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STABILIZED FINITE ELEMENT METHOD
FOR NAVIER–STOKES EQUATIONS

WITH PHYSICAL BOUNDARY CONDITIONS

M. AMARA, D. CAPATINA-PAPAGHIUC, AND D. TRUJILLO

Abstract. This paper deals with the numerical approximation of the 2D and
3D Navier-Stokes equations, satisfying nonstandard boundary conditions. This
lays on the finite element discretisation of the corresponding Stokes problem,
which is achieved through a three-fields stabilized mixed formulation. A priori
and a posteriori error bounds are established for the nonlinear problem, ascer-
taining the convergence of the method. Finally, numerical tests are presented,
including mesh refinement via error indicators.

1. Introduction

We are interested in this paper in the stationary Navier-Stokes problem satisfying
physical boundary conditions (see also [10]) in a simply connected bounded domain
Ω of R

2, with a polygonal boundary Γ = ∂Ω.
The corresponding 2D Stokes equations with the same boundary conditions were

studied in [12] and [4], by means of different three-fields variational formulations.
In [4], after showing that the new vorticity-velocity-pressure formulation proposed
was well-posed, the authors discretized it by means of conforming low-order finite
elements. The discrete inf-sup condition is then obvious, while the discrete coer-
civity is obtained by adding a stabilization term (see [1]) taking into account the
jumps of both the vorticity and the pressure across the edges of the triangulation.
Error bounds were deduced in a technical way, ensuring the unconditional conver-
gence of the method as well as an optimal convergence rate O(h) whenever the
exact solution is sufficiently smooth.

The goal of the present work is to propose a well-posed and convergent numerical
approximation, as well as a priori and a posteriori error estimates, for the Navier-
Stokes equations. The discretization is based on the method developed in [4] for
the associated Stokes equations, the present paper being a generalization to the
nonlinear case. However, we consider here a simpler discrete formulation of the
Stokes equations, in which we stabilize only the pressure and which yields similar
results from both theoretical and numerical points of view.

To deal with the nonlinear aspects of the problem, we use a variant of the implicit
function theorem which can be found for instance in [15]. We thus obtain existence
and uniqueness of the solution of the discrete problem in a neighbourhood of the
exact solution, unconditional convergence of the approximation of the Navier-Stokes
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equations and also a priori and a posteriori error estimates for the vorticity and
the pressure in L2(Ω), respectively for the velocity in L4(Ω). For smooth solutions,
one gets the same convergence rate O(h) as for the Stokes problem.

Here we develop the bidimensional case; the extension to 3D together with 3D
numerical examples are presented in [3]. Several numerical experiments are shown
in the last section. On the one hand an academic test is considered, highlighting
the theoretical results on the convergence rates for different Reynolds numbers. On
the other hand, more realistic cases are treated by employing a posteriori error
estimators.

The paper is organized as follows. In section 2 we introduce the mathematical
framework for the Stokes and Navier-Stokes problems with nonstandard boundary
conditions, and in section 3 we study the discrete Stokes operator. In particular,
we prove that it satisfies a stability condition as well as a consistency condition.
Thanks to these properties, we establish in section 4 that the discrete Navier-Stokes
problem is well-posed and we obtain error bounds for the solution which allow us
to deduce the unconditional convergence of the approximation and its convergence
rate. We also propose an a posteriori error indicator. Finally, the last section deals
with the numerical experiments.

2. Functional framework

2.1. The model problem. In order to describe our model problem, let us first
introduce some notations. For any 2D vector field v = (v1, v2)t, we denote

v⊥ = (−v2, v1)t, divv = ∂1v1 + ∂2v2, curlv = ∂1v2 − ∂2v1

and, for any scalar field φ, curlφ = (∂2φ,−∂1φ)t. We suppose that Γ is composed of
three open and disjoint subsets Γ1, Γ2, Γ3 such that Γ = Γ1∪Γ2∪Γ3 and, for the sake
of simplicity, we suppose that |Γ2| > 0 where | · | denotes the Lebesgue measure. We
denote, as usually, by n the unit outward normal vector to the boundary Γand by
t the associated unit tangent vector. We agree to denote the vector spaces by bold
letters; in particular for real numbers p > 1, 0 < s ≤ 1 we denote Lp(Ω)2, Hs(Ω)2

by Lp(Ω), Hs(Ω) respectively. The notation ‖·‖L(Y ) stands for the norm of a linear
continuous operator of L (Y ), where Y is a Banach space.

We consider the stationary incompressible Navier-Stokes equations{
u∇u − ν∆u + ∇p = f in Ω,

divu = 0 in Ω

and impose the following boundary conditions which are described, for instance, in
[10], ⎧⎨⎩ u · n = 0, u · t = 0 on Γ1,

u · t = 0, p + 1
2u · u = 0 on Γ2,

u · n = 0, ω = 0 on Γ3,

where ω = curlu represents the scalar vorticity.

Remark 2.1. In order to simplify the presentation and without losing generality,
here we consider homogeneous boundary conditions for the pressure and the vor-
ticity. The nonhomogeneous case is treated in [2]. However, in the last section,
numerical tests are also carried out for nonhomogeneous boundary conditions.
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By means of the dynamic pressure p̃ = p + 1
2u · u and of the relation

u∇u + ∇p = ωu⊥ + ∇p̃,

the previous problem can be written as

(2.1)

⎧⎨⎩ νcurlω + ∇p̃ + ωu⊥ = f in Ω,
ω = curlu in Ω,
divu = 0 in Ω,

together with the boundary conditions

(2.2)

⎧⎨⎩ u · n = 0, u · t = 0 on Γ1,
u · t = 0, p̃ = 0 on Γ2,
u · n = 0, ω = 0 on Γ3.

