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ROBUST NORM EQUIVALENCIES FOR DIFFUSION PROBLEMS

MICHAEL GRIEBEL, KARL SCHERER, AND MARC ALEXANDER SCHWEITZER

Abstract. Additive multilevel methods offer an efficient way for the fast so-
lution of large sparse linear systems which arise from a finite element dis-
cretization of an elliptic boundary value problem. These solution methods are
based on multilevel norm equivalencies for the associated bilinear form using
a suitable subspace decomposition. To obtain a robust iterative scheme, it is
crucial that the constants in the norm equivalence do not depend or depend
only weakly on the ellipticity constants of the problem.

In this paper we present such a robust norm equivalence for the model
problem −∇ω∇u = f with a scalar diffusion coefficient ω in Ω ⊂ R

2. Our
estimates involve only very weak information about ω, and the results are

applicable for a large class of diffusion coefficients. Namely, we require ω to
be in the Muckenhoupt class A1(Ω), a function class well-studied in harmonic
analysis.

The presented multilevel norm equivalencies are a main step towards the re-
alization of an optimal and robust multilevel preconditioner for scalar diffusion
problems.

1. Introduction

The solution of large sparse linear systems arising from the discretization of
an elliptic partial differential equation (PDE) is an essential ingredient in many
scientific computations. The ever growing demand for efficient solvers led to the
development of multigrid methods in the 1970s [6, 7, 15, 16, 17] and multilevel
preconditioning techniques in the late 1980s [24]. Much research work was devoted
to the question of optimal complexity, i.e., to show that the number of operations
necessary to obtain the solution up to a prescribed accuracy is proportional to the
number of unknowns of the linear system. Nevertheless, the convergence behavior
of these classical schemes is still strongly dependent on the coefficients of the con-
sidered PDE. This is the so-called robustness problem of multilevel solvers, and it
is one of the reasons which somewhat limit the applicability of classical multigrid
methods and multilevel preconditioners in real world applications. Several exten-
sions of multigrid methods e.g. via the use of more complicated smoothing schemes
or through the use of operator-dependent or matrix-dependent transfer operators
[1, 12, 26, 27] in the so-called black-box multigrid method have been proposed over
the years to overcome the robustness problem. Currently the most successful ap-
proach is the algebraic multigrid (AMG) method [8, 9, 10, 11, 14, 19, 21] which
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further generalizes the black-box multigrid idea. AMG is a multiplicative multilevel
scheme which employs information available from the system matrix (on the finest
level) only. All other components, e.g. prolongations and coarse grid matrices, are
constructed automatically in a purely algebraic fashion. The design and implemen-
tation of an AMG method is rather involved, and there is no satisfying theoretical
foundation which proves the robustness and convergence of AMG, however, nu-
merical experiments indicate the robustness of AMG. Hence, the development of a
provably robust multiplicative multigrid solver remains an open problem even to-
day. Note that there is no provably (or even practically) robust additive multilevel
preconditioner for general elliptic second order PDEs.

In this paper we focus on the robustness issue for diffusion problems in two space
dimensions involving a scalar diffusion coefficient ω : R

2 → R; i.e., we consider the
model problem

−∇ω∇u = f in Ω ⊂ R
2.

We discretize our model problem using linear finite elements on a sequence of uni-
formly refined triangulations. Then, we can establish the equivalencies

a(u, u) �
J∑

j=0

22j‖uj‖2
ω and a(u, u) �

J∑
j=0

22j‖uj‖2
j,ω

for certain weighted norms ‖ · ‖ω and ‖ · ‖j,ω where the uj denote a decomposition
of u =

∑
j uj obtained from orthogonal projections with respect to the weighted

scalar product 〈·, ·〉ω. These projections have also been studied in [2, 5, 25]. The
constants of these equivalencies depend on the initial triangulation and involve
some information about the variation of the coefficient function ω only. Namely,
we require ω to be a weight from the Muckenhoupt class A1(Ω). That is, we allow
for highly oscillatory coefficient functions and do not require jumps of the coefficient
function ω to be resolved on any level. This is in contrast to other articles concerned
with the development of robust solvers [13, 18, 22].

The remainder of the paper is organized as follows: First, we introduce the
notation and the employed norms in §2. Here, we also show the local equivalence of
the considered weighted norms ‖ · ‖ω and ‖ · ‖j,ω. Then, we present the main result
of the paper in §3. To this end, we establish two robust norm equivalencies for the
considered model problem using a linear finite element discretization on a sequence
of uniformly refined triangulations. We begin with the derivation of an optimal and
robust upper bound for the bilinear form using a Bernstein-type inequality in trace
norms, interpolation theory and a Hardy-inequality. To maintain the optimality of
the estimate it is necessary to switch to trace norms and use an inequality of order 1

2
due to the arbitrary discontinuities of the considered Muckenhoupt weights. Then,
we establish a lower bound for the bilinear form using a local duality technique and
a Hardy-inequality. Finally, we conclude with some remarks in §4.

2. Prerequisites

Let us introduce some notation which we will use throughout this paper. Our
main interest is the development of robust multilevel solvers for diffusion problems

(2.1) −∇ω∇u = f in Ω ⊂ R
2
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with the diffusion coefficient ω : Ω → R being a scalar positive function. The
associated bilinear form and energy norm are given by

(2.2) a(u, v) :=
∫

Ω

ω∇u∇v and ‖u‖a :=
√

a(u, u),

respectively. We consider a sequence of uniformly refined triangulations of Ω

T0 ⊂ T1 ⊂ · · · ⊂ TJ

with the associated sequence of piecewise linear finite element spaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ .

