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NUMERICALLY SATISFACTORY SOLUTIONS
OF HYPERGEOMETRIC RECURSIONS

AMPARO GIL, JAVIER SEGURA, AND NICO M. TEMME

Abstract. Each family of Gauss hypergeometric functions

fn = 2F1(a + ε1n, b + ε2n; c + ε3n; z), n ∈ Z ,

for fixed εj = 0,±1 (not all εj equal to zero) satisfies a second order linear
difference equation of the form

Anfn−1 + Bnfn + Cnfn+1 = 0.

Because of symmetry relations and functional relations for the Gauss functions,
many of the 26 cases (for different εj values) can be transformed into each
other. In this way, only with four basic difference equations can all other
cases be obtained. For each of these recurrences, we give pairs of numerically
satisfactory solutions in the regions in the complex plane where |t1| �= |t2|, t1
and t2 being the roots of the characteristic equation.

1. Introduction

The families of Gauss hypergeometric functions

(1.1) yn = 2F1

(
a + ε1n, b + ε2n

c + ε3n
; z

)
, n ∈ Z ,

where

(1.2) 2F1

(
a, b
c

; z

)
=

∞∑
n=0

(a)n(b)n

(c)n n!
zn, |z| < 1,

satisfy second order linear difference equations (three-term recurrence relations) of
the form

(1.3) Anyn−1 + Bnyn + Cnyn+1 = 0.

Here, εj ∈ Z are fixed and not all εj are equal to zero.
In this paper, we consider the cases εj = 0,±1. That these recurrences exist and

can be obtained from relations between contiguous functions (see [1, pp. 557-558])
are well-known facts. However, the condition of these recurrences is essentially an
unexplored issue.

For a numerical use of a recurrence relation, it is of crucial importance to know
whether a recurrence admits a minimal solution and to identify such a solution
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when it exists. A solution fn of a three-term recurrence relation (TTRR) is said
to be minimal as n → +∞ when, for any other solution independent of fn, gn,
limn→+∞ fn/gn = 0; gn is said to be a dominant solution. The minimal solution is
unique up to a constant factor (not depending on n). The computation of values
of fn for large n by a forward (increasing n) application of the TTRR is a bad
conditioned process, while the backward application of the recurrence is generally
well conditioned. The opposite happens for the dominant solutions.

When a TTRR admits a minimal solution, an independent pair of solutions of
this TTRR {fn, gn} is said to be numerically satisfactory for large n when it includes
the minimal solution. The goal of this article is to obtain numerically satisfactory
solutions for the hypergeometric recursions in the complex plane.

As shown in [3], of the 26 possible recursions (when |εj | ≤ 1) in principle only
five have to be studied, because of symmetry relations and connection formulas.
That is, because of the relations

(1.4)

2F1

⎛
⎝a, b

c
; z

⎞
⎠ = 2F1

⎛
⎝b, a

c
; z

⎞
⎠ ,

2F1

⎛
⎝a, b

c
; z

⎞
⎠ = (1 − z)−a

2F1

⎛
⎝a, c − b

c
;

z

z − 1

⎞
⎠ ,

2F1

⎛
⎝a, b

c
; z

⎞
⎠ = (1 − z)−b

2F1

⎛
⎝c − a, b

c
;

z

z − 1

⎞
⎠ ,

2F1

⎛
⎝a, b

c
; z

⎞
⎠ = (1 − z)c−a−b

2F1

⎛
⎝c − a, c − b

c
; z

⎞
⎠ .

Using these relations, it follows that we need to study the recursions for the following
five basic forms [3]:
(1.5)

2F1

(
a + n, b + n

c
; z

)
, 2F1

(
a + n, b + n

c − n
; z

)
, 2F1

(
a + n, b

c
; z

)
,

2F1

(
a + n, b
c − n

; z

)
, 2F1

(
a, b
c + n

; z

)
.

However, as we will see when explicitly building solutions for these recurrences,
the third and the last cases in Eq. (1.5) are also related, and only four recurrences
need to be studied.

In [3] we have described the domains in the complex z-plane where minimal and
dominant solutions of the difference equations have to be determined. In this paper,
we determine the minimal solutions in each of these domains which, together with
any dominant solution, forms a numerically satisfactory pair of solutions of the
corresponding three term recurrence relation.

In order to find the minimal solutions in each domain, it will be important to
build solutions of the recurrence relations based on expansions around the three
singular regular points of the differential equation: z = 0, 1,∞. The following set
of functions, solutions of the Gauss hypergeometric equation, provides the starting
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point for finding such solutions of the TTRR:

(1.6)

w1 = 2F1

⎛
⎝a, b

c
; z

⎞
⎠ ,

w2 = z1−c
2F1

⎛
⎝1 + a − c, 1 + b − c

2 − c
; z

⎞
⎠ ,

w3 = 2F1

⎛
⎝ a, b

a + b + 1 − c
; 1 − z

⎞
⎠ ,

w4 = (1 − z)c−a−b
2F1

⎛
⎝ c − a, c − b

c + 1 − a − b
; 1 − z

⎞
⎠ ,

w5 = (z−1eiπ)a
2F1

⎛
⎝a, a + 1 − c

a + 1 − b
;

1
z

⎞
⎠ ,

w6 = (z−1eiπ)b
2F1

⎛
⎝b, b + 1 − c

b + 1 − a
;

1
z

⎞
⎠ .

This set of solutions plays an important role in defining pairs of linearly independent
solutions of the hypergeometric differential equation. With the relations in (1.4)
Kummer’s 24 solutions of the differential equation can be given; see [4, p. 67].
Each element of the 24 solutions can be written as a linear combination of two
other elements.

The six functions in (1.6) are also important in the theory of the difference
equations for the Gauss hypergeometric function. When any of these functions
satisfies a second order recursion relation, the remaining five functions wj satisfy
the same relation provided we multiply each of these solutions by an appropriate
factor. These factors follow from the linear relations between the functions wj .

