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ERROR BOUNDS
ON COMPLEX FLOATING-POINT MULTIPLICATION

RICHARD BRENT, COLIN PERCIVAL, AND PAUL ZIMMERMANN

In memory of Erin Brent (1947–2005)

Abstract. Given floating-point arithmetic with t-digit base-β significands in
which all arithmetic operations are performed as if calculated to infinite preci-
sion and rounded to a nearest representable value, we prove that the product
of complex values z0 and z1 can be computed with maximum absolute error
|z0‖z1| 12β1−t

√
5. In particular, this provides relative error bounds of 2−24

√
5

and 2−53
√

5 for IEEE 754 single and double precision arithmetic respectively,
provided that overflow, underflow, and denormals do not occur.

We also provide the numerical worst cases for IEEE 754 single and double

precision arithmetic.

1. Introduction

In an earlier paper [2], the second author made the claim that the maximum
relative error which can occur when computing the product z0z1 of two complex
values using floating-point arithmetic is ε

√
5, where ε is the maximum relative error

which can result from rounded floating-point addition, subtraction, or multiplica-
tion. While reviewing that paper a few years later, the other two authors noted
that the proof given was incorrect, although the result claimed was true.

Since the bound of ε
√

8 which is commonly used [1] is suboptimal, we present
here a corrected proof of the tighter bound. Interestingly, by explicitly finding
worst-case inputs, we can demonstrate that our error bound is effectively optimal.

Throughout this paper, we concern ourselves with floating-point arithmetic with
t-digit base-β significands, denote by ulp(x) for x �= 0 the (unique) power of β
such that βt−1 ≤ |x| /ulp(x) < βt, and write ε = 1

2ulp(1) = 1
2β1−t; we also define

ulp(0) = 0. The notations x ⊕ y, x � y, and x ⊗ y represent rounded-to-nearest
floating-point addition, subtraction, and multiplication of the values x and y.

2. An error bound

Theorem 1. Let z0 = a0 + b0i and z1 = a1 + b1i, with a0, b0, a1, b1 floating-
point values with t-digit base-β significands, and let z2 = ((a0 ⊗ a1) � (b0 ⊗ b1)) +
((a0 ⊗ b1) ⊕ (b0 ⊗ a1))i be computed. Providing that no overflow or underflow oc-
curs, no denormal values are produced, arithmetic results are correctly rounded to
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a nearest representable value, z0z1 �= 0, and ε ≤ 2−5, the relative error∣∣z2(z0z1)−1 − 1
∣∣

is less than ε
√

5 = 1
2β1−t

√
5.

Proof. Let a0, b0, a1, and b1 be chosen such that the relative error is maximized.
By multiplying z0 and z1 by powers of i and/or taking complex conjugates, we can
assume, without loss of generality, that

0 ≤ a0, b0, a1, b1,(1)

b0b1 ≤ a0a1,(2)

and given our assumptions that overflow, underflow, and denormals do not occur,
and that rounding is performed to a nearest representable value, we can conclude
that for any x occurring in the computation, the error introduced when rounding
x is at most 1

2ulp(x) and is strictly less than ε · x.
We note that the error |�(z2 − z0z1)| in the imaginary part of z2 is bounded as

follows:

|�(z2 − z0z1)| = |((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0b1 + b0a1)|
≤ |a0 ⊗ b1 − a0b1| + |b0 ⊗ a1 − b0a1|

+ |((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)| .

Now we consider two cases:

Case I1. ulp(a0b1 + b0a1) < ulp(a0 ⊗ b1 + b0 ⊗ a1).
Using first the definition of ulp and second the assumption above, we must have

a0b1 + b0a1 < βtulp(a0b1 + b0a1) ≤ a0 ⊗ b1 + b0 ⊗ a1

and therefore∣∣(a0 ⊗ b1 + b0 ⊗ a1) − βtulp(a0b1 + b0a1)
∣∣ < (a0 ⊗ b1 + b0 ⊗ a1) − (a0b1 + b0a1)

≤ |a0 ⊗ b1 − a0b1| + |b0 ⊗ a1 − b0a1|
≤ ε · (a0b1 + b0a1).

