
MATHEMATICS OF COMPUTATION
Volume 76, Number 259, July 2007, Pages 1425–1448
S 0025-5718(07)01946-1
Article electronically published on February 19, 2007

IDENTIFICATION OF SMALL INHOMOGENEITIES:
ASYMPTOTIC FACTORIZATION

HABIB AMMARI, ROLAND GRIESMAIER, AND MARTIN HANKE

Abstract. We consider the boundary value problem of calculating the elec-
trostatic potential for a homogeneous conductor containing finitely many small
insulating inclusions. We give a new proof of the asymptotic expansion of the
electrostatic potential in terms of the background potential, the location of the
inhomogeneities and their geometry, as the size of the inhomogeneities tends to
zero. Such asymptotic expansions have already been used to design direct (i.e.
noniterative) reconstruction algorithms for the determination of the location
of the small inclusions from electrostatic measurements on the boundary, e.g.
MUSIC-type methods. Our derivation of the asymptotic formulas is based on
integral equation methods. It demonstrates the strong relation between fac-
torization methods and MUSIC-type methods for the solution of this inverse
problem.

1. Introduction

Inverse boundary value problems for partial differential equations, in principle,
are difficult to solve since they are both nonlinear and ill-posed. Recently new
solution methods such as linear sampling methods and factorization methods have
been developed which avoid the issue of nonlinearity. Basically, these methods
make use of some sort of symmetric or self-adjoint factorization

M = LFL∗

of some (measurement) operator M . Then the idea, introduced first by Colton
and Kirsch [20] (sampling method) and by Kirsch [29] (factorization method) in
the context of inverse obstacle scattering problems, is to characterize the support
of an obstacle by the range of some operator related to M . These methods have
since then been applied to a variety of different applications; cf., e.g., the papers
[17–19, 26] (sampling method) and [25, 28, 31, 32, 34] (factorization method), and
the many references therein.

In order to handle the ill-posedness it is generally advisable to incorporate all
available a priori knowledge about the unknown parameter and to try to determine
very specific features. Embarking on this strategy the purpose could be to deter-
mine the location and size of diametrically small inclusions inside a homogeneous
background. This situation arises for example in mine-detection and nondestruc-
tive testing. For this special case reconstruction methods for inverse boundary
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value problems, which make use of asymptotic expansions of the solutions of the
corresponding direct problems, have been developed during the last years. Among
these, MUSIC-type algorithms, introduced by Devaney [23], seem to be very stable
and therefore particularly useful for noisy data.

In this paper we consider an inverse boundary value problem for the Laplace
equation as discussed in [5, 9, 12, 15, 24] in the case of small insulating inclusions.
We prove an asymptotic expansion of the corresponding measurement operator sim-
ilar to the asymptotic formulas in [24] but in a more functional analytic setting.
Our proof is based on a factorization of the measurement operator developed in
[11] and on layer potential techniques. We expand the three operators occurring in
the factorization separately and use these expansions to calculate the leading order
term in the asymptotic formula for the measurement operator. This way of prov-
ing the asymptotic expansion points out the strong relation between MUSIC-type
algorithms and linear sampling methods explicitely (cf. also [16, 30]). Moreover,
this method should be applicable to other inverse boundary value problems, where
a factorization of the measurement operator is already available; cf., e.g. [26].

For closely related works concerning asymptotic expansions and reconstruction
algorithms for inverse boundary value problems with diametrically small inclusions
based on such expansions cf., e.g., [1–4,7–10,13,14,37], the monograph [6] and the
many references therein.

The outline of this paper is as follows. In Section 2 we introduce our notation
and review the factorization of our measurement operator, i.e. of the difference
of two Neumann-to-Dirichlet operators. Here and in the following three sections
we restrict our derivations to the case of a single inclusion. Preliminary results
concerning surface potentials are investigated in Section 3. In order to establish the
asymptotic expansion we require some technical estimates and identities; these are
found in Section 4. Then, in Section 5, we derive our main result on the asymptotic
factorization in the case of a single inclusion in Theorem 5.9 and its corollary. The
case of multiple inclusions is treated in Section 6. Finally, in Section 7 we comment
on how the asymptotics might be used in numerical computations.

2. Factorization of the Neumann-to-Dirichlet operator

Let Ω ⊂ Rd, d ≥ 2, denote a bounded domain with boundary ∂Ω of class C1,α,
0 < α < 1. Suppose Ω contains a small inclusion Dε := z + εB, where B is a
bounded C1,α domain containing the origin. Here, the point z ∈ Ω determines the
location of the inclusion and B describes its relative shape. The inhomogeneity size
is specified by the parameter ε > 0 which is assumed to be small. We suppose that
the domain Dε is well separated from the boundary, i.e. dist(z, ∂Ω) ≥ c0 for some
constant c0 > 0 and ε is sufficiently small. Let ν denote the unit outward normal
to the boundaries ∂Ω, ∂B and ∂Dε, relative to Ω, B and Dε, respectively.

In this section several results are stated without proof; these can be found in
[11] or references therein.

Given a conductivity distribution of the form

σε(x) :=

{
0, for x ∈ Dε,
1, for x ∈ Ω \ Dε,
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and a prescribed boundary current

f ∈ H
−1/2
� (∂Ω) :=

{
φ ∈ H−1/2(∂Ω)

∣∣∣ ∫
∂Ω

φ dσ = 0
}

,

let uε denote the electrostatic potential in the presence of the inclusion Dε, i.e. the
unique solution

uε ∈ H1
�,∂Ω(Ω \ Dε) :=

{
u ∈ H1(Ω \ Dε)

∣∣∣ ∫
∂Ω

u dσ = 0
}

to

∆uε = 0, in Ω \ Dε,(2.1a)
∂uε

∂ν
= f, on ∂Ω,(2.1b)

∂uε

∂ν
= 0, on ∂Dε.(2.1c)

The background potential u0 is the electrostatic potential for the same input current
f but without inclusions. That is, u0 denotes the unique solution

u0 ∈ H1
� (Ω) :=

{
u ∈ H1(Ω)

∣∣∣ ∫
∂Ω

u dσ = 0
}

to

∆u0 = 0, in Ω,(2.2a)
∂u0

∂ν
= f, on ∂Ω.(2.2b)

The relations between the applied boundary current f and the boundary voltages
uε|∂Ω and u0|∂Ω define two linear mappings

Λε : H
−1/2
� (∂Ω) → H

1/2
� (∂Ω), f �→ uε|∂Ω,

and

Λ0 : H
−1/2
� (∂Ω) → H

1/2
� (∂Ω), f �→ u0|∂Ω,

called the Neumann-to-Dirichlet operators associated with the two boundary value
problems (2.1) and (2.2), respectively. Here,

H
1/2
� (∂Ω) :=

{
φ ∈ H1/2(∂Ω)

∣∣∣ ∫
∂Ω

φ dσ = 0
}
.

These mappings are in fact isomorphisms between these spaces.
In the following we want to examine the difference of the Neumann-to-Dirichlet

operators Λε−Λ0. Therefore we introduce two additional boundary value problems
and a diffraction problem: First consider the boundary value problem

∆vε = 0, in Ω \ Dε,(2.3a)
∂vε

∂ν
= 0, on ∂Ω,(2.3b)

∂vε

∂ν
= φ, on ∂Dε,(2.3c)
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which for φ ∈ H
−1/2
� (∂Dε) has a unique solution vε ∈ H1

�,∂Ω(Ω \ Dε). Thus, we
may define

(2.4) Lε : H
−1/2
� (∂Dε) → H

1/2
� (∂Ω), φ �→ vε|∂Ω,

which is a bounded linear operator that takes Neumann data on ∂Dε and maps
them onto the associated Dirichlet values on ∂Ω. Recalling (2.1) and (2.2) we see
that Lε(−∂u0

∂ν

∣∣
∂Dε

) = Lε(∂uε

∂ν

∣∣
∂Dε

− ∂u0
∂ν

∣∣
∂Dε

) = (uε − u0)|∂Ω.
A short computation reveals that the dual operator L∗

ε of Lε is defined via the
solution of the problem

∆v∗ε = 0, in Ω \ Dε,(2.5a)
∂v∗ε
∂ν

= −ψ, on ∂Ω,(2.5b)

∂v∗ε
∂ν

= 0, on ∂Dε,(2.5c)

which for ψ ∈ H
−1/2
� (∂Ω) has a unique solution

v∗ε ∈ H1
�,∂Dε

(Ω \ Dε) :=
{

u ∈ H1(Ω \ Dε)
∣∣∣ ∫

∂Dε

u dσ = 0
}
,

through

(2.6) L∗
ε : H

−1/2
� (∂Ω) → H

1/2
� (∂Dε), ψ �→ v∗ε |∂Dε

.

