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K3 SURFACES WITH PICARD NUMBER THREE
AND CANONICAL VECTOR HEIGHTS

ARTHUR BARAGAR AND RONALD VAN LUIJK

Abstract. In this paper we construct the first known explicit family of K3
surfaces defined over the rationals that are proved to have geometric Picard
number 3. This family is dense in one of the components of the moduli space
of all polarized K3 surfaces with Picard number at least 3. We also use an
example from this family to fill a gap in an earlier paper by the first author.
In that paper, an argument for the nonexistence of canonical vector heights on
K3 surfaces of Picard number 3 was given, based on an explicit surface that
was not proved to have Picard number 3. We redo the computations for one
of our surfaces and come to the same conclusion.

1. Introduction

The main result of this paper is the construction of an infinite family of K3
surfaces with geometric Picard number 3 that is dense in a component of the moduli
space of polarized K3 surfaces of Picard number at least 3. This family is given by
smooth (2, 2, 2)-forms in P1 × P1 × P1. The methods we use are similar to those in
[5].

The second intent of this paper is to fill a gap in an argument in [1], which was
pointed out by Yuri Tschinkel in the review of the paper and privately by Bert
van Geemen. In that paper, the first author gave convincing numerical evidence
for the nonexistence of canonical vector heights on K3 surfaces of Picard number
3. Though the Picard number of the surface used in [1] is at least 3, it was not
proved to equal 3. Instead of proving equality, we redo the calculations using one
of the surfaces found here. Again, we come to the conclusion that canonical vector
heights do not exist.

We thank MSRI for their hospitality and support and UNLV for their support
of the first author during his sabbatical semester.

2. K3 surfaces with Picard number three

Let k be a field with a fixed algebraic closure k. Let X be a smooth surface over k
in P1×P1×P1, given by a (2, 2, 2)-form. Then X is a K3 surface, which implies that
linear, algebraic, and numerical equivalence all coincide. This means that the Picard
group Pic X and the Néron-Severi group NSX of X = Xk are naturally isomorphic,
finitely generated, and free. Their rank is called the (geometric) Picard number of
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X. By the Hodge Index Theorem, the intersection pairing gives this group the
structure of a lattice with signature (1, rkNSX − 1). For detailed definitions of all
these notions, see [5]. Note however, that in this paper the Picard number always
refers to the geometric Picard number.

For i = 1, 2, 3, let πi : X → P1 be the projection from X to the i-th copy of P1

in P1 × P1 × P1. Let Di denote the divisor class represented by a fiber of πi. We
find Di · Dj = 2 for i �= j and since any two different fibers of πi are disjoint, we
have D2

i = 0. It follows that the intersection matrix [Di · Dj ]i,j has rank 3, so the
Di generate a subgroup of the Néron-Severi group NS(X) of rank 3. Our goal is to
find explicit examples for which the rank of NS(X) equals 3.

Let x, y, and z denote the affine coordinates of A1 inside the three copies of P1

in P1 × P1 × P1. Set

G1 = −y2z2 + 3y2z + 2y2 − 2yz2 + 3yz + 3y + 2z2 + 2z − 1,

G2 = 2y2z2 + 3y2z + 3y2 + 2yz2 + 2yz + 3z2 + z + 2,

G3 = y2z + y2 + y + z2 + z,

L1 = yz − y − z,

L2 = yz + 1.

Theorem 2.1. For any H ∈ Z[x, y, z] with degree at most 2 in each of x, y, and
z, the surface Y ⊂ P1 × P1 × P1 with affine equation

G1x
2 + G2x + 3G3 − 2L1L2 = 6H

is a smooth K3 surface. The Picard number of YQ equals 3.

Remark 2.2. A surface in P1×P1×P1 given by a (2, 2, 2)-form F is determined by the
coefficients of 27 monomials. Since the equation F = 0 is homogeneous, this gives
a 26-dimensional family of K3 surfaces. After dividing out by the 3-dimensional
automorphism groups of the three copies of P1, this leaves a 17-dimensional family
of isomorphism classes. Note that the dimension of the moduli space of polarized
K3 surfaces whose Néron-Severi group contains a prescribed lattice of rank ρ equals
20−ρ. For the lattice Λ of rank ρ = 3 generated by the Di as described above, this
reflects the fact that the family of smooth surfaces in P1×P1×P1 given by (2, 2, 2)-
forms contains an open subset that is birationally equivalent with the moduli space
of K3 surfaces X together with an embedding of the lattice Λ into NSX. The
freedom of choice for H shows that the surfaces of Theorem 2.1 form a set that is
dense in this moduli space in both the Zariski and the real analytic topology.