Note that we employ linear finite elements u ∈ Vj only. Therefore ∇u is constant
on each element T ∈ Tj and we have

(2.3)
∫

T

ω∇u∇v = (∇u∇v)|T
∫

T

ω for all u, v ∈ Vj .

Let us now introduce the discrete weight

ωT :=
1

µ(T )

∫
T

ω for T ∈ Tj and any j = 0, . . . , J,

where µ denotes the Lebesgue measure. With these discrete weights and (2.3) we
obtain

(2.4) a(u, v) =
∫

Ω

ω∇u∇v =
∑

T∈Tj

ωT

∫
T

∇u∇v for u, v ∈ Vj .

Note that due to the nestedness of the triangulations Tj ⊂ Tk with j ≤ k ≤ J , and
j = 0, . . . , J , we have

(2.5) ωT̂ =
1

µ(T̂ )

∫
T̂

ω =
1

µ(T̂ )

∑
T⊂T̂
T∈TJ

µ(T )ωT

for any element T̂ ∈ Tj . On each level j = 0, . . . , J we define the scalar products

〈u, v〉j,ω :=
∑

T̂∈Tj

ωT̂

∫
T̂

uv, for u, v ∈ Vj

and associated weighted L2-norms

(2.6) ‖u‖2
j,ω := 〈u, u〉j,ω =

∑
T̂∈Tj

ωT̂ ‖u‖
2
T̂

=
∑

T̂∈Tj

ωT̂

∫
T̂

|u|2

using the discrete weights (2.5). On the finest level J we furthermore introduce the
shorthand notation

(2.7) 〈·, ·〉ω := 〈·, ·〉J,ω and ‖ · ‖ω := ‖ · ‖J,ω.

In this paper, we consider weights ω, i.e., locally integrable positive functions, which
belong to the Muckenhoupt class A1(Ω) [20] only.

Definition 2.1 (Muckenhoupt class A1(Ω)). A weight ω : Ω → R is in the class
A1(Ω) if and only if there is a constant c(ω) such that the inequality

‖ω−1‖L∞(Ω)

µ(B)

∫
B

ω ≤ c(ω) < ∞
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holds for all balls B ⊂ Ω. The smallest such constant is referred to as |ω|A1(Ω) :=
min c(ω). As a consequence, the inequality

(2.8) ωB =
1

µ(B)

∫
B

ω ≤ |ω|A1(Ω)
1

µ(F )

∫
F

ω = |ω|A1(Ω)ωF

holds for all ω ∈ A1(Ω) and all balls B ⊂ Ω and all subsets F ⊂ B.

In the following, we employ property (2.8) in a slightly modified form only.
Namely, we use triangles T ∈ Tj on any level j = 0, . . . , J instead of balls B and
the union of triangles T̂ ∈ TJ on the finest level instead of the subsets F . Hence,
our results hold for a slightly larger class of functions, but it is sufficient to require
ω ∈ A1(Ω).

For such weights, we show a local Bernstein-type inequality in Lemma 2.2 which
will be crucial for the proof of the local norm equivalence of the norms ‖ · ‖j,ω and
‖ · ‖ω = ‖ · ‖J,ω in Theorem 2.3. Note that this theorem is an essential ingredient in
the later proof of our norm equivalence. In fact, we will show an upper bound for
the bilinear form a(u, u) with the level-dependent ‖ · ‖j,ω norms directly in section
3.1. The lower bound, however, we establish for the ‖ · ‖ω norm in section 3.2.
Hence, to attain a complete norm equivalence for either norm we need to employ
Theorem 2.3.

Lemma 2.2. Let ω be in the Muckenhoupt class A1(Ω). Consider a sequence of
uniformly refined triangulations Tj and the associated sequence of nested spaces Vj

of linear finite elements. Then there holds for the norm ‖ · ‖J,ω = ‖ · ‖ω defined in
(2.7) the local Bernstein-type inequality

(2.9) ‖∇v‖ω,T ≤ CB|ω|
1
2
A1(Ω)(diam(T ))−1‖v‖ω,T , with CB :=

3
2

√
2C0

for all v ∈ Vj and any j = 0, . . . , J . Here ‖·‖ω,T denotes the restriction of the norm
‖ · ‖ω to T ∈ Tj , and the constant C0 is only dependent on the initial triangulation
T0, i.e.,

(2.10) C0 := max
T̂∈T0

diam(T̂ )‖H−1

T̂
‖

where HS denotes the mapping from S to the reference triangle Tref with vertices
(0, 0), (0, 1), (1, 0).

