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COMPUTATION OF CAPACITY

THOMAS RANSFORD AND JÉRÉMIE ROSTAND

Abstract. This article introduces a method for computing upper and lower
bounds for the logarithmic capacity of a compact plane set. If the set has the
Hölder continuity property, then these bounds converge to the value of the
capacity. A number of examples are discussed in detail, including the Cantor
middle-third set, for which we estimate c(E) ≈ 0.220949102189507.

1. Introduction

The capacity of a set in Rn measures its size from the point of view of potential
theory. In particular, the sets of capacity zero play the role of negligible sets in
potential theory in much the same way that sets of measure zero are negligible in
measure theory. But there are also occasions when the actual value of the capacity
is important. This is particularly true of the logarithmic capacity in R2, which is
the case that we study in this article.

It has been known since the early 1930’s, thanks to the work of Fekete and
Szegő, that logarithmic capacity is closely linked with complex analysis, where it
appears in several other guises. For example, it is the same thing as the Chebyshev
constant, which plays a key role in polynomial approximation [15]. It is also equal to
the transfinite diameter, where it leads to several applications in number theory [3].
Also, as the (negative exponential of the) Robin constant, it is intimately connected
with Green’s functions and conformal mapping [10, 12, 13]. This latter connection
can be exploited to compute the capacity in a few simple cases. For instance, the
capacity of a disk is equal to its radius, and the capacity of a line segment is one
quarter of its length. For a list of other examples, see e.g. [13, p.135].

In general, however, capacity is notoriously hard to compute. Unless the set
in question is connected, or has some special symmetry, the conformal mapping
techniques break down. The purpose of this article is to describe a numerical
method which provides rigorous upper and lower bounds for the capacity of any
compact plane set. If the set has the Hölder continuity property, then these bounds
can in principle be made arbitrarily close to one another, and therefore converge
to the true value of the capacity. We shall give several examples to illustrate how
the method works in practice, in particular computing the capacity of the Cantor
middle-third set.
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The paper is organized as follows. After establishing basic definitions and nota-
tion in §2, we develop in §3 the theory that leads to the bounds for capacity and
their convergence to the true value. In §4 we describe the numerical methods used,
and then present a number of illustrative examples in §5. Finally, in §6, we apply
our techniques to investigate the variation of the capacity of a family of generalized
Cantor sets.

2. Definitions and notation

2.1. Capacity. Let E be a compact subset of C. We write P(E) for the family of
all Borel probability measures on E. Given µ ∈ P(E), we define its energy by

I(µ) :=
∫∫

log
∣∣∣ 1
z − w

∣∣∣ dµ(z)dµ(w).

If there exists µ ∈ P(E) such that I(µ) < ∞, then there exists a unique ν ∈ P(E),
called the equilibrium measure, such that

I(ν) = min
µ∈P(E)

I(µ).

The capacity of E is then defined by

c(E) := e−I(ν).

In the remaining case, namely when I(µ) = ∞ for all µ ∈ P(E), we define c(E) := 0.
For more information about capacity, see e.g. [13, §5].

2.2. Matrix games. Our method for computing capacity will be to convert the
problem to the calculation of the value of certain matrix games. We now briefly
introduce the notation used.

Fix a positive integer n, and set ∆n := {(t1, . . . , tn) : tj ≥ 0,
∑

j tj = 1}. Given
an n × n matrix h = (hij), we shall write

M(h) := min
s∈∆n

max
t∈∆n

∑
i,j

hijsitj = max
t∈∆n

min
s∈∆n

∑
i,j

hijsitj .

The equality of the two quantities defining M(h) is a simple consequence of the
von Neumann minimax principle [16, Theorem 1.3]. Notice that, since a convex
combination of numbers always lies between their maximum and minimum, we also
have

M(h) = min
s∈∆n

max
j

∑
i

hijsi = max
t∈∆n

min
i

∑
j

hijtj .

In practice M(h) can be computed as the solution to a linear programming
problem. We shall return to this in §4.1.

2.3. Other notation. Throughout the paper B(w, r) will denote the closed disk
with center w and radius r. Also, given compact subsets E, F of C, we shall write
diam(E) for the diameter of E, and dist(E, F ) for the distance between E and F .
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3. Bounds for capacity and the main convergence theorem

In this section, we consider the following general set-up. Let E be the compact
subset of C whose capacity we would like to compute. We suppose that we have
compact subsets F1, . . . , Fn of C and a real number δ > 0 such that

(3.1)
{

E ⊂ F1 ∪ · · · ∪ Fn,

c(E ∩ Fi) ≥ δ (i = 1, . . . , n).

We define symmetric n × n matrices a and b by

(3.2) aij := log
1

diam(Fi ∪ Fj)
, bij := log

1
max(δ, dist(Fi, Fj))

.

3.1. Bounds for the capacity. Our method for computing the capacity of E is
based upon the following theorem, which provides upper and lower bounds for the
capacity in terms of M(a) and M(b).

Theorem 3.1. Let E be a compact subset of C. Suppose that F1, . . . , Fn, δ satisfy
(3.1) and that a, b are defined as in (3.2). Then

M(a) ≤ log
1

c(E)
≤ M(b).

This theorem will be proved in §3.3 below.
At first sight, the theorem appears to imply a circular argument, since, to es-

timate the capacity of E, we first need to choose F1, . . . , Fn with c(E ∩ Fi) ≥ δ,
and so we need to estimate these capacities as well. However, as we shall see, even
fairly rough estimates for c(E ∩ Fi) lead to much better estimates for c(E).

This still leaves us with the problem of finding initial estimates for c(E ∩ Fi).
There are several approaches to this.

The simplest case is when E is connected. In this situation, it follows using [13,
Theorem 5.3.3 (a)] that

c(E ∩ B(w, r)) ≥ r/4 (w ∈ E, 0 < r ≤ diam(E)).

Thus we can take a covering of E of the form Fi := B(wi, r) (wi ∈ E), and δ := r/4.
A more general situation is when E is uniformly perfect. This means that there

exists a constant β > 0 such that

(3.3) E ∩ {z : βr ≤ |z − w| ≤ r} �= ∅ (w ∈ E, 0 < r ≤ diam(E)).

It is easy to see that if E is connected (and has more than one point), then it is
uniformly perfect. A finite union of uniformly perfect sets is again uniformly perfect.
There are also interesting examples of uniformly perfect sets with infinitely many
components, such as Julia sets of rational functions [4, Theorem 3.3], and limit
sets of certain iterated function systems [1, Corollary 1.4], for instance the Cantor
middle-third set. A fundamental fact about uniformly perfect sets is the following
inequality, due to Pommerenke [11]: if E satisfies (3.3), then

c(E ∩ B(w, r)) ≥ β2r/32 (w ∈ E, 0 < r ≤ diam(E)).