However, βtulp(a0b1 + b0a1) is a representable floating-point value; so given our
assumption that rounding is performed to a nearest representable value, we must
now have

|((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)| < ε · (a0b1 + b0a1).

Case I2. ulp(a0 ⊗ b1 + b0 ⊗ a1) ≤ ulp(a0b1 + b0a1).
From our assumption that the results of arithmetic operations are correctly

rounded, we obtain

|((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)| ≤
1
2
ulp(a0 ⊗ b1 + b0 ⊗ a1)

≤ 1
2
ulp(a0b1 + b0a1)

≤ ε · (a0b1 + b0a1).
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Combining these two cases with the earlier-stated bound, we obtain

|�(z2 − z0z1)| ≤ |a0 ⊗ b1 − a0b1| + |b0 ⊗ a1 − b0a1|
+ |((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)|

< ε · (a0b1) + ε · (b0a1) + ε · (a0b1 + b0a1)

= ε · (2a0b1 + 2b0a1).

Now that we have a bound on the imaginary part of the error, we turn our
attention to the real part, and consider the following four cases (where the examples
given apply to β = 2):

ulp(b0b1) ≤ ulp(a0a1) ≤ ulp(a0 ⊗ a1 − b0 ⊗ b1), e.g., z0 = z1 = 0.8 + 0.1i,

ulp(b0b1) < ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(a0a1), e.g., z0 = z1 = 0.8 + 0.4i,

ulp(a0 ⊗ a1 − b0 ⊗ b1) ≤ ulp(b0b1) < ulp(a0a1), e.g., z0 = z1 = 0.8 + 0.7i,

ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(b0b1) = ulp(a0a1), e.g., z0 = z1 = 0.8 + 0.8i.

Since we have assumed that b0b1 ≤ a0a1, we know that ulp(b0b1) ≤ ulp(a0a1),
and thus these four cases cover all possible inputs. Consequently, it suffices to prove
the required bound for each of these four cases.

Case R1. ulp(b0b1) ≤ ulp(a0a1) ≤ ulp(a0 ⊗ a1 − b0 ⊗ b1).
Note that the right inequality can only be strict if a0 ⊗ a1 rounds up to a power

of β and b0b1 = 0.
We observe that

a0 ⊗ a1 − b0 ⊗ b1 < a0a1 − b0b1 + ε · (a0a1 + b0b1)

and bound the real part of the complex error as follows:

|�(z2 − z0z1)| ≤ |a0 ⊗ a1 − a0a1| + |b0 ⊗ b1 − b0b1|
+ |((a0 ⊗ a1) � (b0 ⊗ b1)) − (a0 ⊗ a1 − b0 ⊗ b1)|

≤ 1
2
ulp(a0a1) +

1
2
ulp(b0b1) +

1
2
ulp(a0 ⊗ a1 − b0 ⊗ b1)

≤ 1
2
ulp(a0 ⊗ a1 − b0 ⊗ b1) +

1
2
ulp(b0b1) +

1
2
ulp(a0 ⊗ a1 − b0 ⊗ b1)

< 2ε · (a0 ⊗ a1 − b0 ⊗ b1) + ε · (b0b1)

< ε · (2a0a1 − b0b1) + ε2 · (2a0a1 + 2b0b1).