For our purposes we mention four relations (see [4, pp. 70–71]) in which w1 is
written in terms of the other wj , j = 2, 3, 4, 5, 6. There are six more relations, but
we need only 4 relations. These are

(1.7)

w1 =
Γ(a + 1 − c)Γ(b + 1 − c)

Γ(1 − c)

[
w3

Γ(a + b + 1 − c)
− Γ(c − 1)

Γ(a)Γ(b)
w2

]

=
Γ(1 − a)Γ(1 − b)

Γ(1 − c)

[
w4

Γ(c + 1 − a − b)
− Γ(c − 1)

Γ(c − a)Γ(c − b)
w2

]

=
Γ(1 − b)Γ(1 + a − c)

Γ(1 − c)

[
w5

Γ(1 + a − b)
− Γ(c − 1)eiπ(c−1)

Γ(a)Γ(c − b)
w2

]

=
Γ(1 − a)Γ(1 + b − c)

Γ(1 − c)

[
w6

Γ(1 + b − a)
− Γ(c − 1)eiπ(c−1)

Γ(b)Γ(c − a)
w2

]
.

When, for example the function w1 of (1.6) is in the form 2F1(a + n, b + n; c; z)
and satisfies a certain three-term recursion relation, any of the wj at the right-hand
sides of (1.7) (with a and b replaced by a + n and b + n, and with the given ratios
of gamma functions) are seen to satisfy the same recursion relation. This can also
be checked by direct substitution.
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We will use these relations to build 6 different solutions for each recurrence
relation. Of course, only two solutions will be independent but, as we will see, one
of them will be minimal when the roots of the characteristic equation have different
moduli.

When building the six solutions, when necessary we will also use the relation

(1.8) Γ(p − n) =
(−1)nπ

sin(πp)Γ(n + 1 − p)

in order to avoid front factors with gamma functions of the form Γ(p − n), for p
any combination of the a, b, c parameters. Also, the relations (1.4) will be used to
express some of the solutions in a more symmetric form. Finally, we will neglect
all front factors not depending on n.

In the following sections we give the unique minimal solution (up to a multiplica-
tive constant) and five dominant solutions for each recursion relation corresponding
with the 5 basic forms in (1.5). Each recursion relation has one or more different
domains in the complex z−plane for which the minimal and dominant solutions
have to be given.

2. Minimal and dominant solutions

Consider the difference equation (1.3) and define

(2.1) αn :=
An

Cn
, βn :=

Bn

Cn
.

Then for all equations considered in this paper αn and βn tend to well-defined
limits (except, perhaps, at the singular points of the hypergeometric differential
equation). We write

(2.2) α := lim
n→∞

αn, β := lim
n→∞

βn.

Perron’s theorem (see [6, Appendix B]) gives in the case of finite limits the following
result, which is also known as Poincaré’s theorem.

Theorem 1 (Poincaré). Let t1 and t2 denote the zeros of the characteristic equation
t2 + βt + α = 0. Then, if |t1| �= |t2| the difference equation ( 1.3) has two linear
independent solutions fn and gn with the properties

(2.3) lim
n→+∞

fn

fn−1
= t1, lim

n→+∞

gn

gn−1
= t2 .

If |t1| = |t2|, then

(2.4) lim sup
n→∞

|yn|
1
n = |t1|

for any non-trivial solution yn of ( 1.3).
When |t1| �= |t2| the minimal solution is the one whose ratio (fn/fn−1 or gn/gn−1)

converges to the root with the smallest modulus. When |t1| = |t2| the theorem is
inconclusive with respect to the existence of a minimal solution.

The same type of analysis can be considered as n → −∞. By defining ŷn = y−n,
we can use Theorem 1 for studying the behaviour of ŷn and n → +∞. Because for
the hypergeometric case limn→±∞ αn = α and limn→±∞ βn = β the characteristic
equation for ŷn turns out to be reciprocal to the previous case, with roots 1/t1 and
1/t2. A simple way to analyze the behaviour as n → −∞ is the following.
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Theorem 2. Suppose that limn→±∞ αn = α and limn→±∞ βn = β, and t1 and t2
are the roots of t2 + βt + α = 0. Let us assume that, for instance, |t1| < |t2|.

Then the difference equation has a minimal solution both as n → +∞ and as
n → −∞.

The minimal solution when n → +∞ satifies

lim
n→+∞

yn

yn−1

= t1 ,

while the minimal solution as n → −∞ is such that

lim
n→−∞

yn

yn−1

= t2 .

We will use this theorem for identifying the minimal solutions in each region
in the complex plane for which |t1| �= |t2|. For this, we first need to determine
solutions of the recurrence and then to obtain the asymptotic behaviour of ratios
of these solutions as n → ±∞.

In [3] we announced that all information on minimal and dominant solutions, for
all recursions and for all domains, could be obtained by using asymptotic estimates
of the Gauss hypergeometric functions for large parameters, as given in [5]; some
of these estimates are given in [4, 235–242]. Fortunately, the study becomes more
straightforward by considering the asymptotics of the ratios yn/yn−1, which is the
only information needed in Theorems 1 and 2. In addition, the study becomes
much more simple by taking into account the following result:

Theorem 3. The character of the solutions of the hypergeometric TTRR cannot
change in a connected domain where the characteristic roots t1, t2 satisfy |t1| �= |t2|
for all z in the domain.

This, together with the different behaviour of the roots t1 and t2 near the singular
points of the hypergeometric ODE (0, 1,∞) allows for a simple identification by
studying the behaviour of the solutions around these points.

For proving Theorem 3 we only need to prove that the solutions of the recurrence
relation, yn, are such that the ratio

(2.5) Hn = yn/yn−1

has, for fixed z, a bounded derivative as n → ∞. Indeed, because for each z, these
ratios converge to one of the roots of the characteristic equation, when there exists
C such that |H ′

n(z)| < C for large n (and this is true for each of the six solutions
we provide for each recurrence), we can guarantee that the limit may only change
(from t1 to t2) when crossing the curves |t1| = |t2| for any of the solutions.

