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ON THE LARGEST PRIME DIVISOR
OF AN ODD HARMONIC NUMBER

YUSUKE CHISHIKI, TAKESHI GOTO, AND YASUO OHNO

ABSTRACT. A positive integer is called a (Ore’s) harmonic number if its pos-
itive divisors have integral harmonic mean. Ore conjectured that every har-
monic number greater than 1 is even. If Ore’s conjecture is true, there exist
no odd perfect numbers. In this paper, we prove that every odd harmonic
number greater than 1 must be divisible by a prime greater than 10°.

1. INTRODUCTION

Every perfect number is harmonic. Therefore, if Ore’s conjecture, “all harmonic
numbers other than 1 must be even” holds, then the famous conjecture “there does
not exist an odd perfect number” also holds.

A positive integer n is said to be harmonic if the harmonic mean of its positive

divisors

nt(n)

a(n)

is an integer, where 7(n) and o(n) denote the number and the sum of positive
divisors of n, respectively. We call 1 the trivial harmonic number.

In advance of the innovation by Ore’s harmonic numbers, Kanold [I5] proved
that the largest prime divisor p of any odd perfect number, if it exists, is greater
than 60. The estimation of lower bound of p is further developed by Hagis and
McDaniel [9] (resp. [10]) to p > 10* (resp. p > 10°), by Hagis and Cohen [1] to
p > 105, and by Jenkins [14] to p > 107.

Ore [2I] defined and investigated harmonic numbers in 1948. He listed all har-
monic numbers up to 10%, and this list was extended by Garcia [6] to 107, by Cohen
[3] to 2-10°. Sorli [26] gave tables of harmonic numbers up to 10'? and of harmonic
seeds (we recall the definition in this section) up to 10'°, and showed that any
nontrivial odd harmonic number is greater than 10'5.

Kanold [I6] showed the finiteness of the number #{n | H(n) = k} for any k.
Goto and Shibata [7] gave the table of harmonic numbers n with H(n) < 300. Mills
[17] showed that any nontrivial odd harmonic number, if it exists, has at least one
component (prime power divisor) greater than 107. He also announced that one
can extend the bound to 655312 by using a computer. Pomerance [22] announced
that every harmonic number with two components is an even perfect number, and
Edgar and Callan [5] published a proof of the fact.

H(n) =
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In §3, we approach the largest prime divisor of an odd harmonic number using
a concept of harmonic seeds, which is introduced by Cohen and Sorli [4].

Definition. Let d be a positive divisor of an integer n. If d > 1, d is said to be
proper. If (d,n/d) = 1, we call d a unitary divisor of n, and n a unitary multiple
of d. A harmonic number is called a harmonic seed if it does not have a smaller
proper unitary divisor which is harmonic.

Theorem 1.1. There are 967 nontrivial harmonic seeds whose prime divisors are
all less than 10%. These seeds are all even.

The complete table of 967 seeds is available at http://www.ma.noda.tus.ac.
jp/u/tg/harmonic/seeds_100.pdf. Table 7, in the last section, is the partial
table which contains 118 harmonic seeds whose prime divisors are less than 50. In
the table, seeds are ordered first according to their largest prime factor, and among
those, according to the size of H.

Since every harmonic number is a unitary multiple of a certain harmonic seed,
we immediately have the following corollary.

Corollary 1.2. Every nontrivial odd harmonic number must be divisible by a prime
greater than 102,

In order to show Theorem [LIl we need a computer, however, we can show Corol-
lary without a computer, by generalizing the approach of [25] and [2] (for de-
tails, see http://www.ma.noda.tus.ac. jp/u/tg/harmonic/10e2.pdf). Note that
the corollary is an extension of the result of Kanold [I5], who also may not use a
computer.