To bound the Picard number, we use the method described in [5]. We first state
some results and notation that we will use. Let X be any smooth surface over a
number field K and let p be a prime of good reduction with residue field k. Let X

be an integral model for X over the localization Op of the ring of integers O of K
at p for which the reduction is smooth. Let k′ be any extension field of k. Then by
abuse of notation we will write Xk′ for X ×SpecOp

Spec k′.

Proposition 2.3. Let X be a smooth surface over a number field K and let p be a
prime of good reduction with residue field k. Let l be a prime not dividing q = #k.
Let F denote the automorphism on H2

ét(Xk, Ql)(1) induced by q-th power Frobenius.
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Then there are natural injections

NS(XK) ⊗ Ql ↪→ NS(Xk) ⊗ Ql ↪→ H2
ét(Xk, Ql)(1),

that respect the intersection pairing and the action of Frobenius, respectively. The
rank of NS(Xk) is at most the number of eigenvalues of F that are roots of unity,
counted with multiplicity.

Proof. See [4], Prop. 6.2 and Cor. 6.4. Note that in the referred corollary, Frobe-
nius acts on the cohomology group H2

ét(Xk, Ql) without a twist. Therefore, the
eigenvalues are scaled by a factor q. �

Proof of Theorem 2.1. Fix a polynomial H and the corresponding surface Y as in
Theorem 2.1. We write Yp and Y p for YFp

and YFp
, respectively. Note that Yp does

not depend on H for p = 2 and p = 3. One easily checks that Yp is smooth for
p = 2, 3, so Y itself is smooth and Y has good reduction at 2 and 3. Since Y is a
smooth surface in P1 × P1 × P1 given by a (2, 2, 2)-form, it is a K3 surface. Both
Y2 and Y3 contain a fourth divisor class that is linearly independent of the earlier
described classes Di for i = 1, 2, 3. On Y2 we have the curve C2 parameterized by
([x : 1], [1 : 0], [1 : 1]). On Y3 we have the curve C3 given by x = L1 = 0. For
p = 2, 3, let Λp denote the sublattice of the Néron-Severi group of Y p generated
by D1, D2, D3, and Cp. The intersection matrices associated to the sequences of
classes {D1, D2, D3, C2} and {D1, D2, D3, C3} are

⎡
⎢⎢⎣

0 2 2 1
2 0 2 0
2 2 0 0
1 0 0 −2

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣
0 2 2 0
2 0 2 1
2 2 0 1
0 1 1 −2

⎤
⎥⎥⎦ ,

so Λ2 and Λ3 have discriminants −28 and −32, respectively. We will now show that
the Picard numbers of Y 2 and Y 3 both equal 4. Almost all fibers of the fibration
π1 are smooth curves of genus 1. Using magma, we counted the number of points
over small fields fiber by fiber. The total numbers of points are given in Table 1.
The Lefschetz Trace Formula relates the number of Fpn -rational points on Yp to
the traces of the pn-th power Frobenius acting on Hi

ét(Y p, Ql)(1) for i = 0, . . . , 4

Table 1. Number of points over some finite fields.

n # Y2(F2n) #Y3(F3n)
1 13 17
2 25 107
3 85 848
4 289 6719
5 1153 60632
6 4273 536564
7 16897 4793855
8 65025 43091783
9 266305 387501194
10 1050625
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by

#Yp(Fpn) =
4∑

i=0

(−pn/2)i ·
(
trace of pn-th power Frobenius on Hi

ét(Y p, Ql)(1)
)
.