A first step for proving the boundedness of the derivative is the following result:

Theorem 4. Under the conditions of Theorem 1 with α �= 0, let {yk}, k ∈ N,
be a solution of the hypergeometric recurrence yn+1 + βnyn + αnyn−1 = 0 and let
|t1| �= |t2| (and therefore β �= 0 and β2 − 4α �= 0). Then

Hn ≡
yn

yn−1

= t(1 + hn)

where t is a root of the characteristic equation and hn = O(1/n) as n → ∞.
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Proof. From Poincaré’s theorem, we know that Hn = t(1 + hn) where hn → 0. In
addition, because βn and αn are rational functions of n with finite limits as n → ∞,
then βn = β(1 + γn) and αn = α(1 + δn) with δn, γn = O(1/n). Substituting these
estimates into the difference equation satisfied by Hn:

αn + βnHn + HnHn+1 = 0 ,

and using the characteristic equation, we have:

βt(γn − hn+1)(1 + hn) + α(δn − hn − hn+1(1 + hn)) = 0 .

Now, supposing that hn goes to zero slower that 1/n, we can write:

βthn+1 + α(hn+1 + hn) + o(hn) = 0;

therefore βt + α �= 0 and we can write:

lim
n→∞

hn+1

hn

= −
α

α + βt
≡ K .

But this is in contradiction with the hypothesis, for all values of K. Indeed, if
|K| < 1, then hn goes to zero as Kn (faster that 1/n) while, if |K| > 1, hn cannot
go to zero; finally, if |K| = 1, then |α| = |α + βt|, but because α + βt + t2 = 0 then
|t|2 = |α|; this is in contradiction with the fact that |t1| �= |t2|, because t is either
t1 or t2 and α = t1t2. �

Now we can prove the boundedness of the derivative of Hn (Theorem 5), using
Theorem 4 together with some properties of the functions

yn = 2F1(a + ε1n, b + ε2n; c + ε3n; z),

namely:
1. The three-term recurrence relations fn+1 + βnfn + αnfn−1 = 0 have coef-

ficients αn and βn with finite limits as n → ∞ (see Eq. (2.1) and (2.2)).
2. The coefficients an, bn, dn, en of the difference-differential (DDE) equations

(2.6)
f ′

n = anfn + dnfn−1,
f ′

n−1 = bnfn−1 + enfn,

are of order n as n → ∞.
3. The coefficients an, bn, dn, en, αn and βn are rational functions of n.

These properties have been verified for all the recurrences appearing in the
present paper, that is for |εj | ≤ 1, j = 1, 2, 3, and for the cases (ε1, ε2, ε3) =
(1, 0, 2) , (1, 1, 2) , (1, 1, 3) (1, 2, 0), which, as we will see, appear when building the
solutions for the basic recurrences (ε1, ε2, ε3) = (1, 1, 0) , (1, 0,−1), (1, 1,−1). Then,
in a strict sense, Theorem 5 is only proved for these cases, although we conjecture
that it is true in general for εj ∈ Z.

Theorem 5. Let yn = 2F1

(
a + ε1n, b + ε2n

c + ε3n
; z

)
, ε1, ε2, ε3 ∈ Z. For any z �=

0, 1,∞ there exist N > 0 and C > 0 (independent of n), such that |H ′
n(z)| < C for

all n > N .

The same is true for yn = g(n)f(z)n
2F1

(
a + ε1n, b + ε2n

c + ε3n
; ζ(z)

)
, f(z) and

ζ(z) being differentiable in C \ {0, 1,∞} and g(n + 1)/g(n) bounded for large n.
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Proof. The second part of the theorem follows immediately from the first part.

The functions yn = 2F1

(
a + ε1n, b + ε2n

c + ε3n
; z

)
satisfy DDEs (Eq. (2.6)) and a

TTRR. The coefficients of the TTRR and the DDE are related. Indeed, replacing
n by n+1 in the second equation in (2.6) and equating to the first equation we get
the TTRR:

fn+1 +
bn+1 − an

en+1

fn −
dn

en+1

fn−1 = 0 .

Therefore, given one of the solutions (for instance any of the 6 solutions we
provide) of the TTRR yn+1 + βnyn + αnyn−1 = 0, the coefficients of the system of
DDEs satisfied by set of functions {yk} is related to the coefficients of the TTRR
through:

(2.7)
βn =

bn+1 − an

en+1
=

bn − an

en
(1 + O(1/n)),

αn = − dn

en+1
= −dn

en
(1 + O(1/n)).

Hn, being a ratio of differentiable functions (except at the singular points), is
differentiable. Using the DDEs we get:

(2.8) H ′
n = −en

(
H2

n +
bn − an

en

Hn −
dn

en

)
= −en(H2

n + βnHn + αn + O(1/n)).

Hence, because αn = α(1 + O(1/n)) and βn = β(1 + O(1/n)) ,

(2.9) H ′
n = −en[(Hn − t1)(Hn − t2) + O(1/n)].

Now, if z is such that |t1| �= |t2|, we have that either

Hn = yn/yn−1 ∼ t1(1 + O(1/n))

or Hn ∼ t2(1 + O(1/n)) and then, because en = O(n) then H ′
n = O(1), which

means that there exists C > 0 such that |H ′
n(z)| < C for large n. �

Therefore, for large n and when |t1| �= |t2|, H ′
n can only be singular on the

singular points of the differential equation. Then, if for instance we have that, at
z = z0 (not a singular point), limn→∞ Hn(z0) = t1(z0) and |t1(z0)| �= |t2(z0)|, this
limit holds around z0 and, in fact, it will be satisfied in any connected set not
containing the singular points of the ODE or the curves |t1| = |t2|. This proves
Theorem 3.

Notice that, if z is such that |t1| = |t2|, the argument is not true and the
derivative may become unbounded as n → ∞. This is consistent with the fact that
the ratios Hn may converge to t1 at one side of a curve |t1| = |t2| and to t2 at the
other side.

This theorem is crucial in simplifying our study because is states that a local
analysis in the neighborhood of certain points (the singular points of the ODE) will
suffice to obtain global information.