Applying the triangle inequality, we now observe that

|z2 − z0z1| =
√
�(z2 − z0z1)2 + �(z2 − z0z1)2

< ε
√

(2a0a1 − b0b1)2 + (2a0b1 + 2b0a1)2 + ε2 · (2a0a1 + 2b0b1)

≤ ε

√
32
7

|z0z1|2 −
4
7
(a0b1 − b0a1)2 −

1
7
(2a0a1 − 5b0b1)2 + 2ε2 |z0z1|

≤ ε
(√

32/7 + 2ε
)
|z0z1| < ε

√
5 |z0z1|

as required.
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Case R2. ulp(b0b1) < ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(a0a1).
Noting that ulp(x) < ulp(y) implies ulp(x) ≤ β−1ulp(y) ≤ 1

2ulp(y), we obtain

|�(z2 − z0z1)| ≤
1
2
ulp(a0a1) +

1
2
ulp(b0b1) +

1
2
ulp(a0 ⊗ a1 − b0 ⊗ b1)

≤ 7
8
ulp(a0a1)

≤ ε ·
(

7
4
a0a1

)

and therefore

|z2 − z0z1| =
√
�(z2 − z0z1)2 + �(z2 − z0z1)2

< ε

√(
7
4
a0a1

)2

+ (2a0b1 + 2b0a1)2

= ε

√
1024
207

|z0z1|2 −
196
207

(a0b1 − b0a1)2 −
1

3312
(79a0a1 − 128b0b1)2

≤ ε
√

1024/207 |z0z1| < ε
√

5 |z0z1|

as required.

Case R3. ulp(a0 ⊗ a1 − b0 ⊗ b1) ≤ ulp(b0b1) < ulp(a0a1).
In this case, there is no rounding error introduced in computing the difference

between a0 ⊗ a1 and b0 ⊗ b1 since ulp(a0 ⊗ a1 − b0 ⊗ b1) ≤ ulp(b0b1) ≤ ulp(b0 ⊗ b1)
and ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(a0a1) ≤ ulp(a0 ⊗ a1). Also,

ulp(b0b1) ≤
1
β

ulp(a0a1) ≤
1
2
ulp(a0a1),

so we have

|�(z2 − z0z1)| ≤
1
2
ulp(a0a1) +

1
2
ulp(b0b1)

≤ 3
4
ulp(a0a1)

≤ ε ·
(

3
2
a0a1

)
,

and consequently

|z2 − z0z1| =
√
�(z2 − z0z1)2 + �(z2 − z0z1)2

< ε

√(
3
2
a0a1

)2

+ (2a0b1 + 2b0a1)2

= ε

√
256
55

|z0z1|2 −
36
55

(a0b1 − b0a1)2 −
1

220
(23a0a1 − 32b0b1)2

≤ ε
√

256/55 |z0z1| < ε
√

5 |z0z1|

as required.
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Case R4. ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(b0b1) = ulp(a0a1).
In this case, there is again no rounding error introduced in computing the dif-

ference between a0 ⊗ a1 and b0 ⊗ b1, so we obtain

|�(z2 − z0z1)| ≤ |a0 ⊗ a1 − a0a1| + |b0 ⊗ b1 − b0b1|
< ε · (a0a1 + b0b1) ,

and consequently,

|z2 − z0z1| =
√
�(z2 − z0z1)2 + �(z2 − z0z1)2

< ε

√
(a0a1 + b0b1)

2 + (2a0b1 + 2b0a1)2

= ε

√
5 |z0z1|2 − (a0b1 − b0a1)2 − 4(a0a1 − b0b1)2

≤ ε
√

5 |z0z1|

as required. �

3. Worst-case multiplicands for β = 2

Having proved an upper bound on the relative error which can result from
floating-point rounding when computing the product of complex values, we now
turn to a more number-theoretic problem: finding precise worst-case inputs for
β = 2. Starting with the assumption that some inputs produce errors very close to
the proven upper bound, we will repeatedly reduce the set of possible inputs until
an exhaustive search becomes feasible.

