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ROBUST NORM EQUIVALENCIES FOR DIFFUSION PROBLEMS

MICHAEL GRIEBEL, KARL SCHERER, AND MARC ALEXANDER SCHWEITZER

ABSTRACT. Additive multilevel methods offer an efficient way for the fast so-
lution of large sparse linear systems which arise from a finite element dis-
cretization of an elliptic boundary value problem. These solution methods are
based on multilevel norm equivalencies for the associated bilinear form using
a suitable subspace decomposition. To obtain a robust iterative scheme, it is
crucial that the constants in the norm equivalence do not depend or depend
only weakly on the ellipticity constants of the problem.

In this paper we present such a robust norm equivalence for the model
problem —VwVu = f with a scalar diffusion coefficient w in Q C R2. Our
estimates involve only very weak information about w, and the results are
applicable for a large class of diffusion coefficients. Namely, we require w to
be in the Muckenhoupt class A1(2), a function class well-studied in harmonic
analysis.

The presented multilevel norm equivalencies are a main step towards the re-
alization of an optimal and robust multilevel preconditioner for scalar diffusion
problems.

1. INTRODUCTION

The solution of large sparse linear systems arising from the discretization of
an elliptic partial differential equation (PDE) is an essential ingredient in many
scientific computations. The ever growing demand for efficient solvers led to the
development of multigrid methods in the 1970s [6] [7, 15, [16l 17] and multilevel
preconditioning techniques in the late 1980s [24]. Much research work was devoted
to the question of optimal complexity, i.e., to show that the number of operations
necessary to obtain the solution up to a prescribed accuracy is proportional to the
number of unknowns of the linear system. Nevertheless, the convergence behavior
of these classical schemes is still strongly dependent on the coefficients of the con-
sidered PDE. This is the so-called robustness problem of multilevel solvers, and it
is one of the reasons which somewhat limit the applicability of classical multigrid
methods and multilevel preconditioners in real world applications. Several exten-
sions of multigrid methods e.g. via the use of more complicated smoothing schemes
or through the use of operator-dependent or matrix-dependent transfer operators
[T, 12], 26| 27] in the so-called black-box multigrid method have been proposed over
the years to overcome the robustness problem. Currently the most successful ap-
proach is the algebraic multigrid (AMG) method [8] [0 10, 11 14} 19, 21] which
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further generalizes the black-box multigrid idea. AMG is a multiplicative multilevel
scheme which employs information available from the system matrix (on the finest
level) only. All other components, e.g. prolongations and coarse grid matrices, are
constructed automatically in a purely algebraic fashion. The design and implemen-
tation of an AMG method is rather involved, and there is no satisfying theoretical
foundation which proves the robustness and convergence of AMG, however, nu-
merical experiments indicate the robustness of AMG. Hence, the development of a
provably robust multiplicative multigrid solver remains an open problem even to-
day. Note that there is no provably (or even practically) robust additive multilevel
preconditioner for general elliptic second order PDEs.

In this paper we focus on the robustness issue for diffusion problems in two space
dimensions involving a scalar diffusion coefficient w : R?2 — R; i.e., we consider the
model problem

—VwVu = f in Q c R%

We discretize our model problem using linear finite elements on a sequence of uni-
formly refined triangulations. Then, we can establish the equivalencies

J J
a(u,u) <Y 2% |lul2 and a(u,u) <Y 2%y,
=0 =0
for certain weighted norms || - ||, and || - || where the u; denote a decomposition

of u=> Uj obtained from orthogonal projections with respect to the weighted
scalar product (-,-),,. These projections have also been studied in [2| B 25]. The
constants of these equivalencies depend on the initial triangulation and involve
some information about the variation of the coefficient function w only. Namely,
we require w to be a weight from the Muckenhoupt class A4 (€2). That is, we allow
for highly oscillatory coefficient functions and do not require jumps of the coefficient
function w to be resolved on any level. This is in contrast to other articles concerned
with the development of robust solvers [13] 18] 22].

The remainder of the paper is organized as follows: First, we introduce the
notation and the employed norms in §2l Here, we also show the local equivalence of
the considered weighted norms || - ||, and || - [|; .. Then, we present the main result
of the paper in §3l To this end, we establish two robust norm equivalencies for the
considered model problem using a linear finite element discretization on a sequence
of uniformly refined triangulations. We begin with the derivation of an optimal and
robust upper bound for the bilinear form using a Bernstein-type inequality in trace
norms, interpolation theory and a Hardy-inequality. To maintain the optimality of
the estimate it is necessary to switch to trace norms and use an inequality of order %
due to the arbitrary discontinuities of the considered Muckenhoupt weights. Then,
we establish a lower bound for the bilinear form using a local duality technique and
a Hardy-inequality. Finally, we conclude with some remarks in §4l

2. PREREQUISITES

Let us introduce some notation which we will use throughout this paper. Our
main interest is the development of robust multilevel solvers for diffusion problems

(2.1) ~VwVu = fin Q C R?
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with the diffusion coefficient w : € — R being a scalar positive function. The
associated bilinear form and energy norm are given by

(2.2) a(u,v) = / wVuVe and  |lulle :== vVa(u,u),
Q
respectively. We consider a sequence of uniformly refined triangulations of 2
ThchiCc---C1y
with the associated sequence of piecewise linear finite element spaces
VoC Vi C---CVy.