The second fundamental simplification comes from the fact that, as we will
see, the curves |t1| = |t2| divide the complex plane into disjoint regions such that
in the interior of each of these disjoint regions there is only one singular point
of the ODE. Besides, at each of these interior singular points, the characteristic
roots behave differently, allowing for a simple identification of the minimal solution.
Furthermore, we will see that for any of these interior singular points, the minimal



1456 AMPARO GIL, JAVIER SEGURA, AND NICO M. TEMME

solution around this point will be expressed in terms of an expansion around this
same point.

Let us give an example for clarification. The recurrence relation for the case
(+ + +) (not taken as a basic case but related to (0 0 +)) has as roots t1 = 1/(1−z)
and t2 = −1/z. The curve |t1| = |t2| is the vertical line �z = 1/2, and there are two
singular points (z = 0, 1) that are away from this line, which we will call interior
singular points. The minimal solution in the region �z < 1/2 is an expansion
around the interior singular point inside this region, namely:

yn = 2F1

(
a + n, b + n

c + n
; z

)
.

For proving this fact, by virtue of Theorem 3, we only need to know the behavior
close to z = 0, where t1 and t2 behave very differently.

Similarly, we can prove that the minimal solution for �z > 1/2 can be expressed
in terms of an expansion around the interior singular point in this region (z = 1),
namely:

yn = (−1)n
Γ(c + n)

Γ(1 + a + b − c + n)
2F1

(
a + n, b + n

1 + a + b − c + n
; 1 − z

)
.

For proving this we only need to study the behaviour of the solution around 1−z=0.
For studying the behaviour of the hypergeometric functions around z = 0, the

following result is enough:

Theorem 6. Let yn = 2F1

(
a + ε1n, b + ε2n

c + ε3n
; z

)
, with εj = 0,±1, ε3 �= 0, n =

0, 1, 2..., and c /∈ Z if ε3 < 0, then in a disc around the origin limn→∞
yn

yn−1
=t(z),

where t(z) is the root of the characteristic equation such that limz→0 t(z) = 1.

This result is an immediate consequence of the following facts:

1. Hn(0) = 1.
2. There exists C > 0 such that |H ′

n(0)| < C for all n. Indeed, it is easy to
check that

(2.10) |H ′
n(0)| ≤

∣∣∣∣∣
ε1ε2

ε3

∣∣∣∣∣ + 4

∣∣∣∣∣
abε23 + c2ε1ε2 − acε2ε3 − bcε1ε3

ε33

∣∣∣∣∣ .

3. One of the roots of the characteristic equation (t(z)) tends to 1 as z → 0
while the other one goes to 0 or ∞. Both are continuous functions of z
in a disc around z = 0 (excluding z = 0) where the roots have different
modulus.

The third condition is in fact a consequence of the fact that the characteristic
roots are algebraic functions of z, that necessarily one of the roots tends to 1 as
z → 1 (because of the first condition) and that α(z) = limn→∞ αn either has a pole
at z = 0 or vanishes at z = 0 (let us notice that the products of the characteristic
roots is α(z)). This condition has been tested explicitly for all the cases considered
in this article.
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3. Analysis of the four basic cases

3.1. The (+ + 0) recursion. The recursion relation reads

(3.1) A(a + n, b + n)yn−1 + B(a + n, b + n)yn + C(a + n, b + n)yn+1 = 0,

where

(3.2)

A(a, b) = (c − a)(c − b)(c − a − b − 1),

B(a, b) = (c − a − b){c(a + b − c) + c − 2ab

+z[(a + b)(c − a − b) + 2ab + 1 − c]},

C(a, b) = ab(c − a − b + 1)(1 − z)2 .

The coefficients of characteristic equation λ2 + βλ + α = 0 are

α = 1/(1 − z)2 , β = −2(1 + z)/(1 − z)2

with roots

(3.3) t1 =
1

(1 −
√

z)2
, t2 =

1
(1 +

√
z)2

.

The equation |t1| = |t2| holds when z ≤ 0, otherwise |t1| > |t2|. In this case,
the region |t1| �= |t2| is one connected region. The only singular point away from
|t1| = |t2| is z = 1, and, as we will see, the minimal solution can be written in terms
of an expansion around z = 1 (both in the direction n → +∞ and n → −∞).

We provide six solutions of the recurrence relation using the method described
in Section 1:
(3.4)

y1,n = 2F1

⎛
⎝a + n, b + n

c
; z

⎞
⎠ ,

y2,n =
Γ(1 + a − c + n)Γ(1 + b − c + n)

Γ(a + n)Γ(b + n) 2F1

⎛
⎝1 + a − c + n, 1 + b − c + n

2 − c
; z

⎞
⎠ ,

y3,n =
Γ(1 + a − c + n)Γ(1 + b − c + n)

Γ(1 + a + b − c + 2n) 2F1

⎛
⎝ a + n, b + n

1 + a + b − c + 2n
; 1 − z

⎞
⎠ ,

y4,n = (1 − z)−2n Γ(a + b − c + 2n)
Γ(a + n)Γ(b + n) 2F1

⎛
⎝−a + c − n, − b + c − n

1 − a − b + c − 2n
; 1 − z

⎞
⎠ ,

y5,n = (−z)−n Γ(1 + a − c + n)
Γ(b + n) 2F1

⎛
⎝a + n, 1 + a − c + n

1 + a − b
;

1
z

⎞
⎠ ,

y6,n = (−z)−n Γ(1 + b − c + n)
Γ(a + n) 2F1

⎛
⎝b + n, 1 + b − c + n

1 − a + b
;

1
z

⎞
⎠ .
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The minimal solution as n → ∞ is y3,n. Indeed, by Theorem 6 we have that, in
a disc around z = 1,

(3.5) lim
n→+∞

y3,n

y3,n−1

=
1

4
t(ζ) , ζ = 1 − z .