Let P(N, M) (resp. H(N, M)) be the set of perfect (resp. nontrivial harmonic)
numbers whose N-th largest prime factor is less than M, and O the set of odd
integers. Corollary says that H(1,10%) N O is empty. lannucci [12] (resp. [13])
showed that P(2,10*) N O (resp. P(3,10%) N O) is empty. Pomerance [23] remarked
that the set P(N, M) N O is finite for any positive integers N, M. In §3, we also
prove the following fact, which is an extension of Pomerance’s remark.

Theorem 1.3. The sets H(1, M) and H(N,M) N O are finite.

For N > 2, M > 2, the set H(N, M) seems to be infinite since it contains even
perfect numbers. In §4, we give an outline of the proof of the following theorem.

Theorem 1.4. Fvery nontrivial odd harmonic number must be divisible by a prime
greater than 10°.

2. PRELIMINARIES

In this section, we recall some known facts about harmonic numbers and values
of cyclotomic polynomials. Since 7 and o are multiplicative, we can express H(n)

as
pz pz
i

when the canonical factorization of n is [;_, p{*. Usmg the facts 7(p®) = e+1 and
o(p®) = (p —-1)/(p— 1) we have

(1) H H Dy ( Hpelele

d|(61+1)
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where ®4(z) denotes the d-th cyclotomic polynomial. The following facts about
harmonic numbers are due to Ore, Garcia, or the second author. In this paper,
p° || n means that p® | n and p**! { n. We denote by w(n) the number of distinct
prime factors of n.

Lemma 2.1 ([21]). If n is a squarefree harmonic number, then n =1 or 6.

l
Lemma 2.2 ([6], [I7], [1). If n is an odd harmonic number and p° || n, then
p¢ =1 (mod 4).
(
Then n < (24 )2k(2k+1). In particular, there exist only finitely many odd harmonic
numbers n satisfying w(n) =k, for a given positive integer k.

Lemma 2.3 ([8]). Suppose that n is an odd harmonic number and w(n) = k.

In the nineteenth century, values of cyclotomic polynomials, often called cy-
clotomic numbers, were studied by Kronecker, Sylvester, et al. Their works are
described as Lemma [Z4] (see [20] or [24]). Throughout this section, the symbols
a,d represent integers greater than 1, and p, ¢, k primes. If k t a, we denote by
ordy(a) the order of a € (Z/kZ)*.

Lemma 2.4. A prime k divides ®4(a) if and only if d = k¢ordg(a) for some
nonnegative integer c. Furthermore, if k| ®4(a) and k | d, then k || ®4(a).

From Lemma [Z4] we immediately obtain the following fact: if k& | ®4(a), then
kE|dor k=1 (mod d). In the former (resp. latter) case, we say that k is intrinsic
(resp. primitive). These terms were used by Murata and Pomerance [19].

The following lemma is known as Bang’s theorem. The most famous proof is
due to Birkhoff and Vandiver [I] (see also [24]). Motose [18] gave a simpler proof
of the fact.

Lemma 2.5. A cyclotomic number ®4(a) has no primitive prime factors if and
onlyifd=2,a=2—1, ord=06,a=2.

3. PROOFS OF THEOREMS 1.1 AND 1.3
In this paper, p, p;, ¢, k will denote prime numbers.

Proposition 3.1. Let n = [[._, p;" be a harmonic number greater than 6, and
p = max(p;). Then the following facts hold.
(a) The largest prime divisor of the product [[;_,(e; + 1) is less than p/2.
(b) max(e;) <p—2.

Proof. (a) Let ¢ be the largest prime divisor of []._,(e; + 1). Then the left-hand
side of () is divisible by ®,(p;) for some p;. Note that ¢ > 2 from Lemma 211 By
Lemma 25, ®,(p;) has a primitive prime factor k, so that k =1 (mod ¢). Assume
that ¢ > p/2. Then k > 2¢+ 1 > p + 1. The left-hand side of () is divisible by k,
which is greater than max(p, ¢), a contradiction.