Theorem 2. Let β = 2 and assume that z0 = a0 + b0i �= 0 and z1 = a1 + b1i �= 0,
where a0, b0, a1, b1 are floating-point values with t-digit base-β significands, and
z2 = ((a0 ⊗ a1) � (b0 ⊗ b1)) + ((a0 ⊗ b1) ⊕ (b0 ⊗ a1))i are such that

0 ≤ a0, b0, a1, b1,(1)

b0b1 ≤ a0a1,(2)

b0a1 ≤ a0b1,(3)

1/2 ≤ a0a1 < 1,(4)

and no overflow, underflow, or denormal values occur during the computation of
z2. Assume further that the results of arithmetic operations are correctly rounded
to a nearest representable value and that

(5)
|z2 − z0z1|

|z0z1|
> ε

√
5 − nε > ε · max

(√
1024/207,

√
32/7 + 2ε

)
for some positive integer n. Then

a0a1 = 1/2 + (jaa + 1/2)ε + kaaε2,

a0b1 = 1/2 + (jab + 1/2)ε + kabε
2,

b0a1 = 1/2 + (jba + 1/2)ε + kbaε2,

b0b1 = 1/2 + (jbb + 1/2)ε + kbbε
2,
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for some integers jxy, kxy satisfying

0 ≤ jaa, jab, jba, jbb <
n

4
,

|kaa| , |kbb| < n,

|kab| , |kba| <
n

2
,

and a0 �= b0, a1 �= b1.

Proof. From equation (5), we note that ε ≤ nε < 11/207 < 2−4; we will use this
trivial bound later without explicit comment.

From the proof of Theorem 1, we know that Case R4 must hold, i.e., there is no
error introduced in the computation of the difference between a0 ⊗ a1 and b0 ⊗ b1,
and ulp(b0b1) = ulp(a0a1). From inequalities (2) and (4) above, this implies that

1/2 ≤ b0b1 ≤ a0a1 < 1,

|�(z2 − z0z1)| ≤ |a0 ⊗ a1 − a0a1| + |b0 ⊗ b1 − b0b1| ≤ ε.

We can now obtain lower bounds on |z0z1| and |z2 − z0z1|, using the fact that
(a0a1)(b0b1) = (a0b1)(b0a1):

|z0z1|2 =
(
a2
0 + b2

0

) (
a2
1 + b2

1

)
= (a0a1)2 + (a0b1)2 + (b0a1)2 + (b0b1)2

≥ (1/2)2 + (a0b1)2 +
(1/2)4

(a0b1)2
+ (1/2)2 ≥ 1,

|z2 − z0z1|2 > |z0z1|2 ε2(5 − nε) ≥ ε2(5 − nε),

as well as an upper bound on |z0z1|:

|z0z1|2 ·
1024ε2

207
< |z2 − z0z1|2

= |�(z2 − z0z1)|2 + |�(z2 − z0z1)|2

< ε2 + (ε · (2a0b1 + 2b0a1))2

≤ ε2 + 4ε2 |z0z1|2 ,

|z0z1|2 <
207
196

.

We now note that

(a0b1)2 ≤ |z0z1|2 − (a0a1)2 − (b0b1)2

≤ 207
196

− 1
4
− 1

4
=

109
196

,

so b0a1 ≤ a0b1 ≤
√

109/196 < 1 and a0 ⊗ b1 + b0 ⊗ a1 ≤
√

109/49 · (1 + ε) < 2; this
implies that ulp(b0a1) ≤ ulp(a0b1) ≤ ulp(1/2) and ulp(a0 ⊗ b1 + b0 ⊗ a1) ≤ ulp(1),
and therefore

|a0 ⊗ b1 − a0b1| ≤ ε/2,

|b0 ⊗ a1 − b0a1| ≤ ε/2,

|((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)| ≤ ε,

|�(z2 − z0z1)| ≤ ε/2 + ε/2 + ε = 2ε,
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which allows us to place upper bounds on |z2 − z0z1| and |z0z1|:

|z2 − z0z1|2 = |�(z2 − z0z1)|2 + |�(z2 − z0z1)|2 ≤ (ε)2 + (2ε)2 = 5ε2,

|z0z1|2 <
|z2 − z0z1|2

ε2(5 − nε)
≤ 5

5 − nε
.