The factor 1/4 comes from the limit of the ratio of gamma functions, while t(ζ) =
limn→+∞ yn/yn−1, yn ≡ 2F1(a+n, b+n; 1+a+ b− c+2n; ζ), ζ = 1−z. According
to Theorem 6, limζ→0 t(ζ) = 1.

The limit (3.5) corresponds to the root t2(z) of the (+ + 0) recurrence, because
t2(z) → 1/4 as z → 1. Also, because t2(z) is the smallest root outside the negative
real axis, y3,n is minimal in a disc around z = 1 and therefore, by Theorem 3, is
minimal in the complex plane except possibly on the negative real axis.

An explicit verification of the exact limit comes from the computation of t(ζ) for
the (+ + 2+) recurrence relation. We indeed verify that

(3.6) lim
n→+∞

y3,n

y3,n−1

= t2(z) , z ∈ C \ {z ≤ 0} .

Notice that the definition of y3,n indicates that the recurrence (+ + 0) and
(+ + 2+) are in fact related.

Although it is not necessary to study the (− − 0), because it can be related to
the (+ + 0) by using the last relation in Eq. (1.4), it is also easy to obtain the
minimal solution for the negative n direction. The minimal solution in this case is
y4,n; indeed, from Theorems 3 and 6 we have that

lim
n→−∞

y4,n

y4,n−1

=
4

(1 − z)2
1

t(ζ)
= t1(z) , z ∈ C \ {z ≤ 0} .

All the six solutions solve the same recurrence relation, each of them can be
expressed as a linear combination of two others with coefficients not depending
on n. Any other solutions different from the minimal solution found cannot be
minimal, because the minimal solution is unique (up to multiplicative factors not
depending on n).

In summary, in C \ {z ≤ 0}:

(3.7)

y1,n dominant
y2,n dominant
y3,n minimal/dominant
y4,n dominant/minimal
y5,n dominant
y6,n dominant

where, when two possibilities appear, the first one corresponds to n → +∞ and the
second one to n → −∞.

3.2. The (0 0+) recursion. The (0 0 +) recursion relation reads

(3.8) A(c + n)yn−1 + B(c + n)yn + C(c + n)yn+1 = 0,
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where

(3.9)

A(c) = c(c − 1)(z − 1),

B(c) = c[c − 1 − (2c − a − b − 1)z],

C(c) = (c − a)(c − b)z.

The characteristic equation has coefficients α = 1− 1/z and β = −2 + 1/z. The
characteristic roots are

(3.10) t1 = 1, t2 =
z − 1

z
.

The curve |t1| = |t2| is the straight line �z = 1/2 and |t1| < |t2| when �z < 1/2.
There are two interior singular points, that is, singular points which lie away from
the curve |t1| = |t2|: z = 0, 1. Studying the solutions around these singular points
will suffice for obtaining the minimal solutions at both sides of the line �z = 1/2.

Solutions of the recurrence are:

(3.11)

y1,n = 2F1

⎛
⎝ a, b

c + n
; z

⎞
⎠ ,

y2,n =
(z − 1

z

)n
Γ(−1 + c + n)Γ(c + n)

Γ(−b + c + n)Γ(−a + c + n) 2F1

⎛
⎝1 − a, 1 − b

2 − c − n
; z

⎞
⎠ ,

y3,n =
Γ(c + n)Γ(−a − b + c + n)

Γ(−b + c + n)Γ(−a + c + n)2F1

⎛
⎝ a, b

1 + a + b − c − n
; 1 − z

⎞
⎠ ,

y4,n =
(z − 1

z

)n
Γ(c + n)

Γ(1 − a − b + c + n)2F1

⎛
⎝ 1 − a, 1 − b

1 − a − b + c + n
; 1 − z

⎞
⎠ ,

y5,n =
Γ(c + n)

Γ(−a + c + n)2F1

⎛
⎝a, 1 + a − c − n

1 + a − b
;

1
z

⎞
⎠ ,

y6,n =
Γ(c + n)

Γ(−b + c + n) 2F1

⎛
⎝b, 1 + b − c − n

1 − a + b
;

1
z

⎞
⎠ .

We have followed the method described in Section 1 and applied the last relation
in Eq. (1.4) to the second and fourth solutions (in order to express the solutions in
a more symmetrical form).

Proceeding as in the previous case (using Theorems 2, 3 and 6), it is clear that,
when �z < 1/2

(3.12) lim
n→+∞

y1,n

y1,n−1

= t1 , lim
n→−∞

y2,n

y2,n−1

= t2 .

Then, when �z < 1/2 , y1,n is minimal as n → +∞ and y2,n is minimal as
n → −∞.
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Similarly, for �z > 1/2 we may consider the expansions around the corresponding
interior singular point. It is immediate to see that

(3.13) lim
n→−∞

y3,n

y3,n−1

= t1 , lim
n→+∞

y4,n

y4,n−1

= t2 ,

and because |t1| > |t2| in this region, then y4,n is minimal as n → +∞ and y3,n is
minimal as n → −∞.

Summarizing, we have:

(3.14)

�z < 1
2 �z > 1

2
y1,n minimal/dominant dominant
y2,n dominant/minimal dominant
y3,n dominant dominant/minimal
y4,n dominant minimal/dominant
y5,n dominant dominant
y6,n dominant dominant

where, when two possibilities appear, the first one corresponds to n → +∞ and the
second one to n → −∞.

It is important to realize that the last two solutions y5,n and y6,n are revealing
that the recurrences (0 0 +) (+ 0 0) are related. There are several possible ways
to express such a relation; for instance, by using the last relation in (1.4) and
neglecting factors not depending on n, we can write the sixth solution:

(3.15) y6,n(z) =
(

1 −
1

z

)n
Γ(c + n)

Γ(−b + c + n)2F1

(
1 − a, − a + c + n

1 − a + b
;

1
z

)
.

This means that, with some parameter substitutions and multiplying by some
factors, we can transform a solution of the (0 0 +) recurrence (right side of the
equation) into a solution of the (+ + 0) recurrence. The relation can also be
inverted in order to build the solutions of the (+ 0 0) relation from the solutions of
the (0 0 +) relation. We postpone the analysis to Section 4.