Note that, apart from the normalization condition, (2.5) coincides with the bound-
ary value problem (2.1), and hence L∗

εf = −uε|∂Dε
+ (1/|∂Dε|)

∫
∂Dε

uε dσ, where
|∂Dε| denotes the surface measure of ∂Dε.

Next consider the following diffraction problem with inhomogeneous jump con-
dition:

∆wε = 0, in Ω \ ∂Dε,(2.7a)
∂wε

∂ν
= 0, on ∂Ω,(2.7b)

[wε]∂Dε
= χ,(2.7c) [

∂wε

∂ν

]
∂Dε

= 0,(2.7d)

which for χ ∈ H
1/2
� (∂Dε) has a unique solution wε with wε|Ω\Dε

∈ H1
�,∂Ω(Ω \ Dε)

and wε|Dε
∈ H1(Dε). Here, [ · ]∂Dε

denotes the difference between the respective
traces from outside and inside the inner boundary ∂Dε. Because of (2.7d),

(2.8) Fε : H
1/2
� (∂Dε) → H

−1/2
� (∂Dε), χ �→ −∂wε

∂ν

∣∣∣
∂Dε

,

is a well-defined bounded linear operator. Especially for

χ := −uε|∂Dε
+ (1/|∂Dε|)

∫
∂Dε

uε dσ

the function

wε :=

{
−uε + u0, in Ω \ Dε,
u0 − (1/|∂Dε|)

∫
∂Dε

uε dσ, in Dε,

is the solution to (2.7). Thus F (−uε|∂Dε
+ (1/|∂Dε|)

∫
∂Dε

uε dσ)= − ∂u0
∂ν

∣∣
∂Dε

.
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Altogether we obtain the following lemma from [11]:

Lemma 2.1. With Lε, L∗
ε and Fε defined by (2.4), (2.6) and (2.8), respectively,

the difference of the Neumann-to-Dirichlet maps can be factorized as

(2.9) Λε − Λ0 = LεFεL
∗
ε .

Moreover, we find that the factorization yields the following mapping sequence:

H
−1/2
� (∂Ω)

L∗
ε−−−→ H

1/2
� (∂Dε)

Fε−−−→ H
−1/2
� (∂Dε)

Lε−−−→ H
1/2
� (∂Ω)

with

f
L∗

ε�−→ −uε|∂Dε
+ (1/|∂Dε|)

∫
∂Dε

uε dσ
Fε�−→ −∂u0

∂ν

∣∣∣
∂Dε

Lε�−→ (uε − u0)|∂Ω.

3. Surface potentials

Throughout we denote by |x| the Euclidean norm of a point x ∈ Rd, by (x, y) the
scalar product of two vectors x, y ∈ Rd, and by ωd the area of the (d−1)-dimensional
unit sphere. The function

Φ(x − y) :=

⎧⎪⎨⎪⎩
− 1

2π
log |x − y|, for d = 2,

1
(d − 2)ωd

|x − y|2−d, for d ≥ 3,

is called a fundamental solution for the Laplace equation.
Let N denote the Neumann function for ∆ in Ω, i.e. for all y ∈ Ω, N(·, y) is the

unique solution to

∆xN(x, y) = −δy, for x ∈ Ω,

∂N

∂ν(x)
(x, y) = − 1

|∂Ω| , for x ∈ ∂Ω,

with the normalization
∫

∂Ω
N(x, y) dσ(x) = 0. Then N is symmetric in its argu-

ments in (Ω × Ω) \ diag(Ω × Ω), i.e.

N(x, y) = N(y, x) for (x, y) ∈ (Ω × Ω) \ diag(Ω × Ω);

cf. [6]. For each y ∈ Ω and d ≥ 2, the Neumann function N(x, y) has the form

(3.1) N(x, y) = Φ(x − y) + R(x, y),

where R(·, y) is the unique solution of the boundary value problem

∆xR(x, y) = 0, for x ∈ Ω,

∂R

∂ν(x)
(x, y) = − 1

|∂Ω| +
1
ωd

(x − y, ν(x))
|x − y|d , for x ∈ ∂Ω,

with
∫

∂Ω
R(x, y) dσ(x) = −

∫
∂Ω

Φ(x − y) dσ(x). Since Φ is symmetric, it follows
that R is symmetric in its arguments in Ω × Ω. As a consequence, R(x, ·) is a
harmonic function on Ω for all x ∈ Ω.

Given a bounded C1,α domain D ⊂ Rd, we denote the single layer potential and
the double layer potential of a function φ ∈ C(∂D) by

(SDφ)(x) :=
∫

∂D

Φ(x − y)φ(y) dσ(y), for x ∈ Rd,
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and

(DDφ)(x) :=
∫

∂D

∂Φ(x − y)
∂ν(y)

φ(y) dσ(y), for x ∈ Rd \ ∂D.

Then we have the following trace formulas (cf., e.g., [33]):

∂

∂ν
SDφ

∣∣∣±
∂D

(x) =
((

∓ 1
2
I + K∗

D

)
φ

)
(x), for x ∈ ∂D,(3.2)

DDφ
∣∣∣±
∂D

(x) =
((

± 1
2
I + KD

)
φ

)
(x), for x ∈ ∂D,(3.3)

where KD is defined by

(KDφ)(x) :=
∫

∂D

∂Φ(x − y)
∂ν(y)

φ(y) dσ(y) =
1
ωd

∫
∂D

(x − y, ν(y))
|x − y|d φ(y) dσ(y)

for x ∈ ∂D and K∗
D is the adjoint of KD, i.e.

(K∗
Dφ)(x) =

∫
∂D

∂Φ(x − y)
∂ν(x)

φ(y) dσ(y) =
1
ωd

∫
∂D

(y − x, ν(x))
|x − y|d φ(y) dσ(y)

for x ∈ ∂D.
SD, DD, KD and K∗

D have continuous extensions

SD : H−1/2(∂D) → H1
loc(R

d),

DD

∣∣
D

: H1/2(∂D) → H1(D),

DD

∣∣
Rd\D

: H1/2(∂D) → H1
loc(R

d \ D),

KD : H1/2(∂D) → H1/2(∂D),

K∗
D : H−1/2(∂D) → H−1/2(∂D),

and the jump formulas (3.2), (3.3) remain valid for these operators; cf. [21, 35].
Moreover, KD as well as K∗

D is compact [36] and −1
2I + KD has trivial nullspace

in H1/2(∂D) [6]. Hence, by the Fredholm alternative, −1
2I + KD is invertible on

H1/2(∂D) and −1
2I + K∗

D is invertible on H−1/2(∂D).
Since KD1 = −1

2 , we get for each φ ∈ H−1/2(∂D),∫
∂D

(−1
2
I + K∗

D)φ dσ = −
∫

∂D

φ dσ.

Thus, −1
2I + K∗

D maps H
−1/2
� (∂D) onto H

−1/2
� (∂D).