The unknowns are now the velocity field u and the scalar fields ω and p̃ (denoted
by p in the following). The kinematic viscosity ν > 0 is given, and for the sake of
simplicity, the force field f is taken in L4/3(Ω).

2.2. The linear Stokes problem. The analysis of the nonlinear Navier-Stokes
problem uses the properties of the associated linear Stokes operator. Therefore, we
consider the Stokes equations⎧⎨⎩ νcurlω + ∇p = g in Ω,

ω = curlu in Ω,
divu = 0 in Ω,

endowed with the same type of boundary conditions as in (2.2),⎧⎨⎩ u · n = 0, u · t = 0 on Γ1,
u · t = 0, p = 0 on Γ2,
u · n = 0, ω = 0 on Γ3,

where g ∈ L4/3(Ω).
A three-fields variational formulation was introduced in [4], for smoother forces

g ∈ L2(Ω). Let us next recall some results established in [4] and adapt them to the
case where g ∈ L4/3(Ω).

One first needs to define the following Hilbert spaces:

M = {v ∈ H(div, curl; Ω); v · n|Γ1∪Γ3 = v · t|Γ1∪Γ2 = 0},
X = L2(Ω),

where

H(div, curl; Ω) = {v ∈ L2(Ω); divv ∈ L2(Ω), curlv ∈ L2(Ω)}.

The spaces H(div, curl; Ω), M are both normed by ‖v‖M = (‖v‖2
0,Ω + ‖divv‖2

0,Ω +
‖curlv‖2

0,Ω)1/2.
We assume in this paper that

(H1) {v ∈ M; divv = curlv = 0 a.e. in Ω} = {0} .

The hypothesis (H1) is true in particular if one of the following situations hold:
|Γ1| > 0, or |Γ1| = |Γ3| = 0, or |Γ1| = 0 and |Γ3| > 0 with Γ3 simply con-
nected. Then one gets (according to [4]) that the seminorm |v|M = (‖divv‖2

0,Ω +
‖curlv‖2

0,Ω)1/2 is a norm on M, equivalent to the norm ‖·‖M.
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Another key point is that in what follows, the space M is assumed to be continu-
ously imbedded in Hs(Ω), for some s ∈ ]1/2, 1]. This is not a restrictive hypothesis;
it is satisfied (see [11]) if there are no nonconvex corners (i.e., corners of Ω where
the openings of the angles of Ω are larger than π) at the intersection of Γ1 ∪Γ2 and
Γ3.

The previous statement holds with s = 1 if Ω is a convex polygon. Taking Ω
as a Lipschitz-continuous domain and |Γ2| = |Γ3| = 0 also yields the optimal case
s = 1 (cf. for instance [13]).

Then on the one hand, Sobolev’s imbedding theorem implies that M is also
continuously imbedded in L4(Ω) and on the other hand, we see that the traces of
its elements belong to L2(Γ). Thus, the linear form

l(v) = −
∫

Ω

g · vdΩ

is well defined on M, for any g ∈ L4/3(Ω). Following [4], we next define for all
σ = (ω, p), τ = (θ, q) ∈ X and v ∈ M, the bilinear forms

a(σ, τ ) = ν

∫
Ω

ωθdΩ,

b(τ,v) = −ν

∫
Ω

θcurlvdΩ +
∫

Ω

qdivvdΩ,

and consider the mixed variational formulation of the Stokes problem:

(2.3)

⎧⎨⎩ Find (σ,u) ∈ X × M,
a(σ, τ ) + b(τ,u) = 0 ∀τ ∈ X,
b(σ,v) = l(v) ∀v ∈ M.

In [4], problem (2.3) was shown to satisfy the Babuška-Brezzi conditions (cf. [6]
for instance), so (2.3) has a unique solution.

Remark 2.2. Let us note that one may also take g ∈ M′ and still obtain the
well-posedness of the Stokes problem.

Then one can define a linear continuous operator

S : L4/3(Ω) → X × L4(Ω), S(g) = (σ,u)

where (σ,u) is the unique solution of the Stokes problem (2.3).
For the simplicity of notation, we shall denote from now on the Banach space

X × L4(Ω) by Y.

2.3. The nonlinear Navier-Stokes problem. By introducing the nonlinear op-
erator

G : Y → L4/3(Ω), G(σ,u) = ωu⊥,

the Navier-Stokes equations (2.1) with homogeneous boundary conditions can be
put in the general setting of a nonlinear problem as follows:

(2.4) F (σ,u) = (0,0).

The mapping F is defined by

(2.5) F : Y → Y, F (τ,v) = (τ,v) − S(f − G(τ,v)).

We assume in what follows that there exists a solution (σ,u) such that F (σ,u) =
0 and DF (σ,u) is an isomorphism of X×L4(Ω). It is well known that the classical
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Navier-Stokes problem admits at least a solution (σ,u), the uniqueness holding
under a hypothesis of small data; in this last case, DF (σ,u) is an isomorphism.

3. Finite element discretization of the Stokes problem

We are next interested in the numerical approximation of the nonlinear problem
(2.4). For this purpose, one first needs to consider a discretization of the associated
linear problem (2.3).

Let (Th)h>0 be a regular family of triangulations of Ω consisting of triangles. We
classically denote by hK the diameter of the triangle K, by h = maxK∈Th

hK , by
Eh the set of internal edges and by he the length of the edge e. We assume that
each triangulation is compatible with the boundary conditions and moreover, that
Γ2 contains at least one vertex.

For the approximation of the mixed variational formulation (2.3), we consider
the same finite dimensional spaces as in [4], that is:

(3.1)

Lh = {q ∈ L2(Ω); q|K ∈ P0(K) ∀K ∈ Th},
Xh = Lh × Lh,
Mh = {v ∈ (C0(Ω))2; v|K ∈ P1(K) ∀K ∈ Th} ∩M

= {v ∈ M; v|K ∈ P1(K) ∀K ∈ Th}.
Let us also define

Vh = Kerhb = {τ ∈ Xh; b(τ,v) = 0 ∀v ∈ Mh} .