Combining the known lower bound ε2(5 − nε) for |z2 − z0z1|2 with the upper
bounds on the error contributed by each individual rounding step, we find that

ε/2 − (1 −
√

1 − nε)ε < |a0 ⊗ a1 − a0a1| ≤ ε/2,

ε/2 − (1 −
√

1 − nε)ε < |b0 ⊗ b1 − b0b1| ≤ ε/2,

ε/2 − (2 −
√

4 − nε)ε < |a0 ⊗ b1 − a0b1| ≤ ε/2,

ε/2 − (2 −
√

4 − nε)ε < |b0 ⊗ a1 − b0a1| ≤ ε/2,

and similarly, by combining the upper bound on |z0z1|2 with the lower bound of
1/2 for each pairwise product, we obtain

1/2 ≤ b0b1 ≤ a0a1 ≤
√

5
5 − nε

− 3
4

=

√
5 + 3nε

20 − 4nε
,

1/2 ≤ b0a1 ≤ a0b1 ≤
√

5
5 − nε

− 3
4

=

√
5 + 3nε

20 − 4nε
.

Now consider the possible values for a0a1 which satisfy these restrictions. Since it
is the product of two values which are expressible using t digits of significand, a0a1

can be exactly represented using 2t digits of significand; but since 1/2 ≤ a0a1 < 1,
this implies that a0a1 is an integer multiple of ε2. Therefore there is at least one
pair of integers jaa, kaa with 0 ≤ jaa < ε−1/2, |kaa| ≤ ε−1/2 for which

a0a1 = 1/2 + (jaa + 1/2)ε + kaaε2.

Since a0 ⊗ a1 is the closest multiple of ε to a0a1, this implies that

ε/2 − (1 −
√

1 − nε)ε < |a0 ⊗ a1 − a0a1| = ε/2 − |kaa| ε2,
|kaa| ε < 1 −

√
1 − nε < 1 − (1 − nε) = nε,

i.e., |kaa| < n, and similarly,

1/2 + jaaε ≤ a0a1 ≤
√

5 + 3nε

20 − 4nε
<

√
1/4 + nε/4 < 1/2 +

nε

4
,

i.e., 0 ≤ jaa < n/4.
Applying the same argument to a0b1, b0a1, and b0b1 allows us to infer that they

possess the same structure, as required. To complete the proof, we note that the
rounding errors from the products a0a1 and b0b1 must be in opposite directions
(so that they accumulate when subtracted), while the rounding errors from the
products a0b1 and b0a1 must be in the same direction (so that they accumulate
when added); consequently, we must have a0 �= b0 and a1 �= b1. �
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Corollary 1. Assume that the preconditions of Theorem 2 are satisfied, and assume
further that

(6)
1
2
≤ a0 < 1

and n ≤ 2ε−1/2. Then
1
2

< a0, b0, a1, b1 < 1.

Proof. Assume that a1 ≥ 1. Then we can write

a0 = 1/2 + Aε,

a1 = 1 + 2Bε,

for some 0 ≤ A, B < (2ε)−1. From Theorem 2, we have

1/2 + (A + B)ε + 2ABε2 = a0a1 = 1/2 + (jaa + 1/2)ε + kaaε2

for some 0 ≤ jaa < n/4, |kaa| < n.
As a result, we must have A + B ≤ n/4 ≤ 1/2 · ε−1/2, and since 0 ≤ A, B,

this implies 0 ≤ 2ABε2 ≤ ε/8. However, by reducing the equation above modulo
ε, we find that 2ABε2 ≡ ε/2 + kaaε2, which contradicts our bounds on 2ABε2.
Consequently, we can conclude that a1 < 1. Now we note that a0a1 > 1/2 and
a0 < 1, so a1 > 1/2, and we have both of the bounds required for a1.

Applying the same argument to the other products provides the same bounds
for a0, b0, and b1. �

Corollary 2. Assume that the preconditions of Corollary 1 are satisfied, and as-
sume further that n ≤ ε−1/2 and ε ≤ 2−6. Then

jaa − jab − jba + jbb = 0,

|a0 − b0| · |a1 − b1| < 3nε2.