Next we consider the following modified surface potentials: Let D be a bounded
C1,α domain compactly contained in Ω. For a function φ ∈ C(∂D) define

(SN
D φ)(x) :=

∫
∂D

N(x, y)φ(y) dσ(y), for x ∈ Ω,

(DN
Dφ)(x) :=

∫
∂D

∂N(x, y)
∂ν(y)

φ(y) dσ(y), for x ∈ Ω \ ∂D.
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According to (3.1) we obtain the following trace formulas:

∂

∂ν
SN

D φ
∣∣∣±
∂D

(x) =
((

∓ 1
2
I + K∗

D

)
φ

)
(x) +

∫
∂D

∂R(x, y)
∂ν(x)

φ(y) dσ(y),

DN
Dφ

∣∣∣±
∂D

(x) =
((

± 1
2
I + KD

)
φ

)
(x) +

∫
∂D

∂R(x, y)
∂ν(y)

φ(y) dσ(y),

for x ∈ ∂D. Define

(3.4) (RDφ)(x) :=
∫

∂D

∂R(x, y)
∂ν(y)

φ(y) dσ(y), for x ∈ ∂D,

and let
KN

Dφ := KDφ + RDφ.

Then we obtain
∂

∂ν
SN

D φ
∣∣∣±
∂D

(x) =
((

∓ 1
2
I + (KN

D )∗
)
φ

)
(x), for x ∈ ∂D,(3.5)

DN
Dφ

∣∣∣±
∂D

(x) =
((

± 1
2
I + KN

D

)
φ

)
(x), for x ∈ ∂D,(3.6)

where (KN
D )∗ is the adjoint of KN

D .
Recalling (3.1) and the mapping properties of the boundary integral operators

above we find that the operators

SN
D : H−1/2(∂D) → H1(Ω),

DN
D

∣∣
D

: H1/2(∂D) → H1(D),

DN
D

∣∣
Ω\D

: H1/2(∂D) → H1(Ω \ D)

are continuous and the jump relations (3.5), (3.6) remain valid for these extensions.
The kernel of the integral operator RD is continuous, so

RD : H1/2(∂D) → H1/2(∂D)

and the corresponding dual operator

R∗
D : H−1/2(∂D) → H−1/2(∂D)

are compact. Therefore the operators

KN
D : H1/2(∂D) → H1/2(∂D),

(KN
D)∗ : H−1/2(∂D) → H−1/2(∂D)

are compact, too.

Lemma 3.1. The operators −1
2I +KN

D and −1
2I + (KN

D)∗ have trivial nullspace in
H1/2(∂D) and H−1/2(∂D), respectively.

Proof. Let φ ∈ H−1/2(∂D) be a solution to the equation (−1
2I + (KN

D)∗)φ = 0 and
define v := SN

D φ. Then by (3.5)

∂v

∂ν

∣∣∣+
∂D

=
(
−1

2
I + (KN

D )∗
)

φ = 0,

and v is a solution to the Neumann problem

∆v = 0 in Ω \ D,
∂v

∂ν

∣∣∣
∂Ω

= C,
∂v

∂ν

∣∣∣
∂D

= 0,
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where C := − 1
|∂Ω|

∫
∂D

φ dσ is constant. From the Divergence Theorem we obtain
C = 0. Thus we find that v is constant in Ω \ D and therefore on ∂D. Since
∆v = 0 in D we obtain that v is constant in D. From (3.5) we see that φ =

− ∂v
∂ν

∣∣∣+
∂D

+ ∂v
∂ν

∣∣∣−
∂D

= 0. Hence, ker(−1
2I + (KN

D)∗) = {0}.
By the Fredholm alternative it also follows that ker(−1

2I + KN
D ) = {0} in

H1/2(∂D). �

Applying the Fredholm alternative and Lemma 3.1 we find that −1
2I + KN

D is
invertible on H1/2(∂D) and −1

2I + (KN
D)∗ is invertible on H−1/2(∂D).

Since, for all x ∈ Ω, R(x, ·) is harmonic in D, it follows that

KN
D1 = KD1 + RD1 = KD1 +

∫
∂D

∂R(·, y)
∂ν(y)

dσ(y) = −1
2
,

and we get as above that −1
2I +(KN

D )∗ maps H
−1/2
� (∂D) onto H

−1/2
� (∂D). Also as

a consequence of this harmonicity, we find that the subspace of constant functions in
H1/2(∂D) is contained in the nullspace of RD. Moreover, applying the harmonic-
ity of R(·, y) for all y ∈ Ω, we see that R∗

D maps H−1/2(∂D) into H
−1/2
� (∂D).

Therefore, in the following we may consider RD and R∗
D as dual operators from

H
1/2
� (∂D) to H1/2(∂D) and H−1/2(∂D) to H

−1/2
� (∂D), respectively.

4. First estimates

In the following sections we often have to deal with changes of coordinates.
Therefore we introduce some notation: Given φ ∈ L2(∂Dε) and ψ ∈ L2(∂B) we
define φ̂, (φ)∧ ∈ L2(∂B) and ψ̌, (ψ)∨ ∈ L2(∂Dε) by

(φ)∧(ξ) := φ̂(ξ) := φ(εξ + z), for a.e. ξ ∈ ∂B,(4.1a)

(ψ)∨(x) := ψ̌(x) := ψ(
x − z

ε
), for a.e. x ∈ ∂Dε,(4.1b)

respectively. The same notation will also be used for functions in H1/2(∂Dε) or
H−1/2(∂Dε) and H1/2(∂B) or H−1/2(∂B), respectively. This makes sense, since
the corresponding Sobolev spaces on Rd−1 are invariant under such regular changes
of coordinates (cf. [35]). Moreover, we apply the notation to functions in H1(Dε)
and H1(B) in the same way.

In our estimates we shall use a generic constant C.
For bounded C1,α domains D⊂Rd we use the following norm on H1/2(∂D) (cf.,

e.g., [27]):

‖φ‖H1/2(∂D) := inf
u∈H1(D)
u|∂D=φ

‖u‖H1(D), for all φ ∈ H1/2(∂D).

The dual space H−1/2(∂D) shall be equipped with the corresponding dual norm:

‖ψ‖H−1/2(∂D) := sup
φ∈H1/2(∂D)

φ �=0

|〈ψ, φ〉∂D|
‖φ‖H1/2(∂D)

, for all ψ ∈ H−1/2(∂D),

where 〈·,·〉∂D denotes the duality pairing between H1/2(∂D) and H−1/2(∂D).
The following lemma examines the scaling properties of these norms under

changes of coordinates as in (4.1):
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Lemma 4.1. Suppose 0 < ε ≤ 1. Then there exist constants c and C independent
of ε such that for each φ ∈ H

1/2
� (∂Dε) and ψ ∈ H

−1/2
� (∂Dε),

ε
d−2
2 c‖φ̂‖H1/2(∂B) ≤ ‖φ‖H1/2(∂Dε) ≤ ε

d−2
2 ‖φ̂‖H1/2(∂B),(4.2)

ε
d
2 ‖ψ̂‖H−1/2(∂B) ≤ ‖ψ‖H−1/2(∂Dε) ≤ ε

d
2 C‖ψ̂‖H−1/2(∂B).(4.3)

Proof. Let φ ∈ H
1/2
� (∂Dε) and ψ ∈ H

−1/2
� (∂Dε). By change of coordinates, ξ :=

x−z
ε , we observe that for all u ∈ H1

� (Dε),

‖u‖2
H1(Dε) =

∫
Dε

(
|u(x)|2 + |∇xu(x)|2

)
dx

= εd

∫
B

(
|u(εξ + z)|2 +

1
ε2

|∇ξu(εξ + z)|2
)

dξ

= εd

∫
B

(
|û(ξ)|2 +

1
ε2

|∇ξû(ξ)|2
)

dξ.

Thus,
‖u‖2

H1(Dε) ≤ εd−2‖û‖2
H1(B),

since we assumed that 0 < ε ≤ 1, and therefore

‖φ‖H1/2(∂Dε) ≤ ε
d−2
2 ‖φ̂‖H1/2(∂B).