Note that we employ linear finite elements u € V; only. Therefore Vu is constant
on each element 7" € 7; and we have

(2.3) / wVuVuv = (VuVU)|T/ w for all w,v € V.
T T
Let us now introduce the discrete weight
1 / .
wr:=—-— [ w forT €7, and any j =0,...,J,
wT) Jr !

where 11 denotes the Lebesgue measure. With these discrete weights and ([23) we
obtain

(2.4) a(u,v) = / wVuVv = Z wT/ VuVu  for u,v € V;.
Q Tet, T

Note that due to the nestedness of the triangulations 7; C 7, with j <k < J, and
j=0,...,J, we have

1 1
(25) o= o= 5 X Ter

TCT
TET;
for any element Te 7;. On each level j =0,...,J we define the scalar products
(U, V) j 0w = Z WT/ wv, for u,v €V
T

TeT;
and associated weighted L2-norms
(2.6 JulF = i = 3 wrlully = 3 wr [ Jul?

TeT; TeT; T

using the discrete weights ([25). On the finest level J we furthermore introduce the
shorthand notation
(2.7) (o ={()uw and |- lo =1l
In this paper, we consider weights w, i.e., locally integrable positive functions, which
belong to the Muckenhoupt class A;(Q2) [20] only.

Definition 2.1 (Muckenhoupt class A41(€2)). A weight w : © — R is in the class
A1(Q) if and only if there is a constant ¢(w) such that the inequality

/ngc(w)<oo

||W71HLOC(Q)
w(B)
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holds for all balls B C Q. The smallest such constant is referred to as |w|4, () :=
min ¢(w). As a consequence, the inequality

1 1
2.8 wp=——v | w<|w — | w=|w w
(28) 5= ) Jp g fo = elneer
holds for all w € A;(Q2) and all balls B C Q and all subsets F' C B.

In the following, we employ property ([2.8) in a slightly modified form only.
Namely, we use triangles T" € 7; on any level j = 0,...,J instead of balls B and
the union of triangles T € T; on the finest level instead of the subsets F. Hence,
our results hold for a slightly larger class of functions, but it is sufficient to require
w € Al(Q)

For such weights, we show a local Bernstein-type inequality in Lemma [Z.2] which
will be crucial for the proof of the local norm equivalence of the norms | - ||, and
II'llo =l - |7 in Theorem 23] Note that this theorem is an essential ingredient in
the later proof of our norm equivalence. In fact, we will show an upper bound for
the bilinear form a(u, u) with the level-dependent || - ||, norms directly in section
Bl The lower bound, however, we establish for the || - ||, norm in section
Hence, to attain a complete norm equivalence for either norm we need to employ
Theorem [2.3]

Lemma 2.2. Let w be in the Muckenhoupt class A1(2). Consider a sequence of
uniformly refined triangulations T; and the associated sequence of nested spaces V;
of linear finite elements. Then there holds for the norm ||« ||jw = || - | defined in
@) the local Bernstein-type inequality

1 . ~1 _ 3
(2.9) IVollwr < Cplwl} (o) (diam(T)) ™ ||v||lw,r, with Cp := 5\/500

forallveV; and any j =0,...,J. Here| |l denotes the restriction of the norm

| - llw to T € T;, and the constant Cy is only dependent on the initial triangulation
Ty, i.e.,

(2.10) Co = max diam(T) | H_"|

TeTy
where Hg denotes the mapping from S to the reference triangle Tyor with vertices
(0,0), (0,1), (1,0).

Proof. Let Hy denote the mapping from T' € 7; for any j = 0, ..., J to the reference
triangle Tyef, such that for © € T we have Hr(z) = £ € Tyer. Since we consider
linear elements only, we have the representation

(2.11) v(z) = qo Hr(z) =q(§) = (9,£) + ¢

for any v € V; on T with ¢ = V¢q. By the mean value theorem, there exists
T € T €Ty, T C T with Jilv]? = ;L(T)v(xT)Q. Let £ € Tyer denote the reference
image of 4, i.e., Hr(x4) = &7. By definition (Z6]) and the representation (ZII])
we obtain the identity

mmczwﬁW=wammwﬁ

TcT TcT
TeT, TeT,

Furthermore, with Cy given in (2.I0) there holds the pointwise inequality
|Vo(x)]? < C2(diam(T))"?||g||> forallz € T
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where || - || denotes the Euclidian norm in R2. Thus, we obtain
IVolr = 3wy [ [V < C(diam(T)2lal* 3 ()
TcT TcT
TeTy TeT;

Hence, it suffices to prove the local inequality

212 lglP Y wp ) =gl [ w<c 3 wrnDlig6) +el = clplEs
TeT; TeT;
TcT Tcr

for any T' € 7; and some ¢ > 0 to show the assertion (Z3)). To this end, we first
consider the case e = 0 and set b := ﬁ. Then inequality (Z12) simplifies to

(2.13) /w <e Y wp ()b, &)

TCT
TeT,

for all b with [|b]| = 1. Then we define for any p € (0,1) the subregion S, C T € T;
by

Sp = {il? S T : HT(iU) = 6 S Sref,p}v Sref,p = {6 € Tref : |(b7£)| Z p}
Suppose that

(2.14) 1(Sp) = o pu(T);

then by inequality (2.8) we have

2

ap

> wrn@IGEF 27" 3 () p%”m/ﬁ
o 1

and assertion (2.I3)) holds with ¢ = W%.