We thus employ conforming finite elements of lowest-order ensuring that the inf-sup
condition, which represents the main difficulty in the velocity-pressure formulation
for the Stokes problem, is directly satisfied.

However, the bilinear form a(·, ·) is not coercive on the discrete kernel Vh of
b(·, ·); cf. [4]. In order to retrieve its coercivity, we apply a stabilization technique,
that is we replace a(·, ·) by a(·, ·) + β Ah(·, ·) where β > 0 represents a stabiliza-
tion parameter, which can be eventually chosen independently of the discretization
parameter h.

In [4], the stabilization term Ah(·, ·) was defined by means of the jumps of both
the pressure and the vorticity across the edges of the triangulation. In this paper
we employ a simpler formulation, obtained by stabilizing only the pressure and
leading to similar theoretical and numerical results.

So, we define the bilinear form Ah : Xh × Xh → R by

Ah(δ, τ ) =
∑

e∈Eh∪Γ2

he

∫
e

[r][q]dΓ, ∀δ = (ρ, r), τ = (θ, q) ∈ Xh,

where [·]e stands for the jump across the internal edge e ∈ Eh, respectively for the
trace on the edge e situated on Γ2. We can now consider the following discrete
formulation of (2.3):

(3.2)

⎧⎨⎩ Find (σh,uh) ∈ Xh × Mh;
a(σh, τ ) + β Ah(σh, τ ) + b(τ,uh) = 0 ∀τ ∈ Xh,
b(σh,v) = l(v) ∀v ∈ Mh.

It is useful to introduce the seminorm on Xh defined for all τ = (θ, q) ∈ Xh by

|τ |h =
√

Ah(τ, τ ) = (
∑

e∈Eh∪Γ2

he ‖[q]‖2
0,e)

1/2.
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We next prove that the new bilinear form a(·, ·) + β Ah(·, ·) is Vh- elliptic and Xh-
continuous with respect to the L2(Ω)-norm of X, independently of h.

The first result is obtained by adapting the proof given in [4] for the case where
the stabilization term also takes into account the vorticity. Thus one gets:

Lemma 3.1. There exists a positive constant independent of h such that

(3.3) ‖q‖0,Ω ≤ c
(
‖θ‖0,Ω + |τ |h

)
, ∀τ = (θ, q) ∈ Vh.

Proof. Let τ = (θ, q) ∈ Vh and let us denote by P0q = 1
|Ω|

∫
Ω

qdΩ and consider
q̃ = q − P0q. Then q̃ ∈ L2

0(Ω) and obviously one has (cf. [13]) that :

C ‖q̃‖0,Ω ≤ ‖∇q‖−1,Ω = sup
v∈H1

0(Ω)

∫
Ω

qdivvdΩ
|v|1,Ω

.

We remark for any v ∈ M ∩H1(Ω) and any vh ∈ Mh that∫
Ω

qdivvdΩ = b(τ,v − vh) + ν

∫
Ω

θcurlvdΩ

= ν

∫
Ω

θcurlvhdΩ +
∑

e∈Eh∪Γ2

∫
e

[q](v − vh) · ndΓ,

where we have used Green’s formula and the boundary conditions v ·n = vh ·n = 0
on Γ1 ∪Γ3 in order to obtain the last equality. We next choose for vh the image of
v by a regularization operator (see [5]) with values in Mh, such that :( ∑

e∈Eh∪Γ2

h−1
e ‖(v − vh) · n‖2

0,e

)1/2

≤ c|v|1,Ω and |vh|1,Ω ≤ c|v|1,Ω.

Then the previous relations give∫
Ω

qdivvdΩ ≤ ν ‖θ‖0,Ω ‖curlvh‖0,Ω + c|τ |h|v|1,Ω,

which implies on the one hand,∣∣∣∣∫
Ω

qdivvdΩ
∣∣∣∣ ≤ c(‖θ‖0,Ω + |τ |h)|v|1,Ω,

and on the other hand,

‖q̃‖0,Ω ≤ c(‖θ‖0,Ω + |τ |h).

So it is now sufficient to prove the same inequality for P0q in order to end the
proof of the lemma. Following [4], we consider a function w ∈ M ∩ H1(Ω) with∫
Ω

divwdΩ = 1 and we write

|P0q| =
∣∣∣∣∫

Ω

(q̃ − q)divwdΩ
∣∣∣∣

≤ ‖q̃‖0,Ω |w|1,Ω + c(‖θ‖0,Ω + |τ |h)|w|1,Ω,

which finally leads to the announced result.
So the uniform coercivity of a(·, ·)+β Ah(·, ·) is given by the relation (3.3), while

the uniform continuity comes from the next lemma.
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Lemma 3.2. For any τ = (θ, q) ∈ Xh one has

|τ |h ≤ c ‖q‖0,Ω

with a constant c independent of h.

Proof. Let us recall the following well-known inequality, which holds for any q ∈
H1(K), any K ∈ Th and e ⊂ ∂K:

h−1/2
e ‖q‖0,e ≤ c(h−1

K ‖q‖0,K + |q|1,K).

Its proof is based on the trace theorem together with a passage to the reference
element. Now, for a q piecewise constant on every triangle, the previous relation
leads to

h1/2
e ‖[q]‖0,e ≤ c(‖q‖0,K1

+ ‖q‖0,K2
)

for any edge e = ∂K1 ∩ ∂K2. By summing up on all of the edges belonging to
Eh ∪ Γ2 we get the desired inequality, for any τ = (θ, q) ∈ Xh,

|τ |h = (
∑

e∈Eh∪Γ2

he ‖[q]‖2
0,e)

1/2 ≤ c(
∑

K∈Th

‖q‖2
0,K)1/2 = c ‖q‖0,Ω .