Thus in this case, we can again take Fi := B(wi, r), now with δ := β2r/32.
A third option, which is sometimes available when E exhibits affine self-similarity,

is to choose the Fi so that each set E ∩ Fi is just a scaled copy of E, say E ∩ Fi =
λiE + τi, where λi, τi ∈ C. In that case, c(E ∩ Fi) = |λi|c(E), and so if we already
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have a lower bound c0 for c(E) (either a priori, or via a previous application of
Theorem 3.1), then we can take δ = c0 mini |λi|.

3.2. Convergence. Theorem 3.1 yields upper and lower bounds for c(E), but it
says nothing about how close together they are. This is the subject of our second
theorem. To state it, we need some definitions.

We shall say that a continuous function gE : C → R is the Green’s function for
E if ⎧⎪⎨⎪⎩

gE is harmonic on C \ E,

gE = 0 on E,

gE(z) = log |z| + O(1) as |z| → ∞.

These conditions determine gE uniquely, if it exists. (Strictly speaking, what we
have defined is the Green’s function of the unbounded component of C∞ \ E with
pole at infinity, extended to be zero elsewhere in C. For more information on
Green’s functions see e.g. [13, §4.4].)

A compact set E is said to have the Hölder continuity property (HCP) if its
Green’s function gE exists and satisfies

|gE(z) − gE(w)| ≤ A|z − w|α (z, w ∈ C)

for some constants A, α > 0. It is known that every uniformly perfect set has HCP,
and that if a set E is connected or has just finitely many components (none of them
singletons), then in fact it satisfies HCP with exponent α = 1/2. For more details
about HCP, see for instance the recent paper [5].

Theorem 3.2. Let E be a compact set which satisfies HCP with exponent α > 0.
Suppose that F1, . . . , Fn, δ satisfy (3.1) and that a, b are defined as in (3.2). Then

(3.4) M(b) − M(a) ≤ CEdα/(α+1) log
(diam(E)

δ

)
,

where d := maxi diam(Fi), and CE is a constant depending only on E.

The theorem will be proved in §3.3 below.
It demonstrates that, if we can choose coverings (Fi) of E such that δ is propor-

tional to d := maxi diam(Fi), then M(b) − M(a) = O(dα/(α+1) log(1/d)) as d → 0,
and therefore M(a), M(b) → log 1/c(E) as d → 0. From what we said above, this
will always be the case if E is uniformly perfect. If, further, E has only finitely
many components, then we may take α = 1/2, and so in this case the error is
O(d1/3 log(1/d)) as d → 0.

We remark that the computational effort involved in calculating M(a) and M(b)
depends directly on n, the number of sets Fj used to cover E. To cover E by n sets
of diameter d, we need to take n to be of the order d− dim(E), where dim(E) denotes
the Minkowski dimension of E (see [8, §3.1]). Thus, from this point of view at least,
sets of smaller dimension are better. In particular, if E has non-empty interior, then
one should profit from the fact that c(E) = c(∂E) (see e.g. [13, Theorem 5.1.2]),
and compute c(∂E) instead.

3.3. Proofs of the theorems. We begin with the proof of Theorem 3.1. Let E
be a compact subset of C. We suppose that F1, . . . , Fn, δ satisfy (3.1) and that the
matrices a, b are defined as in (3.2).
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Lemma 3.3. Let G1, . . . , Gn be a Borel partition of E such that Gj ⊂ Fj for all
j. Let ν be the equilibrium measure for E. Then, for each i ∈ {1, . . . , n},∑

j

aijν(Gj) ≤ log
1

c(E)
≤

∑
j

bijν(Gj).

Proof. Fix i ∈ {1, . . . , n}. Let νi be the equilibrium measure of E ∩ Fi. Then its
potential

Uνi
(z) :=

∫
log

∣∣∣ 1
z − w

∣∣∣ dνi(w)

clearly satisfies

log
1

diam(Fi ∪ Fj)
≤ Uνi

(z) ≤ log
1

dist(Fi, Fj)
(z ∈ Fj).

Also, by Frostman’s theorem [13, Theorem 3.3.4],

Uνi
(z) ≤ I(νi) = log

1
c(E ∩ Fi)

≤ log
1
δ

(z ∈ C).

Putting these together we deduce that

aij ≤ Uνi
(z) ≤ bij (z ∈ Fj),

where aij , bij are defined as in (3.2).
Now, by Frostman’s theorem again, Uν = I(ν) = log 1/c(E) on E, outside an

exceptional set of capacity zero, and hence of νi-measure zero. Using Fubini’s
theorem, it follows that

log
1

c(E)
=

∫
Uν dνi =

∫
Uνi

dν =
∑

j

∫
Gj

Uνi
dν.

As aij ≤ Uνi
≤ bij on Gj , this last sum lies between

∑
j aijν(Gj) and

∑
j bijν(Gj).

This completes the proof. �

Completion of the proof of Theorem 3.1. Choose G1, . . . , Gn as in the statement of
the lemma; for example, take Gj := E∩Fj \ (F1∪· · ·∪Fj−1). Then, by the lemma,

log
1

c(E)
≤ min

i

∑
j

bijν(Gj) ≤ max
t∈∆n

min
i

∑
j

bijtj = M(b).

Likewise,

log
1

c(E)
≥ max

i

∑
j

aijν(Gj) ≥ min
s∈∆n

max
i

∑
j

aijsj = M(a),

where for the last equality we used the symmetry of a. This completes the proof. �

We now turn to the proof of Theorem 3.2. Let E be a compact subset of C.
Once again we suppose that F1, . . . , Fn, δ satisfy (3.1) and that the matrices a, b
are defined as in (3.2). Also, we set d := maxj diam(Fj).

Lemma 3.4. Define ω(r) := supw∈E ν(B(w, r)), where ν is the equilibrium mea-
sure for E. Then

M(b) − M(a) ≤ inf
r≥4d

(
2ω(r) log

r

δ
+

8d

r

)
.
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Proof. We re-use Lemma 3.3. Choose G1, . . . , Gn as in that lemma. Then

log
1

c(E)
−M(a) ≤ min

i

∑
j

bijν(Gj)−min
i

∑
j

aijν(Gj) ≤ max
i

∑
j

(bij − aij)ν(Gj).

Likewise,

M(b)− log
1

c(E)
≤ max

i

∑
j

bijν(Gj)−max
i

∑
j

aijν(Gj) ≤ max
i

∑
j

(bij −aij)ν(Gj).

Adding, we obtain

(3.5) M(b) − M(a) ≤ 2 max
i

∑
j

(bij − aij)ν(Gj).

Now fix i ∈ {1, . . . , n}. We shall estimate the sum
∑

j(bij−aij)ν(Gj) by splitting
it into two. Let r ≥ 4d, and define

Jr := {j : diam(Fi ∪ Fj) ≤ r} and J ′
r := {j : diam(Fi ∪ Fj) > r}.