Proof. From Theorem 2, we obtain that

a0(a1 − b1) = a0a1 − a0b1 = (jaa − jab)ε + (kaa − kab)ε2

where |jaa − jab| < n
4 , |kaa − kab| < 3n

2 , and since a0 > 1
2 (from Corollary 1), we

can conclude that |a1 − b1| < n
2 ε + 3nε2. Since a1 and b1 are integer multiples of ε

and 3nε2 < ε/2, we conclude that |a1 − b1| ≤ n
2 ε. Applying the same argument to

the product a1(a0 − b0) provides the same bound for |a0 − b0|.
We now note that∣∣(jaa − jab − jba + jbb)ε + (kaa − kab − kba + kbb)ε2

∣∣ = |a0 − b0| · |a1 − b1|

≤
(n

2
ε
)2

<
ε

4
from our assumed upper bound on n, and consequently we can conclude that
jaa − jab − jba + jbb = 0. Finally, this allows us to write

|a0 − b0| · |a1 − b1| = |kaa − kab − kba + kbb| ε2

< 3nε2

as required. �
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Corollary 3. Assume that the preconditions of Corollary 1 are satisfied, and as-
sume further that n ≤ 1

4ε−1/2. Then

(a0 − b0)(a1 − b1) = 2(jaa − jab)(jaa − jba)ε2,

(a0 − b0)(a1 − b1)kaa = (kaa − kab)(kaa − kba)ε2.

Proof. For brevity and clarity, we will write (a0 − b0)(a1 − b1) = xε2 and note that
x is an integer between −3n and 3n, from Corollary 2. Then

xa0a1 =
x

2
+ x

(
jaa +

1
2

)
ε + xkaaε2,

xa0a1 =
a0(a1 − b1)

ε
· a1(a0 − b0)

ε
= ((jaa − jab) + (kaa − kab)ε) ((jaa − jba) + (kaa − kba)ε)

= (jaa − jab)(jaa − jba) + ((jaa − jab)(kaa − kba) + (jaa − jba)(kaa − kab)) ε

+ (kaa − kab)(kaa − kba)ε2.

Consequently,

x − 2(jaa − jab)(jaa − jba)

= (2(jaa − jab)(kaa − kba)

+ 2(jaa − jba)(kaa − kab) − (2jaa + 1)x) ε

+ (2(kaa − kab)(kaa − kba) − 2kaax) ε2,

|x − 2(jaa − jab)(jaa − jba)| ≤
(

2
n

4
3n

2
+ 2

n

4
3n

2
+ 3

(n

2
+ 1

)
n

)
ε

+
(

2
3n

2
3n

2
+ 6n2

)
ε2

=
(
3n2 + 3n

)
ε +

21
2

n2ε2

≤ 3
16

+
3
4
√

ε +
21
32

ε < 1,

and since the only integer with absolute value less than one is zero, we can conclude
that x = 2(jaa − jab)(jaa − jba) as required.

We now consider xa0a1ε
−2 modulo 1

2ε−1, and note that

xkaa ≡ xa0a1ε
−2

≡ (kaa − kab)(kaa − kba)

and further that

|xkaa − (kaa − kab)(kaa − kba)| ≤ 3n · n +
3n

2
· 3n

2

=
21n2

4
≤ 21ε−1

64
<

1
2
ε−1

and therefore xkaa = (kaa − kab)(kaa − kba). �
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Theorem 3. Let β = 2 and assume that z0 = a0 + b0i, z1 = a1 + b1i, and
z2 = ((a0 ⊗ a1) � (b0 ⊗ b1)) + ((a0 ⊗ b1) ⊕ (b0 ⊗ a1))i are such that

0 ≤ a0, b0, a1, b1,(1)

b0b1 ≤ a0a1,(2)

b0a1 ≤ a0b1,(3)

1/2 ≤ a0a1 < 1,(4)

1/2 ≤ a0 < 1,(6)

and no overflow, underflow, or denormal values occur during the computation of
z2. Assume further that the results of arithmetic operations are correctly rounded
to a nearest representable value, and that

