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CONSTRUCTING REPRESENTATIONS OF HIGHER DEGREES
OF FINITE SIMPLE GROUPS AND COVERS

VAHID DABBAGHIAN-ABDOLY

Abstract. Let G be a finite group and χ an irreducible character of G. A sim-
ple method for constructing a representation affording χ can be used whenever
G has a subgroup H such that χH has a linear constituent with multiplicity
1. In this paper we show that (with a few exceptions) if G is a simple group
or a covering group of a simple group and χ is an irreducible character of G of
degree between 32 and 100, then such a subgroup exists.

1. Introduction

Let G be a finite group and χ be an irreducible character of G. We say that a
subgroup H is a χ-subgroup if the restriction χH of χ to H has at least one linear
constituent of multiplicity 1. Not every pair (χ, G) has a χ-subgroup (see [10]
and Section 4 below), but χ-subgroups can be found in many cases. The existence
of such subgroups is of interest for several reasons such as computing primitive
idempotent elements (see [10], [9] and [15]), calculating Schur indices (see [8], [14]
and [16]) and computing irreducible matrix representations (see [6], [5] and [4]).

A simple and efficient method for computing matrix representations of finite
groups has been described by Dixon [6]. This applies whenever G has a χ-subgroup
for an irreducible character χ and works best when the subgroup is small. In
practice, the difficulty in using this method lies in finding such a χ-subgroup (if one
exists). This could involve searching through the full lattice of the subgroup of G
and that becomes impractical for large groups.

In [4] the author developed a general program to compute a matrix representation
affording any specified character χ of a group G (see also the GAP package [5]).
The program uses a recursive technique which reduces the general problem to the
special problem of computing representations affording irreducible characters of
degree at most χ(1) for central covers of simple groups.

Thus we must deal with the problem of computing a representation in the case
where χ is irreducible and G is simple or a cover of a simple group. In [4] (see
also [3]) the author shows that in this special case we can usually find a suitable
χ-subgroup when χ(1) < 32. In a few cases where we failed to find χ-subgroups
for characters in this range we found a maximal subgroup M of G such that χM

is irreducible. In the latter case a representation of M affording χM can be con-
structed (recursively), and we showed how to extend this representation of M to

Received by the editor November 27, 2005 and, in revised form, July 6, 2006.
2000 Mathematics Subject Classification. Primary 20C40; Secondary 20C15.
Key words and phrases. Simple group, central cover, irreducible representation.
This work was supported by the MITACS NCE and NSERC of Canada.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1661



1662 VAHID DABBAGHIAN-ABDOLY

a representation of G. Thus our general program can be applied to construct a
representation affording a character of degree < 32 for any group.

In the present paper we extend the result of [3] (and hence the capability of the
original program) to characters with degrees between 32 and 100. Again we shall
show that, in most cases, if χ is an irreducible character of a cover G of a simple
group and 32 � χ(1) � 100, then we can find a χ-subgroup which is easily described
in terms of the group structure (see Section 2). In the remaining cases, with two
exceptions, we find a maximal subgroup M of G such that χM is irreducible (see
Section 3). The exceptions occur for the cover 6.A7 and two characters of degree 36;
in these two cases there are neither χ-subgroups nor irreducible maximal subgroups
available, so a different approach will be needed to construct the corresponding
matrix representations for these characters (see Section 4).

2. χ-subgroups

The following theorem describes χ-subgroups for certain irreducible characters
χ of alternating groups. For a proof see [4].

Theorem 2.1. Let χ be an irreducible character of the alternating group An.
(1) If n � 4 and χ(1) = n − 1, then a Sylow 3-subgroup of order 3 of A4 is a

χ-subgroup.
(2) If n � 6 and χ(1) = (n−1)(n−2)/2 or n(n−3)/2, then a Sylow 3-subgroup

of A6 of order 9 is a χ-subgroup.
(3) If n � 8 and χ(1) = (n − 1)(n − 2)(n − 3)/6, n(n − 1)(n − 5)/6 or n(n −

2)(n − 4)/3, then a Sylow 2-subgroup of A8 of order 64 is a χ-subgroup.

With the exception of the characters covered in the theorem above, there are
only a few cases where an alternating group has an irreducible character of degree
between 32 and 100. In these cases a χ-subgroup was computed directly using GAP
[7]. These exceptions are listed in Table 1. This table also contains χ-subgroups for
the covering groups of alternating groups and some other simple groups and covers
listed in the Atlas [1] (see also [2]). For these groups there is no general theorem
about their χ-subgroups when 32 � χ(1) � 100.