It remains to show (ZI4]). Note that the boundary of the subset Sret,p is given
by sections of the line |(b,&)| = p and the boundary of Tye¢. The line [(b,£)| = p is
orthogonal to the vector b and has &, := p- b as its nearest point to the origin with
distance p. Varying the angle of b with the axis £, = 0 one easily sees that for fixed
p > 0 the minimum for the area p(Srer,,) is achieved when b is parallel to one of
the axes & = p or & = p. In this case we have p1(Sret,p) = (1 —p) pt(Trer) and hence
u(S) = (1—p) pu(T) so that ([ZI4) holds with « = 1—p and ¢ = if'_ﬁ;;f;. Therefore,
1

we obtain the best possible constant ¢ = ¥|W|A1(Q) by a choice of a =

The general case can be reduced to this special case by considering o(z) :=
v(z) — e instead of v(x) and observing that |Vd|l,r = [[Vv|lw,r. Since v(z) is
linear, we can assume without loss of generality that e = min,cr [v(z)| and we can

estimate
/ 0(2)|2dx < 2/ (Jo(2)]? + |e|*)dz < 4/ lv(z)|?da.
T T T

With the help of Lemma [Z.2] we now obtain the local equivalence of the weighted
norms || - ||j and || - || for v € V; on all levels j =0,...,J.

O
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Theorem 2.3. Let w be in the Muckenhoupt class A1(Q) and consider a sequence
of uniformly refined triangulations T; and the associated sequence of nested spaces

= [l

defined in [20) forveV; and T € T;

1 —1
(2.15) (1+Colld ) Molliwr < 0w < (146Co )0l jo.r
with the constant Cy only depending on the initial triangulation Ty.

Proof. For v € V; there holds by definition

\/wT Jue= | 3w [ o)

TET
TcT

HUIIwT

(2.16) ‘Hv

Now by the mean value theorem there exist fT €T €T and & € T € T; with
[ [P =]v(ér)®  and )%
), T

respectively. Plugging this into ([22I6]) and using (Z3]) we obtain

Z wpp(T M v(Er)|? — Z wpp(T M)|o( (&)I?

el = Iolor| =

TeT; TeTy
TcT TcT
< YD wpa(D)e(ér) — o(é) 2.
TeTy
TcT

With the help of the estimate
[0(&7) = v(&r)|? < IVl?(lE7 — &rll® < ([ Vol (diam(T))?,
the inequality
[0l = ooz | < diam(T)[Vo]u.r

follows. Combining this with the local Bernstein-type inequality of Lemma 2.2] we
arrive at the asserted left-hand estimate

1
ol < diam(T) Vol + [vlor < (1+Calul}, o) )Ilollur-

Denoting the vertices of T by zp,; with ¢ = 1, 2,3 and v(zr,;) = wr,,; there holds the
representation g = (w2 — wr 1, wr3 — wT71)t. With the help of the equivalence,
see e.g. [3,

2

/ | |2 B w%3 + ’LU%Q + w%l + (’LUT73 + w2 + ’LUTJ)
B 12

and the inequality
(wr2 —wr)? + (wrs —wry)® < 3(10%,3 +wFy +why + (wrs +wra + wT,l)Q)

we obtain
diam(T)||Vv||w.r < 6Col|v
which proves the asserted right-hand inequality. ([

Jyw, T
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3. ROBUST NORM EQUIVALENCIES

The aim of this section is to establish two robust norm equivalencies for our
model problem (21)). Namely, we are interested in the equivalence

J
a(u,u) =<y 2% [lug|3, + aluo, uo)
j=1
and the equivalence
J
aluyu) = 37 2% uy 2 + aluo, uo)
j=1

where the decomposition u; is obtained from orthogonal projections with respect
to the weighted scalar product (2.7)) on the finest level.

3.1. Upper bounds for the bilinear form. We begin with the derivation of
an upper bound for the bilinear form a(u,u), which is robust and optimal, i.e.,
it does not involve the factor J and weak information about w only. We obtain
our estimate in three steps: First, we introduce a sequence of projection operators
Q% based on the weighted scalar product (,-), = () on the finest level J.
Then, we apply a Bernstein-type estimate to the bilinear form G(Zj Uj, Y, Ur)
using the decomposition u = > juj of (B9). Here, the challenge is to bound the
mixed terms in the arising double sum. One approach to this issue is the use of
a strengthened Cauchy—Schwarz inequality, or one applies interpolation theory to
a(u,u) and works with a Bernstein-type inequality of second order and a Hardy-
type inequality for the arising sum. However, it seems that these approaches do not
work if the diffusion coefficient w is discontinuous. Therefore, we need to consider
a second sequence of projection operators @} based on auxiliary bilinear forms
a;(+,-) which are defined in a level-dependent fashion. With the help of the two
projections Q% and @, we establish a hybrid Bernstein-type inequality involving
both projections. Furthermore, we use averages of the weight w and a Bernstein—
type inequality in trace norms which correspond to inequalities of order 2 5. Then,
we can use a Hardy-type inequality to deal with the arising sums. Finally, we
derive a robust and optimal upper bound of a(-,-) in Theorem B3] using only the
projections (% via a Hardy inequality.