(b) Let e = max(e;). Lemma [21] implies e > 1. Assume that e = 5 and the
required inequality does not hold. Then it is necessary that n = 2°13%25% with
0 < ¢; < 5, max(e;) = 5, however, such an n is not harmonic. Hence we can
assume that e # 1,5, so ®.41(p;) has a primitive prime divisor k from Lemma
Assume that e > p — 2. Then we have k > e+ 2 > p, which is contradictory to the
equation (). O
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TABLE 1.

p (largest prime) || 3 | 5 | 7 | 11|13 | 17 | 1923 |29 |31 | 37 | 41
# of seeds 1{1|13]0|5| 2 (190|037 10| 19
p (largest prime) || 43 | 47 | 53 | 59 | 61| 67 | 71| 73|79 |83 | 89 | 97
# of seeds 211 0| 0| 0 |89]|143 84|97 26| 0 | 127|283

It follows immediately from Proposition B.I] that there exist only finitely many
harmonic numbers whose prime divisors are less than a given number. Since there
exist many such numbers, we consider only harmonic seeds. In order to show
Theorem [Tl we use Garcia’s method ([6]) and Proposition Bl For example,
suppose that n is an harmonic seed whose largest prime factor is 7. We demonstrate
that n is one of the following:

227, 2°3.7, 2°3%5.7.

If p© || n, then Proposition B (b) implies that e < 5, and (a) implies e # 4. Since
H(7%) = 75/(2219-43), it is impossible that 7° || n. If p € {2,3,5,7}, e € {1,2,3,5}
and the denominator of H(p®) has no prime factor greater than 7, then p¢ is one of
the following:
2,22, 23 925 3 3% 5, 7, 73
Suppose that 7 || n. Since H(7) = 7/22, it is necessary that 22 | n. Considering
that 22 || n, we get a seed 227. Suppose that 23 || n. Since H(7-23) = (237)/(3-5),
it is necessary that 5 || n. Since H(7 - 235) = (235 -7)/32, it is necessary that
3% || n. We obtain H(7-235-3%) = (223 - 7)/5, however, we cannot eliminate 5 in
the denominator. We illustrate whole procedures as follows:
7, (need to eliminate 2?),
22, (seed).
2%, 5, 3%, (cannot eliminate 5).
2°, (need to eliminate 3),
3, (seed).
3%, 5, (seed).
73, (cannot eliminate 52).
Using this method and a computer, we can show Theorem [[LJl Table 1 gives the
number of seeds whose largest prime divisor is equal to p (< 10?).

Proof of Theorem [L3l The finiteness of H(1, M) is immediate from Proposition
Bl Let m(x) denote the number of primes less than z. If n € H(N, M) N O, then
w(n) < N 4 m(M). There are only finitely many such n from Lemma 23 O

4. PROOF OF THEOREM 1.4

In this section, we prove Theorem [[L4l Assume that n is a nontrivial odd har-
monic number whose canonical factorization is [[;_, p$* with max(p;) < 10°. Put
N = {p*,...,pé}. If p¢ € N, then it is necessary that the following four conditions
hold (cf. Lemma 22 Proposition Bl (b) and equation ().

() 3<p<10%
(i) 1<e< 105,
(iii) p¢ =1 (mod 4),
(iv) the integer [[;(.41), 421 Pa(p) has no prime factors greater than 10°.
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TABLE 2.

) 0 1 2 3 4 5 6 7 8
#A; || 10621 | 8539 | 7600 | 7041 | 6590 | 6307 | 6127 | 5996 | 5929
) 9 10 11 12 13 14 15 16 17
H#A; || 5779 | 5596 | 5458 | 5371 | 5297 | 5262 | 5255 | 5250 | 5250