The group SL(2, q) is the unique covering group of the simple group PSL(2, q),
except for q = 9. In the latter case PSL(2, 9) ∼= A6. By [13, Theorem 7.1.1] the
group SL(3, q) where q > 2, is the unique covering group of the simple group
PSL(3, q) except when q = 4 (the group PSL(3, 4) has 7 different covering groups,
see Table 1). Also PSU(3, q) is a simple group of twisted Lie type 2A2(q) and the
group SU(3, q) is the unique covering group of the simple group PSU(3, q) (see [11,
Corollary 5.1.3]).

On the other hand, PSL(2, q), PSL(3, q) and PSU(3, q) are the factor groups of
SL(2, q), SL(3, q) and SU(3, q) by their centres, so characters of the former groups
correspond to those characters of SL(2, q), SL(3, q) and SU(3, q), respectively,
whose kernels contain the centre. Thus it is enough to find χ-subgroups for the
irreducible characters χ of SL(2, q), SL(3, q) and SU(3, q) (except for PSL(3, 4)
and covers). The following theorems describe these χ-subgroups. There is no
restriction on the degree of the characters. For a proof of these theorems see [4].

Theorem 2.2. Let G = SL(2, q) (G = SL(3, q)) where q > 4 (q > 2) is a power of
a prime p and let H be a Sylow p-subgroup of G. Then H is a χ-subgroup for all
irreducible characters χ of G.
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Theorem 2.3. Let G = SU(3, q) where q > 2 is a power of a prime p and let H be
a Sylow p-subgroup of G. Then H is a χ-subgroup for all irreducible characters χ
of G such that χ(1) �= q2−q. If χ(1) = q2−q, then H contains an abelian subgroup
of order q2 which is a χ-subgroup.

Let G be a group and χ a character of G. We denote by Lin(χ) and Lin(G) the
set of linear constituents of χ and the set of linear characters of G, respectively.
Clearly Lin(χ) ⊆ Lin(G). The following simple remark is very useful.

Remark 2.4. Let χ be an irreducible character of G and H a Sylow subgroup of
G. Let µ be a character of H such that χ(1) = |H| + µ(1) and χH(h) = µ(h) for
all 1 �= h ∈ H. Then Lin(µ) �= Lin(H) implies H is a χ-subgroup. This is true
because the hypotheses show that χH = ρ + µ where ρ is the regular character of
H. Since Lin(µ) ⊂ Lin(ρ) = Lin(H), there exists a linear character ϕ of H such
that 〈χH , ϕ〉 = 1.

We now examine each case in the Atlas [1] where G is a simple group or the
cover of a simple group and χ is an irreducible character of degree between 32 and
100, and which was not covered by Theorems 2.1, 2.2 and 2.3. Using GAP [7], the
remark above and the information available from [1] we searched for a subgroup of
G of a simply described form which is a χ-subgroup. We found that in most cases
such χ-subgroups exist.

The group libraries in GAP and [2] are used as the sources for generators of the
groups listed in Tables 1 and 2. For finding most of the χ-subgroups listed in these
tables we used the available standard functions in GAP. For each group G in Table
1 we computed Sylow r-subgroups, say Pr, and some simply relative subgroups to
Pr such as the derived subgroup P ′

r and the normalizers and centralizers of Pr and
P ′

r in G. Then we found the smallest possible χ-subgroup among these subgroups.
The only exception in Table 1 is an irreducible character of degree 32 of 2.M12. In
this case we found a particular 2-subgroup which is denoted by H∗. These results
are summarized in Table 1.

Table 1. The χ-subgroups of simple groups and covers for 32 �
χ(1) � 100

Group χ(1) χ-subgroup Size of χ-subgroup
A7 35 NG(P5) 20
2.A7 36 NG(P3) 72
M11 44, 45 NG(P5) 20

55 NG(P11) 55
A8 45, 56, 70 NG(P5) 60
2.A8 48, 56, 64 NG(P5) 120
2.L3(4) 36, 64, 70, 90 NG(P3) 144
41.L3(4) 56, 64, 80 NG(P3) 288
42.L3(4) 36 NG(P3) 288
U4(2) 40, 60, 64, 81 P2 64