The Poincaré inequality (cf. [22, Chapter IV, Section 7, Proposition 2]), implies
that there exists a constant c independent of ε such that for all u ∈ H1

� (Dε),

εd−2c‖û‖2
H1(B) ≤ εd−2‖∇ξû‖2

L2(B) = ‖∇xu‖2
L2(Dε) ≤ ‖u‖2

H1(Dε).

Hence,
ε

d−2
2 c‖φ̂‖H1/2(∂B) ≤ ‖φ‖H1/2(∂Dε).

For the dual norm we obtain by change of coordinates, applying (4.2),

‖ψ‖H−1/2(∂Dε) = sup
φ∈H1/2(∂Dε)

φ �=0

|〈ψ, φ〉∂Dε
|

‖φ‖H1/2(∂Dε)

≥ sup
φ∈H1/2(∂Dε)

φ �=0

εd−1|〈ψ̂, φ̂〉∂B|
ε

d−2
2 ‖φ̂‖H1/2(∂B)

= ε
d
2 sup

φ̂∈H1/2(∂B)

φ̂ �=0

|〈ψ̂, φ̂〉∂B|
‖φ̂‖H1/2(∂B)

= ε
d
2 ‖ψ̂‖H−1/2(∂B)

and in the same way

‖ψ‖H−1/2(∂Dε) ≤ sup
φ∈H1/2(∂Dε)

φ �=0

εd−1|〈ψ̂, φ̂〉∂B|
ε

d−2
2 c‖φ̂‖H1/2(∂B)

= c−1ε
d
2 sup

φ̂∈H1/2(∂B)

φ̂ �=0

|〈ψ̂, φ̂〉∂B|
‖φ̂‖H1/2(∂B)

= ε
d
2 C‖ψ̂‖H−1/2(∂B).

Here we put C := c−1. �

In the next lemma we investigate the scaling properties of the integral operators
KDε

and K∗
Dε

:
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Lemma 4.2. Let φ ∈ H1/2(∂Dε) and ψ ∈ H−1/2(∂Dε). Then

KDε
φ = (KBφ̂)∨ and K∗

Dε
ψ = (K∗

Bψ̂)∨.

Proof. By change of variables, ξ := x−z
ε and η := y−z

ε , we see that for a.e. x ∈ ∂Dε,

(KDε
φ)(x) =

1
ωd

∫
∂Dε

(x − y, ν(y))
|x − y|d φ(y) dσ(y)

=
1
ωd

∫
∂B

(εξ − εη, ν(η))
|εξ − εη|d φ(εη + z)εd−1 dσ(η)

=
1
ωd

∫
∂B

(ξ − η, ν(η))
|ξ − η|d φ̂(η) dσ(η)

= (KBφ̂)(ξ).

The second identity follows in the same way. �

Next we will estimate the norm of the operator RDε
∈L(H1/2

� (∂Dε), H1/2(∂Dε)).

Lemma 4.3. There exists a constant C independent of ε such that for each φ ∈
H

1/2
� (∂Dε),

‖RDε
φ‖H1/2(∂Dε) ≤ εdC‖φ‖H1/2(∂Dε).

Proof. Let φ ∈ H
1/2
� (∂Dε). By R̃Dε

φ we denote the extension of RDε
φ to H1(Dε)

which is obtained canonically via (3.4). Then, since R and ∇xR are uniformly
bounded near the centre of the inclusion,

‖RDε
φ‖2

H1/2(∂Dε) =

⎛⎜⎝ inf
u∈H1(Dε)

u|∂Dε=RDε φ

‖u‖H1(Dε)

⎞⎟⎠
2

≤ ‖R̃Dε
φ‖2

H1(Dε)

=
∫

Dε

∣∣∣∣∫
∂Dε

∂R(x, y)
∂ν(y)

φ(y) dσ(y)
∣∣∣∣2 dx

+
∫

Dε

∣∣∣∣∇x

∫
∂Dε

∂R(x, y)
∂ν(y)

φ(y) dσ(y)
∣∣∣∣2 dx

≤
∫

Dε

(∫
∂Dε

(∣∣∣∣∂R(x, y)
∂ν(y)

∣∣∣∣2

+
∣∣∣∣∇x

∂R(x, y)
∂ν(y)

∣∣∣∣2
)

dσ(y)
∫

∂Dε

|φ(y)|2 dσ(y)

)
dx

≤ εd−1C‖φ‖2
L2(∂Dε)

∫
Dε

1 dx ≤ ε2d−1C‖φ‖2
L2(∂Dε)

with a constant C that is independent of ε. Moreover, applying the Sobolev Imbed-
ding Theorem and Lemma 4.1, we find

‖φ‖2
L2(∂Dε) = εd−1‖φ̂‖2

L2(∂B) ≤ εd−1C‖φ̂‖2
H1/2(∂B) ≤ εC‖φ‖2

H1/2(∂Dε)

with a constant C that is independent of ε. Combining these two estimates yields
the assertion. �
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Therefore, we have RDε
= O(εd) and

−1
2
I + KN

Dε
= −1

2
I + KDε

+ RDε
= −1

2
I + KDε

+ O(εd)

in L(H1/2
� (∂Dε), H1/2(∂Dε)), as ε → 0, where the remainder estimate O(εd) is in

terms of the operator norm in L(H1/2
� (∂Dε), H1/2(∂Dε)). By duality we find that

also R∗
Dε

= O(εd) and

(4.4) −1
2
I + (KN

Dε
)∗ = −1

2
I + K∗

Dε
+ R∗

Dε
= −1

2
I + K∗

Dε
+ O(εd),

in L(H−1/2(∂Dε), H
−1/2
� (∂Dε)). For L(H−1/2

� (∂Dε), H
−1/2
� (∂Dε)), the latter re-

sult also holds.
In the following we consider −1

2I + K∗
Dε

and −1
2I + (KN

Dε
)∗ as operators in

L(H−1/2
� (∂Dε), H

−1/2
� (∂Dε)). From Lemma 4.2 we obtain for all ψ ∈ H

−1/2
� (∂Dε)

that (
−1

2
I + K∗

Dε

)
ψ =

((
−1

2
I + K∗

B

)
ψ̂

)∨

and (
−1

2
I + K∗

Dε

)−1

ψ =

((
−1

2
I + K∗

B

)−1

ψ̂

)∨

.

Therefore, applying Lemma 4.1 and Lemma 4.2, we find that∥∥∥∥(− 1
2
I + K∗

Dε

)−1∥∥∥∥
∂Dε

= sup
ψ∈H−1/2

� (∂Dε)
ψ �=0

∥∥∥(−1
2I + K∗

Dε

)−1
ψ
∥∥∥

H−1/2(∂Dε)

‖ψ‖H−1/2(∂Dε)

≤ sup
ψ∈H−1/2

� (∂Dε)
ψ �=0

ε
d
2 C

∥∥∥∥((−1
2I + K∗

Dε

)−1
ψ
)∧

∥∥∥∥
H−1/2(∂B)

ε
d
2 ‖ψ̂‖H−1/2(∂B)

= C sup
ψ̂∈H−1/2

� (∂B)

ψ̂ �=0

∥∥∥(−1
2I + K∗

B

)−1
ψ̂
∥∥∥

H−1/2(∂B)

‖ψ̂‖H−1/2(∂B)

= C

∥∥∥∥(− 1
2
I + K∗

B

)−1∥∥∥∥
∂B

,

where ‖·‖∂Dε
and ‖·‖∂B denote the operator norm on L(H−1/2

� (∂Dε), H
−1/2
� (∂Dε))

and L(H−1/2
� (∂B), H−1/2

� (∂B)), respectively, and the constant C is independent of
ε.