(5)
|z2 − z0z1|

|z0z1|
> ε

√
5 − nε > ε · max

(√
1024/207,

√
32/7 + 2ε

)
for some n < 1

4ε−1/2 and ε ≤ 2−6. Then there exist integers c0, d0, α0, β0, c1, d1,
α1, β1 satisfying

a0 =
c0

d0
(1 + α0ε) b0 =

c0

d0
(1 + β0ε)

a1 =
c1

d1
(1 + α1ε) b1 =

c1

d1
(1 + β1ε)

gcd(c0, d0) = 1
d0

2
≤ c0 ≤ d0

gcd(c1, d1) = 1
d1

2
≤ c1 ≤ d1

2c0c1 = d0d1 < 3n
1
2

< a0,b0, a1, b1 < 1

α0 ≡ β0 ≡ −ε−1 (mod d0) α0 �= β0

α1 ≡ β1 ≡ −ε−1 (mod d1) α1 �= β1

min (α0, β0) + min (α1, β1) ≥ 0 max (|α0| , |β0|) · max (|α1| , |β1|) < n.

Proof. Let the values jaa, jab, jba, jbb, kaa, kab, kba, and kbb be as constructed in
Theorem 2, and further let g0 = gcd(jaa − jab, (a1 − b1)/ε). From Corollary 1 we
know that 1/2 < a1, b1 < 1, so a1 and b1 are multiples of ε; consequently, g0 must
be an integer. By the same argument, g1 = gcd(jaa − jba, (a0 − b0)/ε) is an integer.

Now note that

g0|(a1 − b1)ε−1|(a1 − b1)a0ε
−2 = (jaa − jab)ε−1 + (kaa − kab)

and since g0|(jaa−jab), we can conclude that g0|(kaa−kab). By the same argument,
g1|(kaa − kba).

We now write

c0 =
jaa − jab

g0
d0 =

a1 − b1

g0ε
e0 =

kaa − kab

g0

c1 =
jaa − jba

g1
d1 =

a0 − b0

g1ε
e1 =

kaa − kba

g1

and note that these values are all integers; further, from Corollary 3 we have
d0d1kaa = e0e1 and d0d1 = 2c0c1, and since gcd(c0, d0) = gcd(c1, d1) = 1 by
construction, this implies gcd(c0, c1) = 1.
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We now observe that

a0 =
a0(a1 − b1)

a1 − b1
=

c0g0ε + e0g0ε
2

d0g0ε
=

c0 + e0ε

d0
,

a1 =
a1(a0 − b0)

a0 − b0
=

c1g1ε + e1g1ε
2

d1g1ε
=

c1 + e1ε

d1
,

and therefore

1
2

+
(

jaa +
1
2

)
ε + kaaε2 = a0a1

=
c0c1

d0d1
+

c0e1 + e0c1

d0d1
ε +

e0e1

d0d1
ε2

=
1
2

+
c0e1 + e0c1

d0d1
ε + kaaε2,

and thus (using d0d1 = 2c0c1),

c0c1 (2jaa + 1) = c0e1 + e0c1.

Consequently, c0|e0c1 and c1|c0e1, and since gcd(c0, c1) = 1, it follows that c0|e0

and c1|e1. Writing e0 = c0α0, e1 = c1α1 for integers α0, α1, we now have

a0 =
c0

d0
(1 + α0ε) a1 =

c1

d1
(1 + α1ε),

and taking β0 = α0 + 2c1g1, β1 = α1 + 2c0g0, we have

b0 =
c0

d0
(1 + β0ε) b1 =

c1

d1
(1 + β1ε),

as required.
The remaining conditions can be obtained by remembering that a0, b0, a1, and

b1 are integer multiples of ε, and by using the bounds on jxy and kxy given in
Theorem 2. �

Corollary 4. In IEEE 754 single-precision arithmetic (β = 2, t = 24, ε = 2−24),
using “nearest even” rounding mode, the values1

a0 =
3
4

b0 =
3
4
(1 − 4ε) a1 =

2
3
(1 + 11ε) b1 =

2
3
(1 + 5ε)

result in a relative error δ ≈ ε
√

5 − 168ε ≈ ε
√

4.9999899864 in z2, and δ is the
largest possible relative error for IEEE 754 single-precision inputs provided that
overflow, underflow, and denormals do not occur.

