ∈ (0, 1].(A.10)

Corollary A.2 and, in particular, estimate (A.10) are applied in §3.

Remark A.3. The blow-up at x = 0 is avoided by restricting x to [h, 1] (h > 0). In
applications with a discretisation step size h, it suffices to apply this estimate for
|x| ≥ const ·h. Since usually 1/h = O(nβ) for some β > 0 (and n the problem size),
the factor |x|−α is bounded by O(nαβ) and can be compensated by the exponential
decay in (A.9) with respect to M.

A.2. Sinc quadratures for the Gauss and Laplace transforms. In the fol-
lowing, we recall the asymptotically optimal quadrature for the Gauss integral (cf.
[16] for more details)

1
ρ

=
2√
π

∫ ∞

0

e−ρ2t2dt,

presented in the form
1
ρ

=
∫

R

f(w)dw with(A.11)

f(w) = cosh(w)F (ρ, sinh(w)), F (ρ, u) :=
2√
π

e−ρ2 log2(1+eu)

1 + e−u
.(A.12)

Lemma A.4 ([16]). Let δ < π/2. Then for the function f in (A.12) we have
f ∈ H1(Dδ), and, in addition, the condition (A.4) is satisfied with a = 1. Let
ρ ≥ 1. Then the (2M + 1)-point quadrature (cf. Proposition A.1) with the choice
δ(ρ) = π

C+log(ρ) , C ≥ 0, allows the error bound

(A.13) |I(f) − TM (f, h)| ≤ C1 exp(− π2M

(C + log(ρ)) log M
).

To treat the case λ �= 0 in (3.4), (3.6), first, we consider the sinc quadratures
for the integral

(A.14)
1
ρµ

=
1

Γ(µ)

∫
R+

ξµ−1e−ξρdξ, µ > 0.

Note that in the case µ = 1, the problem is solved in [16]. Similarly, here we propose
to parametrise (A.14) by using the substitution ξ = log(1 + eu) resulting in

1
ρµ

=
∫

R

f1(u)du, f1(u) :=
1

Γ(µ)
[log(1 + eu)]µ−1 e−ρ log(1+eu)

1 + e−u
.

Then a second substitution u = sinh(w) leads to (with g(w) = 1 + esinh(w))

(A.15)
1
ρµ

=
∫

R

f2(w)dw, f2(w) =
1

Γ(µ)
[log(g(w))]µ−1 cosh(w)

1 + e− sinh(w)
e−ρ log(g(w)).



STRUCTURED APPROXIMATION TO HIGH ORDER TENSORS 1313

Lemma A.5. Let δ < π/2. Then for the function f2 defined by (A.15) we have
f2 ∈ H1(Dδ), and, in addition, the condition (A.4) is satisfied with a = 1. Let
ρ ≥ 1. Then the (2M + 1)-point quadrature (cf. Proposition A.1) with the choice
δ(ρ) = π

C+log(ρ) , C > 0, allows the error bound

(A.16) |I(f2) − TM (f2, h)| ≤ C1 exp(− π2M

(C + log(ρ)) log M
).

Proof. We apply Proposition A.1. First, we observe the double exponential decay
of f2 on the real axis

f2(w) ≈ 1
2
(sinh(w))µ−1ew− ρ

2 ew

, w → ∞; f2(w) ≈ 1
2
ew(µ−1)|w|− 1

2 e|w|
, w → −∞.

We check that f2(w) ∈ H1(Dδ). Since the zeros of 1 + esinh(w) are outside of Dδ,
we conclude that f2(w) is analytic in Dδ. Finally, we can prove that the current
choice of δ leads to N(f2, Dδ) < ∞ uniformly in ρ (the proof is similar to those in
the case µ = 1 considered in [16]). Finally, due to Proposition A.1, we obtain the
error bound (A.5), which leads to (A.16). �

As a direct consequence of Lemma A.5, we obtain the following result.

Corollary A.6. The function ||u − v||λ, λ > 0, allows a low separation rank
approximation at the cost O(n logβ n) based on the factorization

||u − v||λ = ||u − v||2m 1
||u − v||2m−λ

with m ∈ N,

such that 2m−λ > 0, where the first term on the right-hand side is already separable.
The second factor can be approximated by a standard sinc quadrature applied to the
integral (A.14). This can be improved by solving the minimisation problem to obtain
the best approximation by exponential sums. In particular, in the case λ ∈ (0, 1],
we choose m = 1.

Remark A.7. The number of terms r = 2M + 1 in the quadratures TM (f, h) and
TM (f2, h) is asymptotically optimal. However, in large-scale computations it can
be optimized by using the best approximation of 1/ρµ by exponential sums (cf.
[6, 16] for more details).

For example, the best approximation to 1/ρµ in the weighted L2-norm is reduced
to the minimisation of an explicitly given differentiable functional. Given R > 1,
µ > 0, N ≥ 1, find 2N real parameters α1, ω1, . . . , αN , ωN ∈ R>0, such that

(A.17) Fµ(R; α1, ω1, . . . , αN , ωN ) :=
∫ R

1

W (x)

(
1
xµ

−
N∑

i=1

ωie
−αix

)2

dx → min.

Approximating the integral (A.17) by certain quadrature, the minimization problem
can be solved by the gradient method or Newton-type methods with a proper choice
of the initial guess.
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