From this estimate it follows that ‖(−1
2I +K∗

Dε
)−1‖∂Dε

≤ C, with a constant C
that is independent of ε. Together with (4.4) and a Neumann series argument (cf.,
e.g., [33]), we thus obtain(

−1
2
I + (KN

Dε
)∗
)−1

=
(
−1

2
I + K∗

Dε

)−1

+ PDε

with PDε
= O(εd) in L(H−1/2

� (∂Dε), H
−1/2
� (∂Dε)).
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5. Asymptotic expansion

Now we consider the boundary value problem (2.3) and the operator Lε from
(2.4). For φ ∈ H

−1/2
� (∂Dε) we define vε ∈ H1

�,∂Ω(Ω \ Dε) by

vε := SN
Dε

(
−1

2
I + (KN

Dε
)∗
)−1

φ.

Then vε is a solution to (2.3) and on ∂Ω we have

vε|∂Ω =
∫

∂Dε

N(·, y)
((

− 1
2
I + (KN

Dε
)∗
)−1

φ

)
(y) dσ(y)

=
∫

∂Dε

N(·, y)
((

− 1
2
I + K∗

Dε

)−1

φ

)
(y) dσ(y)

+
∫

∂Dε

N(·, y) (PDε
φ) (y) dσ(y).

Recalling (4.3) we can estimate the last term on the right hand side as follows:

∥∥∥∥∫
∂Dε

N(·, y)(PDε
φ)(y) dσ(y)

∥∥∥∥2

H1/2(∂Ω)

≤
∥∥∥∥∫

∂Dε

N(·, y)(PDε
φ)(y) dσ(y)

∥∥∥∥2

H1(∂Ω)

≤ C

(
max
x∈∂Ω

∣∣∣∣∫
∂Dε

N(x, y)(PDε
φ)(y) dσ(y)

∣∣∣∣2
+ max

x∈∂Ω

∣∣∣∣∫
∂Dε

∇xN(x, y)(PDε
φ)(y) dσ(y)

∣∣∣∣2
)

≤ C‖PDε
φ‖2

H−1/2(∂Dε)

(
max
x∈∂Ω

‖N(x, ·)‖2
H1/2(∂Dε)

+ max
1≤j≤d

max
x∈∂Ω

∥∥∥∥ ∂N

∂xj
(x, ·)

∥∥∥∥2

H1/2(∂Dε)

)
≤ Cεd−1ε2d‖φ‖2

H−1/2(∂Dε)
≤ Cε4d−1‖φ̂‖2

H−1/2(∂B) ,

where the constant C is independent of ε and φ.
Using the Taylor expansion we obtain for x ∈ ∂Ω, z ∈ Ω and η ∈ ∂B as ε → 0,

N(x, εη + z) =
∞∑

|j|=0

1
j!

ε|j|∂j
yN(x, z)ηj ,

where j = (j1, . . . , jd) is a multi-index (cf. [35, p. 61]). Thus, recalling Lemma 4.2
and the fact that −1

2I +(KN
Dε

)∗ maps H
−1/2
� (∂Dε) into H

−1/2
� (∂Dε), we obtain the
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following asymptotic formula:

vε|∂Ω = εd−1

∫
∂B

N(·, εη + z)
((

− 1
2
I + K∗

Dε

)−1

φ

)
(εη + z) dσ(η)

+ O(ε2d− 1
2 )

= εd∇yN(·, z) ·
∫

∂B

η

((
− 1

2
I + K∗

B

)−1

φ̂

)
(η) dσ(η) + O(εd+1).

The last term is bounded by Cεd+1‖φ̂‖H−1/2(∂B) in H
1/2
� (∂Ω), where the constant

C is independent of ε and φ.

Definition 5.1. Define

(5.1) L : H
−1/2
� (∂B) → H

1/2
� (∂Ω),

Lϕ := ∇yN(·, z) ·
∫

∂B

η

((
− 1

2
I + K∗

B

)−1

ϕ

)
(η) dσ(η).

Then L is a bounded linear operator, and we have shown the following asymptotic
formula:

Proposition 5.2. For all φ ∈ H
−1/2
� (∂Dε),

(5.2) Lεφ = εdLφ̂ + ELφ̂,

as ε → 0, where the operator EL is bounded by Cεd+1 in the norm of
L(H−1/2

� (∂B), H1/2
� (∂Ω)), and the constant C is independent of ε.

Remark 5.3. By duality, in L(H−1/2
� (∂Ω), H1/2

� (∂B)), the adjoint operator E∗
L is

O(εd+1).

Next we return to the diffraction problem (2.7) and the operator Fε from (2.8).
Given χ ∈ H

1/2
� (∂Dε) we define

wε := DN
Dε

χ.

Then wε is a solution to (2.7) and from (3.6) we obtain

wε|−∂Dε
=

(
−1

2
I + KN

Dε

)
χ.

For ϕ ∈ H1/2(∂Dε) we consider the interior Dirichlet problem

(5.3) ∆w = 0 in Dε, w = ϕ on ∂Dε,

and the corresponding interior Dirichlet-to-Neumann operator,

Υε : H1/2(∂Dε) → H
−1/2
� (∂Dε), Υεϕ :=

∂w

∂ν

∣∣∣
∂Dε

.

Since wε solves the diffraction problem (2.7), we obtain

∂wε

∂ν

∣∣∣
∂Dε

= Υε

(
−1

2
I + KN

Dε

)
χ.

We define the interior Dirichlet-to-Neumann operator Υ : H1/2(∂B) → H
−1/2
� (∂B)

on ∂B in the same way as Υε. These Dirichlet-to-Neumann maps are bounded
linear operators. Next we take a closer look at the scaling properties of Υε.



1438 H. AMMARI, R. GRIESMAIER, AND M. HANKE

Lemma 5.4. Let ϕ ∈ H1/2(∂Dε). Then

ε−1 (Υϕ̂)∨ = Υεϕ.

Proof. Suppose w is a solution to (5.3). By change of variables, ξ := x−z
ε , we find

that ŵ satisfies

∆ξŵ(ξ) = ε2∆xw(x) = 0, for a.e. ξ ∈ B,

∂ŵ

∂ν(ξ)
(ξ) = ε

∂w

∂ν(x)
(x), for a.e. ξ ∈ ∂B,

ŵ(ξ) = w(x), for a.e. ξ ∈ ∂B.

Hence,

(Υŵ|∂B)(ξ) =
∂ŵ

∂ν(ξ)
(ξ) = ε

∂w

∂ν(x)
(x) = ε(Υεw|∂Dε

)(x),

for a.e. ξ ∈ ∂B and x = εξ + z ∈ ∂Dε. �

Lemma 5.5. There exists a constant C independent of ε such that for each ϕ ∈
H

1/2
� (∂Dε),

‖(ΥεRDε
ϕ)∧‖H−1/2(∂B) ≤ εd−1C‖ϕ̂‖H1/2(∂B).

Proof. Let ϕ ∈ H
1/2
� (∂Dε). Using Lemma 5.4, the continuity of Υ, Lemma 4.1 and

Lemma 4.3 we obtain

‖(ΥεRDε
ϕ)∧‖H−1/2(∂B) = ε−1‖ΥR̂Dε

ϕ‖H−1/2(∂B)

≤ ε−1C‖R̂Dε
ϕ‖H1/2(∂B)

≤ ε−1Cε
2−d
2 ‖RDε

ϕ‖H1/2(∂Dε)

≤ ε−
d
2 Cεd‖ϕ‖H1/2(∂Dε)

≤ ε
d
2 Cε

d−2
2 ‖ϕ̂‖H1/2(∂B)

= εd−1C‖ϕ̂‖H1/2(∂B),

and the constant C is independent of ε and ϕ. �

Note that from the previous lemma and (4.3) it also follows that

‖ΥεRDε
χ‖H−1/2(∂Dε) ≤ ε

3d
2 −1C‖χ̂‖H1/2(∂B),

with a constant C that is independent of ε and χ. Therefore, applying Lemma 5.4
and Lemma 4.2, we can calculate

∂wε

∂ν

∣∣∣
∂Dε

= Υε

(
− 1

2
I + KN

Dε

)
χ

= Υε

(
− 1

2
I + KDε

)
χ + ΥεRDε

χ

=
1
ε

(
Υ

((
− 1

2
I + KDε

)
χ

)∧
)∨

+ O(ε
3d
2 −1)

=
1
ε

(
Υ
(
− 1

2
I + KB

)
χ̂

)∨
+ O(ε

3d
2 −1).