Proof. Let HT denote the mapping from T ∈ Tj for any j = 0, . . . , J to the reference
triangle Tref , such that for x ∈ T we have HT (x) = ξ ∈ Tref . Since we consider
linear elements only, we have the representation

(2.11) v(x) = q ◦ HT (x) = q(ξ) = (g, ξ) + e

for any v ∈ Vj on T with g = ∇ξq. By the mean value theorem, there exists
xT̂ ∈ T̂ ∈ TJ , T̂ ⊂ T with

∫
T̂
|v|2 = µ(T̂ )v(xT̂ )2. Let ξT̂ ∈ Tref denote the reference

image of xT̂ , i.e., HT (xT̂ ) = ξT̂ . By definition (2.6) and the representation (2.11)
we obtain the identity

‖v‖2
ω,T =

∑
T̂⊂T
T̂∈TJ

ωT̂

∫
T̂

|v|2 =
∑
T̂⊂T
T̂∈TJ

ωT̂ µ(T̂ )|(g, ξT̂ ) + e|2.

Furthermore, with C0 given in (2.10) there holds the pointwise inequality

|∇v(x)|2 ≤ C2
0 (diam(T ))−2‖g‖2 for all x ∈ T
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where ‖ · ‖ denotes the Euclidian norm in R
2. Thus, we obtain

‖∇v‖2
ω,T =

∑
T̂⊂T
T̂∈TJ

ωT̂

∫
T̂

|∇v|2 ≤ C2
0 (diam(T ))−2‖g‖2

∑
T̂⊂T
T̂∈TJ

ωT̂ µ(T̂ ).

Hence, it suffices to prove the local inequality

(2.12) ‖g‖2
∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ ) = ‖g‖2

∫
T

ω ≤ c
∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )|(g, ξT̂ ) + e|2 = c‖v‖2
ω,T

for any T ∈ Tj and some c > 0 to show the assertion (2.9). To this end, we first
consider the case e = 0 and set b := g

‖g‖ . Then inequality (2.12) simplifies to

(2.13)
∫

T

ω ≤ c
∑
T̂⊂T
T̂∈TJ

ωT̂ µ(T̂ )|(b, ξT̂ )|2

for all b with ‖b‖ = 1. Then we define for any ρ ∈ (0, 1) the subregion Sρ ⊂ T ∈ Tj

by

Sρ := {x ∈ T : HT (x) = ξ ∈ Sref,ρ}, Sref,ρ := {ξ ∈ Tref : |(b, ξ)| ≥ ρ}.

Suppose that

(2.14) µ(Sρ) = α µ(T );

then by inequality (2.8) we have∑
T̂⊂T
T̂∈TJ

ωT̂ µ(T̂ )||(b, ξT̂ )|2 ≥ ρ2
∑

x
T̂

∈Sρ

T̂∈TJ

ωT̂ µ(T̂ ) = ρ2

∫
Sρ

ω ≥ αρ2

|ω|A1(Ω)

∫
T

ω

and assertion (2.13) holds with c = |ω|A1(Ω)

αρ2 .
It remains to show (2.14). Note that the boundary of the subset Sref,ρ is given

by sections of the line |(b, ξ)| = ρ and the boundary of Tref . The line |(b, ξ)| = ρ is
orthogonal to the vector b and has ξ0 := ρ · b as its nearest point to the origin with
distance ρ. Varying the angle of b with the axis ξ2 = 0 one easily sees that for fixed
ρ > 0 the minimum for the area µ(Sref,ρ) is achieved when b is parallel to one of
the axes ξ1 = ρ or ξ2 = ρ. In this case we have µ(Sref,ρ) = (1−ρ) µ(Tref) and hence
µ(S) = (1−ρ) µ(T ) so that (2.14) holds with α = 1−ρ and c = |ω|A1(Ω)

(1−α)2α . Therefore,
we obtain the best possible constant c = 27

4 |ω|A1(Ω) by a choice of α = 1
3 .

The general case can be reduced to this special case by considering ṽ(x) :=
v(x) − e instead of v(x) and observing that ‖∇ṽ‖ω,T = ‖∇v‖ω,T . Since v(x) is
linear, we can assume without loss of generality that e = minx∈T |v(x)| and we can
estimate ∫

T

|ṽ(x)|2dx ≤ 2
∫

T

(|v(x)|2 + |e|2)dx ≤ 4
∫

T

|v(x)|2dx.

�

With the help of Lemma 2.2 we now obtain the local equivalence of the weighted
norms ‖ · ‖j,ω and ‖ · ‖ω for v ∈ Vj on all levels j = 0, . . . , J .
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Theorem 2.3. Let ω be in the Muckenhoupt class A1(Ω) and consider a sequence
of uniformly refined triangulations Tj and the associated sequence of nested spaces
Vj of linear finite elements. Then there holds for the norms ‖·‖j,ω and ‖·‖J,ω = ‖·‖ω

defined in (2.6) for v ∈ Vj and T ∈ Tj

(2.15)
(
1 + CB|ω|

1
2
A1(Ω)

)−1

‖v‖j,ω,T ≤ ‖v‖ω,T ≤
(
1 + 6C0

)
‖v‖j,ω,T

with the constant C0 only depending on the initial triangulation T0.

Proof. For v ∈ Vj there holds by definition

(2.16)
∣∣∣‖v‖j,ω,T − ‖v‖ω,T

∣∣∣ =

∣∣∣∣∣
√

ωT

∫
T

|v|2 −

√√√√√ ∑
T̂∈TJ
T̂⊂T

ωT̂

∫
T̂

|v|2
∣∣∣∣∣.