If j ∈ Jr, then aij ≥ log(1/r) and bij ≤ log(1/δ). Also the sets Gj (j ∈ Jr) are
disjoint subsets of B(w, r), for some w ∈ E ∩ Fi. Hence∑

j∈Jr

ν(Gj)(bij − aij) ≤
∑
j∈Jr

ν(Gj) log
r

δ
= ν

( ⋃
j∈Jr

Gj

)
log

r

δ
≤ ω(r) log

r

δ
.

If j ∈ J ′
r, then diam(Fi ∪ Fj) > r, and since dist(Fi, Fj) ≥ diam(Fi ∪ Fj) − 2d, we

have

bij − aij ≤ log
diam(Fi ∪ Fj)
dist(Fi, Fj)

≤ log
diam(Fi ∪ Fj)

diam(Fi ∪ Fj) − 2d
≤ log

r

r − 2d
≤ 4d

r
,

where for the last inequality we have used the facts that log x ≤ x − 1 and r ≥ 4d.
Hence ∑

j∈J′
r

ν(Gj)(bij − aij) ≤
∑
j∈J′

r

ν(Gj)
4d

r
= ν

( ⋃
j∈J′

r

Gj

)4d

r
≤ 4d

r
.

Putting these estimates together, and noting that they hold for all r ≥ 4d, we
obtain

(3.6)
∑

j

ν(Gj)(bij − aij) ≤ inf
r≥4d

(
ω(r) log

r

δ
+

4d

r

)
.

The result follows upon combining (3.5) and (3.6). �

To apply this lemma, we need to be able to estimate ν(B(w, r)), where ν is the
equilibrium measure of E. This can be done via the Green’s function of E.

Lemma 3.5. Suppose that E has equilibrium measure ν and Green’s function gE.
Then

ν(B(w, r)) ≤ max
|z−w|=er

(gE(z) − gE(w)) (w ∈ C, r > 0).

Proof. Our starting point is the following formula relating the Green’s function to
the equilibrium measure (see e.g. [13, p.107]):

gE(ζ) =
∫

E

log |ζ − z| dν(z) − log c(E) (ζ ∈ C).
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It follows that, for w ∈ C and r > 0,

1
2π

∫ 2π

0

(gE(w + reiθ) − gE(w)) dθ

=
1
2π

∫ 2π

0

∫
E

(
log |w + reiθ − z| − log |w − z|

)
dν(z) dθ

=
∫

E

( 1
2π

∫ 2π

0

log
∣∣∣1 +

reiθ

w − z

∣∣∣ dθ
)
dν(z)

=
∫

E

log+
∣∣∣ r

w − z

∣∣∣ dν(z)

≥ ν(B(w, r/e)).

The result follows upon replacing r by er throughout. �

Completion of the proof of Theorem 3.2. We assume, as in the statement of the
theorem, that E satisfies the HCP with exponent α. In other words, the Green’s
function gE exists and satisfies

|gE(z) − gE(w)| ≤ A|z − w|α (z, w ∈ C).

By Lemma 3.5, the equilibrium measure ν of E satisfies ν(B(w, r)) ≤ Aeαrα for all
w ∈ C and r > 0. Hence, by Lemma 3.4,

M(b) − M(a) ≤ inf
r≥4d

(
2Aeαrα log

r

δ
+

8d

r

)
.

Suppose for the moment that d ≤ diam(E). Set r := 4d1/(α+1) diam(E)α/(α+1).
Then r ≥ 4d, and substituting it in the inequality above, we obtain

M(b) − M(a) ≤ C1d
α/(α+1) log

(4 diam(E)
δ

)
+ C2d

α/(α+1),

where C1, C2 are constants depending just on A, α and diam(E). Since the capacity
of a set is never more than half the diameter (see [13, Theorem 5.3.4]), we have
diam(E) ≥ 2δ. Thus the second term on the right-hand side above can be absorbed
into the first, and the factor of 4 inside the log eliminated, adjusting C1 appropri-
ately. This gives (3.4), thereby proving the theorem in the case d ≤ diam(E).

The remaining case d ≥ diam(E) is of less importance, since we are mainly
interested in what happens as d → 0, but we sketch a brief proof for the sake of
completeness. In this case we just use the estimates aij ≥ log 1/(diam(E) + 2d)
and bij ≤ log(1/δ) that arise directly from the definitions of a, b, to obtain

M(b) − M(a) ≤ log
(diam(E) + 2d

δ

)
.

Together with the fact that d ≥ diam(E) ≥ 2δ, this eventually leads to (3.4). �

4. Methods of computation

We now discuss the practical implementation of the ideas of the previous section.
In what follows, a vector or a matrix with scalar c in all entries will be simply
denoted by c. It should be clear from the context what the symbol refers to. Also,
it will be convenient to write x ≥ y to indicate that all entries of x − y are non-
negative, x and y being vectors or matrices of the same dimensions.
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4.1. Computation of M(h). Our method depends on being able to compute M(h)
for symmetric n × n matrices h. Here we describe several methods of doing this.

4.1.1. Reformulation via linear programming. As stated in §2.2, we have

(4.1) M(h) := min
t∈∆n

max
j

∑
i

hijti,

which is a convex non-linear programming problem. We can turn it into a linear
programming problem by use of an auxiliary variable T . Consider the following
problem:

(4.2)

⎧⎪⎨⎪⎩
minimize T subject to the constraints

t ≥ 0,
∑

j tj = 1,
∑

i

hijti ≤ T (j = 1, . . . , n).

It is well known that M(h) is equal to the value of T at the optimal point (see e.g.
[16, §1.13]).

4.1.2. Linear system. Solving large dense linear programs is quite time-consuming,
much more so than solving linear systems for instance. In some circumstances,
M(h) can be obtained by solving a linear equation instead of a linear program, as
the following simple result shows.

Proposition 4.1. If h is invertible, if s := h−11 ≥ 0 and if S :=
∑

j sj > 0, then
t∗ := S−1s is the solution of (4.1), and M(h) = S−1.

Proof. On the one hand, it is easy to see that t∗ ∈ ∆n, and since

max
j

∑
i

hijt
∗
i = max

j
S−1 = S−1,

we have M(h) ≤ S−1. On the other hand, for all t ∈ ∆n we have

max
j

∑
i

hijti ≥
∑

j

(∑
i

hijti

)
t∗j =

∑
i

⎛⎝∑
j

hijt
∗
j

⎞⎠ ti =
∑

i

S−1ti = S−1,

and therefore M(h) ≥ S−1. �

4.1.3. Scaling. Sometimes, even if h−11 �≥ 0, it may be possible to find a constant
γ > 0 such that h̃−11 ≥ 0, where h̃ is the matrix associated with the compact set
γE. Since c(γE) = γc(E), we get that γ−1e−M(h̃) is an estimate for c(E).

4.1.4. Other ways to bypass the linear program. There may be other options that
run faster than a linear program, though at the cost of yielding worse bounds.

Upper bounds. For all t ∈ ∆n, we have maxj

∑
i tihij ≥

∑
i,j titjhij . Therefore

M(h) is bounded below by a quadratic program, namely

Q(h) := min
t∈∆n

∑
i,j

titjhij .