A tool that is used in the proof of Theorem is the following Bernstein-type
inequality of broken order for the weighted trace norms

(3.1) fully o= (3 wr [ )
TeT;

Lemma 3.1. Let w be a locally integrable positive function and consider a sequence
of uniformly refined triangulations T; and the associated sequence of nested spaces
V; of linear finite elements. For elements v € V; there holds

lolla < V3C2C128 0l s
diam(7")

where the constants C1 := maxper, diam(T) and Cy = maXspe 7 JulD) depend
o

on the initial triangulation Ty only.
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Proof. Keeping in mind that we employ linear finite elements only, we have that
Vv is constant on 1" € 7;. Integration by parts on each T € 7; then yields

a(v,v) = Z wT/ VoV = Z wT/ vV - ngr.
TET; T TET; or
Applying the Cauchy-Schwarz inequality gives
1 1
a(v,v) < (Z wT/ |v|2)2 ( Z wT/ ||VUH2)2.
7T ar TeT, aT

Here, the first sum represents the semi-norm |[v||1 ; ., whereas each term in the

second sum can be bounded using the local Bernstein-type inequality
/ IVo]* < 3diam(T)|[Vo||* < 3Co pu(T)2||Vol* < 3C5C127 / Vo],
aT T

Hence, after multiplication with wr and summation with respect to T' € T;, we
obtain the overall estimate

a(v,v) = Z wT/TVvVv < 302012%HUH%,J‘,W\/G(”’”%

TET;
and the assertion follows after division by +/a(v,v). O

Let us now introduce some additional notation. We start with the definition of
a sequence of weighted projections 5 : V; — V; by the relation
(3.2) <Q§)Uav>w = (U, )y
for allu € V; and v € V;. Furthermore, we define auxiliary level-dependent bilinear
forms a; : Vy x V; — R by

(3.3) a;(u,v) == Z wT/TVquz Z ﬁ Z ,u(T)wT/TVuVU.

T€eT; T€eT; TeTy
TcT

Note that for u, v € V; we have a(u, v) = a;(u,v) and with (ZH) it follows that for
J<k

ap(u,v) = Y wT/TVuV’U: > wr p(T)(VuVo)|r

TeT, TeTy
(3.4) = D > wrnD(VuVo)lp = Y wp(VuVo)l;
- rer L7 =
= Z wr VuVu = CLj(’LL,’U)
TeT; T

since (VuVv)|; = (VuVo)|r for all T C Te 7;. With the help of these auxiliary
bilinear forms and the direct splitting V; = V;_1 ® W, we define the generalized
projection operators Pj' : V; — V; and QF : V; — V; by

0 v E ijl

(3:8)  a;(Pju,v) = a(Pju,v) = { aj(u,v) veEW,

J

J
, and Qf = ZP,?
k=1

for all uw € V;. Consider v € V;_1; due to (B:4) we obtain

a;(Qfu — Qf_yu,v) = a;(Qfu,v) — a; 1(Qf_1u,v)
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and with (3] this yields

(3.6) aj(Qfu — Qf_ju,v) =0 forallveV; ;.
Hence, the decomposition
(3.7) v; = vj(u) = Qju — Qf_qu, v = Qpu

associated with any w € V; has the property
a(vj,vg) =0 forallveV; with j <k

due to ([B0). Since u = Q%u = Z}]:o v; this yields the equivalence

J J J
(3.8) a(u,u) = Y a(vj,v) = Y alvj,v) = > |lv;ll2
4,k=0 Jj=0 J=0

for any u € V; on the finest level.
Finally, we introduce the sequence

(3.9) up = up(u) = Qu — QF_1u, ug:=Qfu, forueV;
based on the projections Q.

In the following we consider u € V; on the finest level J and its associated
decompositions v; from BX) and u; from (B3). We obtain an upper bound for
lvjlle in terms of ||ug||kw for 7 < k; ie., we establish a hybrid Bernstein-type
estimate of order 3 of a(vj,v;) in terms of [lul|y , for j < k.

Lemma 3.2. Let w be a locally integrable positive function and consider a sequence
of uniformly refined triangulations T; and the associated sequence of nested spaces
V; of linear finite elements. Let w € Vj, v; € V; and up € Vi, for k > j be defined
as in B1) and B9), respectively. Then there holds the estimate

2
(3.10) a(vj,v;) < 3C2C127 (Z ey o)

with constants Cy, Co from Lemma Bl

Proof. Recall the definition (7)) of vj. Due to ([B4]), we have a(v;, w) = 0 for all
w € V;_1. Hence, with the choice w = Q%_;u we obtain

i1
a(vj,vj) = aj(v;,v5) = a;(vj,u) = a;(v;,u — QF_ u)
S B (CE7

TeT;

From the definition (3.9) we obtain the identity u—Q%_;u = Zi:j Pu—QY_qju =

Zi: Uk and we can establish the equivalence

a(vj,vj) = wTE /Vv]Vuk
TET;

Integration by parts on each 1" € 7; yields

a(vj,vj) E E wT/ urVuj - nar,

k=j TET;
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and we obtain
1 1
2) 2 2) 2
ZwT/ upVu; - nagr < (Z wT/ gl ) (Z wT/ [IVo; ]| )
TeT; T TeT; T TeT; T

as in the proof of Lemma[3.Il The second factor can be estimated in the same way

by
1
(S wr [ I90l?) < V30272 fatw;, )
TeT; oT
whereas the first factor is by definition ([BI]) the norm |jug|| 1 jw- This yields the
assertion. 0

Note that ([B.I0) is an inequality of weak-type. Such inequalities are for instance
used for the estimates of the K-functional between Sobolev spaces.

With the help of this lemma we can now show the main result of this subsection,
the robust and optimal upper bound for the bilinear form (2.2]).