It is also useful to establish the next result.

Lemma 3.3. With any τ = (θ, q) ∈ Xh, one can associate a function φh ∈ H1(Ω)∩
M such that

|φh|1,Ω ≤ c|τ |h and Ah(δ, τ ) =
∫

Ω

rdivφhdΩ ∀δ = (ρ, r) ∈ Xh

where c is a constant independent of both the discretization and the stabilization
parameters.

Proof. First of all, let us notice that for any µ ∈
∏

e∈Eh∪Γ L2(e) such that µ = 0 on
any edge e ⊂ Γ1∪Γ3, there exists a function φh ∈ H1(Ω)∩M, piecewise polynomial,
such that ∫

e

φh · ndΓ =
∫

e

µdΓ ∀e ∈ Eh ∪ Γ

and satisfying

|φh|1,Ω ≤ c

( ∑
e∈Eh∪Γ

h−1
e ‖µ‖2

0,e

)1/2

.

Indeed, let us introduce the space P(K) = span {λ1λ2n3, λ2λ3n1, λ3λ1n2} ⊂
P2(K)2 where {λi}1≤i≤3 denotes the barycentric coordinates and ni represents
the unit outward normal vector to the edge ei of the triangle K ∈ Th. Then we
construct φh ∈

{
L2(Ω); (φh)|K ∈ P(K) ∀K ∈ Th

}
by imposing its degrees of free-

dom, namely
∫

e
φh · ndΓ =

∫
e
µdΓ for any edge e ∈ Eh ∪ Γ. Obviously, φh(S) = 0

at any vertex S of the triangulation, φh · t = 0 on any edge and moreover, φh is
continuous at any midpoint of an internal edge, therefore φh ∈ H1(Ω) ∩ M.

We next apply this result for

µ|e =

⎧⎨⎩ −he[q] if e ∈ Eh,
−heq if e ⊂ Γ2,

0 if e ⊂ Γ1 ∪ Γ3,
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and we thus get that |φh|1,Ω ≤ c|τ |h. Moreover, for any δ = (ρ, r) ∈ Xh we get that

Ah(δ, τ ) = −
∑

e∈Eh∪Γ2

∫
e

[r]µdΓ = −
∑
e∈Eh

∫
e

[r]φh · ndΓ −
∑
e⊂Γ2

∫
e

rφh · ndΓ

=
∫

Ω

rdivφhdΩ,

which ends the proof.

We next recall from [4] the discrete inf-sup condition for the bilinear form b(·, ·):

Lemma 3.4. The following inequality is true, with a constant c independent of h:

∀v ∈ Mh, sup
τ∈Xh

b(τ,v)
‖τ‖0,Ω

≥ c |v|M .

Proof. With any v ∈ Mh, we associate τ = (−curlv, divv) ∈ Xh which clearly
satisfies :

b(τ,v) = ν ‖curlv‖2
0,Ω + ‖divv‖2

0,Ω ≥ c |v|2M ,

‖τ‖0,Ω = |v|M ,

so the result is obvious.
Gathering together Lemmas 3.1, 3.2 and 3.4 we see that the mixed formulation

(3.2) fulfills the hypotheses of the Babuška-Brezzi theorem, uniformly with respect
to h (cf. for instance [6]). Hence the discrete problem (3.2) is well-posed and one
can now introduce the discrete Stokes operator as follows:

Sh : L4/3(Ω) → Y, Sh(g) = (σh,uh)

where (σh,uh) ∈ Xh ×Mh is the unique solution of (3.2). Obviously, Sh is a linear
and continuous operator, which satisfies the condition

(A1) ∀g ∈ L4/3(Ω), ‖Sh(g)‖Y ≤ c ‖g‖L4/3(Ω)

with c a positive constant independent of h but depending on β.
Moreover, one can prove that Sh satisfies an error bound which leads to the

unconditional convergence of the approximation method. For the case of smooth
data g ∈ L2(Ω), one gets:

Theorem 3.5. Let g ∈ L2(Ω) and let σ̄h be the L2(Ω)-projection of σ on Xh,
where (σ,u) = S(g). Then the following estimate holds:

‖(S − Sh)(g)‖X×M ≤ C{h ‖g‖0,Ω + ‖σ − σh‖X + inf
vh∈Mh

|u − vh|M},

where C is a constant independent of h (but depending on β).

Proof. The proof is rather technical but very similar to the one presented in [4].
Therefore, here we only specify the modification in the estimate of Ah(σh, δ) for
an arbitrary δ = (ρ, r) ∈ Xh, where σ̄h = (ωh, ph) ∈ Xh. For this purpose, we
associate with δ the function φh ∈ M constructed in Lemma 3.3, which clearly
satisfies

∫
Ω

ωhcurlφhdΩ = 0. Hence

Ah(σh, δ) = b(σh, φh)
= b(σh − σ, φh) − l(φh)

and the proof follows as in [4].
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In the general situation of a less regular data, one can establish:

Theorem 3.6. For any g ∈ L4/3(Ω), one has:

‖(S − Sh)(g)‖Y ≤ C

{√
h ‖g‖L4/3(Ω) + ‖σ − σh‖X + inf

vh∈Mh

|u − vh|M
}

.