Now by the mean value theorem there exist ξT ∈ T ∈ Tj and ξT̂ ∈ T̂ ∈ TJ with

1
µ(T )

∫
T

|v|2 = |v(ξT )|2 and
1

µ(T̂ )

∫
T̂

|v|2 = |v(ξT̂ )|2,

respectively. Plugging this into (2.16) and using (2.5) we obtain∣∣∣‖v‖j,ω,T − ‖v‖ω,T

∣∣∣ =

∣∣∣∣∣
√√√√ ∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )|v(ξT )|2 −
√√√√ ∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )|v(ξT̂ )|2
∣∣∣∣∣

≤
√√√√ ∑

T̂∈TJ
T̂⊂T

ωT̂ µ(T̂ )|v(ξT ) − v(ξT̂ )|2.

With the help of the estimate

|v(ξT̂ ) − v(ξT )|2 ≤ ‖∇v‖2‖ξT̂ − ξT ‖2 ≤ ‖∇v‖2(diam(T ))2,

the inequality ∣∣∣‖v‖j,ω,T − ‖v‖ω,T

∣∣∣ ≤ diam(T )‖∇v‖ω,T

follows. Combining this with the local Bernstein-type inequality of Lemma 2.2, we
arrive at the asserted left-hand estimate

‖v‖j,ω,T ≤ diam(T )‖∇v‖ω,T + ‖v‖ω,T ≤
(
1 + CB|ω|

1
2
A1(Ω)

)
‖v‖ω,T .

Denoting the vertices of T by xT,i with i = 1, 2, 3 and v(xT,i) = wT,i there holds the
representation g = (wT,2 − wT,1, wT,3 − wT,1)t. With the help of the equivalence,
see e.g. [3],

1
µ(T )

∫
T

|v|2 =
w2

T,3 + w2
T,2 + w2

T,1 + (wT,3 + wT,2 + wT,1)2

12

and the inequality

(wT,2 − wT,1)2 + (wT,3 − wT,1)2 ≤ 3
(
w2

T,3 + w2
T,2 + w2

T,1 + (wT,3 + wT,2 + wT,1)2
)

we obtain
diam(T )‖∇v‖ω,T ≤ 6C0‖v‖j,ω,T

which proves the asserted right-hand inequality. �
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3. Robust norm equivalencies

The aim of this section is to establish two robust norm equivalencies for our
model problem (2.1). Namely, we are interested in the equivalence

a(u, u) �
J∑

j=1

22j‖uj‖2
j,ω + a(u0, u0)

and the equivalence

a(u, u) �
J∑

j=1

22j‖uj‖2
ω + a(u0, u0)

where the decomposition uj is obtained from orthogonal projections with respect
to the weighted scalar product (2.7) on the finest level.

3.1. Upper bounds for the bilinear form. We begin with the derivation of
an upper bound for the bilinear form a(u, u), which is robust and optimal, i.e.,
it does not involve the factor J and weak information about ω only. We obtain
our estimate in three steps: First, we introduce a sequence of projection operators
Qω

j based on the weighted scalar product 〈·, ·〉ω = 〈·, ·〉J,ω on the finest level J .
Then, we apply a Bernstein-type estimate to the bilinear form a(

∑
j uj ,

∑
l ul)

using the decomposition u =
∑

j uj of (3.9). Here, the challenge is to bound the
mixed terms in the arising double sum. One approach to this issue is the use of
a strengthened Cauchy–Schwarz inequality, or one applies interpolation theory to
a(u, u) and works with a Bernstein-type inequality of second order and a Hardy-
type inequality for the arising sum. However, it seems that these approaches do not
work if the diffusion coefficient ω is discontinuous. Therefore, we need to consider
a second sequence of projection operators Qa

j based on auxiliary bilinear forms
aj(·, ·) which are defined in a level-dependent fashion. With the help of the two
projections Qω

j and Qa
j , we establish a hybrid Bernstein-type inequality involving

both projections. Furthermore, we use averages of the weight ω and a Bernstein-
type inequality in trace norms which correspond to inequalities of order 1

2 . Then,
we can use a Hardy-type inequality to deal with the arising sums. Finally, we
derive a robust and optimal upper bound of a(·, ·) in Theorem 3.3 using only the
projections Qω

j via a Hardy inequality.
A tool that is used in the proof of Theorem 3.3 is the following Bernstein-type

inequality of broken order for the weighted trace norms

(3.1) ‖u‖ 1
2 ,j,ω :=

( ∑
T∈Tj

ωT

∫
∂T

|u|2
) 1

2
.

Lemma 3.1. Let ω be a locally integrable positive function and consider a sequence
of uniformly refined triangulations Tj and the associated sequence of nested spaces
Vj of linear finite elements. For elements v ∈ Vj there holds

‖v‖a ≤
√

3C2C12
j
2 ‖v‖ 1

2 ,j,ω,

where the constants C1 := maxT∈T0 diam(T ) and C2 := maxT̂∈T0

diam(T̂ )√
µ(T̂ )

depend

on the initial triangulation T0 only.
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Proof. Keeping in mind that we employ linear finite elements only, we have that
∇v is constant on T ∈ Tj . Integration by parts on each T ∈ Tj then yields

a(v, v) =
∑

T∈Tj

ωT

∫
T

∇v∇v =
∑

T∈Tj

ωT

∫
∂T

v∇v · n∂T .