3.3. The (+ + −) recursion. The recursion relation reads

(3.16) A(a + n, b + n, c − n)yn−1 + B(a + n, b + n, c − n)yn

+C(a + n, b + n, c − n)yn+1 = 0,

where

(3.17)

A(a, b, c) = −(a − c)(a − c − 1)(b − 1 − c)(b − c)zU,

B(a, b, c) = c[c1U + c2V + c3UV ],

c1 = (1 − z)(b − c)(b − 1)[a − 1 + z(b − c − 1)],

c2 = b(b + 1 − c)(1 − z)(a + z(b − c + 2)),

c3 = c − 2b − (a − b)z,

C(a, b, c) = abc(c − 1)(1 − z)3V,

U = z(a + b − c + 1)(a + b − c + 2) + ab(1 − z),

V = (1 − z)(1 − a − b + ab) + z(a + b − c − 1)(a + b − c − 2).
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The coefficients of the characteristic equation are α = −16z/(1 − z)3 and β =
(8z2 +20z−1)/(1−z)3. The zeros of the characteristic polynomial of the recursion
relation (3.16) are

(3.18) t1 =
32(1 + w)
(3 + w)3

, t2 =
32(1 − w)
(3 − w)3

, w =
√

8z + 1,

where w =
√

8z + 1. Observe that limz→0 t1(z) = 1.
The curve |t1| = |t2| in the complex w-plane is described by (we write w = reiθ)

(3.19) r =
√
−9 + 6

√
3 cos θ, −1

6π ≤ θ ≤ 1
6π and �w = 0,

together with the half-line z ≤ −1/8. This is shown in Figure 1. In the domain
interior to the curve we have |t1| > |t2|.

There are two singular points for which |t1| �= |t2|, which are z = 0, 1; on the
other hand, limz→∞ t1/t2 = 1. As before, one can expect that the minimal solutions
can be built by considering series around z = 0, 1.

We write the six solutions in the following way:
(3.20)

y1,n = 2F1

⎛
⎝a + n, b + n

c − n
; z

⎞
⎠ ,

y2,n =

(
z

(z − 1)3

)n
Γ(b − c + 1 + 2n)Γ(a − c + 1 + 2n)

Γ(a + n)Γ(b + n)Γ(1 − c + n)Γ(2 − c + n)

×2F1

⎛
⎝1 − a − n, 1 − b − n

2 − c + n
; z

⎞
⎠ ,

y3,n =
Γ(1 + b − c + 2n)Γ(1 + a − c + 2n)
Γ(1 − c + n)Γ(1 + a + b − c + 3n) 2F1

⎛
⎝ a + n, b + n

1 + a + b − c + 3n
; 1 − z

⎞
⎠ ,

y4,n =

(
z

(z − 1)3

)n
Γ(a + b − c + 3n)

Γ(a + n)Γ(b + n)Γ(1 − c + n)

×2F1

⎛
⎝1 − a − n, 1 − b − n

1 − a − b + c − 3n
; 1 − z

⎞
⎠ ,

y5,n = z−n Γ(1 + a − c + 2n)
Γ(b + n)Γ(1 − c + n) 2F1

⎛
⎝a + n, 1 + a − c + 2n

1 + a − b
;

1
z

⎞
⎠ ,

y6,n = z−n Γ(1 + b − c + 2n)
Γ(n + a)Γ(1 − c + n)2F1

⎛
⎝b + n, 1 + b − c + 2n

1 + b − a
;

1
z

⎞
⎠ .

Proceeding like in the previous cases, it is evident that inside the curve

(3.21) lim
n→−∞

y1,n

y1,n−1

= t1

and therefore y1,n is minimal as n → −∞ because |t1| > |t2|, whereas

(3.22) lim
n→+∞

y2,n

y2,n−1

=
16z

(z − 1)3
1

t1
=

α

t1
= t2,

and hence y2,n is minimal as n → +∞.
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−0.1

−0.1

0.1

8
1− −

Figure 1. The curve |t1| = |t2| for the case (+ + −).

Outside the curve, we have to consider the series around z = 1, that is, the
solutions y3,n and y4,n. We have that

(3.23) lim
n→+∞

y3,n

y3,n−1

=
16

27
t(ζ) , ζ = 1 − z ,

where t(ζ) is the characteristic root for the TTRR satisfied by

yn = 2F1

(
a + n, b + n

c + 3n
; ζ

)
,

such that limζ→0 t(ζ) = 1. Therefore, because limz→1 t1(z) → 16
27 (whereas t2 is

singular at z = 1) it is clear that

(3.24) lim
n→+∞

y3,n

y3,n−1

= t1 ,

and therefore y3,n is minimal as n → +∞. The limit can be explicitly checked by
computing t(z); for brevity, we don’t provide the details of such a calculation.

On the other hand

(3.25) lim
n→−∞

y4,n

y4,n−1

=
27z

(z − 1)3
1

t(ζ)
=

27α

16t(ζ)
= t2 ,

and hence y4,n is minimal as n → −∞.
Summarizing:

(3.26)

inside the curve outside the curve
y1,n dominant/minimal dominant
y2,n minimal/dominant dominant
y3,n dominant minimal/dominant
y4,n dominant dominant/minimal
y5,n dominant dominant
y6,n dominant dominant

where, when two possibilities appear, the first one corresponds to n → +∞ and the
second one to n → −∞.
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Observe that the above results only hold inside the principal sector where −π <
phase(8z + 1) < π, that is, in the cut plane, with branch cut from −1

8 to −∞.

3.4. The (+0 −) recursion. The (+ 0−) recursion relation reads

(3.27) A(a + n, c − n)yn−1 + B(a + n, c − n)yn + C(a + n, c − n)yn+1 = 0,

where
(3.28)

A(a, c) = z(a − c)(a − c − 1)(b − c)[a + z(b + 1 − c)],

B(a, c) = c[a(a − 1)(c − 1) + a(a − 1)(a + 3b − 4c + 2)z

+(b − c)(b + 1 − c)(4a − c − 1)z2 − (a − b)(b − c)(b + 1 − c)z3],

C(a, c) = −ac(c − 1)[a − 1 + z(b − c)](1 − z)2.