Normally this is phrased in terms of the cohomology groups without the twist. For
K3 surfaces we have dim Hi = 1, 0, 22, 0, 1 for i = 0, 1, 2, 3, 4, respectively. Since
the action for i �= 2 is trivial, from the numbers in Table 1 we can compute the
traces of powers of the automorphism Fp on H2

ét(Y p, Ql)(1) that is induced by p-th
power Frobenius. We find pn · Tr Fn

p = #Yp(Fpn) − p2n − 1. For p = 2, 3, let Wp

denote the quotient of H2
ét(Y p, Ql)(1) by the image Vp of Λp ⊗Ql under the second

homomorphism in Proposition 2.3, and let Φp denote the action of Frobenius on
Wp. Since Fp acts trivially on Vp, we have Tr Φn

p = TrFn
p − TrFn

p |Vp = Tr Fn
p − 4

for all n ≥ 0, and fFp
= fFp|Vp

· fΦp
= (t − 1)4fΦp

, where fT stands for the
characteristic polynomial of the linear operator T . From the traces of the first
s > 0 powers of a linear operator one can derive the first s coefficients of its
characteristic polynomial (see [5], Lemma 2.4). Once enough coefficients of fΦp

are
computed, the full polynomial fΦp

follows from the functional equation fΦp
(1/x) =

±x− dim WpfΦp
(x). Putting all this together, we find fFp

= 1
p (t − 1)4fΦp

with

fΦ2 = 2t18 + 2t16 + t15 + 2t14 + t13 + 2t12 + t11 + 3t10

+ 3t8 + t7 + 2t6 + t5 + 2t4 + t3 + 2t2 + 2,

fΦ3 = 3t18 + 5t17 + 6t16 + 5t15 + 5t14 + 6t13 − 6t11 − 5t10

− 6t9 − 5t8 − 6t7 + 6t5 + 5t4 + 5t3 + 6t2 + 5t + 3.

Note that the coefficient of t9 in fΦ2 is zero, so we used the number of points over
F10

2 to compute the coefficient of t8, from which we determined the sign of the
functional equation to be positive. Both fΦp

are irreducible. Their roots are not
integral and therefore they are not roots of unity. By Proposition 2.3 we find that
the Picard numbers of Y 2 and Y 3 are both bounded by 4, so they are equal to 4
and Λp has finite index in NS(Y p) for p = 2, 3. It is well known that if Λ′ is a
sublattice of finite index in the lattice Λ, then we have

(1) disc Λ′ = [Λ : Λ′]2 disc Λ.

Thus, up to a square factor, the discriminants of NS(Y 2) and NS(Y 3) are equal
to −28 and −32, respectively. From the first injection of Proposition 2.3 we find
rk NS(Y ) ≤ 4. Suppose we had equality. Then the lattice NS(Y ) would be iso-
morphic to a sublattice of finite index in NS(Y p) for both p = 2 and p = 3. By
(1), this implies that up to a square factor, the discriminant of NS(Y ) is equal to
both −28 and −32. This contradicts the fact that −28 and −32 do not differ by
a square factor. We therefore conclude that equality does not hold and we have
rk NS(Y ) ≤ 3. Since the classes D1, D2, and D3 are linearly independent, we
deduce rkNS(Y ) = 3. �

3. Nonexistence of canonical vector heights

One way to fill the gap in [1] would be to prove that the surface used there
has Picard number 3. The only method currently known to do this is the method
used in the previous section. It requires two primes of good reduction for which
the reductions have Picard number 4. Modulo 2 and 3 the Picard numbers turn
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Table 2. Estimates for ĥEijk
(P0) for the permutations (i, j, k) of (1, 2, 3).

n (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
1 0.3438678 1.0306631 1.7914641 2.0624775 1.7723601 1.6340533
2 0.4711022 1.0326396 1.8311032 2.1288087 1.8613679 1.7950761
3 0.4745990 1.0365615 1.8328300 2.1330968 1.8675712 1.7982461
4 0.4747015 1.0364020 1.8329385 2.1332594 1.8679417 1.7986626
5 0.4746928 1.0364196 1.8329585 2.1332721 1.8679467 1.7986781

out to be 16 and 6, respectively (depending on Tate’s conjecture). The computa-
tions required to calculate the Picard number modulo larger primes are currently
beyond our ability as counting points takes too much time. We therefore redo the
calculations in [1] for one of the surfaces of Theorem 2.1.