1Note that while 2
3

is not an IEEE 754 single-precision value, 2
3
(1 + 5ε) and 2

3
(1 + 11ε) are,

since ε−1 + 5 ≡ ε−1 + 11 ≡ 0 (mod 3).
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Proof. Straightforward computation for the values given establishes that

a0a1 =
1
2
(1 + 11ε) a0 ⊗ a1 =

1
2
(1 + 12ε)

b0b1 =
1
2
(1 + ε − 20ε2) b0 ⊗ b1 =

1
2

�(z0z1) = 5ε + 10ε2 �(z2) = 6ε

a0b1 =
1
2
(1 + 5ε) a0 ⊗ b1 =

1
2
(1 + 4ε)

b0a1 =
1
2
(1 + 7ε − 44ε2) b0 ⊗ a1 =

1
2
(1 + 6ε)

�(z0z1) = 1 + 6ε − 22ε2 �(z2) = 1 + 4ε

|z2 − z0z1|2 = ε2(5 − 108ε + O(ε2))

|z0z1|2 = 1 + 12ε + O(ε2)

and the ratio of these provides the error as stated.
To prove that this is the largest possible relative error for IEEE single-precision

inputs, we note that the mappings z0 → z0i, z1 → z1i, (z0, z1) → (z̄0, z̄1), (z0, z1) →
(z1, z0), z0 → z0 · 2j , and z1 → z1 · 2k do not affect the relative error in z2;
consequently, this allows us to assume, without loss of generality, that conditions
(1)–(4) and (6) are satisfied by the worst-case inputs. Using the results of Theorem
3, an exhaustive computer search (taking about five minutes in MAPLE on the
second author’s 1.4 GHz laptop) completes the proof. �

Corollary 5. In IEEE 754 double-precision arithmetic (β = 2, t = 53, ε = 2−53),
using “nearest even” rounding mode, the values

a0 =
3
4
(1 + 4ε) b0 =

3
4

a1 =
2
3
(1 + 7ε) b1 =

2
3
(1 + ε)

result in a relative error in z2 of approximately ε
√

5 − 96ε ≈ ε
√

4.9999999999999893,
and this is the worst possible provided that overflow, underflow, and denormals do
not occur.

Proof. Straightforward computation for the values given establishes that

|z2 − z0z1|2 = ε2(5 − 36ε + O(ε2)),

|z0z1|2 = 1 + 12ε + O(ε2),

and the ratio of these provides the error as stated.
As in Corollary 4, an exhaustive search using the results of Theorem 3 (again,

taking just a few minutes) completes the proof. �

For β = 2 and t > 6, the constructions given in Corollaries 4 and 5 for a0, b0, a1,
b1 provide for even and odd t, respectively, relative errors of ε

√
5 − 168ε + O(ε2)

and ε
√

5 − 96ε + O(ε2). We believe that these are the worst-case inputs for all
sufficiently large t when β = 2; details will be given in a forthcoming Technical
Report.
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4. A note on methods

The existence of this paper serves as a strong demonstration of the power of
experimental mathematics. The initial result—the upper bound of

√
5ε—was dis-

covered experimentally seven years ago, on the basis of testing a few million random
single-precision products.

Experimental methods became even more important when it came to the re-
sults concerning worst-case inputs. Here the approach taken was to perform an
exhaustive search, taking several hours on the second author’s laptop, of IEEE
single-precision inputs, using only a few arguments from Theorem 1 to prune the
search. Once the worst few sets of inputs had been enumerated, it became clear
that they possessed the structure described in Theorem 3, and it was natural to
conjecture that this structure would be satisfied by the worst-case inputs in any
precision. As is common with such problems, once the required result was known,
constructing a proof was fairly straightforward.
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