Let A be the set of prime powers p© satisfying these conditions. From (i) and (ii), the
set A is finite, so we can determine A using a computer. In fact, #.4 = 10621 and all
elements of A are given in http://www.ma.noda.tus.ac.jp/u/tg/harmonic/10e5.
nb (using this file and Mathematica®, we also have other sets given in this section).
In order to determine .4, TABLE 1 in [I1] is useful. For example, suppose that
3¢ € A. According to the table, if ®,(3) has no prime factors greater than 107,
then ¢ = 3,5,7,11 or 17. Hence condition (iv) implies that e + 1 has the form
3¢B3)5e®)7e(M 11D 17¢(7) " Since ®44(3) has a prime factor greater than 10°, it is
necessary that e(3) < 3. Similarly, we have e(5),e(7),e(11),e(17) < 1. Checking
all divisors of 335-7-11-17, we have e+ 1 = 3,5,7,9,11, 15,17 or 27. Therefore,
all powers of 3 contained in A are 32,3%,36, 3% 310 314 316 and 326,
Next, we define subsets of A inductively. Let Ay = A and for i > 1,

A= p° K" || Tlaje+1), a1 ®a(p) implies that
¢ " either (v) or (vi) holds ’
where conditions (v) and (vi) are given as
(v) there exists k* € A;_y such that s > r,
(vi) there exists ¢/ € A;_; such that k | (f +1).

We easily see by equation () that (] .A; D N. Using a computer, we can determine
A;. Table 2 gives the cardinalities of A;.
Unfortunately, A6 = A7, so that (] A; = Aje. Note that

{g: q| (e+1) for some p° € A6} ={2,3,5,7};

therefore, if a prime k divides the left-hand side of ([Il) and k& > 7, then k | n. We
now show the following claim.

Claim 1. 2696, 74, 795, 312 ¢ \/.

Proof. The proof of 2696 ¢ N is relatively easy. Assume that 269° || n. Since
2633 | ®7(269), it follows that 2633 | n. All powers of 2633 in A are 2633
and 2633%. In both cases, ®3(2633) appears in the left-hand side of (). Since
439 | ®5(2633), it is necessary that 439 | n, so that 4392 || n. Since 211 | ®7(269),
it is necessary that 2112 || n. We obtain

7-211-269° - 439
H(269%2633 - 43922112) =
( ) 3.13-313.37-43-67-631 - 25229’

however, we cannot eliminate 31% in the denominator (note that 312 is the only
power of 31 in Ajg). Therefore, we have 269° ¢ A/. For brevity, let us write this
proof as follows:

269°, 2633, 4392, 211 [31].
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Next, we prove 74 ¢ N and 795 ¢ N. Note that if p® € Ay and 7| (e + 1), then
p® =195, 79 or 269°. We now know 269° ¢ A/.

(proof of 7* ¢ N)

74, 28012, 49332, 1272, 54192, 432, 6314, 46601, 8632, 112, 41, (313 or 313*) [
313, 157, (79% or 79°%),
792, [7] .
79°, 2017, [ 1009].
3132, (1812 or 181%),
1812, (792 or 79%),

792, [7].
795, 2017, .
1813, (19% or 79) B
19°, 70841, 11807, 2017, [1009].
796, 2017, [ 1009 |.

(proof of 79¢ ¢ N)

795, (1289 or 1289?),
1289, 432, 6314, 46601, 15112, 8632, 152172, 127992, 90012, 60672, 337, 281,
41, 112, (67% or 67%),
672, 75, 4733, 263%, (163% or 163*),
163%, 13, [7].
1631, 1301, 13, [7].

674, 26881, 13441, 761, 1272, 54192, 2017, | 1009 |.

12892, 1272, 54192, 2017, | 1009 |.

The proof of 312 ¢ N is very long. The complete proof is available at http://
www.ma.noda.tus.ac.jp/u/tg/harmonic/31e2.pdf.

(initial part of the proof of 312 ¢ N)

312, (3312 or 331%),
3312, (5233 or 5233%),
5233, (2617 or 26172),
2617, 11%, (19% or 19%),
192, 1277, 54197, (313 or 3132),

313, 157, 792, 432, 631%, 46601, 15112, 8632, 7°, 4733, 263, [7].