Proof. The proof closely follows the one of the previous theorem. The only differ-
ence appears when estimating the term∣∣∣∣∫

Ω

g · φhdΩ
∣∣∣∣ ≤ ‖g‖L4/3(Ω) ‖φh‖L4(Ω) ≤ c

√
h ‖g‖L4/3(Ω) |φh|1,Ω ,

where φh is the discrete function introduced in Theorem 3.5; see also Lemma 3.3.
The last inequality is obtained in a classical way, by passing to the reference element
K̂ and by making use of the equivalence of norms in finite dimension (see for
instance [9]). Indeed, let us note that

∣∣∣φ̂h

∣∣∣
1,K̂

= 0 implies φ̂h = 0 on K̂, since

φ̂h(Ŝ) = 0 for any vertex Ŝ of K̂. Therefore, one can write on every triangle
K ∈ Th,

‖φh‖L4(K) ≤ ch1/2
∥∥∥φ̂h

∥∥∥
L4(K̂)

≤ ch1/2
∣∣∣φ̂h

∣∣∣
1,K̂

≤ ch1/2 |φh|1,K

which achieves the proof.
Thus, for smooth data g ∈ L2(Ω) and smooth exact solution (σ,u) ∈ H1(Ω) ×

H2(Ω), one recovers from Theorem 3.5 that

‖(S − Sh)(g)‖Y ≤ ch ‖g‖0,Ω ,

that is, the approximation method for the Stokes problem has an optimal conver-
gence rate O(h).

Furthermore, Theorem 3.6 yields the unconditional convergence of the approxi-
mation, that is, the operator Sh satisfies:

(A2) ∀g ∈ L4/3(Ω), lim
h→0

‖(S − Sh)(g)‖Y = 0.

4. The discrete Navier-Stokes problem

Let us now look at the numerical approximation of the Navier-Stokes problem
(2.4), which we write as follows:

(4.1) Fh(σh,uh) = 0.

The mapping Fh is defined by :

Fh : Y → Y, Fh(τ,v) = (τ,v) − Sh(f − G(τ,v)).

We remark that if (σh,uh) is a solution of equation (4.1), then (σh,uh) ∈ Xh×Mh.
The functional Fh is differentiable and for all (τ,v) ∈ Y, one has:

DFh(τ,v) = Id + Sh ◦ DG(τ,v).
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4.1. Existence and uniqueness. A priori error bound. The analysis of the
discrete problem (4.1) uses a result mainly based on the implicit function theorem,
which was first established in [7]. Some variants can be found in [15] or in [8]. In
order to apply the general result of [15], we suppose that the Stokes operator S
satisfies the following regularity assumption:

(H2) there exists δ > 0 such that S : L4/3(Ω) → Hδ(Ω)×H1+δ(Ω) is well-defined
and continuous.

Remark 4.1. This last condition holds, for instance, with δ = 1 whenever Ω is a
convex polygon and |Γ2| = |Γ3| = 0; cf. [13].

As a consequence of (H2), one deduces from Theorem 3.6 that for any g ∈
L4/3(Ω),

‖(S − Sh)(g)‖Y ≤ chα ‖g‖L4/3(Ω)

where α = min( 1
2 , δ) and where c > 0 depends on α, (σ,u) and β but is independent

of h.
Then we show, thanks to the properties (A1) and (A2) of the linear operator

Sh, the following statement:

Theorem 4.2. Assume the condition (H2) holds. Then the nonlinear mapping
Fh fulfills the conditions:
(C1) there exists a positive constant c independent of h such that, for any (τ,v) ∈

Y:

‖DFh(σ,u) − DFh(τ,v)‖L(Y) ≤ c ‖(σ,u) − (τ,v)‖Y ,

(C2) limh→0 ‖Fh(σ,u)‖Y = 0,
(C3) there exists h0 > 0 such that for any h < h0 , DFh(σ,u) is an isomorphism

of Y and ∥∥DFh(σ,u)−1
∥∥
L(Y)

≤ 2
∥∥DF (σ,u)−1

∥∥
L(Y)

.

Proof. First, one has that

DFh(σ,u) = Id + Sh ◦ DG(σ,u)

where DG(σ,u) : Y → L4/3(Ω) is given, for any δ = (ρ, r) ∈ X, w ∈ L4(Ω) by

DG(σ,u)(δ,w) = ωw⊥ + ρu⊥.

So for any τ = (θ, q) ∈ X and v ∈ L4(Ω), the stability property (A1) together
with Hölder’s and Cauchy-Schwarz inequalities imply that

‖DFh(σ,u)(δ,w)− DFh(τ,v)(δ,w)‖Y
≤ c ‖DG(σ,u)(δ,w)− DG(τ,v)(δ,w)‖L4/3(Ω)

≤ c
(
‖ω − θ‖0,Ω

∥∥w⊥∥∥
L4(Ω)

+ ‖ρ‖0,Ω

∥∥u⊥ − v⊥∥∥
L4(Ω)

)
≤ c ‖(σ,u) − (τ,v)‖Y ‖(δ,w)‖Y .

Therefore the condition (C1) is satisfied, with a constant c independent of h.
Second, in order to establish the consistency property (C2) let us write

‖Fh(σ,u)‖Y = ‖F (σ,u) − Fh(σ,u)‖Y = ‖(S − Sh)(f − G(σ,u))‖Y .

So the condition (A2) immediately gives that limh→0 ‖Fh(σ,u)‖Y = 0.
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Third, let us show that the linear operator DFh(σ,u) is an isomorphism of Y,
for h small enough. For this purpose, we write it as follows:

DFh(σ,u) = DF (σ,u) ◦
(
Id + DF (σ,u)−1 ◦ (DFh(σ,u) − DF (σ,u))

)
.

By putting Bh = DF (σ,u)−1 ◦ (DFh(σ,u) − DF (σ,u)), we get that

DFh(σ,u) = DF (σ,u) ◦ (Id + Bh)

where DF (σ,u) is invertible by hypothesis. One knows that if ‖Bh‖L(Y) < 1, then
DFh(σ,u) is an isomorphism and moreover, the next bound holds:

(4.2)
∥∥DFh(σ,u)−1

∥∥
L(Y)

≤

∥∥DF (σ,u)−1
∥∥
L(Y)

1 − ‖Bh‖L(Y)

.