Applying the Cauchy-Schwarz inequality gives

a(v, v) ≤
( ∑

T∈Tj

ωT

∫
∂T

|v|2
) 1

2
( ∑

T∈Tj

ωT

∫
∂T

‖∇v‖2
) 1

2
.

Here, the first sum represents the semi-norm ||v|| 1
2 ,j,ω, whereas each term in the

second sum can be bounded using the local Bernstein-type inequality∫
∂T

‖∇v‖2 ≤ 3 diam(T )‖∇v‖2 ≤ 3C2 µ(T )
1
2 ‖∇v‖2 ≤ 3C2C12j

∫
T

‖∇v‖2.

Hence, after multiplication with ωT and summation with respect to T ∈ Tj , we
obtain the overall estimate

a(v, v) =
∑

T∈Tj

ωT

∫
T

∇v∇v ≤
√

3C2C12
j
2 ‖v‖ 1

2 ,j,ω

√
a(v, v),

and the assertion follows after division by
√

a(v, v). �

Let us now introduce some additional notation. We start with the definition of
a sequence of weighted projections Qω

j : VJ → Vj by the relation

(3.2) 〈Qω
j u, v〉ω := 〈u, v〉ω

for all u ∈ VJ and v ∈ Vj . Furthermore, we define auxiliary level-dependent bilinear
forms aj : VJ × Vj → R by

(3.3) aj(u, v) :=
∑

T∈Tj

ωT

∫
T

∇u∇v =
∑

T∈Tj

1
µ(T )

∑
T̂∈TJ
T̂⊂T

µ(T̂ )ωT̂

∫
T

∇u∇v.

Note that for u, v ∈ Vj we have a(u, v) = aj(u, v) and with (2.5) it follows that for
j ≤ k

(3.4)

ak(u, v) =
∑

T∈Tk

ωT

∫
T

∇u∇v =
∑

T∈Tk

ωT µ(T )(∇u∇v)|T

=
∑

T̂∈Tj

∑
T∈Tk
T⊂T̂

ωT µ(T )(∇u∇v)|T̂ =
∑

T̂∈Tj

ωT̂ (∇u∇v)|T̂

=
∑

T∈Tj

ωT

∫
T

∇u∇v = aj(u, v)

since (∇u∇v)|T̂ = (∇u∇v)|T for all T ⊂ T̂ ∈ Tj . With the help of these auxiliary
bilinear forms and the direct splitting Vj = Vj−1 ⊕ Wj we define the generalized
projection operators P a

j : VJ → Vj and Qa
j : VJ → Vj by

(3.5) aj(P a
j u, v) = a(P a

j u, v) =
{

0 v ∈ Vj−1

aj(u, v) v ∈ Wj
, and Qa

j :=
j∑

k=1

P a
k

for all u ∈ VJ . Consider v ∈ Vj−1; due to (3.4) we obtain

aj(Qa
j u − Qa

j−1u, v) = aj(Qa
j u, v) − aj−1(Qa

j−1u, v)
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and with (3.5) this yields

(3.6) aj(Qa
j u − Qa

j−1u, v) = 0 for all v ∈ Vj−1.

Hence, the decomposition

(3.7) vj = vj(u) := Qa
j u − Qa

j−1u, v0 := Qa
0u

associated with any u ∈ VJ has the property

a(vj , vk) = 0 for all v ∈ Vj with j < k

due to (3.6). Since u = Qa
Ju =

∑J
j=0 vj this yields the equivalence

(3.8) a(u, u) =
J∑

j,k=0

a(vj , vk) =
J∑

j=0

a(vj , vj) =
J∑

j=0

‖vj‖2
a

for any u ∈ VJ on the finest level.
Finally, we introduce the sequence

(3.9) uk = uk(u) := Qω
k u − Qω

k−1u, u0 := Qω
0 u, for u ∈ VJ

based on the projections Qω
k .

In the following we consider u ∈ VJ on the finest level J and its associated
decompositions vj from (3.7) and uj from (3.9). We obtain an upper bound for
‖vj‖a in terms of ‖uk‖k,ω for j ≤ k; i.e., we establish a hybrid Bernstein-type
estimate of order 1

2 of a(vj , vj) in terms of ‖u‖ 1
2 ,k,ω for j ≤ k.

Lemma 3.2. Let ω be a locally integrable positive function and consider a sequence
of uniformly refined triangulations Tj and the associated sequence of nested spaces
Vj of linear finite elements. Let u ∈ VJ , vj ∈ Vj and uk ∈ Vk for k ≥ j be defined
as in (3.7) and (3.9), respectively. Then there holds the estimate

(3.10) a(vj , vj) ≤ 3C2C12j
( J∑

k=j

‖uk‖ 1
2 ,j,ω

)2

with constants C1, C2 from Lemma 3.1.

Proof. Recall the definition (3.7) of vj . Due to (3.5), we have a(vj , w) = 0 for all
w ∈ Vj−1. Hence, with the choice w = Qω

j−1u we obtain

a(vj , vj) = aj(vj , vj) = aj(vj , u) = aj(vj , u − Qω
j−1u)

=
∑

T∈Tj

ωT

∫
T

∇vj∇(u − Qω
j−1u).

From the definition (3.9) we obtain the identity u−Qω
j−1u =

∑J
k=j Qω

k u−Qω
k−1u =∑J

k=j uk and we can establish the equivalence

a(vj , vj) =
∑

T∈Tj

ωT

J∑
k=j

∫
T

∇vj∇uk.