3137, (1817 or 181%),
1812, 792, 43%, 631%, 46601, 15112, 863%, 7°, 4733, 263, | 7].
1813, 163812, 72313, (1237 or 1237?),

1237, 6192, [19].
12372, 1117, 432, 631%, [11].

19%, 70841, 118072, 701, (13%, 13* or 13%),

*If 313¢ € Aig, then 313¢ = 313, 3132, 3133 or 3135. However, we can deal with the cases of
3133,3135 similarly to the case of 313.

fRecall that a boxed 7 means that 7 cannot be eliminated. For m = 7%28012493321272x
5419243231446601 - 863211241 - 313 - 157 - 792, we have H(m) = x/(7%y) with 7{x, 7{y. In order
to eliminate 7, we need 7¢ or p%, however, m has prime power divisors 74, 792. Hence we can use
only 199, and cannot cancel 72.

In order to eliminate 7, we need 198 or 796.
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TABLE 3.

p° H(p®)

5 5/3

52| (3-5%)/31

53 | 53/(3-13)

54 | 5%/(11-71)

55 | 5°/(3-7-31)

57 | 57/(3-13-313)

59 | 510/(3-11-71-521)

511 | 511/(3.7-13-31-601)

514 1 (3-519)/(11-31-71-181-1741)
519 | 520/(3-11-13-41-71-521-9161)
529 15%0/(3.7-11-31-61-71-181-521-1741 - 7621)
3t | (3%5)/112

311 (31%5) /(11213 - 4561)

13* | (5-13%)/30941

474 | (5-471)/(11- 31 - 14621)

674 | (5-67%)/(761 - 26881)

109* | (5-109%)/(31- 191 - 24061)

163* | (5-163%)/(11-31-1301-1601)

7574 | (5-7574)/(11 - 191 - 2521 - 62081)

953% | (5-953%)/(41-1601 - 2161 - 5821)

14474 | (5-1447%)/(4831 - 16901 - 53731)

16974 | (5-16972)/(11241 - 941 - 1021 - 1741)

7727* | (5-7727%)/(11 - 31 - 181 - 461 - 2851 - 43951)
20749 | (5-20749%)/(11- 61 - 211 - 5381 - 5801 - 41941)
28759 | (5-28759%)/(11-41-191 - 521 - 761 - 2861 - 7001)
516374 | (5-51637%)/(11 - 41 -641 - 701 - 751 - 3761 - 12421)

One of the most difficult cases is that n is a unitary multiple of
m = 31233125233 - 2617%11833 - 193 - 9723169 - 317 - 754733 - 2632109
x 11219°70841 - 118072701 - 13761 - 409 - 14281 - 2017 - 1009 - 193>
x 149 - 101 - 17341 - 293421 - 211237710529 - 137289 - 73 - 53
with
_7-11-13-17-19%29 - 37°137 - 193 - 211 - 263 - 331 - 2617 - 11807
318515 :

In order to eliminate 5, we need a prime power p® with p =5 or 5| (e+1). Table 3
gives all such prime powers in A;¢. Since 13,109 divide m, we cannot use 13%, 109%.

If

H{(m)

p° € {5%,5°, 51 51 529 474 1634 7727},
then 31 divides the denominator of H(p¢), so we cannot use these prime powers. If

p° € {3431 7574 16974, 20749%, 28759, 51637},
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TABLE 4.

{ 0 1 2 3 4 5 6 7 8 9
#B; || 5249 | 4920 | 4599 | 4328 | 4143 | 3941 | 3781 | 3681 | 3451 | 3199
i 10 11 12 13 14 15 16 17 18
#B, || 3051 | 2767 | 2649 | 2617 | 2580 | 2564 | 2552 | 2550 | 2550

TABLE 5.
P° H(p°) P° H(p°)
5 [5/3 59 | 510/(3-11-71-521)
53 | 53/(3-13) 519 | 520/(3-11-13-41-71-521-9161)
5% | 55/(11-71) 3t | (3%5)/112
57| 57/(3-13-313)

then 11 divides the denominator of H(p®), so we can use at most one of these prime
powers. Now, we must consider only 5'9. We can deal with this case as follows:

m, 52, (712 or 71%),
712, 5113, 25572, [7],

714, [11].