Consequently, e−Q(a) is an upper bound for c(E). In practice, Q(h) is often suffi-
ciently close to M(h) to give a useful upper bound. This approach is interesting as
long as the quadratic program can be solved faster than the linear program. This
frequently proves to be the case, though not always.
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Lower bounds. At the other end, M(h) is bounded above by Mt(h) := maxj

∑
i hijti

for each feasible vector t. Therefore e−Mt(h) is a lower bound for c(E) for every
t ∈ ∆n. There are several ways to build a vector t that will give a useful bound.

If the quadratic program runs faster than the linear program, then we can use
its solution t. The situation here is a bit different from that above. Indeed, even
though Q(h) may happen to be close to M(h), the distance between Mt(h) and
M(h) will generally be bigger.

Another possibility is to construct an educated guess for t, based on the solution
obtained for a previous value of n. This is highly dependent on the geometry of E
and on the choices of Fi and n.

Let us mention a third approach that exploits some ideas of Mehrotra’s cele-
brated paper [9]. The points on the hyperplane

∑
j tj = 1 that satisfy t ≥ 0 are

those that are closest to the origin. Thus it is natural to search for vectors t that
have Euclidean norms as small as possible. One search direction is prompted by
Proposition 4.1. Under the hypotheses of this proposition, at the optimal point we
have

∑
i hijt

∗
i = S−1 for all i. This suggests looking for a scalar c and a vector r

of small Euclidean norm ‖r‖ such that ht + r = c. Since, in this context, c is an
approximation to M(h), we want to minimize its value as well. Combining all these
ideas, we are left with the least-square problem of minimizing ‖x‖ subject to the
linear constraint Ax = u, where

A :=
(

h I −λ
1 0 0

)
(n+1)×(n+n+1)

, x :=

⎛⎝ t
r

c/λ

⎞⎠ and u :=
(

0
1

)
,

and where λ > 0 is a real parameter to be chosen. If the t-component of the solution
satisfies t ≥ 0, then we have a potentially good feasible t. In practice, the solution
to the least-square problem is calculated via the formula At(AAt)−1u, which is
much faster than solving a linear program. Even if t is not positive, then in general
it is very close to being so, and we can apply some heuristics to modify certain
components to get a feasible t in the neighborhood. In the matrix formulation
above we used c/λ instead of c, because this special component of x may not have
the same order of magnitude as the others and we may want to give it a special
weight in the computation of ‖x‖. As a matter of fact, experimenting with different
values of λ can lead to better bounds.

4.1.5. Symmetry. Finally, another trick sometimes available is to exploit the sym-
metry of the compact set under consideration. If h is built so that it is symmetric
with respect to both its main diagonal and anti-diagonal, then the optimal vec-
tor t, at which we get M(h), is also symmetric, i.e. ti = tn−i+1 for all i. This
enables us to reduce the size of the linear program or system by replacing h by
(hij + hn−i+1,j)1≤i,j≤n/2 and the condition on t by t1 + · · ·+ tn/2 = 1/2. As a con-
sequence, with the same storage and computation time we can solve the problem
with twice as many Fi. Note that, in order to apply this reduction scheme, we have
to label the Fi carefully. In some circumstances, more complex symmetries of E
can be exploited to reduce the problem size still further.

4.2. Intermediate methods. Rather than calculating the matrices a and b di-
rectly, it may well be easier to compute some other symmetric matrix h satisfying
a ≤ h ≤ b. Then we have M(a) ≤ M(h) ≤ M(b), and so the fact that M(a), M(b)
converge to log 1/c(E) forces M(h) to converge to the same limit, and at least as
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quickly. In practice, the convergence may well be quicker. In this paragraph we
present several ways to build such intermediate matrices h.

The effectiveness of the general methods presented below are quite dependent
on the geometry of E and the choice of the Fi. One should keep in mind that, for
a particular set E, there may be natural ways to construct h that are more closely
related to E and that are more effective.

4.2.1. Midpoint (MP). For each i, pick a point xi ∈ Fi such that xi �= xj for all
i �= j. Typically, if Fi is an interval or a square, we choose for xi its midpoint. Now
let us define hij := log 1/max(δ, |xi − xj |). For all i, j we have

(4.3) dist(Fi, Fj) ≤ |xi − xj | ≤ diam(Fi ∪ Fj).

Since, for all i, j,

diam(Fi ∪ Fj) ≥ diam(Fi) ≥ c(Fi) ≥ c(Fi ∩ E) ≥ δ,

we get, upon taking the maximum with δ in (4.3), that a ≤ h ≤ b. Thus e−M(h)

gives an approximation to c(E).

4.2.2. Weighted average 1 (WA1). Choose α ∈ (0, 1) and set h := αa+(1−α)b. A
natural try is α = 1

2 . Another possibility is based on the following reasoning. For
increasing values of n, the sequences M(a) and M(b) converges to log 1/c(E) from
below and above respectively. In all examples presented in this paper, we observe
numerically that these sequences are in fact monotone. For small enough values
of n, we investigate the qualitative behavior of M(h) for different values of α. We
may choose α such that the sequence does not appear to be monotone any longer.
A probable advantage is that the computed estimation may be better than the ones
obtained with an arbitrary value of α. On the other hand, it will be harder, if not
impossible, to extrapolate the data.

4.2.3. Weighted average 2 (WA2). Choose α ∈ (0, 1) and set

hij := log
( 1

α diam(Fi ∪ Fj) + (1 − α) max(δ, dist(Fi, Fj))

)
.

The remarks above apply here too.

4.2.4. Energy minimization (EM). Let ν be the equilibrium measure for E. By
definition, I(ν) ≤ I(µ) for all µ ∈ P(E). A reasonable approach to estimate I(ν) is
to try to minimize I(µ) over a subset of P(E). In practice, E may have a complex
geometry that makes it difficult to compute the energy of every measure in P(E).
Therefore we instead minimize over a subset of P(F ), where F :=

⋃
i Fi, and hope

that we still get good estimates for I(ν). For this to have a chance of working, we
should try to ensure that all measures under consideration have their support as
close as possible to E, i.e. that F \E be as small as possible. The situation is not as
bad as it may look: minimizing over a proper subset of P(F ) gives us a value that
is greater than log 1/c(F ), but at the same time, the target value log 1/c(E) is also
greater than log 1/c(F ), and so we can reasonably expect that the errors partially
cancel.

For each i, let µi be a Borel probability measure on Fi, and assume that any
two of them are mutually singular. We consider Q :=

{∑
i tiµi | t ∈ ∆n

}
⊂ P(F ).
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Then, for each µ ∈ Q, we have

I(µ) =
∫∫

log
∣∣∣ 1
z − w

∣∣∣ dµ(z)dµ(w)

=
∑
i,j

titj

∫∫
log

∣∣∣ 1
z − w

∣∣∣ dµi(z)dµj(w) =
∑
i,j

titj h̃ij ,

where
h̃ij :=

∫∫
log

∣∣ 1
z − w

∣∣ dµi(z)dµj(w).