Integration by parts on each T ∈ Tj yields

a(vj , vj) =
J∑

k=j

∑
T∈Tj

ωT

∫
∂T

uk∇vj · n∂T ,
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and we obtain∑
T∈Tj

ωT

∫
∂T

uk∇vj · n∂T ≤
( ∑

T∈Tj

ωT

∫
∂T

|uk|2
) 1

2
( ∑

T∈Tj

ωT

∫
∂T

‖∇vj‖2
) 1

2

as in the proof of Lemma 3.1. The second factor can be estimated in the same way
by ( ∑

T∈Tj

ωT

∫
∂T

‖∇vj‖2
) 1

2 ≤
√

3C2C12j/2
√

a(vj , vj)

whereas the first factor is by definition (3.1) the norm ‖uk‖ 1
2 ,j,ω. This yields the

assertion. �
Note that (3.10) is an inequality of weak-type. Such inequalities are for instance

used for the estimates of the K-functional between Sobolev spaces.
With the help of this lemma we can now show the main result of this subsection,

the robust and optimal upper bound for the bilinear form (2.2).

Theorem 3.3. Let ω be in the Muckenhoupt class A1(Ω) and consider a sequence
of uniformly refined triangulations Tj and the associated sequence of nested spaces
Vj of linear finite elements. Then there holds the upper bound

(3.11) a(u, u) ≤ C2
U |ω|A1(Ω)

J∑
j=0

22j‖uj‖2
j,ω, with CU := C2C1(2 +

√
2)

for u ∈ VJ and its associated decomposition uj from (3.9), ‖ · ‖j,ω is given in (2.6),
and the constants C1 and C2 are stated in Lemma 3.1. With respect to the ‖ · ‖ω

norm on the finest level J there holds the estimate

(3.12) a(u, u) ≤
(
1 + CB|ω|

1
2
A1(Ω)

)2

C2
U |ω|A1(Ω)

J∑
j=0

22j‖uj‖2
ω.

Proof. Consider a fixed T ∈ Tj and U ∈ Tk with k ≥ j and U ⊂ T . Applying
property (2.8) of ω to F = U and B = T we obtain∑

T∈Tj

ωT

∫
∂T

|uk|2 ≤
∑

T∈Tj

∑
U∈Tk
U⊂T

ωT

∫
∂U

|uk|2 ≤ |ω|A1(Ω)

∑
U∈Tk

ωU

∫
∂U

|uk|2.

With the help of Lemma 3.2 this yields

‖vj‖2
a ≤ 3C2C1|ω|A1(Ω)

( J∑
k=j

‖uk‖ 1
2 ,k,ω

)2

,

and with Lemma 3.1 we can estimate

a(u, u) =
J∑

j=0

‖vj‖2
a ≤ (3C2C1)2|ω|A1(Ω)

J∑
j=0

2j
( J∑

k=j

2k/2‖uk‖k,ω

)2

.

Using the Hardy inequality

(3.13)
( J∑

j=0

bj(
J∑

k=j

ak)2
) 1

2 ≤ 1
1 − 1/

√
b

( J∑
k=0

bka2
k

) 1
2
,

with ak := 2k/2‖uk‖k,ω, and b = 2 we establish the asserted optimal and robust
upper bound (3.11).
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Applying Theorem 2.3, we obtain the corresponding upper bound (3.12) of
a(u, u) for the weighted norm ‖ · ‖ω on the finest level J . �

3.2. Lower bounds for the bilinear form. The next step in our search for
robust norm equivalencies is the derivation of optimal and robust lower bounds for
the bilinear form a(·, ·) in terms of the norms ‖ · ‖j,ω and ‖ · ‖ω; i.e., we are looking
for the Jackson-type inequalities

J∑
j=1

22j‖uj‖2
j,ω + a(u0, u0) ≤ Ca(u, u) and

J∑
j=1

22j‖uj‖2
ω + a(u0, u0) ≤ Ca(u, u).

To this end, we split the sum
∑J

j=1 22j‖uj‖2
ω into two parts,

∑j0−1
j=1 22j‖uj‖2

ω and∑J
j=j0

22j‖uj‖2
ω. Here, the parameter j0 is independent of J and j0 depends on the

considered weight function ω and the initial triangulation T0 only. The constants
of the lower bound will explicitly involve j0. Note however that this does not
compromise the optimality.

In a first step, we bound the uj-decomposition of (3.9) in terms of the vj-
decomposition of (3.7) with respect to the ‖ · ‖ω norm in the following lemma.
The respective estimate for the ‖ · ‖j,ω norms then follows with Theorem 2.3.

Lemma 3.4. Let ω be in the Muckenhoupt class A1(Ω) and consider a sequence of
uniformly refined triangulations Tj and the associated sequence of nested spaces Vj

of linear finite elements. The decompositions vj and uj defined in (3.7) and (3.9),
respectively, allow for the estimates

J∑
j=0

22j‖uj‖2
ω ≤ 4

J∑
j=0

22j‖vj‖2
ω

and
J∑

j=0

22j‖uj‖2
j,ω ≤ 4

(
1 + CB|ω|

1
2
A1(Ω)

)2(
1 + 6C0

)2 J∑
j=0

22j‖vj‖2
j,ω.