45 NG(P5) 20
2.U4(2) 36, 60, 64, 80 P3 81
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(Table 1. continued)

Sz(8) 35 NG(P7) 14
64, 65, 91 NG(P13) 52

2.Sz(8) 40, 56, 64 NG(P13) 104
M12 45, 54, 55, 66 NG(P5) 40

99 NG(P11) 55
2.M12 32 H∗ 64

44 P3 27
J1 56, 76, 77 NG(P7) 42
A9 35, 42, 84 NG(P7) 42
2.A9 48, 56 NG(P7) 84
M22 45, 55 NG(P5) 20

99 NG(P11) 55
2.M22 56 NG(P5) 40
3.M22 45 NG(P5) 60

99 P2 128
4.M22 56 NG(P3) 288
J2 63, 70, 90 NG(P7) 42

36 P5 25
2.J2 50, 56, 64 NG(P7) 84

84 NG(P3) 432
S4(4) 34, 51 P5 25

50 NG(P3) 72
85 P2 256

S6(2) 35, 56, 70, 84 NG(P7) 42
2.S6(2) 48, 64 P3 81
A10 42 P5 25

90 P3 81
2.A10 48, 64 P3 81
U4(3) 35 NG(P5) 20

90 CG(P ′
3) 81

2.U4(3) 56 NG(P5) 40
70 CG(P ′

3) 162
32.U4(3) 36, 45 NG(P5) 60
61.U4(3) 84 CG(P ′

3) 486
121.U4(3) 84 CG(P ′

3) 972
62.U4(3) 90 NG(P5) 120
122.U4(3) 36 NG(P5) 240
G2(3) 64, 78, 91 NG(P7) 42
S4(5) 40 NG(P13) 52

65, 78 P2 64
90 CG(P ′

5) 125
2.S4(5) 52 NG(P13) 104
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(Table 1. continued)

L4(3) 39 P ′
3 27

52 NG(P5) 80
65 NG(P13) 39
90 CG(P ′

3) 81
2.L4(3) 40 P ′

3 27
M23 45 P23 23
U5(2) 44, 55, 66 NG(P11) 55
2F4(2)′ 78 NG(P13) 78
HS 77 NG(P11) 55
2.HS 56 NG(P7) 84
J3 85 P ′

3 27
O+

8 (2) 35, 50, 84 NG(P7) 42
2.O+

8 (2) 56 NG(P7) 84
O−

8 (2) 34, 84 P3 81
51 NG(P17) 68

3D4(2) 52 P7 49
M24 45 P23 23
G2(4) 65 NG(P13) 78

78 P ′
2 256

He 51 P3 27
O7(3) 78 P ′

2 32
91 NG(P13) 78

S6(3) 78 NG(P7) 84
91 CG(P ′

3) 27
2.U6(2) 56 P3 729
S8(2) 35 CG(P ′

2) 16
51, 85 NG(P17) 136

3.Suz 66, 78 P ′
3 243

2.F4(2) 52 P7 49

Among the remaining cases, not covered in Table 1, a direct search showed that
there were χ-subgroups of a more complicated form. These are summarized in
Table 2, and the χ-subgroups are described in more detail as follows.

Table 2. The χ-subgroups of exceptional characters

Group χ(1) Size of χ-subgroup
6.L3(4) 36, 42, 60 1008

90 60
121.L3(4) 48 720
122.L3(4) 36 288

48, 60, 84 720
6.M22 66 330
Fi22 78 32
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If G = 6.L3(4), then G has a maximal subgroup H of order 1008 such that
H/Z(G) ∼= L2(7). The subgroup H is a χ-subgroup for irreducible characters χ of
G of degrees 36, 42 and 60. For χ(1) = 90 the group G has a maximal subgroup
M such that M/Z(G) ∼= A6. Then M contains a normal subgroup H of order 60
such that H ∼= A5 and is a χ-subgroup.

If G = 121.L3(4), then G has a maximal subgroup M such that M/Z(G) ∼= A6.
The subgroup M contains a maximal subgroup H of order 720 such that H/Z(G) ∼=
A5 and is a χ-subgroup for χ(1) = 48.

If G = 122.L3(4), then G has a maximal subgroup M such that M/Z(G) ∼=
L2(7). The subgroup M contains a maximal subgroup H of order 288 such that
H/Z(G) ∼= S4 and is a χ-subgroup for χ(1) = 36. Also the group G has a maximal
subgroup M such that M/Z(G) ∼= A6. Then M contains a maximal subgroup H
of order 720 such that H/Z(G) ∼= A5 and is a χ-subgroup for χ(1) ∈ {48, 60, 84}.