The coefficients of the characteristic equation are α = −4z/(1 − z)2 and β =
−(z2−6z +1)/(1−z)2 . The zeros of the characteristic polynomial of the recursion
relation (3.27) are

(3.29) t1 = 1, t2 = − 4z

(1 − z)2
.

The curve defined by |t1| = |t2| is described by

(3.30) r = 2 + cos θ ±
√

cos2 θ + 4 cos θ + 3, −π ≤ θ ≤ π, z = reiθ.

Both signs give a closed loop with common point −1. In Figure 2 we show this
curve in the z−plane. In the domain interior to the inner curve we have |t1| > |t2|;
between the inner curve and the outer curve we have |t1| < |t2|, and outside the
outer curve |t1| > |t2|.

It is important to notice that the three singular points z = 0, 1,∞ are interior in
this case, each one inside a different region of the three regions into which the plane
is divided. Then, expansions around each of the singular points will be needed in
order to identify the minimal solution in each region.

5.02.5

2.5

−2.5

−2.5

−1.0

5.0

−5.0

Figure 2. The curve |t1| = |t2| for the (+ 0−) recursion.
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The six solutions for this case can be written:
(3.31)

y1,n = 2F1

⎛
⎝a + n, b

c − n
; z

⎞
⎠ ,

y2,n =

(
−z

(1 − z)2

)n
Γ(1 + b − c + n)Γ(1 + a − c + 2n)

Γ(a + n)Γ(1 − c + n)Γ(2 − c + n)

×2F1

⎛
⎝1 − a − n, 1 − b

2 − c + n
; z

⎞
⎠ ,

y3,n =
Γ(1 + b − c + n)Γ(1 + a − c + 2n)

Γ(1 − c + n)Γ(1 + a + b − c + 2n)
2F1

⎛
⎝ a + n, b

1 + a + b − c + 2n
; 1 − z

⎞
⎠ ,

y4,n =

(
−z

(1 − z)2

)n
Γ(a + b − c + 2n)

Γ(a + n)Γ(1 − c + n)

×2F1

⎛
⎝ 1 − a − n, 1 − b

1 − a − b + c − 2n
; 1 − z

⎞
⎠ ,

y5,n =

(
−z

(1 − z)2

)n
Γ(1 + a − c + 2n)

Γ(1 − c + n)Γ(1 + a − b + n)
2F1

⎛
⎝1 − b, − b + c − n

1 + a − b + n
;

1

z

⎞
⎠ ,

y6,n =
Γ(a − b + n)Γ(1 + b − c + n)

Γ(a + n)Γ(1 − c + n)
2F1

⎛
⎝b, 1 + b − c + n

1 − a + b − n
;

1

z

⎞
⎠ .

The situation, as we next prove, can be summarized in the following way:

(3.32)

inside inner curve between curves outside outer curve
y1 dominant/minimal dominant dominant
y2 minimal/dominant dominant dominant
y3 dominant minimal/dominant dominant
y4 dominant dominant/minimal dominant
y5 dominant dominant minimal/dominant
y6 dominant dominant dominant/minimal

where, when two possibilities appear, the first one corresponds to n → +∞ and the
second one to n → −∞.

Let us now search for the minimal solutions.

3.4.1. Minimal solutions inside the inner curve. This region contains the point z =
0, and we should consider expansions around this point. In this region |t2| < |t1|.

Proceeding as before, it is obvious that

(3.33) lim
n→−∞

y1,n

y1,n−1

= t1 .

Therefore, y1,n is minimal as n → −∞.
On the other hand

(3.34) lim
n→+∞

y2,n

y2,n−1

=
−4z

(1 − z)2
1

t1
=

α

t1
= t2 ,

and hence y2,n is minimal as n → +∞.
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3.4.2. Minimal solutions between curves. For the y3,n solution, we have:

(3.35) lim
n→+∞

y3,n

y3,n−1

= t(ζ) ,

where ζ = 1 − z and t(ζ) is the characteristic root for the TTRR satisfied by

yn = 2F1

(
a + n, b
c + 2n

; ζ

)
,

such that limζ→0 t(ζ) = 1. Therefore, because t1(z) = 1 (while t2 is singular at
z = 1) it is clear that

(3.36) lim
n→+∞

y3,n

y3,n−1

= t1 ,

and therefore y3,n is minimal as n → +∞. The limit can be explicitly checked by
computing t(ζ), which is equal to t1 = 1.

On the other hand

(3.37) lim
n→−∞

y4,n

y4,n−1

=
α(z)

t(ζ)
= t2 ,

and therefore y4,n is minimal as n → −∞.

3.4.3. Minimal solutions outside the outer curve. In this region we have the singular
point z = ∞, and we consider a series around this point. We have

(3.38) lim
n→+∞

y5,n

y5,n−1

=
α

t1
= t2

and

(3.39) lim
n→−∞

y6,n

y6,n−1

= t1 .

Therefore y5,n is minimal as n → +∞ while y6,n is minimal as n → −∞.

4. Obtaining information for the remaining 22 + 4 recurrences

As discussed in [3], the 26 recurrence relations with |εj | ≤ 1 can be reduced to
5 cases by means of Eq. (1.4). In addition, as we discussed before, when building
the six solutions by considering linear relations between solutions, new relations
appear, as is the case of the relation between the (0 0 +) recurrence and the (+ 0 0);
this relation reduces the number of basic recurrence relations to 4. We also saw that
4 other recurrences are related with the 4 remaining basic recurrences: (+ + 2+)
with (+ + 0), (+ + 3+) and (+ 2+ 0) with (+ + −), and (+ 0 2+) with (+ 0−).

All these cases can be related to the four basic cases by using simple transfor-
mations.