Proof. Observe that due to (3.9) and (3.2) we have

‖uj‖2
ω = ‖Qω

j u − Qω
j−1u‖2

ω = 〈Qω
j u − Qω

j−1u, Qω
j u〉ω

= 〈Qω
j u − Qω

j−1u, u〉ω = 〈Qω
j u − Qω

j−1u, u − Qa
j−1u〉ω

for all j so that ‖uj‖ω ≤ ‖u − Qa
j−1u‖ω holds for all j, and with (3.7) we obtain

J∑
j=0

22j‖uj‖2
ω ≤

J∑
j=0

22j‖u − Qa
j−1u‖2

ω ≤
J∑

j=0

22j
( J∑

k=j

‖vk‖ω

)2

.

Then using Hardy’s inequality (3.13) with b = 22 and ak := ‖vk‖ω, we obtain
J∑

j=0

22j‖uj‖2
ω ≤ 4

J∑
j=0

22j‖vj‖2
ω.

Passing back from the ‖ · ‖ω norm to the ‖ · ‖j,ω norms with the help of Theorem
2.3, we end up with the estimates

(3.14)
J∑

j=0

22j‖uj‖2
ω ≤ 4

(
1 + 6C0

)2 J∑
j=0

22j‖vj‖2
j,ω
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and
J∑

j=0

22j‖uj‖2
j,ω ≤ 4

(
1 + CB|ω|

1
2
A1(Ω)

)2(
1 + 6C0

)2 J∑
j=0

22j‖vj‖2
j,ω.

�

Now, we need to deal with the projection operators Qa
j and the associated se-

quence vj only. Here, we can prove a local estimate for the ‖ · ‖j,ω norms using a
modified version of the duality technique due to Aubin and Nitsche, see also [4],
and a certain regularity result for the Neumann problem given in Lemma 3.5 (see
the Appendix for a proof). In the following, the space W k

p (Ω) with its associated
norm ‖ · ‖k,p,Ω denotes the classical Sobolev space of Lp(Ω) functions whose first
k derivatives are also in Lp(Ω). Similarly, the respective semi-norm is denoted by
| · |k,p,Ω.

Lemma 3.5. For any element T ∈ Tj consider the neighborhood

(3.15) U := UT =
⋃

T̂∈Tj−1

T̂⊂supp(ψ
j−1
l

)

supp(ψ
j−1
l

)∩T �=∅

T̂ ,

where ψj−1
l denotes the nodal basis function on level j − 1 centered at node l. Let

Ũ be such that Ũ ⊃ U and that the boundary ∂Ũ is smooth. Furthermore, let all
vertices ξ ∈ ∂U also be ξ ∈ ∂Ũ , and diam(Ũ) < 2 diam(U). Let ṽj denote the
continuous and piecewise linear extension of vj from U to Ũ which fulfills

(3.16) ‖ṽj‖0,2,Ũ ≤ 2‖vj‖0,2,U .

Then, the solution ϕU to the inhomogeneous Neumann problem

−∆ϕU = ṽj in Ũ ,
∂ϕU

∂ν
= g on ∂Ũ

is in H2(U) and allows for the estimate

(3.17) |ϕU |2,2,U ≤ Ĉ‖vj‖0,2,U

where Ĉ is essentially the regularity constant CR of (4.1). Here, the boundary data
for the Neumann problem are g := αh with a piecewise linear h ∈ L2(∂Ũ). Between
any two vertices ξ ∈ ∂U ∩ ∂Ũ on the boundary ∂Ũ the function h ≥ 0 consists of
two lines with h(ξ) = 0 for the vertices ξ ∈ ∂U ∩ ∂Ũ . Furthermore, α ∈ R is such
that the compatibility condition

(3.18)
∫

Ũ

ṽj = −
∫

∂Ũ

g

is fulfilled.

With this lemma, we are in a position to prove the following local inequality for
the level-dependent norms ‖ · ‖j,ω in Theorem 3.6. However, we can obtain this
estimate on levels j ≥ j0 with j0 = j0(ω) independent of J only. Note that the
introduction of the additional parameter j0 does not compromise the optimality.
For weights ω ∈ A1(Ω) we can determine j0 easily from the limited growth condition
(3.19) given below. For many practically relevant diffusion coefficients we find j0
to be rather small; see section 3.3.
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Theorem 3.6. Let ω be in the Muckenhoupt class A1(Ω) and consider a sequence
of uniformly refined triangulations Tj and the associated sequence of nested spaces
Vj of linear finite elements. Let j be large enough, i.e., j ≥ j0 where j0 is given by
the smallest value such that

(3.19) |ω|
1
2
A1(Ω) ≤

1
2

2j0−2

4C∗√C3

holds with

C3 := max
S,S′∈T0

µ(S)
µ(S′)

and C∗ = max{CH , 8
√

C3Ĉ}.

Then the estimate

(3.20) ‖vj‖j,ω,U ≤ CL|ω|
1
2
A1(Ω) diam(U)‖∇vj‖j,ω,U with CL := 8C∗

√
C3C1

holds with respect to the neighborhood U = UT given in (3.15) for vj defined in
(3.7).

Proof. we note that we can assume vj(x) ≥ 0 in U since otherwise vj changes
sign in U and we can obtain the desired inequality (3.20) directly. Therefore in
the following we need to consider only those U which do not intersect boundary
elements T ∈ Tj−1.