The problem of minimizing I(µ) over Q is the quadratic program Q(h̃). As men-
tioned in §4.1.4, Q(h̃) ≤ M(h̃).

Since max(diam(Fi ∪ Fj), δ) = diam(Fi ∪ Fj), we have

log
1

diam(Fi ∪ Fj)
≤ min(h̃ij , δ) ≤ log

1
max(dist(Fi, Fj), δ)

.

Defining hij := min(h̃ij , δ), this shows that a ≤ h ≤ b. Thus h is a candidate
matrix for approximating c(E).

In practice, we choose the µi so that the double integrals defining h̃ij can be
computed explicitly. For example, if the Fi are intervals or squares, we can choose
for µi the normalized Lebesgue measure on Fi. Another possibility is to choose for
µi the Dirac measure at a point xi ∈ Fi. This gives back the midpoint technique
described in §4.2.1 above.

Remarks. (i) If h−11 ≥ 0 and if h is positive-definite, then the linear and quadratic
programs for h have the same solution. Indeed, the Lagrangian

L(λ, t) :=
∑
i,j

titjhij − λ
(∑

j

tj − 1
)

has a critical point when 2ht = λ and
∑

j tj = 1. Since h−11 ≥ 0, it follows that
(λ, t) := (2, h−11)/S is a solution, as long as we choose S so that

∑
j tj = 1. As h

is positive-definite, the minimum is global, and by Proposition 4.1 it is the same as
M(h).

(ii) If F = E, then

I(ν) ≤ min
µ∈Q

I(µ) = Q(h̃) ≤ M(h̃),

and hence M(h̃) yields a lower bound for c(E). If h = h̃, then we know that this
lower bound converges to c(E). In practice, we may not have h = h̃. When h �= h̃,
both M(h) and M(h̃) give us information: e−M(h̃) is a lower bound for the capacity
(possibly better than e−M(a)), while e−M(h) converges to it.

4.3. Hardware. All the numerical computations presented in this paper were per-
formed on Pentium 4 and Athlon 64 computers, with clock speed ranging from
2.4GHz to 3.0GHz, and memory ranging from 1GB to 4GB.

5. Examples

5.1. Union of two intervals. We begin with an example where we know the exact
answer. Let E := [−5,−3] ∪ [3, 5]. Then, using [13, Corollary 5.2.6], we have

c(E) =
√

52 − 32/2 = 2.
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Table 1. Lower and upper bounds for c([−5,−3] ∪ [3, 5]).

n LB UB LB time UB time

28 1.91530527 2.08937291 0.6s 0.4s
29 1.94905379 2.05293596 2.5s 1.4s
210 1.96987139 2.03098371 17.8s 5.8s
211 1.98242280 2.01794238 138.5s 24.2s
212 1.98986028 2.01029190 1162.0s 104.8s
213 1.99420728 2.00585379 11034.2s 480.5s

Extrapol 2.00032166 1.99972228
Rate 0.775 0.786

Let us see what our numerical methods give.
Let n be an even positive integer, and cover E by n closed intervals of equal

length 4/n. We number them F1, . . . , Fn from, say, left to right. The quantities
diam(Fi ∪ Fj) and dist(Fi, Fj) are easy to compute. Moreover, since E ∩ Fi is an
interval of length 4/n, we can choose δ = c(E ∩ Fi) = 1/n. We have everything
needed to construct the matrices a and b. We note that both of them are symmetric
with respect to their anti-diagonals, and therefore we may as well solve the reduced-
size problem, as explained in §4.1.5.

Table 1 shows the lower bounds (LB) and the upper bounds (UB) obtained for
different values of n. For the upper bounds, we do not have a−11 ≥ 0. However,
scaling down E by a factor of 10 gives us a−11 ≥ 0, and, for that column, we can
compute M(a) by solving a linear system. For the lower bounds, we have to use the
linear program approach. This explains the much better times in the UB column.

All calculations for this example have been done with Maple 10 at hardware preci-
sion (Digits:=15). The commands LinearSolve and LPSolve are used for comput-
ing M(a) and M(b) respectively. We also make use of the new Compiler:-Compile
command in Maple 10, which enables simple numerical Maple procedures to be
compiled in C. This makes the calculations of the entries of a and b much faster.
According to Maple documentation, LinearSolve and LPSolve use hardware-float
optimized procedures from the Numerical Algorithms Group (NAG).

We observe that LB and UB are monotone sequences. This suggests extrapolat-
ing the data. More precisely, we find numbers A, B and C so that An−B + C best
fits the data. The row ‘Extrapol’ in Table 1 shows the value of C, while the row
‘Rate’ shows the value of B. In both cases the convergence rate is faster than the
predicted value 1/3 in the remarks following Theorem 3.2.

We now experiment with intermediate methods described in §4.2. The results are
displayed in Table 2. The columns LB and UB are just carried over from Table 1.
The computation times for EM, MP and WA2 are similar to those for UB because
a linear system was used. For WA1 we have to solve the linear program, and the
computation times are similar to those for LB. For WA1 and WA2 we have taken
α = 0.5 (see §4.2.2 and §4.2.3), and for EM we use normalized Lebesgue measures
on the intervals Fi.

We observe that WA1 gives the best approximation for the higher values of n, but
at the same time it is the slowest intermediate method. The much faster EM gives
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Table 2. Intermediate methods for c([−5,−3] ∪ [3, 5]).

n LB EM WA1 MP WA2 UB

28 1.91530527 1.99983253 2.00129137 2.00282959 2.01390944 2.08937291

29 1.94905379 1.99997799 2.00049986 2.00166183 2.00758629 2.05293596

210 1.96987139 2.00002002 2.00018222 2.00095463 2.00410843 2.03098371

211 1.98242280 2.00002557 2.00005764 2.00053922 2.00221165 2.01794238

212 1.98986028 2.00002057 2.00001218 2.00030058 2.00118447 2.01029190

213 1.99420728 2.00001418 1.99999778 2.00016577 2.00063153 2.00585379

Extr. 2.00032166 – 1.99999111 1.99999078 1.99998684 1.99972228

Rate 0.775 – 1.659 0.824 0.894 0.786

LSR 0.793 0.425* 2.350 0.842 0.901 0.801

the second best approximation. Unfortunately, it appears that the EM sequence is
not monotone, so we cannot extrapolate its values. WA1 is monotone for the values
of n displayed in the table, but the last entry is less than 2. One can reasonably
ask if this entry is correct. It can be recalculated by an independent C++ program
using the GLPK package. The difference between the two values turns out to be
4 × 10−8, confirming that the sequence does indeed drop below 2. Therefore the
exponential extrapolation cannot give a better estimate than what we have found
for n = 213. Nevertheless, we have included it in the table because, in practice, we
do not usually know the exact value of c(E), and so we would have calculated it
anyway. The best overall approximation in the table is given by the n = 213 entry
of the WA1 sequence. The error is 2.2 × 10−6. The extrapolations for WA1, WA2
and MP and the last entry of EM are all second-best approximations, as they all
lie within 1.4 × 10−5 of the true value.