In this way, we can complete a proof of Claim 1. O

Now, we know 312 ¢ N, so we define By = A6\ {31%} and for i > 1, define B;
similarly to A;. It is clear that () B; D N. Table 4 gives the cardinalities of B;.
Hence we have () B; = Bi7. We now prove the following claim.

Claim 2. 195 ¢ V.
Proof. If 196 || n, then it is necessary that n is a multiple of
m = 19570841 - 1180722017 - 1009 - 701 - 409 - 101 - 41 - 133 - 173 - 29

with H(m) = (17 - 19511807)/(3%5°). In order to eliminate 5, we need a prime
power p¢ with p =5 or 5| (e +1). Table 5 gives all such prime powers in By7.
It is necessary that 5* | n, however, we lead to a contradiction as follows:

51, 712, 5113, 25572, 112, 79, [29].

57, 3132, 181°%, 163812, 72313, 173, [29].
59, 521, [29].

519, 521, [29].

Now, the proof of Claim 2 is completed. O
We define Cy = B17\{19°}, and for i > 1, define C; similarly to A;. It is clear

that () C; D N. Table 6 gives the cardinalities of C;. Hence we have (| C; = ¢ and
N = ¢, so that the proof of Theorem [[.4]is completed.
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TABLE 6.

1 0 1 2 3 4 5 6 7
#C; || 2549 | 2283 | 1713 | 1179 | 938 | 824 | 535 | 353

1 8 9 10 11 12 | 13 | 14 | 15
#C; || 279 | 226 | 202 | 170 | 125 | 26 | 3 0

5. CONCLUDING REMARK

We have proved that the largest prime divisor of a nontrivial odd harmonic
number is greater than 10°. This is an extension of the result of Hagis and McDaniel
[10]. It may be expected that one can raise this bound to 10° by the same method.
If we define the sets A;, B;, C; similarly for the bound 10°, then we have

#A0=85126, (A=A, #Ap = 41124,
(\B:i = Biz, #Biz = 18306, Cig =0

(see the file 10e5.nb). Therefore, we have to prove only 312 ¢ N and 19% ¢ N.
However, it seems to be difficult to prove 312 ¢ N by a similar method, since the
set Ajg is relatively large.