Theorem 3.3. Let w be in the Muckenhoupt class A1(Q) and consider a sequence
of uniformly refined triangulations T; and the associated sequence of nested spaces
V; of linear finite elements. Then there holds the upper bound

J
(3.11) a(u,u) < CFlw|a, @) Z 22j||uj||?7w, with Cy = CyC1(2 4 V2)
j=0
forw € Vj and its associated decomposition u; from B9), |- ||jw is given in (26]),

and the constants Cy and Co are stated in Lemma Bl With respect to the || - ||
norm on the finest level J there holds the estimate

J
1 2 .
(3.12) afu,u) < (14 Colul}, o)) Cololaye D 2% llusll2.
j=0

Proof. Consider a fixed T' € 7; and U € 7}, with k > j and U C T. Applying
property ([Z8) of w to F'=U and B =T we obtain

wT/ lug|* < wT/ luk|? < |w]a, @ WU/ k|2
S o [ < XY wr [l <l o [

TET; TeT; UETy UeTy
ucrT

With the help of Lemma this yields

J
2
losll2 < 3CoClwlay o (32 lunlly 1)

k=3
and with Lemma [B.I] we can estimate
J S J 2
() = 3 o3 < B0 wlay i 32 (3022 )
=0 i=0 k=

Using the Hardy inequality
SR L 0
(3.13) (jz_:ob](kz—:jak) ) < m(kz_ob ak) )

with ap := 2°/2||ug .., and b = 2 we establish the asserted optimal and robust
upper bound BIT]).
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Applying Theorem [Z3] we obtain the corresponding upper bound BI2)) of
a(u, u) for the weighted norm || - ||, on the finest level J. O

3.2. Lower bounds for the bilinear form. The next step in our search for
robust norm equivalencies is the derivation of optimal and robust lower bounds for
the bilinear form a(-,-) in terms of the norms || - ||; ., and || - ||o; i.e., we are looking
for the Jackson-type inequalities

J J

- 2l 3. + auo, uo) < Caluyu) and 37 2% fus I3 + aluo, uo) < Cafu, v)
Jj=1 Jj=1
To this end, we split the sum Z;-Izl 227||u;||? into two parts, Z?‘):_ll 227|Ju; )% and
Z;]Z o 27 ||uj|Z. Here, the parameter jo is independent of .J and jo depends on the
considered weight function w and the initial triangulation 7y only. The constants
of the lower bound will explicitly involve jo. Note however that this does not
compromise the optimality.

In a first step, we bound the uj-decomposition of ([B.3) in terms of the v;-

decomposition of ([B7) with respect to the || - ||, norm in the following lemma.
The respective estimate for the || - ||, norms then follows with Theorem 23]

Lemma 3.4. Let w be in the Muckenhoupt class A1(Q) and consider a sequence of
uniformly refined triangulations T; and the associated sequence of nested spaces V;
of linear finite elements. The decompositions v; and u; defined in B1) and B3),
respectively, allow for the estimates

J ) J .
D 2% jugll2 <4 2% vy 12
=0 Jj=0

and
J . 1 2 2 J .
S 2% |uy|2,, < 4(1 ¥ cB|w|§h(Q)) (1 n 600> 3 2% |2,
Jj=0 j=0
Proof. Observe that due to (39) and (B2) we have
lugllZ = 1Qfu—Qfyull = (Qfu— Q% u,Q5u).

<Q;)“ —Qf_1u, Uy = <Q‘;U —Q_ju,u— Q?71“>w

for all j so that [lu;ll, < [[u— QF_,ull, holds for all j, and with (3.2) we obtain

J ) J ) J ) J 9
> 2 usl2 < 30 2w - Q5 yul2 < D02 (Ml
j=0 §=0 §=0 k=3

Then using Hardy’s inequality (3.I3) with b = 22 and ay, := ||vi||., we obtain

J J _
D 2 fugl|2 < 4 2% w2
=0 §=0

Passing back from the || - ||, norm to the || - || ;. norms with the help of Theorem
2.3l we end up with the estimates

J 5 J
(3.14) > 2% 2 < 4(146C0 ) D2l

Jj=0 Jj=0
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and

J 25 2 3 2 2 Z 25 2
S 22y |12, < 4(1 n CB|w|;1(Q)) (1 +600) S 22y 2.
j=0 j=0
O

Now, we need to deal with the projection operators Q] and the associated se-
quence v; only. Here, we can prove a local estimate for the || - ||;,, norms using a
modified version of the duality technique due to Aubin and Nitsche, see also [4],
and a certain regularity result for the Neumann problem given in Lemma (see
the Appendix for a proof). In the following, the space Wf (Q) with its associated
norm || - ||x,p.o denotes the classical Sobolev space of L,({2) functions whose first
k derivatives are also in L,(£2). Similarly, the respective semi-norm is denoted by

| lep0
Lemma 3.5. For any element T' € T; consider the neighborhood

(3.15) U:=Up= U T,
TeT;_y

T Csupp(e] 1)

supp(¥] ~1)NT#0
where ¢lj71 denotes the nodal basis function on level j — 1 centered at node . Let
U be such that U D U and that the boundary OU is smooth. Furthermore, let all
vertices £ € OU also be £ € OU, and diam(U) < 2diam(U). Let 0; denote the
continuous and piecewise linear extension of v; from U to U which fulfills

(3.16) 195llo.2,5 < 2llvjlloz,u-
Then, the solution py to the inhomogeneous Neumann problem
9 .
—Apy =05 inU, %:g on U
v

is in H2(U) and allows for the estimate
(3.17) ul20,0 < Cllvjllo,2u

where C is essentially the regularity constant Cr of [@I)). Here, the boundary data
for the Neumann problem are g :== ach with a piecewise linear h € Lg(aﬁ). Between
any two vertices £ € AU N AU on the boundary U the function h > 0 consists of
two lines with h(€) = 0 for the vertices ¢ € QU NOU. Furthermore, a € R is such
that the compatibility condition

(3.18) /Oﬁj:f/atjg

is fulfilled.