Knowing that the capacity equals 2 allows us to estimate the convergence rate
of a sequence. To do this, we find a least-square fit to the curve |x(n)− 2| = An−B

using the last four values of n. The exponent B is shown in the least-square rate
(LSR) row (for EM we have used only the last 3 values). WA1 is the fastest
converging sequence, but again the slowest to compute.

As discussed in §4.2.4, we could use h̃ instead of h in the EM intermediate
method. Let us call this new sequence EM*. We do not know if EM* converges
to c(E), but on the other hand we get a monotonically increasing sequence that
furnishes lower bounds for c(E). Indeed, here we have

⋃
i Fi = E, and since we

refine our partition of E at each step, the solution t found for n = 2k gives a valid
candidate for n = 2k+1, namely(

t1
2

,
t1
2

,
t2
2

,
t2
2

, . . . ,
t2k

2
,
t2k

2

)
∈ ∆2k+1 ,

which has the same associated energy. Therefore, minµ I(µ) can only decrease
when k increases. Also, since we observe numerically that h̃ is positive-definite and
h̃−1 ≥ 0, we know that I(µ) = M(h̃). Another possibility is to directly solve the
quadratic program. The results are shown in Table 3.

The EM* sequence gives us much better lower bounds than LB. The entry in
row n = 213 is the third best as compared to other intermediate methods for the
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Table 3. Energy minimization methods for c([−5,−3] ∪ [3, 5]).

n LB EM* EM Time

28 1.91530527 1.9982042217 1.99983253 0.4s
29 1.94905379 1.9991016311 1.99997799 1.4s
210 1.96987139 1.9995506963 2.00002002 5.9s
211 1.98242280 1.9997753185 2.00002557 24.0s
212 1.98986028 1.9998876518 2.00002057 104.4s
213 1.99420728 1.9999438241 2.00001418 474.8s

Extrapol 2.00032166 2.0000000074 –
Rate 0.775 0.99986 –
LSR 0.793 0.99989 0.425

same n. It falls behind EM, which is not surprising, and WA1. The strength of EM*
is that its convergence is very regular. In fact, it looks like the error is proportional
to 1/n. The exponential extrapolation gives c(E) with an error of 7.4× 10−9. This
is an order of magnitude better than the best approximation found in Table 2. To
compute EM*, it is sufficient to solve a linear system. That explains why the times
are similar to the times for UB. Note that, in this example, the times for solving
the quadratic program are slower than those for the corresponding linear program.
For instance, it takes 336 seconds to solve the case n = 212 with QPSolve, while it
takes 225 seconds for the same case with LPSolve. Of course, the three methods
(linear system, linear program and quadratic program) return the same answer.

5.2. Union of disk and half-disks. For our second example, we test our method
on a compact set E whose capacity is unknown, but was estimated in [14, §7.3].
The set E is made up of a disk and two half-disks:

E := {z : |z| ≤ 1} ∪ {z : |z − 3| ≤ 1, �(z) ≥ 0} ∪ {z : |z − 3i| ≤ 1, 
(z) ≥ 0}.
It was shown in [14] that c(E) ∈ [2.18655, 2.21960] =: I�. Moreover, the best
computed approximation was 2.196961. We will denote this number by c�.

As suggested at the end of §3.2, we compute c(∂E) instead of c(E). We also
make use of the symmetry of ∂E with respect to y = x to reduce the problem size.

Let n be a positive multiple of 16, and cover ∂E by 4 intervals of length 16/n and
12 arcs of length 16π/3n. We number the Fj counterclockwise on each component of
∂E, starting from 2i, and then 1√

2
+ 1√

2
i, and finally 2. In this example, computing

diam(Fi ∪ Fj) and dist(Fi, Fj) is not as easy as before. This arises from the fact
that an interior point of an arc may be an extremal point. We obtain an efficient
implementation by presolving the different cases and then using smart branching.
Since c(Fi) is 4/n in the case of an interval and sin(4π/3n) in the case of an arc
(see [13, Exercice 5.2.4]), we can choose δ := min(4/n, sin(4π/3n)) = 4/n.

Here, both LB and UB require the use of a linear program. The results for n up
to 213 are shown in Table 4. Applying the least-square method of §4.1.4, we can
improve the lower bound via a linear system. Using n = 214 and λ = 2, we find
that c(E) ≥ 2.1934415. In the case of the upper bound, the quadratic program for
n = 214 gives c(E) ≤ 2.2003506. It is interesting to note that, although the interval



COMPUTATION OF CAPACITY 1513

Table 4. Lower and upper bounds for Example 5.2.

n LB UB LB Time UB Time

210 2.1601927 2.2337991 14.2 10.6
211 2.1762966 2.2174427 89.4 85.3
212 2.1855031 2.2082671 889.8 689.2
213 2.1906796 2.2031650 8884.6 5623.6

* 214 2.1934415 2.2003506 23094.6 15816.4

Table 5. Intermediate methods for Example 5.2.

n WA1 EM* MP WA2 EM* Extr.

210 2.19630416 2.19695120 2.19818413 2.20053834 2.19699402851
211 2.19662042 2.19697681 2.19760655 2.19878863 2.19699379405
212 2.19679610 2.19698700 2.19730715 2.19789958 2.19699373479
213 2.19689041 2.19699105 2.19715323 2.19744984 2.19699372105
214 2.19694045 2.19699266 2.19707458 2.19722301 2.19699371801
215 – 2.19699330 2.19703467 2.19710907 2.19699371734

Extr. 2.19699699 2.19699372 2.19699321 2.19699315 2.19699371717
Rate 0.914 1.333 0.976 0.990 2.210

[2.1934415, 2.2003506] is 5 times smaller than I�, the approximation c� is still valid
and almost right in the middle of it. We deduce that the error on c� is less than
3.5 × 10−3, which is better than the 2.3 × 10−2 computed in [14].

To obtain approximations to c(E), we experiment with the techniques MP, WA1,
WA2 and EM*. The first three are easy to implement. MP and WA2 can be cal-
culated with a linear system (though we have to consider 1

3E), while WA1 requires
a linear program. EM* is, not surprisingly, the hardest to implement. The double
integrals cannot be computed explicitly (except in the case of parallel intervals),
and we have to resort to numerical integration. For the case of two different Fi, we
use an adaptive multidimensional integration Fortran routine, the so-called ACM
Algorithm 698, as described in [2]. The case of integration over Fi × Fi is solved
by first reducing symbolically the double integral to a simple integral, and then
employing a Taylor series. For EM*, a linear system is sufficient. The results for
the intermediate methods are shown in Table 5.