Let us for instance consider obtaining all the information for the (+ 0 0) from
the (0 0 +) recurrence. From Eq. (3.15) we see that the solutions y

(00+)
α,β;γ+n(z) of

the recurrence satisfied by the hypergeometric functions 2F1(α, β; γ + n; z) can be
built from the solutions y

(+00)
α+n,β;γ(z) of the recurrence satisfied by the functions

2F1(α + n, β; γ; z) by means of the following transformation:

(4.1) y
(00+)
α,β;γ+n(z) =

(
1 −

1

z

)n
Γ(γ + n)

Γ(−β + γ + n)
y
(+00)
−α+γ+n,1−α;1−α+β(1/z) .
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y
(00+)
α,β;γ+n(z) denotes a generic solution of the (0 0 +) recurrence, and not only

the 2F1(α, β; γ + n; z) function; also y
(+00)
α+n,β;γ(z) is a generic solution of the (+ 0 0)

recurrence. Notice that the relation (3.15) provides not only a connection between
two Gauss hypergeometric functions, but also a transformation of a recurrence into
another one ((+ 0 0) into (0 0 +)). This transformation can be considered for any
solution (in particular for the six solutions given for each recurrence).

Denoting a = −α+γ, b = 1−α, c = 1−α+β, we can invert this general relation
to get:

(4.2) y
(+00)
a+n,b;c(z) = (1 − z)−n

Γ(1 + a − c + n)

Γ(1 + a − b + n)
y
(00+)
1−b,−b+c;1+a−b+n(1/z) .

Therefore, we can build the six solutions for the (+ 0 0) recurrence by performing
the following transformations over the solutions of the (0 0 +) recurrence:

1. Perform the substitutions: a → 1 − b, b → −b + c, c → 1 + a − b, z → 1/z.

2. Multiply the resulting functions by (1 − z)−n Γ(1 + a − c + n)
Γ(1 + a − b + n) .

With these transformations, we get the following set of solutions for the (+ 0 0)
case:

(4.3)

y1,n = (1 − z)−n Γ(1 + a − c + n)
Γ(1 + a − b + n)2F1

⎛
⎝1 − b, − b + c

1 + a − b + n
;

1
z

⎞
⎠ ,

y2,n =
Γ(a − b + n)

Γ(a + n) 2F1

⎛
⎝ b, 1 + b − c

1 − a + b − n
;

1
z

⎞
⎠ ,

y3,n = (1 − z)−n Γ(a + b − c + n)
Γ(a + n) 2F1

⎛
⎝−a + c − n, − b + c

1 − a − b + c − n
; 1 − z

⎞
⎠ ,

y4,n =
Γ(1 + a − c + n)

Γ(1 + a + b − c + n)2F1

⎛
⎝ a + n, b

1 + a + b − c + n
; 1 − z

⎞
⎠ ,

y5,n =
Γ(1 + a − c + n)

Γ(a + n) 2F1

⎛
⎝1 + a − c + n, 1 + b − c

2 − c
; z

⎞
⎠ ,

y6,n = 2F1

⎛
⎝a + n, b

c
; z

⎞
⎠ .

Here, apart from the prescribed substitutions, the last transformation of Eq.
(1.4) has also been applied in the last 4 cases (and the factors not depending on n
removed).

Given that we make the substitution z → 1/z and we multiply the solutions by(
1

1 − z

)n

, the characteristic roots are the roots for (0 0 +) with z replaced by 1/z

and then multiplied by 1/(1 − z), that is

(4.4) t1 =
1

1 − z
, t2 = 1 .
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Of course, the character of the solutions is maintained in the transformed do-
mains given by the change z → 1/z. We therefore have:

(4.5)

�(z−1) < 1
2 �(z−1) > 1

2
y1,n minimal/dominant dominant
y2,n dominant/minimal dominant
y3,n dominant dominant/minimal
y4,n dominant minimal/dominant
y5,n dominant dominant
y6,n dominant dominant

Observe that the equation �(z−1) = 1/2 is the equation of the circle |1− z| = 1,
with �(z−1) > 1

2 defining the interior of the disk and �(z−1) < 1
2 the exterior.

For this transformation chosen we have the most general situation possible: the
parameters and the variable are replaced, and the functions are multiplied by
gamma functions and by a z-dependent factor. A more simple example is pro-
vided by the connection of (0 0 +) with the (+ + +) case. Using the last relation
in Eq. (1.4), we have:

2F1

(
a + n, b + n

c + n
; z

)
= (1 − z)c−a−b−n

2F1

(
c − a, c − b

c + n
; z

)
.

Therefore, the solutions of the (+ + +) recurrence can be obtained from the
solutions of the (0 0 +) by multiplying by (1− z)−n and by substituting a by c− a
and b by c − b.

5. Conclusions

The problem of obtaining the pairs of satisfactory numerical solutions of the hy-

pergeometric recursions satisfied by the functions yn = 2F1

(
a + ε1n, b + ε2n

c + ε3
; z

)
,

|εj | ≤ 1 has been solved in the complex plane, except on the critical curves |t1| = |t2|
(t1 and t2 being the roots of the characteristic polynomial) where the Poincaré the-
orem does not provide information regarding the existence of minimal solutions.

The study of the behaviour on the critical curves needs a separate analysis and
is beyond the scope of the present paper. In [2], the real case for the recurrence
(+ + +) is discussed in detail. In this case it is easy to check that for z = 1/2 there
is a minimal solution when 1+a+ b−2c �= 0; this fact has important consequences
on the stability of the recurrences close to z = 1/2.

A comprehensive description of the condition of the hypergeometric recursions
in the complex plane is now available, except on the critical curves. This is an
essential piece of information for the computation of hypergeometric functions by
means of recurrence relations.

Acknowledgments

The authors wish to thank the referee for comments and suggestions which have
resulted in an improved version of the paper. A. Gil acknowledges financial support
from Ministerio de Educación y Ciencia (programa Ramón y Cajal). J. Segura
acknowledges financial support from project BFM2003-06335-C03-02 and from the



1468 AMPARO GIL, JAVIER SEGURA, AND NICO M. TEMME
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