If G = 6.M22, then G has a maximal subgroup M such that M/Z(G) ∼= L2(11).
The subgroup M contains a maximal subgroup H of order 330 which is a χ-subgroup
for both of the characters of degree 66.

Finally if G = Fi22 and χ is an irreducible character of G of degree 78, then G
contains a maximal subgroup M ∼= O7(3) such that χM is irreducible. Now using
Table 1 we see that the derived subgroup of order 32 of a Sylow 2-subgroup of M
is a χ-subgroup.

3. Maximal subgroups

There are three groups in [1] with characters of degree � 100 for which we do
not know whether there are χ-subgroups in these cases. These were the covering
groups 2.A12, 2.A13 and 6.A7. We shall consider 6.A7 in the next section. For
the first two groups and each of their characters χ of degree � 100 we shall find
a maximal subgroup M such that χM is irreducible (see the Introduction). To do
this we use the technique described in [3].

If G = A12, then the covering group 2.G has an irreducible character χ of degree
32, and G has a maximal subgroup M ∼= (A6 ×A6) : 22 of index 462 such that χM̃

is irreducible. If we take H a subgroup of G isomorphic to A6 and K the normalizer
of H in G, then M is the normalizer of K in G (i.e., M = NG(NG(H))).

For G = A13, the covering group 2.G has two irreducible characters χ of degree
32. In this case G has a maximal subgroup M of index 13 such that M ∼= A12 and
χM̃ is irreducible.

4. Exceptional characters of 6.A7

Finally we show that if G̃ = 6.A7 and χ is one of the two faithful irreducible
characters of G̃ of degree 36, then χM̃ is not irreducible for any maximal subgroup
M̃ of G̃, and G̃ has no χ-subgroups.

If M̃i is a maximal subgroup of G̃, then M̃i/Z(G̃) is isomorphic to one of the
groups (A4×3) : 2, PSL(2, 7), S5 and A6 for i = 1, 2, 3 and 4, respectively (see [1]).
It is straightforward to check that χM̃i

is not irreducible for any maximal subgroup
M̃i of G̃.

A direct method to show that G̃ has no χ-subgroups, is to search among all non-
conjugate subgroups of G̃ to see that the restriction of χ to all of these subgroups
has no linear constituents of multiplicity 1.
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Another approach is the restriction of χ to maximal subgroups, as follows. Since
χM̃1

= 3θ1 + 3θ2 where θ1 and θ2 are irreducible characters of M̃1 of degree 6, M̃1

does not contain any χ-subgroups. Furthermore, χM̃i
has no linear constituents for

i = 2, 3, 4. Now we restrict χ to the maximal subgroups M̃i for i = 2, 3, 4.
The group M̃3 has 4 non-conjugate maximal subgroups. Let M̃34 be a maximal

subgroup of M̃3 of index 3. Then M̃34
∼= SL(2, 7) and it is the only maximal

subgroup of M̃3 such that χM̃34
has some constituents of multiplicity 1. Since

these constituents are not linear, M̃34 is not a χ-subgroup but, if M̃3 contains a
χ-subgroup, it must be a subgroup of M̃34. Straightforward computations show
that the multiplicities of the constituents of the restriction of χ to all maximal
subgroups of M̃34 are larger than 1. This implies that M̃34 and, in turn, M̃3 does
not contain any χ-subgroups.

A similar argument holds for M̃2 and M̃4. The group M̃2 has two maximal
subgroups M̃24 and M̃25 of indices 2 and 3, respectively, such that M̃24/Z(G̃) ∼= S5

and M̃25/Z(G̃) ∼= A5. Also M̃4 contains two maximal subgroups M̃44 and M̃45

of index 6 such that M̃44/Z(G̃) ∼= M̃45/Z(G̃) ∼= A5. These are the only maximal
subgroups of M̃2 and M̃4 such that the restriction of χ has some constituents of
multiplicity 1. Since none of these constituents are linear, if M̃2 or M̃4 contains a χ-
subgroup, it needs to be a subgroup of one of these maximal subgroups. The groups
M̃24, M̃25, M̃44 and M̃45 contain only one maximal subgroup H̃ ∼= 2.A5 such that
χH̃ has some constituents of multiplicity 1. It is easy to see that the multiplicities
of the constituents of the restriction of χ to all of the maximal subgroups of H̃ are
bigger than 1. Therefore all the maximal subgroups of M̃2 and M̃4 and, in turn,
M̃2 and M̃4 have no χ-subgroups. This proves that G̃ has no χ-subgroups.
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