WA1 and WA2 are computed using α = 0.5. We are unable to solve the linear
program (WA1) for n = 215 because we run out of memory. As noted in the
previous example, the sequence EM* furnishes lower bounds for c(E). Moreover,
these lower bounds are faster to compute than the corresponding values of LB, they
require less processing memory and they are much better. For example, for n = 213

it takes 8885 seconds to compute LB, while it takes only 1526 seconds to compute
EM*. Even though the matrix for EM* takes longer to build, the fact that a linear
system suffices for this sequence is predominant.
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On top of that, EM* is the fastest converging sequence. It is also very regular,
in the sense that the sequence of extrapolations for EM* (last column of Table 5)
looks like a monotone decreasing sequence. This suggests fitting an exponential
curve to that sequence.

Conclusion. We have proved that c(E) ∈ [2.1969933, 2.2003506], and our best guess
is c(E) ≈ 2.19699371717. (The gap between this value and c� is less than 3.3×10−5.)

5.3. Cantor set. Let E0 := [0, 1]. For k ≥ 1, we recursively define

Ek :=
1
3
Ek−1 ∪

(
1
3
Ek−1 +

2
3

)
.

Then Ek ⊂ Ek−1 and we set E :=
⋂

k Ek. This is the classical middle-third Cantor
set: a perfect, totally disconnected set of Lebesgue measure zero, but of positive
capacity. The exact value of c(E) is unknown. Since E ⊂ [0, 1/3]∪ [2/3, 1], we have

c(E) ≤ 1
2

√(1
2

)2

−
(1

6

)2

=
1

3
√

2
≈ 0.23570226.

At the other end, it can be shown that c(E) ≥ 1/9 (see e.g. [13, Theorem 5.3.7]).
In this paragraph, we shall significantly reduce the gap between these bounds and
obtain a good approximation to c(E).

Let n := 2k for some positive integer k. We choose for Fi the intervals of Ek

labelled from left to right. We make use of the symmetry of E about 1/2 and reduce
the problem size accordingly. The functions dist and diam are straightforward
to compute, at least in theory. For large values of k, we must take care of the
cancellation phenomenon that appears when computing the distance between two
nearby points of E. We get around the problem by using integers instead of floats
for this part of the calculation. As each set Fi ∩ E is a scaled version of E and
c(E) ≥ 1/9, we can take δ := 3−k/9.

Here, both LB and UB can be computed via a linear system. In order to compute
M(h) for large values of k, we implement a matrix-free iterative method, namely
the conjugate gradient. This allows a trade-off between memory and computation
time. To accelerate the convergence, we use a diagonal preconditioner of typical
block size between 210 and 212. These blocks are LU-factored.

The four highest values of n computed are shown in Table 6. A better option
for δ is to take δ = 3−kc0, where c0 is any precomputed lower bound for c(E). If
we apply this and recompute LB for n = 219 using the lower bound just obtained
for this value of n, we get an improved lower bound as shown in the last row. This
entry is a little bit faster to compute, since we can start our iterative method from
the previous solution vector t.

To get an approximation to c(E), we compute MP and EM*, both via a linear
system. For MP we take δ = 3−k0.22094810685. All integrals involved in EM* are
symbolically precomputed. The resulting expression for the case Fi×Fi is prone to
cancellation, and we have to take special care to compute it to the desired precision.
The results are shown in Table 7.

In this example, EM* does not, a priori, give lower bounds for c(E), because
Fi �⊂ E. Nevertheless, it looks like the sequence is still increasing. At the same time,
we observe that MP is a decreasing sequence. In the light of these observations, we
can reasonably conjecture that both of them furnish bounds for c(E). We have no
proof of this.
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Table 6. Lower and upper bounds for the classical Cantor set.

n LB UB Time

216 0.22093838586 0.22096249759 2h 00m
217 0.22094362271 0.22095595104 8h 58m
218 0.22094630066 0.22095260369 1d 11h 45m
219 0.22094766991 0.22095089228 7d 6h 40m

* 219 0.22094810685 5d 17h 46m

Table 7. Intermediate methods for the classical Cantor set.

n EM* MP EM* Extr. MP Extr.

215 .220949078827933 .220949238296649 .220949102189205 .220949102189264

216 .220949090247155 .220949171767077 .220949102189468 .220949102189483

217 .220949096084625 .220949137757366 .220949102189531 .220949102189550

218 .220949099068712 .220949120371698 .220949102189488 .220949102189510

219 .220949100594174 .220949111484188 .220949102189537 .220949102189488

Ex. .220949102189537 .220949102189488 .220949102189506 .220949102189508

Ra. 0.968 0.968 (average 216–219) (average 216–219)

The extrapolation sequences for EM* and MP are monotonically increasing up
to n = 217 (previous values of n are omitted in the table). Then they start to
oscillate. It is probable that this is due to cumulative rounding errors. The matrix
size is very large for these values of n, and double precision cannot guarantee more
than 15 correct digits. Noting that the numbers in Table 7 all have 15 digits, we
conclude that we have reached the hardware precision in this example. It makes
little sense to extrapolate the last two columns. Instead we have simply calculated
the average of the last four entries.

Conclusion. We have proved that c(E) ∈ [0.22094810685, 0.22095089228], and our
best guess is c(E) ≈ 0.220949102189507.

Remark. It was shown in [17] that the Green’s function for Ek, and therefore its
capacity, can be derived from a Schwarz-Christoffel conformal map. For k ≥ 2,
the conformal map cannot be determined analytically, and numerical integration is
necessary. Driscoll’s MATLAB Schwarz–Christoffel Toolbox [6] is an efficient pack-
age for computing Schwarz–Christoffel conformal mappings. Embree and Trefethen
have put these ideas together in [7, Section 4], where they discuss the problem of
computing the capacity. Using their method, Embree, Trefethen and Banjai have
computed c(Ek) for k from 1 to 9 (private communication). Their guess from
extrapolation is c(E) ≈ 0.2209491, which agrees with our proposed value.

5.4. Cantor square. As mentioned at the end of §3.2, the smaller the Minkowski
dimension of E, the smaller the number of sets Fk of a given diameter needed
to cover E, thereby reducing the problem size. In Examples 5.1 and 5.2 we had
dim(E) = 1, while in Example 5.3 we had dim(E) = log 2/ log 3 < 1. We now try
our method on an example where dim(E) > 1.
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Table 8. Lower and upper bounds for the Cantor square.

n LB UB Time

210 0.562159 0.585763 0s
212 0.569368 0.579012 7s
214 0.572344 0.576226 297s
216 0.573550 0.575095 51 261s

Let E0 := [0, 1] × [0, 1]. For k ≥ 1, we recursively define

Ek :=
1
3
Ek−1 +

{
0,

2
3
,
2
3
i,

2
3

+
2
3
i

}
.

Then Ek ⊂ Ek−1, and we set E :=
⋂

k Ek. The compact set E is the cartesian
product of the classical middle-third Cantor set with itself. It is well known that
dim(E) = log 4/ log 3.