The last term is bounded by Cε
3d
2 −1‖χ̂‖H1/2(∂B) in H

−1/2
� (∂Dε), where the constant

C is independent of ε and χ.
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Definition 5.6. Define

(5.4) F : H
1/2
� (∂B) → H

−1/2
� (∂B), Fϕ := −Υ

(
−1

2
I + KB

)
ϕ.

Then F is a bounded linear operator, and using Lemma 4.1 we obtain the fol-
lowing asymptotic formula:

Proposition 5.7. For all χ ∈ H
1/2
� (∂Dε),

(5.5) Fεχ = ε−1(Fχ̂)∨ + (EF χ̂)∨,

as ε → 0, where the operator EF is bounded by Cεd−1 in the norm of
L(H1/2

� (∂B), H−1/2
� (∂B)), and the constant C is independent of ε.

Next we consider the asymptotic behaviour of the operator L∗
ε from (2.6). Let

φ ∈ H
−1/2
� (∂Dε) and ψ ∈ H

−1/2
� (∂Ω). For X ∈ {Ω, B, Dε} we denote by 〈·, ·〉∂X

the duality pairing between H
1/2
� (∂X) and H

−1/2
� (∂X) and use Proposition 5.2 to

calculate

〈φ, L∗
εψ〉∂Dε

= 〈Lεφ, ψ〉∂Ω

=
〈
εdLφ̂ + ELφ̂, ψ

〉
∂Ω

=
〈
φ̂, εdL∗ψ + E∗

Lψ
〉

∂B

=
〈
φ, ε(L∗ψ)∨ + ε1−d(E∗

Lψ)∨
〉

∂Dε
,

where L∗ : H
−1/2
� (∂Ω) → H

1/2
� (∂B) is the dual operator of L.

Recalling Remark 5.3 we obtain the following asymptotic formula:

Proposition 5.8. For all ψ ∈ H
−1/2
� (∂Ω),

(5.6) L∗
εψ = ε(L∗ψ)∨ + ε1−d(E∗

Lψ)∨,

as ε → 0, where the operator E∗
L is bounded by Cεd+1 in the norm of

L(H−1/2
� (∂Ω), H1/2

� (∂B)), and the constant C is independent of ε.

Now we calculate the operator L∗ explicitly. Let φ ∈ H
−1/2
� (∂B) and ψ ∈

H
−1/2
� (∂Ω). Recalling the definition of the operator L from (5.1) it follows that〈

Lφ, ψ
〉

∂Ω

=
∫

∂Ω

∇yN(x, z) ·
(∫

∂B

η

((
− 1

2
I + K∗

B

)−1

φ

)
(η) dσ(η)

)
ψ(x) dσ(x)

=
(∫

∂Ω

∇yN(x, z)ψ(x) dσ(x)
)
·
∫

∂B

η

((
− 1

2
I + K∗

B

)−1

φ

)
(η) dσ(η)

=
(∫

∂Ω

∇yN(x, z)ψ(x) dσ(x)
)
·
∫

∂B

φ(ξ)
((

− 1
2
I + KB

)−1

η

)
(ξ) dσ(ξ).

Note that in the last line of this computation η is the surface variable on ∂B and
therefore (−1

2I +KB)−1η is defined componentwise for this vector-valued function.
Since N is the Neumann function for

(5.7) ∆v = 0 in Ω,
∂v

∂ν
= ψ on ∂Ω,
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with
∫

∂Ω
v dσ = 0, we have that

∇v(z) =
∫

∂Ω

∇yN(x, z)ψ(x) dσ(x),

i.e. that

(5.8) L∗ψ = ∇v(z) ·
((

− 1
2
I + KB

)−1

η

)
,

where v is the solution of (5.7).
Now we put our results together and obtain the main result of this paper:

Theorem 5.9. Let f ∈ H
−1/2
� (∂Ω), then

(5.9) (Λε − Λ0) f = εdLFL∗f + O(εd+1)

in H
1/2
� (∂Ω), as ε → 0. More precisely, the last term is bounded by

Cεd+1‖f‖H−1/2(∂Ω), where the constant C is independent of ε and f .

Proof. From Proposition 5.8 we obtain

L∗
εf = ε(L∗f)∨ + ε1−d(E∗

Lf)∨.

So by Proposition 5.7,

FεL
∗
εf = (FL∗f)∨ + ε(EF L∗f)∨ + ε−d(FE∗

Lf)∨ + ε1−d(EF E∗
Lf)∨.

With the help of Proposition 5.2, we find for the factorization of (Λε − Λ0)f of
Lemma 2.1 that

(Λε − Λ0)f = LεFεL
∗
εf = εdLFL∗f + ELFL∗f + εd+1LEF L∗f

+ εELEF L∗f + LFE∗
Lf + ε−dELFE∗

Lf + εLEF E∗
Lf + ε1−dELEF E∗

Lf.

Now the assertion follows from the estimates in Proposition 5.2, Proposition 5.7,
Proposition 5.8, and the continuity of the operators L, F , and L∗. �

Figure 1 illustrates the factorization Λε−Λ0 = LεFεL
∗
ε from Lemma 2.1 and the

leading order term LFL∗ in the corresponding asymptotic factorization Λε −Λ0 =
εdLFL∗ + O(εd+1) from Theorem 5.9.

Finally let f ∈ H
−1/2
� (∂Ω) and let u0 be the solution to (2.2). We want to

calculate LFL∗f explicitly: Since (2.2) and (5.7) coincide, we obtain from (5.8)
that

L∗f = ∇u0(z) ·
((

− 1
2
I + KB

)−1

η

)
.

Thus, by applying (5.4),

FL∗f = −∇u0(z) · Υη = −∇u0(z) · ν(η),

where ν denotes the unit outward normal to ∂B, because ηi is the unique harmonic
function on B with Dirichlet data ηi|∂B for 1 ≤ i ≤ d. We deduce from (5.1) that

LFL∗f

= −∇yN(·, z) ·
∫

∂B

η

((
− 1

2
I + K∗

B

)−1(
ν · ∇u0(z)

))
(η) dσ(η)

= −∇yN(·, z) · M∇u0(z),
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Rd Rd

B

Ω

F

L*

L

Rd

Lε

Fε

L*ε Ω

Dε

Figure 1. Sketch of the factorization Λε − Λ0 = LεFεL
∗
ε (above)

and of the leading order term LFL∗ in the corresponding asymp-
totic factorization Λε − Λ0 = εdLFL∗ + O(εd+1) (below).

where the matrix M ∈ Rd×d is given by M := (Mij)d
i,j=1 with

Mij :=
∫

∂B

ηi

((
− 1

2
I + K∗

B

)−1

νj

)
(η) dσ(η)

for i, j = 1, . . . , d. M is the so-called polarization tensor of Pólya-Szegö correspond-
ing to the insulating inhomogeneity Dε = z + εB. It is a symmetric and negative
definite matrix that depends on the relative shape of the inhomogeneity Dε; cf.
[6, 24].

We obtain the following corollary:

Corollary 5.10. Let f ∈ H
−1/2
� (∂Ω) and let u0 be the solution to (2.2). Then,

(Λε − Λ0) f = −εd∇yN(·, z) · M∇u0(z) + O(εd+1)

in H
1/2
� (∂Ω), as ε → 0. More precisely, the last term is bounded by

Cεd+1‖f‖H−1/2(∂Ω), where the constant C is independent of ε and f .

This is exactly the formula derived in [24]; cf. also [5, 6].

Remark 5.11. Note that our way of writing the polarisation tensor M differs from
that in [24]. But the two expressions are equivalent except that their sign is dif-
ferent, as we will show next: In [24] Friedman and Vogelius define functions Ψj ,
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j = 1, . . . , d, which are the unique solutions to the exterior problems

∆Ψj = 0, in Rd \ B,
∂Ψj

∂ν
= −νj , on ∂B,(5.10)

Ψj(η) → 0, as |η| → ∞.