6. APPENDIX: TABLE OF SEEDS

TABLE 7. All harmonic seeds whose prime divisors are less than 50

2.3 2 || 2%-31 5
2.3%5 6 || 2°5231 10
227 3 || 2°527-31 25
253.7 8 || 2°3%11-31 48
253%5. 7 24 || 2°527331 49
2.327.13 9 || 2°527%19- 31 70
23325.7.13 24 || 297-11%19-31 88
22537313 35 || 273%5%17 - 31 96
233%537. 13 60 || 29327.11-13-31 120
2533537313 168 || 2732527.13-17-31 240
2232537313317 273 || 2''527%13-.19- 31 256
2535537313317 936 || 2°327%11-13-19-31 336
225 . 7219 14 || 2%32557213.19- 31 375
2.3%5.7%13 .19 42 || 2°335°72%19 - 31 375
22537213 .19 50 || 2532557313 .31 375
2.3%5.7%13-19 81 || 293%25.7%11-13-31 392
253%5.7%13 - 19 96 || 273-5%7-11%217-19 - 31 484
2-3%5%7213 . 19 105 || 2°3°7211-13-19-31 648
233%5.7.11%19 108 || 2732527213 .17 -19 - 31 672
2333537213 . 19 168 || 2°3%5.7311-13 .31 756
2533537213 . 19 240 || 2'1335°7313 .31 960
27345 .7.11%217 - 19 384 || 2734527 .11%17-19 - 31 1080
2232537213317 - 19 390 || 273°527213.17-19 - 31 1296
253 .537%11%13 - 19 484 || 293537311213 .19 - 31 1540
2233537213317 - 19 507 || 273°5°7%13 .17 - 31 1800
2-355%7213%17 . 19 585 || 2932537311213 .19 - 31 2772
2334537311213 - 19 756 || 2732557311217 - 19 - 31 3388
2335537213317 - 19 936 || 293°5-7211-13%17-19-31 | 4056
2534537311213 . 19 1080 || 273%5°7311217 .19 - 31 4200
2734537311213.17-19 | 2688 || 2732557311213 .17-19-31 | 4840
2534537311213%17.19 | 4056 || 293537311 - 13317 - 31 5460
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TABLE 7 (continued)
2735557313 . 17329 - 31 6936 || 237537211213 .19 - 31 - 41 10692
293%537211 - 13%17 - 19 - 31 7800 || 2737557217319 - 29 - 31 - 41 13872
2932537%11213%17 .19 - 31 8008 || 237537311 -13%17-31 - 41 14196
293%537311213%17 .19 - 31 15444 || 2°375%7211-13%17-19- 31 - 41 20280
273%557311217%19 . 29 - 31 16184 || 27375°7%13 .17 - 19 - 31337 - 41 34596
2935537211 . 13317319 . 29 - 31 30056 || 29375°7%11 .13 .19 - 31337 - 41 41850
293.527.11-13-19 - 31337 1550 || 2°375°7%11 13317 - 19 - 31337 - 41 157170
29335.7.11-13-19 - 31337 1922 || 2°325.7°11-13-19-43 686
293%527.11-13-19 - 31337 2790 || 2°3°5-7°11-13-19 - 43 1323
293.527%11-13-19 - 31337 3038 || 2°3%5%7°11-13-19-43 1715
2932527.11-13%17- 19 - 31337 8060 || 2*13.527°11-13-19-31-43 2744
293%527.11-13%17- 19 - 31337 10478 || 2732527511 -13-17-19 - 31 - 43 4802
2933557311 .13 . 19 - 31337 10850 || 2°37537511-.13-19 -41-43 6615
2935537311 . 13317 . 19 - 31337 40362 || 273527511 -13-17-19-31-43 9261
2935557311 - 13317 - 19 - 31337 60450 || 2°3°537°11-13%17 - 19 - 43 9555
2935557311 - 13317319 - 29 - 31337 | 232934 || 2'13%5°7511.13-19-31-43 9800
29377.11-31-41 324 || 27375%7511-13-17-19 - 41 - 43 16464
2.375%7%13 .19 - 41 405 || 273°5°7511-13-17-19-31 - 43 18375
2737527 .17 .31 - 41 648 || 2'13°537511-13%17-19- 43 18816
2337537213 .19 - 41 648 || 2°375%7511-13%17-19-41 - 43 24843
2537537313 . 41 648 || 27375°7°11-17-19-31-41-43 25725
29375 .7211-19 - 31 - 41 1512 || 2'1375%7511 .13 .19 - 31 -41-43 37800
2.375%7213%17. 19 - 41 1521 || 2'13°5%7511.13%17-19-31 - 43 54600
2737537213 .17 -19 - 41 2304 || 273°5°7°11-13-17%19 - 29 - 31 - 43 70805
2737557317 .31 - 41 2520 || 2737557°11 - 17%19 - 29 - 31 - 41 - 43 99127
2737557217 .19 - 31 - 41 3600 || 273%557%11 - 13%17%19 .29 - 31 - 43 140777
2937537311 .13 - 31 - 41 3780 || 21137557°11-13%17-19 - 31 - 41 - 43 | 141960
2937537211 .13 .19 - 31 - 41 5400 || 211355°7°11.13%317319 .29 .31 - 43 | 210392
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