With this lemma, we are in a position to prove the following local inequality for
the level-dependent norms || - || in Theorem However, we can obtain this
estimate on levels j > jo with jo = jo(w) independent of J only. Note that the
introduction of the additional parameter j, does not compromise the optimality.
For weights w € A1 (€2) we can determine jj easily from the limited growth condition
(BI39) given below. For many practically relevant diffusion coefficients we find jo
to be rather small; see section
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Theorem 3.6. Let w be in the Muckenhoupt class A1(Q) and consider a sequence
of uniformly refined triangulations T; and the associated sequence of nested spaces
V; of linear finite elements. Let j be large enough, i.e., j > jo where jo is given by
the smallest value such that

1 1 2J0—2
3.19 2 < - —
(3:.19) Whie = 3507E

holds with

C3 := max ZC) and C* = max{Cy,8y/C3C}.

5,5'€To 1(S")
Then the estimate

1
(3.20) lvjlljwo < CL|w|j‘1(Q) diam(U)||Vvj || w,u with Cr, == 8C*/C3Cy

holds with respect to the neighborhood U = Ur given in [BID) for v; defined in
B.1).

Proof. we note that we can assume vj(z) > 0 in U since otherwise v; changes
sign in U and we can obtain the desired inequality ([B:20)) directly. Therefore in
the following we need to consider only those U which do not intersect boundary
elements T' € T;_;.

With the help of ([2.6]) and Lemma B.5] we obtain

o300 = _/UWU]‘AQDU
(3.21) = Z wg/ Vu;Voy — Z ws/ viVou - nas
ScuU &) scu a5
=11 (U) =15(U)

after integration by parts on each S C U. Concerning the first sum I;(U), observe
that by definition (B.1) of v;

0=a,;(vj,w) = a(v;, w) = Z wS/ Vu; Vw
S€T; S

holds for all w € V;_;. Now, we choose w to be the function in V;_; which
interpolates ¢r at the nodes in 7' and has support in U = Up. Then, we can
estimate I (U) via the Bramble-Hilbert Lemma on U

[ (U)] = ’ZwS/SVLpUij’ = ‘ZwS/SV(ng—w)VUj

ScU SscU
1
< (T os [ Wtew = 0F) 19000
Scu S
(3.22) < CHdiam(U)|‘pU|2,2,U(gnCal)]< ws)IIijllj,w,U’

where the constant Cy depends only on the shape of U, i.e., by assumption only
on the initial triangulation 7.
The second sum I5(U) in [B2I) can be estimated by

1L(U)] = ‘Z ws /BSUJ'(V%”&S)’S > wsllvjllsc.s /88 Veu|

ScU ScU
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where || - ||co,05 denotes the Lo, (9S) norm. Note that due to the choice of ¢ in
Lemma B3] the normal derivative Opy/0ve = g vanishes at each vertex £ € 9U.
Also, since any normal vector ng of an arbitrary edge K C U can be represented

as a linear combination of three such normal vectors at §;,7 = 1,2, 3, we can bound
the normal derivative at z € K by

|(Veu,ng)(z)] = ’ZBZ&W ‘
- ’Z@(&W —%(&))’

0
Z |83 /o ‘(Va%j)(ﬁi +t(r — &), r —&)dt
=1 B

IN

with 2?21 |3;|* = 1. Hence after integration over the edge K we obtain

/ (Veou,nk)(@)|dz < diam(U) / D%y |dz < diam(U) (u(U)) 2| v |2.2,0-
|a]=2

Altogether, we can now establish the estimate

ILW)| < 2 wslvjlleos diam(U) (u(U)) ? [pula2.0
ScU
(3.23) < 80w (max s ) diam(U) o0

due to Ygcy V@5 (U [05]lcens < AVTT]05l00 since u(U) < 16Cs u(S).
The assertion ([B.20) then follows easily with the aid of (B.I7): Insert [B.I7) into

B22) and (B23) and obtain

lsluy < L@+ L))
< " diam(U) (I 500 + V03 .00 ) (max y655)

with C* := max{Cp,8/C5C}. With the estimate (maxgcy \/wg)
(maXS’,ScU \/wg/wsf) lvj]ljw,u, this yields the inequality

. ws
ol < € dinm() (gmax /=) (Joyllgaos +1905115000)

after division by ||vj||;w,u. Due to the use of uniformly refined triangulations we
have

ws (8 [sw Jsw _ wU) wy
wsr w(S) [gw T 3fs,w — w(S) ws slelase)

since w € A;(Q). Hence, we obtain

(1= 40" /Calel 4, (o diam(U)) v < AC™3/Cal]a, ) diam ()| V0
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With the assumption I9) and diam(U) < C1277%2 this yields the asserted in-

equality
4C*,/C:
3\w|A1(Q? diam(U)”V’Uj”j,w7U
(1 —4C*/Cs|w| 4, () d1am(U))

8C™ 1/ Cs|w|a, (o) diam(U)[|Vv; 0.0

A direct consequence of Theorem are the following lower bounds.