Then they define the polarisation tensor M̃ := (M̃ij)d
i,j=1 by

M̃ij :=
∫

∂B

νi(η) (ηj + Ψj(η)) dσ(η),

for i, j = 1, . . . , d.
Now let 1 ≤ i, j ≤ d. If we define φj :=

(
−1

2I + KB

)−1
ηj and uj := DBφj , we

obtain from the jump relation (3.3) that uj |−∂B = ηj and uj |B is the unique solution
to

∆u = 0 in B, u|−∂B = ηj .

Therefore, uj |B = ηj and we have ∂uj

∂ν

∣∣∣+
∂B

= ∂uj

∂ν

∣∣∣−
∂B

= νj on ∂B. Thus, −uj |Rd\B

solves (5.10), and from the uniqueness of solutions to (5.10) we get uj |Rd\B = −Ψj .
Again from (3.3) we obtain that φj = uj |+∂B − uj |−∂B = −ηj − Ψj |∂B. This gives

M̃ij =
∫

∂B

νi(η) (ηj + Ψj(η)) dσ(η) = −
∫

∂B

νi(η)φj(η) dσ(η)

= −
∫

∂B

νi(ξ)
((

− 1
2
I + KB

)−1

ηj

)
(ξ) dσ(ξ)

= −
∫

∂B

ηj

((
− 1

2
I + K∗

B

)−1

νi

)
(η) dσ(η) = −Mji = −Mij ,

where we used the symmetry of M . Thus M = −M̃ .

6. Multiple inclusions

In this section we extend our results to the practically important case of finitely
many well separated small inclusions. By that we understand cavities Dε,i :=
zi + εBi, where Bi is a bounded C1,α domain containing the origin, and 1 ≤ i ≤ m.
The total collection of inclusions thus takes the form Dε :=

⋃m
i=1(zi + εBi). The

points zi ∈ Ω, 1 ≤ i ≤ m, that determine the location of the inclusions, are assumed
to satisfy

|zi − zj | ≥ c0 ∀i �= j and dist(zi, ∂Ω) ≥ c0

for some constant c0 > 0, and the value of ε > 0 is assumed to be sufficiently small.
The piecewise constant conductivity distribution is again given by

σε(x) :=

{
0, for x ∈ Dε,
1, for x ∈ Ω \ Dε.

Basically the results and their proofs for a single inclusion from the previous
sections can be adopted with few minor modifications which we will comment on
now.
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The factorization of the Neumann-to-Dirichlet operator from Lemma 2.1 can be
generalized as described in [11]. Therefore, it is convenient to set ∂Dε = ∂Dε,1 ×
· · · × ∂Dε,m and to interpret the relevant Sobolev spaces accordingly as product
spaces, e.g. H

±1/2
� (∂Dε) = H

±1/2
� (∂Dε,1)×· · ·×H

±1/2
� (∂Dε,m). Then the operator

Lε is again defined by (2.3) and (2.4), where the inner Neumann boundary condition
should be understood componentwise, i.e. ∂vε

∂ν = φi on ∂Dε,i, for 1 ≤ i ≤ m and
φ = (φ1, . . . , φm) ∈ H

−1/2
� (∂Dε). For the corresponding dual operator L∗

ε we again
consider the boundary value problem (2.5), whose solution v∗ε is unique up to an
additive constant. If we fix an arbitrary solution v∗ε and, for 1 ≤ i ≤ m, define
ci :=

∫
∂Dε,i

v∗ε dσ
/
|∂Dε,i|, then the dual operator of Lε is given by

L∗
ε : H

−1/2
� (∂Ω) → H

1/2
� (∂Dε), ψ �→ (v∗ε |∂Dε,1 − c1, . . . , v

∗
ε |∂Dε,m

− cm).

The definition of the operator Fε remains unchanged if the boundary conditions on
∂Dε are interpreted componentwise. Then the factorization of Λε − Λ0 stated in
Lemma 2.1 holds true in the case of multiple inclusions; cf. [11].

Now we generalize the asymptotic expansions from Section 5 to the case of
multiple inclusions. First we again consider the operator Lε from (2.4). For φ =
(φ1, . . . , φm) ∈ H

−1/2
� (∂Dε) we define vε ∈ H1

�,∂Ω(Ω \ Dε) by

vε :=
m∑

i=1

SN
Dε,i

ai,

where a := (a1, . . . , am) ∈ H
−1/2
� (∂Dε) solves the system of integral equations

⎛⎜⎜⎜⎜⎜⎜⎝
−1

2I + (KN
Dε,1

)∗ ∂
∂νSN

Dε,2

∣∣∣
∂Dε,1

. . . ∂
∂νSN

Dε,m

∣∣∣
∂Dε,1

∂
∂νSN

Dε,1

∣∣∣
∂Dε,2

−1
2I + (KN

Dε,2
)∗ . . . ∂

∂νSN
Dε,m

∣∣∣
∂Dε,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂
∂νSN

Dε,1

∣∣∣
∂Dε,m

∂
∂νSN

Dε,2

∣∣∣
∂Dε,m

. . . −1
2I + (KN

Dε,m
)∗

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=:A

⎛⎜⎜⎝
a1

a2

. . .
am

⎞⎟⎟⎠=

⎛⎜⎜⎝
φ1

φ2

. . .
φm

⎞⎟⎟⎠.

Since the small inclusions are assumed to be well separated from each other and
from the boundary ∂Ω, we can estimate the nondiagonal entries of the matrix A,
using the regularity of SN

Dε,i
ϕi away from ∂Dε,i, for 1 ≤ i ≤ m.

Lemma 6.1. There exists a constant C independent of ε such that for each ϕ =
(ϕ1, . . . , ϕm) ∈ H

−1/2
� (∂Dε) and 1 ≤ i �= j ≤ m,

∥∥∥∥ ∂

∂ν
SN

Dε,i
ϕi

∣∣∣
∂Dε,j

∥∥∥∥
H−1/2(∂Dε,j)

≤ εd−1C‖ϕi‖H−1/2(∂Dε,i).
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Proof. Let ϕ = (ϕ1, . . . , ϕm) ∈ H
−1/2
� (∂Dε) and 1 ≤ i �= j ≤ m. Using Lemma 4.1

and the regularity of SN
Dε,i

ϕi away from ∂Dε,i we obtain∥∥∥ ∂

∂ν
SN

Dε,i
ϕi

∣∣∣
∂Dε,j

∥∥∥2

H−1/2(∂Dε,j)
≤ εdC

∥∥∥( ∂

∂ν
SN

Dε,i
ϕi

∣∣∣
∂Dε,j

)∧j
∥∥∥2

H−1/2(∂Bj)

≤ εdC
∥∥∥( ∂

∂ν
SN

Dε,i
ϕi

∣∣∣
∂Dε,j

)∧j
∥∥∥2

L2(∂Bj)

= εC
∥∥∥ ∂

∂ν
SN

Dε,i
ϕi

∣∣∣
∂Dε,j

∥∥∥2

L2(∂Dε,j)

= εC

∫
∂Dε,j

∣∣∣ ∫
∂Dε,i

∂N(x, y)
∂ν(x)

ϕi(y) dσ(y)
∣∣∣2 dσ(x)

≤ εC

∫
∂Dε,j

∥∥∥∂N(x, ·)
∂ν(x)

∥∥∥2

H1/2(∂Dε,i)
‖ϕi‖2

H−1/2(∂Dε,i)
dσ(x)

≤ εCεd−2‖ϕi‖2
H−1/2(∂Dε,i)

|∂Dε,j | ≤ ε2d−2C‖ϕi‖2
H−1/2(∂Dε,i)

.