So it is now sufficient to prove that ‖Bh‖L(Y) < 1
2 for h small enough, in order to

establish the stability property (C3). Let us note that

‖Bh‖L(Y) ≤
∥∥DF (σ,u)−1

∥∥
L(Y)

‖(S − Sh) ◦ DG(σ,u)‖L(Y) .

Thanks to the supposed regularity (H2) of the associated Stokes problem, one has
that

∀g ∈ L4/3(Ω), ‖(S − Sh)(g)‖Y ≤ chα ‖g‖L4/3(Ω).

Since DG(σ,u) is a bounded operator from Y to L4/3(Ω), we get that

lim
h→0

‖(S − Sh) ◦ DG(σ,u)‖L(Y) = 0

which yields ‖Bh‖L(Y) < 1
2 for h smaller than a given h0 > 0. This achieves the

proof.

Then the next statement is true, according to [15].

Theorem 4.3. Assume (H2). Then there exist h1 > 0 and δ > 0 such that, for
all h < h1, problem ( 4.1) has a unique solution satisfying ‖(σ,u) − (σh,uh)‖Y ≤ δ.
Moreover, the following a priori, respectively a posteriori estimates hold:

‖(σ,u) − (σh,uh)‖Y ≤ c ‖Fh(σ,u)‖Y ,(4.3)
‖(σ,u) − (σh,uh)‖Y ≤ c′ ‖F (σh,uh)‖Y(4.4)

with c, c′ independent of the discretization.

Therefore, the approximation method for the Navier-Stokes problem is uncondi-
tionally convergent thanks to the condition (C2). Moreover, its convergence rate
is given by an upper bound for

‖Fh(σ,u)‖Y = ‖(S − Sh)(f − G(σ,u))‖Y ;

see Theorem 3.6.
When considering a smooth data f ∈ L2(Ω) and assuming that the exact solution

(σ,u) of the initial Navier-Stokes problem satisfies(σ,u) ∈ H1(Ω)×H2(Ω), we see,
on the one hand, that ω ∈ L4(Ω) so G(σ,u) ∈ L2(Ω) and

‖G(σ,u)‖0,Ω ≤ ‖ω‖L4(Ω)

∥∥u⊥∥∥
L4(Ω)

≤ c |σ|1,Ω ‖u‖1,Ω .

On the other hand, Theorem 3.5 gives that

‖(σ,u) − (σh,uh)‖Y ≤ c ‖(S − Sh)(f − G(σ,u))‖Y
≤ ch{‖f − G(σ,u)‖0,Ω + |σ|1,Ω + |u|2,Ω}
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so we obtain a convergence rate O(h) for the Y-norm of the error, as for the Stokes
problem.

Remark 4.4. By means of a technical argument of Aubin-Nitsche type, one can
improve the convergence rate for the velocity in the L4(Ω)-norm and obtain O(h3/2),
whenever f ∈ L2(Ω) and (σ,u) ∈ H1(Ω) × H2(Ω). A detailed proof, including the
case of nonhomogeneous boundary conditions p0 and ω0, can be found in [2]. So,
the proposed approximation method for the Navier-Stokes problem is optimal in
terms of finite elements.

4.2. A posteriori error estimate. Theorem 4.3 says that an a posteriori error
indicator is defined by an upper bound for ‖F (σh,uh)‖Y. For this purpose we
estimate, for any τ = (θ, q) ∈ X and any v ∈ M, the quantity 〈F (σh,uh), (τ,v)〉
where 〈·, ·〉 now denotes the scalar product of X × M. We clearly have, since
Fh(σh,uh) = 0, that

〈F (σh,uh), (τ,v)〉 = 〈F (σh,uh), (τ,v)〉 − 〈Fh(σh,uh), (τh,vh)〉

for any τh = (θh, qh) ∈ Xh, vh ∈ Mh. So, taking into account the definition of the
mappings F and Fh, we can write

〈F (σh,uh), (τ,v)〉 = ν

∫
Ω

ωh(θ − θh)dΩ − β
∑

e∈Eh∪Γ2

he

∫
e

[ph][qh]dΓ

−ν

∫
Ω

(θ − θh)curluhdΩ +
∫

Ω

(q − qh)divuhdΩ

+ν

∫
Ω

ωhcurl(v − vh)dΩ −
∫

Ω

phdiv(v − vh)dΩ

−
∫

Ω

(f − ωhu⊥
h ) · (v − vh)dΩ.

In what follows, we take τh = (0, 0) and vh = Rhv where Rh denotes the Clément’s
interpolation operator. Next, we integrate by parts on every K ∈ Th and we take
into account that curlωh = 0 and ∇ph = 0 on every triangle K. Then finally we
get:

〈F (σh,uh), (τ,v)〉 = ν

∫
Ω

(ωh − curluh)θdΩ + ν
∑
e∈Eh

∫
e

[ωh](v − Rhv) · tdΓ

−
∫

Ω

(f − ωhu⊥
h ) · (v − Rhv)dΩ +

∫
Ω

qdivuhdΩ

−
∑
e⊂Γ2

∫
e

ph(v − Rhv) · ndΓ + ν
∑
e⊂Γ3

∫
e

ωh(v − Rhv) · tdΓ

−
∑
e∈Eh

∫
e

[ph](v − Rhv) · ndΓ.

Let us introduce the following residuals, on every triangle K of the triangulation,

η1 = ν(ωh − curluh),
η2 = divuh,

η3 = f − ωhu⊥
h ,
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respectively on every edge e:

η4 =

⎧⎨⎩ ν[ωh] if e ∈ Eh,
νωh if e ⊂ Γ3,
0 if e ⊂ Γ1 ∪ Γ2,

η5 =

⎧⎨⎩ [ph] if e ∈ Eh,
ph if e ⊂ Γ2,
0 if e ⊂ Γ1 ∪ Γ3.