vjllj.w,0

IN

Theorem 3.7. Let w be in the Muckenhoupt class A1(Q) and consider a sequence
of uniformly refined triangulations T; and the associated sequence of nested spaces
V; of linear finite elements. Consider the set U = Ur defined in B.I5)) for every
T € Tj—1. Let j > jo so that BI9) is satisfied and Theorem 1s applicable.
Consider the decomposition u; defined in B9) for u € Vj. Then there hold the
estimates
J 2
(3.24) > 2 w12 < 4(1+6Co) Clwlay @y alu, w)
J=jo
and
J . 1 2 2
(325) > 2%y, < 4(1 + CB|w|fh(Q)) (1 + 600) C2|w] 4, (enyalu, ).
J=Jo

Proof. Using Lemma [3:4] we establish the estimate (314,

J . 2 J .
> 2 ul2 < a(14+6C0) 3 2l 2,
J=jo Jj=jo
2 J
< 4(1+600) CLlwla, (@) Z a(vj, v;)
Jj=jo

after squaring ([3:20) and the summation with respect to Ur, i.e., over all T' € 7;_;.
Then, with B8) and a(vj,v;) = [Vu,|3,, the assertion ([B:24) follows. We obtain
B28) with the help of the left-hand side inequality of Theorem O

Finally, let us consider the remainder terms for the coarser levels 0 < j < jo.
Since jo is independent of J it is sufficient to establish the following equivalence
which explicitly involves jg in the following lemma.

Lemma 3.8. Let w be in the Muckenhoupt class A1(?) and consider a sequence of
uniformly refined triangulations T; and the associated sequence of nested spaces V;
of linear finite elements. Then the estimates

Jo—l _ Jo—1
> 253 < 40wl @)CaCs Y alvy,v;)
Jj=0 =0
and
j()*l jg*l

> 25 ugllE < 40wl a, ) CaCs(1 +6C0)* D alvj, vy)

Jj=0 Jj=0



1156 M. GRIEBEL, K. SCHERER, AND M. A. SCHWEITZER

hold for the decomposition v; defined in [B1) for uw € V; with constants Cy and Cj
depending on the initial triangulation only.

Proof. Let Sp = {S;, € 7;,i = 1,...,m} denote the shortest chain of triangles
S € T; which connect a triangle T € 7; to the boundary 0€2. For any x € T consider
the sequence of points {z;};" ! with zo = z, Tmt1 € 09, and z;,z;41 € 09; for
it =1,...,m which connect x to the boundary 0. Recall that v; vanishes on the
boundary 092, hence we have the point-wise estimate

m m
o (@) = 1D @ipr =il <Y Jwies — @il < || Vols,|| diam(S;).

i=0 i=0
This yields

e = 3 [ w@l@Pds < 3 wrum)( 3 ()19l

TeT; TET SEeST
< Z wr (T Z diam(S Z diam(S) || Vv, s||?
TE'TJ' S'eSr SeST
< wlay@Ci Y Y diam(S)ws u(S)[[Vo,ls |
TeT; Sesr

due to the fact that ) g 5 diam(S) < Cdiam(f2) =: Cy. Interchanging the sum-
mation and counting multiples of a triangle S by Mg, we obtain

o318, < olayierCa 3 Msdiam(s) [ Vs
SeT; o

The number Mg gives the number of chains Sy for any T € 7; that contain the
triangle S. It is obvious that Mg is larger for triangles S closer to the boundary.
However, it is clear that Mg is bounded by the number of triangles intersected
by the diameter. Hence, we have Mg diam(S) < Cdiam(Q) =: C5 due to the
uniformity of the triangles. This leads to the estimate

los2, < [wlay@CiCs S / V052 = [ as (e CaCraluy, v;)
SEeT;

and we finally obtain the assertion

Jo—1 Jo—1

> 2wl < 40 |wlay @ CaCs Y alvs,v;).

Jj=0 j=0
The corresponding estimate for the || - ||, norm is obtained by the right-hand in-
equality of Theorem 23] O

Altogether, we can now establish our robust and optimal norm equivalencies in
the following theorem which summarizes the results of Theorems B3] and B7 as well

. 1
as of Lemma 3.8 Note that we make use of the fact that 470 = 2C|w|} ) which
stems from the limited growth condition (B.19), i.e.,

1
jo=(Crlel}, g ):

to eliminate jo from the norm equivalencies. However, (B19) must be satisfied for
some jo < J.
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Theorem 3.9. Let w be in the Muckenhoupt class A1(Q2) such that BI9) holds
for a jo < J. Consider a sequence of uniformly refined triangulations T; and
the associated sequence of nested spaces V; of linear finite elements. Then the
equivalence

J
(3.26) Kya(u,u) <Y 2% |ju;|?,, < Kpa(u,u)
j=0
and the equivalence
J .
(3.27) Kga(u,u) <Y 2% |lu;)|2 < Kpa(u, u)
j=0

hold for uw € Vj and its associated decomposition u; defined in [B.9), where the
constants are given by

KU = (CZZJ‘UJLAI(Q)) 5
1 3
K = (404 60O wla (1 + Coluld, o) + 200l o CiC).
2 3 2\~
Ky = (Cy\wlAl(m(l+CBIW\A1(Q)) )
3
KE = (4(1 + 600)2012;|w\,41(9) + (1 + 600)220L‘UJ|5‘1(Q)C4C5).

3.3. Examples. Finally, we consider a few examples of weight functions w for
which our theory holds. First of all, there is a close connection between the Muck-
enhoupt class A;(€2) with the space BMO(Q?) via the implication

we A1(9Q) = In(w) € BMO(Q).