Since E is a subset of the unit square, we have (see [13, p.135])

c(E) ≤ c([0, 1]2) =
Γ(1/4)2

4π3/2
≈ 0.59017.

Also, since c(K ×K) ≥ 2c(K) for any compact subset K of R (see e.g. [13, p.169]),

c(E) ≥ 2 × 0.22094810685 ≈ 0.4418962137.

Let n := (2k)2 for an integer k ≥ 2. We choose for Fi the squares of Ek.
Our compact set in this example exhibits more symmetries than in the previous
examples. Calculations show that it is sufficient to consider just the Fi that intersect
the triangle {z : 0 ≤ 
(z) ≤ 1

2 , 0 ≤ �(z) ≤ 
(z)}. There are m := 2k−2(2k−1 + 1)
such Fi. Thus the problem size can be reduced by a factor close to 8.

The functions dist and diam are easy to compute. As each set Fi ∩ E is a
scaled version of E, we can take δk := 3−kc0, where c0 is a previously calculated
lower bound for c(E). When computing the LB sequence, we start with δ2 :=
3−20.3124678093, and update the value of δ between each k. Both LB and UB
require a linear program. Table 8 displays the results.

We can compute MP and EM* via a linear system (see Table 9). All integrals
involved in EM* are symbolically precomputed. The ‘Time’ column is for the EM*
sequence; the times for MP turn out to be approximately twice as fast. For both
intermediate methods we have extrapolated the extrapolation sequence.

Conclusion. We have proved that c(E) ∈ [0.573550, 0.575095], and our best guess
is c(E) ≈ 0.5743450704.

5.5. Comparison of the examples. We conclude with some remarks concerning
the fact that the convergence is slower in this last example, at least in regard to the
required computational effort. For n = 216, our confidence interval around c(E)
has relative length 0.27%. Since, for this value of n, the matrix dimensions are
8256× 8256 (after reduction), the closest corresponding value for the linear Cantor
set is n = 214. There, the confidence interval has relative length 0.042%. Hence,
for the same problem size, the precision is 6.4 times better in the linear Cantor set
case. Moreover, this does not take into account the slower times for the Cantor
square case due mainly to the fact that we have to solve a linear program.
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Table 9. Intermediate methods for the Cantor square.

n EM* MP EM* Extr. MP Extr. Time

28 0.5701134095 0.5659617752 0.5744538404 0.5744899295 0s
210 0.5727536391 0.5711913783 0.5743546783 0.5743623960 0s
212 0.5737469433 0.5731595871 0.5743460312 0.5743473754 4s
214 0.5741203109 0.5738995670 0.5743451770 0.5743453879 67s
216 0.5742606163 0.5741776675 0.5743450822 0.5743451137 1135s

Extr. 0.5743450822 0.5743451137 0.5743450704 0.5743450697
Rate 0.706 0.706 1.586 1.429

Table 10. Comparison of convergence rates.

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4
UB Rate w.r.t. n 0.786 0.847 0.968 0.650
UB Rate w.r.t. d 0.786 0.847 0.611 0.820

In Table 10 we compare the UB convergence rate for all our examples. We
choose UB instead of LB because a priori estimations of the capacity are not
involved. The first row shows that the convergence rate with respect to the problem
size n (the number of sets Fi) is significantly slower for Example 5.4 than for the
other examples. In the second row we have computed the convergence rate with
respect to d := maxi diam(Fi). This is obtained from the first row by multiplying
by dim(E). We observe that, this time around, the linear Cantor set exhibits
the slowest convergence. This suggests that its α exponent (see §3.2) might be
significantly smaller than 1/2, which is the exponent for Examples 5.1 and 5.2.

6. Generalized Cantor sets

In this final section, we experiment on a generalization of the linear Cantor set.
Fix a real number r ∈ (0, 1/2). Let Er

0 := [0, 1]. For k ≥ 1, we recursively define

Er
k := rEr

k−1 ∪
(
rEr

k−1 + 1 − r
)
.

Then Er
k ⊂ Er

k−1 and we set Er :=
⋂

k Er
k. The choice r = 1/3 returns the classical

Cantor set. We are interested in the behavior of c(Er) as a function of r.
The implementation of our algorithm is very similar to that in §5.3. In fact, the

only difference is in the routine that computes the distance between two endpoints
of intervals of Er

k. As mentioned before, we must take some precautions to avoid
cancellation. Since we can no longer use integers for general values of r, other
strategies have to be employed. The smallest distances are precomputed and stored
in an array whose typical size is 210. Then, using a binary representation of the
intervals of Er

k, we can compute the required distance by using the table at most
twice (if n ≤ 220).

For n = 215 we have computed the quantities LB, UB and EM* for each r in
{ 1

50 , 2
50 , . . . , 24

50}. Figure 1 shows the graph of c(Er). Actually, this is the graph of
EM*, where linear segments are used between the data points and where we have
added the points (0, 0) and (1/2, 1/4).
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Figure 1. Graph of c(Er).

Figure 2. Upper bounds and lower bounds on the error on c(Er).

The graphs of LB and UB are so close to c(Er) that they would be indistin-
guishable if added to Figure 1. Instead, we have plotted the differences LB−EM*
and UB−EM* in Figure 2.

The curve shown in Figure 1 looks like a parabola. We observe that the slope at
the origin is close to 1 and the slope at 1/2 is close to 0. This suggests comparing
with the curve with f1(r) := r(1 − r). The difference f1(r) − c(Er) is shown in
Figure 3.

The first thing to note is that f1(r) is not a bad approximation to c(Er). The
maximal error is less than 1.3×10−3. We remark that this maximum is attained at a
value of r near 1/3. Since 1/3 is a point of symmetry in our problem, its appearance
here may not be fortuitous. Moreover, the function f1(r) − c(Er) is non-negative
throughout [0, 1/2] and has a simple shape. These facts, taken together, suggest
going one step further and guessing a simple expression for f1(r) − c(Er).

We look for a function f2 of the form f2(r) := krα(1/2 − r)β. Imposing the
constraint that f2 has a local maximum at r = 1/3 gives α = 2β. It then suffices
to choose two points on the estimated curve for c(Er) to get estimates for k and β.
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Figure 3. The graph of f1(r) − c(Er).

Figure 4. The graph of f(r) − c(Er).

For example, with r = 8/50 and r = 17/50 we get k ≈ 0.5058 and β ≈ 1.5007. We
therefore propose the following simple expression as an approximation to c(Er):

f(r) := r(1 − r) − r3

2

(1
2
− r

)3/2

.

Figure 4 displays the graph of f(r) − c(Er), together with the error bounds on
c(Er). An estimation of the capacity of the middle-third Cantor set is given by

f(1/3) =
432 −

√
6

1944
≈ 0.220962197.

According to §5.3, this value is correct up to 1.3 × 10−5.
The function f(r) gives a surprisingly good approximation to c(Er), considering

its very simple form. Is it the beginning of a series development for c(Er)?
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