Then one can write that

〈F (σh,uh), (τ,v)〉 =
∑

K∈Th

(∫
K

η1θdΩ +
∫

K

η2qdΩ −
∫

K

η3 · (v − Rhv)dΩ
)

+
∑

e∈Eh∪Γ

(∫
e

η4(v − Rhv) · tdΓ −
∫

e

η5(v − Rhv) · ndΓ
)

.

We use the following interpolation results for v ∈ M ⊂ Hs(Ω) with s ∈]1/2, 1] (cf.
for instance [5] or [13]):

‖v − Rhv‖0,K ≤ chs
K

∑
K′∈SK

|v|s,K′ ,

‖v − Rhv‖0,e ≤ ch1/2
e hs−1

K

∑
K′∈SK

|v|s,K′

where e is an edge of K and SK is the set of triangles K ′ such that K ∩ K ′ �= ∅.
This finally leads to

|〈F (σh,uh), (τ,v)〉| ≤ C
(
‖θ‖0,Ω + ‖q‖0,Ω + |v|M

)( ∑
K∈Th

η(K)2
)1/2

,

where the local indicator η(K) is defined on every triangle K by

η(K)2 = ‖η1‖2
0,K + ‖η2‖2

0,K + h2s
K ‖η3‖2

0,K + h2s−2
K

∑
e∈∂K

he(‖η4‖2
0,e + ‖η5‖2

0,e).

To conclude this section, let us point out that the previous estimate together
with Theorem 4.3 lead to:

Theorem 4.5. Under the hypotheses of Theorem 4.3, the following a posteriori
error bound holds, with a constant C independent of the triangulation and of the
stabilization parameter:

‖(σ,u) − (σh,uh)‖Y ≤ C

( ∑
K∈Th

η(K)2
)1/2

.

5. Numerical results

We begin this section by presenting some numerical examples which illustrate
the theoretical results obtained in the previous sections. More realistic cases which
are usually considered for the Navier-Stokes equations are treated next.

5.1. Convergence rate. The considered domain is Ω =] − 1, 1[2 while the exact
solution is

u1 = sin(π(x + 1)/2)cos(π(y + 1)/2),

u2 = cos(π(x + 1)/2)sin(π(y + 1)/2),

p = sin(π(x + 1)/2)sin(π(y + 1)/2).
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We impose the pressure and the vorticity respectively on the left and right bound-
aries whereas the velocity is given on the other boundaries. The nonlinear system
is solved by a Newton algorithm.

We next compare the numerical errors obtained for different values of the pa-
rameters h and β and for Reynolds numbers varying from 1 to 10000. In Table 1 to
Table 5 we present the error in the L2-norm for the pressure and for the vorticity
while the error for the velocity is given in both L4 and H1-norms.

One may notice that the errors on p and ω are both in O(h) and the error on u
is in O(h2) in the L4-norm and in O(h) in the H1-norm.

In [2], we have also computed for the above example the a posteriori estimator
and applied it in order to locally refine the mesh, for Re = 1 and Re = 1000.
The comparison with the exact error highlights the good local behaviour of the a
posteriori indicator.

Table 1. Errors for Re = 1 and β = 0.2

8 × 8 16 × 16 32 × 32 64 × 64
‖ω − ωh‖L2(Ω) 0.082 0.038 0.0184 0.0086
‖p − ph‖L2(Ω) 0.12 0.053 0.020 0.009
|u1 − u1h|H1(Ω) 0.17 0.084 0.041 0.02
|u2 − u2h|H1(Ω) 0.16 0.081 0.040 0.02
‖u1 − u1h‖L4(Ω) 0.020 0.006 0.0016 0.00047
‖u2 − u2h‖L4(Ω) 0.026 0.0062 0.0016 0.00047

Table 2. Errors for Re = 10 and β = 0.5

8 × 8 16 × 16 32 × 32 64 × 64
‖ω − ωh‖L2(Ω) 0.090 0.039 0.0185 0.0087
‖p − ph‖L2(Ω) 0.074 0.027 0.0119 0.0056
|u1 − u1h|H1(Ω) 0.178 0.084 0.041 0.02
|u2 − u2h|H1(Ω) 0.166 0.081 0.040 0.02
‖u1 − u1h‖L2(Ω) 0.023 0.0062 0.0016 0.00047
‖u2 − u2h‖L2(Ω) 0.027 0.0065 0.0017 0.00047

5.2. Realistic cases. In what follows, we present the cavity test, the step test
and the T-shaped domain test. For all these classical examples, we have employed
the same adaptive mesh technique based on the a posteriori estimator, but we
have applied it in this paper only for the step test and the T-shaped domain.
More precisely, the solution and the estimator are first computed on a nonrefined
mesh and then we adapt the mesh and recalculate the approximation. Finally, the
a posteriori error is calculated again on the fine mesh in order to illustrate the
improvement of the solution.

We next show the velocity, pressure and vorticity obtained by this method. The
numerical tests were carried out for several Reynolds numbers, however here we
present only the most significant results.
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Table 3. Errors for Re = 100 and β = 1

8 × 8 16 × 16 32 × 32 64 × 64
‖ω − ωh‖L2(Ω) 0.098 0.042 0.019 0.009
‖p − ph‖L2(Ω) 0.068 0.026 0.011 0.005
|u1 − u1h|H1(Ω) 0.18 0.085 0.041 0.02
|u2 − u2h|H1(Ω) 0.17 0.083 0.041 0.02
‖u1 − u1h‖L4(Ω) 0.025 0.0077 0.0022 0.0007
‖u2 − u2h‖L4(Ω) 0.026 0.0078 0.0023 0.0007