Here (·)∧j denotes the usual transformation from (4.1) applied to the j-th inhomo-
geneity Dε,j . �

Therefore, ∂
∂νSN

Dε,i

∣∣
∂Dε,j

= O(εd−1) in L(H−1/2
� (∂Dε,i), H

−1/2
� (∂Dε,j)), for 1 ≤

i �= j ≤ m. We deduce that

A =

⎛⎜⎜⎝
−1

2I + (KN
Dε,1

)∗ 0 . . . 0
0 −1

2I + (KN
Dε,2

)∗ . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . −1
2I + (KN

Dε,m
)∗

⎞⎟⎟⎠
︸ ︷︷ ︸

=:B

+O(εd−1)

with respect to the maximum row sum of L(H−1/2
� (∂Dε,i), H

−1/2
� (∂Dε,j))-norms,

1 ≤ i, j ≤ m. Thus we obtain that A−1 exists, and A−1 = B−1 + O(εd−1) with
respect to the same norm.

Now, calculating along the lines of Section 5, we obtain the following asymptotic
formula:

vε

∣∣
∂Ω

= εd
m∑

i=1

∇yN(·, zi) ·
∫

∂Bi

η

((
− 1

2
I + K∗

Bi

)−1

φ∧i
i

)
(η) dσ(η) + O(εd+1).

Here again, (·)∧i denotes the transformation from (4.1) applied to the i-th inclusion
Dε,i. The last term is bounded by Cεd+1 max

1≤i≤m
‖φ∧i

i ‖H−1/2(∂Bi) in H
1/2
� (∂Ω), where

the constant C is independent of ε and φ. Therefore, if we define

(6.1) L : H
−1/2
� (∂B1) × · · · × H

−1/2
� (∂Bm) → H

1/2
� (∂Ω),

Lϕ :=
m∑

i=1

∇yN(·, zi) ·
∫

∂Bi

η

((
− 1

2
I + K∗

Bi

)−1

ϕi

)
(η) dσ(η),

Proposition 5.2 remains valid in the case of finitely many well separated small
inclusions.

Now we return to the diffraction problem (2.7) and the operator Fε from (2.8).
For χ = (χ1, . . . , χm) ∈ H

1/2
� (∂Dε) we define wε :=

∑m
i=1 DN

Dε,i
χi. Then, for
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1 ≤ i ≤ m,

∂wε

∂ν

∣∣∣
∂Dε,i

= Υε,i

(
−1

2
I + KN

Dε,i

)
χi + Υε,i

m∑
j=1
j �=i

(
DN

Dε,j
χj

)∣∣∣
∂Dε,i

,

where Υε,i is the interior Dirichlet-to-Neumann operator on ∂Dε,i. As in Lemma 5.5
and Lemma 4.3 we can estimate∥∥∥∥∥

(
Υε,i

m∑
j=1
j �=i

(
DN

Dε,j
χj

) ∣∣∣
∂Dε,i

)∧i
∥∥∥∥∥

H−1/2(∂Bi)

≤ ε−
d
2 C

m∑
j=1
j �=i

∥∥∥∥(DN
Dε,j

χj

)∣∣∣
∂Dε,i

∥∥∥∥
H1/2(∂Dε,i)

≤ εd−1C max
1≤j≤m

‖χ∧j‖H1/2(∂Bj),

where the constant C is independent of ε and χ. Therefore, if we define

(6.2) F : H
1/2
� (∂B1) × · · · × H

1/2
� (∂Bm) → H

−1/2
� (∂B1) × · · · × H

−1/2
� (∂Bm),

F (ϕ1, . . . , ϕm):=
(
−Υ1

(
−1

2
I + KB1

)
ϕ1, . . . ,−Υm

(
−1

2
I + KBm

)
ϕm

)
,

where Υi is the interior Dirichlet-to-Neumann operator on ∂Bi, 1 ≤ i ≤ m, Propo-
sition 5.7 remains valid in the case of finitely many well separated small inclusions.

Calculating along the lines of Section 5 we find that Proposition 5.8 remains
valid in the case of finitely many well separated small inclusions, too, and that the
adjoint operator

L∗ : H
−1/2
� (∂Ω) → H

1/2
� (∂B1) × · · · × H

1/2
� (∂Bm)

of L is given by
(6.3)

L∗ψ=
(
∇v(z1)·

((
− 1

2
I + KB1

)−1

η

)
, . . . ,∇v(zm)·

((
− 1

2
I + KBm

)−1

η

))
,

where v is the corresponding solution of (5.7).
Thus we obtain:

Proposition 6.2. Theorem 5.9 holds true in the case of finitely many well separated
small inclusions, if L, F and L∗ are given as in (6.1), (6.2) and (6.3), respectively.

For 1 ≤ i ≤ m let M i denote the polarization tensor corresponding to the i-th
insulating inclusion Dε,i = zi + εBi. In the case of finitely many small inclusions
Corollary 5.10 reads as follows:

Corollary 6.3. Let f ∈ H
−1/2
� (∂Ω) and let u0 be the solution to (2.2). Then,

(Λε − Λ0) f = −εd
m∑

i=1

∇yN(·, zi) · M i∇u0(zi) + O(εd+1)

in H
1/2
� (∂Ω), as ε → 0. More precisely, the last term is bounded by

Cεd+1‖f‖H−1/2(∂Ω), where the constant C is independent of ε and f .
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7. Determining the location of the inclusions

In this section we again restrict ourselves to the case of a single inhomogeneity
Dε = z + εB, although we mention that the whole theory also works for multi-
ple inclusions. Moreover, we assume that the boundary ∂Dε of the inclusion is
connected.

The main assertion of the factorization method is the range identity

(7.1) R
(
(Λε − Λ0)1/2

)
= R(Lε),

from which we conclude for the test function

gy,d := d · ∇yN(·, y)|∂Ω, d ∈ Rd,

the following characterization of the inclusion Dε:

(7.2) y ∈ Dε if and only if gy,d ∈ R
(
(Λε − Λ0)1/2

)
.

Since Λε−Λ0 is a compact operator (with a range space that is dense in H
1/2
� (∂Ω)),

the correct way of implementing (7.2) is via the Picard criterion, i.e. an (infinite) se-
ries has to be checked for convergence. We refer to [11,28] for details and numerical
implementations.

On the other hand we have shown the asymptotic formula (5.9), i.e. for small
values of ε the operator εdLFL∗ is a good approximation of Λε − Λ0, and hence
R(Λε − Λ0) ≈ R(LFL∗). After defining the linear operators

G : Rd → H
1/2
� (∂Ω), Ga := a · ∇yN(·, z)|∂Ω,

H : H
−1/2
� (∂B) → Rd, Hϕ :=

∫
∂B

η

((
−1

2
I + K∗

B

)−1

ϕ

)
(η) dσ(η),

an easy computation shows that their dual operators are

G∗ : H
−1/2
� (∂Ω) → Rd, G∗ψ = ∇v(z),

H∗ : Rd → H
1/2
� (∂B), H∗a = a ·

(
−1

2
I + KB

)−1

η,

respectively, where v is the solution of (5.7) and η denotes the surface variable on
∂B. Then, from (5.1) we find that

L = GH, L∗ = (GH)∗ = H∗G∗, and LFL∗ = GHFH∗G∗.

Recalling the calculations after Theorem 5.9 we see that

HFH∗ = −M,

where M is the polarization tensor corresponding to the insulating inclusion Dε =
z + εB, i.e.

LFL∗ = −GMG∗.

In [12] it has been proven that

R(LFL∗) = R(G).

Therewith one can show that

(7.3) y = z if and only if gy,d ∈ R(LFL∗).

Note that R(G), i.e. R(LFL∗), is finite dimensional. Hence, instead of using the
Picard criterion to check an infinite dimensional range condition we can resort to
more familiar techniques from numerical linear algebra and compute, e.g., the angle
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θy between gy,d and the range R(LFL∗) ≈ R(Λε −Λ0) in order to implement (7.3)
instead of (7.2). We refer to [12, 28] for details and numerical implementations.
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