For the remainder of this section, let Y denote the surface associated to H = 0
as in Theorem 2.1. Then Y has Picard number 3. As in [1], we let σi denote
the involution associated to the 2–to–1 projection Y → P1 × P1 along the i-th
copy of P1 in P1 × P1 × P1, and for i, j, k ∈ {1, 2, 3}, we set σijk = σiσjσk. Let
D∗ = {D∗

1 , D∗
2 , D∗

3} be the basis that is dual to the basis D = {D1, D2, D3} of
NS(Y )⊗ R. Let the heights hDi

be defined by πi and the usual logarithmic height
on P1(Q). Then hDi

is a Weil height associated to Di and

h =
3∑

i=1

hDi
D∗

i

is a vector height, so for every divisor class E ∈ NS(Y ) ⊗ R, a Weil height hE

associated to E is up to O(1) given by P �→ h(P ) · E.
Vector heights also satisfy the property that h(σP ) = σ∗h(P ) + O(1) for all

σ ∈ Aut(Y ) and all P ∈ Y (Q), where σ∗ acts on NS(Y ) ⊗ R and bounds on the
error term may depend on σ but not on P . We say a vector height ĥ is a canonical
vector height if the error term is zero for all σ and all P .

Suppose σ is an automorphism of Y and that the pullback σ∗ acting on NS(Y )⊗R

has a real eigenvalue ω > 1 with associated eigenvector E. Silverman [2] defined
the canonical height (with respect to σ) to be

ĥE(P ) = lim
n→∞

ω−nhE(σnP ).

The canonical height ĥE and the canonical vector height ĥ satisfy the relation
ĥE = ĥ · E (see [1]).

Set γ = 1
2 (1 +

√
5). Then α and ω in [1] are equal to γ2 and γ6, respectively.

Suppose (i, j, k) is a permutation of (1, 2, 3). The eigenvector Eijk of σ∗
i σ∗

j σ∗
k = σ∗

kji

associated to the eigenvalue ω, as defined in [1], equals 1
2γ(−Di +γDj +γ2Dk). Set

P0 = ([0 : 1], [0 : 1], [0 : 1]). Table 2 contains the estimates ω−nh(σn
kjiP0) · Eijk of

the canonical height ĥEijk
(P0) (canonical with respect to σkji) for all permutations

(i, j, k) and n ∈ {1, . . . , 5}.
These estimates appear to converge geometrically, as expected. We believe,

without rigorous proof, that the estimates of the canonical heights for n = 5 are
correct up to an error of at most 0.0001 and are probably correct up to 0.00001.
The six estimates in Table 2 give us six linear equations in the three components of
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ĥ(P ), leading to a contradiction. More precisely, following an argument similar to
that presented in [1], we conclude the following, which gives evidence against the
existence of a canonical vector height on Y .

Theorem 3.1. If the estimates ω−5hEijk
(σ5

kjiP0) in Table 2 are equal to the canon-
ical heights ĥEijk

(P0) up to an absolute error of at most 0.1, then the surface Y
does not admit a canonical vector height.

References

[1] A. Baragar, Canonical vector heights on K3 surfaces with Picard number three – an argument
for non-existence, Math. Comput. (248) 73 (2004), 2019-2025. MR2005e:14058

[2] J. Silverman, Rational points on K3 surfaces: A new canonical height, Invent. Math. 105
(1991), 347 – 373. MR92k:14025

[3] J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, O.F.G.
Schilling, ed. (1965), 93–110. MR37:1371

[4] R. van Luijk, An elliptic K3 surface associated to Heron triangles, J. Number Theory (to
appear); available at arXiv:math.AG/0411606 (2004).

[5] R. van Luijk, K3 surfaces with Picard number one and infinitely many rational points,
preprint, available at arXiv:math.AG/0506416 (2005).

Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas,

Nevada 89154-4020

E-mail address: baragar@unlv.nevada.edu

Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, California

94720-5070

Current address: Department of Mathematics, Simon Fraser University, 8888 University Drive,
Burnaby, BC V5A 1S6, Canada

E-mail address: rmluijk@gmail.com

http://www.ams.org/mathscinet-getitem?mr=2005e:14058
http://www.ams.org/mathscinet-getitem?mr=92k:14025
http://www.ams.org/mathscinet-getitem?mr=37:1371

	1. Introduction
	2. K3 surfaces with Picard number three
	3. Nonexistence of canonical vector heights
	References