Table 4. Errors for Re = 1000 and β = 1.5

8 × 8 16 × 16 32 × 32 64 × 64
‖ω − ωh‖L2(Ω) 0.12 0.054 0.024 0.012
‖p − ph‖L2(Ω) 0.065 0.026 0.012 0.006
|u1 − u1h|H1(Ω) 0.18 0.086 0.042 0.021
|u2 − u2h|H1(Ω) 0.18 0.087 0.042 0.021
‖u1 − u1h‖L4(Ω) 0.027 0.0088 0.0025 0.0008
‖u2 − u2h‖L4(Ω) 0.028 0.0089 0.0025 0.0008

Table 5. Errors for Re = 10000 and β = 1.5

8 × 8 16 × 16 32 × 32 64 × 64
‖ω − ωh‖L2(Ω) — 0.065 0.037 0.019
‖p − ph‖L2(Ω) — 0.029 0.012 0.005
|u1 − u1h|H1(Ω) — 0.093 0.046 0.023
|u2 − u2h|H1(Ω) — 0.093 0.046 0.023
‖u1 − u1h‖L4(Ω) — 0.015 0.004 0.0012
‖u2 − u2h‖L4(Ω) — 0.015 0.004 0.0012

Cavity domain. Here we consider two different cavity tests depending on the size
of the domain. We impose the velocity on the whole boundary. We take u equal to
(1,0) on the upper boundary and equal to zero on the rest of the boundary. In the
first example, the domain is the unit square and the considered Reynolds number
is 500 (see Figure 5.1).

In the second example, the domain is the rectangle ]0, 1[×]0, 2[, and we take
two Reynolds numbers, respectively equal to 5000 (see Figure 5.2) and to 20000
(see Figure 5.3) . One can notice that for big Reynolds numbers, a second vortex
appears in the lower part of the domain (cf. Figure 5.3).
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Figure 5.1. First cavity test: Velocity, vorticity and pressure (Re=500)

Figure 5.2. Second cavity test: Velocity, vorticity and pressure (Re=5000)

Figure 5.3. Second cavity test: Velocity, vorticity and pressure (Re=20000)
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Step test. We are now interested in the classical step test, with the pressure given
on the inlet and outlet boundaries and a zero velocity imposed elsewhere. Similar
results were obtained when taking ω = 0 and u.n = 0 on the upper boundary but
they are not presented here. For a small Reynolds number (for instance Re = 10),
we retrieve a linear pressure (cf. Figure 5.9) and a laminar flow (see Figures 5.7,
5.8), which is no longer the case for Re = 1000 (Figures 5.10, 5.11 and 5.12). One
may also use the a posteriori estimator in order to optimally choose the stabilization
parameter β when the Reynolds number is fixed (for instance, for the three values
of β employed in Figures 5.4, 5.5 and 5.6 one can see that β = 0.5 leads to the
smallest error indicator).

Figure 5.4. Step test: Estimator (Re = 10 and β = 0.03)

Figure 5.5. Step test: Estimator (Re = 10 and β = 0.5)

Figure 5.6. Step test: Estimator (Re = 10 and β = 2)

Figure 5.7. Step test: Velocity near the step (Re = 10)
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Figure 5.8. Step test: Vorticity (Re = 10)

Figure 5.9. Step test: Pressure (Re = 10)

Figure 5.10. Step test: Velocity near the step (Re = 1000)

Figure 5.11. Step test: Vorticity (Re = 1000)

Figure 5.12. Step test: Pressure (Re = 1000)
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T-shaped domain. To end this section, numerical tests validating the method are
also carried out on a T-shaped domain with the same boundary conditions as in
the example of the previous step. Here we present the error estimator on the initial
and refined grid, as well as the velocity, vorticity and pressure on the refined mesh
for two different Reynolds numbers, Re = 100 and Re = 10000.

Figure 5.13. T-shaped test: Initial and refined grids

Figure 5.14. T-shaped test: Estimator on the initial grid (Re = 100)
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Figure 5.15. T-shaped test: Estimator on the refined grid (Re = 100)

Figure 5.16. T-shaped test: Velocity (Re = 100)

Figure 5.17. T-shaped test: Vorticity (Re = 100)
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Figure 5.18. T-shaped test: Pressure (Re = 100)

Figure 5.19. T-shaped test: Estimator on the initial grid (Re = 10000)

Figure 5.20. T-shaped test: Estimator on the refined grid (Re = 10000)

Figure 5.21. T-shaped test: Velocity (Re = 10000)
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Figure 5.22. T-shaped test: Vorticity (Re = 10000)

Figure 5.23. T-shaped test: Pressure (Re = 10000)
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Pays de l’Adour, BP 1155, 64013 PAU CEDEX

E-mail address: david.trujillo@univ-pau.fr

http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=1316046
http://www.ams.org/mathscinet-getitem?mr=1316046
http://www.ams.org/mathscinet-getitem?mr=1048563
http://www.ams.org/mathscinet-getitem?mr=1048563
http://www.ams.org/mathscinet-getitem?mr=2020806
http://www.ams.org/mathscinet-getitem?mr=2020806
http://www.ams.org/mathscinet-getitem?mr=851383
http://www.ams.org/mathscinet-getitem?mr=851383
http://www.ams.org/mathscinet-getitem?mr=775683
http://www.ams.org/mathscinet-getitem?mr=775683
http://www.ams.org/mathscinet-getitem?mr=1310318
http://www.ams.org/mathscinet-getitem?mr=1310318

	1. Introduction
	2. Functional framework
	2.1. The model problem
	2.2. The linear Stokes problem
	2.3. The nonlinear Navier-Stokes problem

	3. Finite element discretization of the Stokes problem
	4. The discrete Navier-Stokes problem
	4.1. Existence and uniqueness. A priori error bound
	4.2. A posteriori error estimate

	5. Numerical results
	5.1. Convergence rate
	5.2. Realistic cases

	Acknowledgment
	References