Let us consider a weight function w with inf,cq w(z) = m,, > 0 and sup,.cq w(x)
= M,,. Then there holds for all balls B C €2 the inequality

o™ rw @ / " mg" /w< M,
w(B) B wB) Jg T me

Hence, any positive piecewise constant function w is in A;(€2). Let us now assume
that m,, = 1 and M, = ¢!, i.e., it is suffcient to assume a maximal jump of height
¢~!. Then we obtain a minimal refinement level

Jo ~ 111(671).

Thus jo is a rather small number even for very large jumps. Note that we do not
require the jumps to be aligned with the mesh on any level, i.e., no mesh must
resolve the jumps. There is no restriction on the frequency or the location of the
jumps.

4. CONCLUDING REMARKS

We presented two optimal and robust norm equivalencies based on certain weight-
ed norms for diffusion problems —VwVu = f in two space dimensions with a scalar
diffusion coefficient w. We only require w to be in the Muckenhoupt class A;(f2)
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to obtain our optimal bounds. This covers all piecewise constant functions inde-
pendent of the location of jumps, their number or their frequency. In contrast to
previous results, we do not require the resolution of the jumps on a particular level,
i.e., the coarsest level. However, the constants of our norm equivalence involve the
height of the maximal jump and thus for all practical purposes it is necessary to
assume |w| 4, (o) to be small.

APPENDIX
Proof of Lemma Bl Consider the scaled domain Q) := RU and the spaces
V(Q) = {peW2(Q): / wdx =0} and

W) = {{(f.9) € Lo(Q) x W5 (09) - /Qde/Agds:O}

o0
and the mapping T': ¢ € V +— T € W defined by

:{ f=0p  €Ly(Q),

1

g=0p/0v € WZ(0).
This mapping is linear and continuous; i.e., there exists a constant Mg such that

L0 < MQH@H;QQ

holds. Furthermore, T is also bijective from V onto W; see [23], pp. 336-339. Hence
by the open mapping theorem its inverse ! : (f, g) — ¢ is also continuous and
satisfies

lelv = lellazg < La(1A0loza + 100/0v ] 2500), € W(Q),

with a constant Lg. However, it is still necessary to determine the dependence
of Lg on the size of Q = RU, i.e., on the scaling R, since by definition (BIf)
U = Ur depends on the level j. To this end, let us consider the scaling R such that
R™! := diam(U) < 2diam(U) so that

(A1) [0laag < Ca(IAGlosa+ 100/0v1 5000), ¥ E W),

with Cr depending only on the shape of U but not on the size. Hence, Cr depends
only on the initial triangulation 75. The connection between ¢ and 1 is given by
Y(t) = p(t/R) := p(x). Therefore, there hold the equivalencies

qu/)”ogf = ‘7/}‘1,270 = |§0|172,Uv and |1/)|2,2,Q = R71|§0|2,2,U'
Using the explicit form of the trace norm [| - ||, ;5 5 5 (see e.g. [23], p. 94) given by

— 12
||¢||1/2209 T ZH,(/}1||O,2,BQ+Z|¢1 1/2,2,00Q

|hi(¢) )\
(4.2) |9 |2 = / / —————"—dodo,
1/2,2,0Q 20 Joe \t _
where ¢ = ), 4; is a partition of ¢ with respect to the representation by charts of

the curve 9§ with curve element do, we conclude that

|\3¢/3V||1/2,2,ag = R71/2||3‘P/8VH0,2,00 + R71|8€0/6V|1/2,2760-
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Consequently, by (£1I)) we obtain the estimate

[0l 2.0 + diam(U) euly 0.5 < 20k diam(U) (1151 2,0
(43) ”9“0,2,8[] )

+19l1/2,0,00 + /diam(U)

for the data of the Neumann problem above, i.e., p = ¢y € W3(U), —Agy = 9; in
U and 9¢/0v = g on OU. Now we use the fact that g is piecewise linear on OU by
construction. Therefore,

(4.4) ‘9|1/2,2,60 < C(diam(U))_1||g||0)Lag,
(4.5) 19llo,2,00 C(diam(U)) 12 |lg
holds with a constant C' independent of U and g. For completeness, we give the
proof of the inequalities ([@4]) and (LX) here. To this end, let U; be one of the

two pieces of the segment of QU between two vertices of 7;_;. Here g is a linear
function. Then by ([2]) with ¢; =g

1
t) —g(s)]? ’ . =
ohnaon = ([ [ 00 s ) < im0Vl o,
o0, Joo, It —

s]?

IN

|o,1,aU

follows. Furthermore, we can replace g by g := g — § where g := ming. |gl. Then
g has a zero on dU; and we have the equivalence

(4.6) /8 |ldo = (diam(0:))2|Vgl.. o5,
U;

with constants independent of U; and g. Since

/ gldo < / |gldo + diam(907)g < 2 / l9ldo = 2] llo.1 o

f oU. oU;

the comparison with the previous inequality yields ([@4]). The second inequality
E3) follows from

| atdo < o[ igPdo+ [ igPao)
oU; oU; oU;

< 2<diam(8(~]i))3|Vg|io7aﬁi + (diam(aﬁi))*l( /8 . |g\do’)2)

IN

O (ciam(20,)) "~ ( /8 . |g|da)2

where we have used (&L0) in the last step. This completes the proof of (4] and
([Z3), since we can choose U such that diam(U) = diam(9U).
Inserting (£4) and (@A) into inequality (£3) and taking (316) and BI8) into

account, the desired inequality ([BIT) directly follows as
pulezy < C(I55]00,0 + (diam(@) " gllo..00 )

= C(I%sllgz, + (diam(@)) " 550l01.5) < Cllvslloo
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