With the help of (2.6) and Lemma 3.5 we obtain

(3.21)

‖vj‖2
j,ω,U = −

∫
U

ωvj∆ϕU

=
∑
S⊂U

ωS

∫
S

∇vj∇ϕU︸ ︷︷ ︸
:=I1(U)

−
∑
S⊂U

ωS

∫
∂S

vj∇ϕU · n∂S︸ ︷︷ ︸
:=I2(U)

after integration by parts on each S ⊂ U . Concerning the first sum I1(U), observe
that by definition (3.7) of vj

0 = aj(vj , w) = a(vj , w) =
∑
S∈Tj

ωS

∫
S

∇vj∇w

holds for all w ∈ Vj−1. Now, we choose w to be the function in Vj−1 which
interpolates ϕU at the nodes in T and has support in U = UT . Then, we can
estimate I1(U) via the Bramble–Hilbert Lemma on U

|I1(U)| =
∣∣∣ ∑
S⊂U

ωS

∫
S

∇ϕU∇vj

∣∣∣ =
∣∣∣∑
S⊂U

ωS

∫
S

∇(ϕU − w)∇vj

∣∣∣
≤

( ∑
S⊂U

ωS

∫
S

|∇(ϕU − w)|2
) 1

2 ‖∇vj‖j,ω,U

≤ CH diam(U)|ϕU |2,2,U

(
max
S⊂U

√
ωS

)
‖∇vj‖j,ω,U ,(3.22)

where the constant CH depends only on the shape of U , i.e., by assumption only
on the initial triangulation T0.

The second sum I2(U) in (3.21) can be estimated by

|I2(U)| =
∣∣∣ ∑
S⊂U

ωS

∫
∂S

vj(∇ϕU , n∂S)
∣∣∣≤ ∑

S⊂U

ωS‖vj‖∞,∂S

∫
∂S

|∇ϕU |
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where ‖ · ‖∞,∂S denotes the L∞(∂S) norm. Note that due to the choice of g in
Lemma 3.5, the normal derivative ∂ϕU/∂νξ = g vanishes at each vertex ξ ∈ ∂U .
Also, since any normal vector nK of an arbitrary edge K ⊂ U can be represented
as a linear combination of three such normal vectors at ξi, i = 1, 2, 3, we can bound
the normal derivative at x ∈ K by

|(∇ϕU , nK)(x)| =
∣∣∣ 3∑
i=1

βi
∂ϕU

∂νξi

(x)
∣∣∣

=
∣∣∣ 3∑
i=1

βi

(∂ϕU

∂νξi

(x) − ∂ϕU

∂νξi

(ξi)
)∣∣∣

≤
3∑

i=1

|βi|
∫ 1

0

∣∣∣(∇∂ϕU

∂νξi

)(ξi + t(x − ξi), x − ξi)dt
∣∣∣

with
∑3

i=1 |βi|2 = 1. Hence after integration over the edge K we obtain∫
K

|(∇ϕU , nK)(x)|dx ≤ diam(U)
∑
|α|=2

∫
U

|DαϕU |dx ≤ diam(U)(µ(U))
1
2 |ϕU |2,2,U .

Altogether, we can now establish the estimate

|I2(U)| ≤ 2
∑
S⊂U

ωS‖vj‖∞,∂S diam(U)(µ(U))
1
2 |ϕU |2,2,U

≤ 8
√

C3‖vj‖j,ω,U

(
max
S⊂U

√
ωS

)
diam(U)|ϕU |2,2,U ,(3.23)

due to
∑

S⊂U

√
ωS(µ(U))

1
2 ‖vj‖∞,∂S ≤ 4

√
C3‖vj‖j,ω,U since µ(U) ≤ 16C3 µ(S).

The assertion (3.20) then follows easily with the aid of (3.17): Insert (3.17) into
(3.22) and (3.23) and obtain

‖vj‖2
j,ω,U ≤ |I1(U)| + |I2(U)|

≤ C∗ diam(U)
(
‖vj‖j,ω,U + ‖∇vj‖j,ω,U

)
(max
S⊂U

√
ωS)‖vj‖0,2,U

with C∗ := max{CH , 8
√

C3Ĉ}. With the estimate (maxS⊂U
√

ωS)‖vj‖0,2,U ≤(
maxS′,S⊂U

√
ωS/ωS′

)
‖vj‖j,ω,U , this yields the inequality

‖vj‖j,ω,U ≤ C∗ diam(U)
(

max
S′,S⊂U

√
ωS

ωS′

)(
‖vj‖j,ω,U + ‖∇vj‖j,ω,U

)
after division by ‖vj‖j,ω,U . Due to the use of uniformly refined triangulations we
have

ωS

ωS′
=

µ(S′)
µ(S)

∫
S

ω∫
S′ ω

≤ C3

∫
S

ω∫
S′ ω

≤ µ(U)
µ(S)

ωU

ωS′
≤ 16C3|ω|A1(Ω)

since ω ∈ A1(Ω). Hence, we obtain(
1 − 4C∗

√
C3|ω|A1(Ω) diam(U)

)
‖vj‖j,ω,U ≤ 4C∗

√
C3|ω|A1(Ω) diam(U)‖∇vj‖j,ω,U .
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With the assumption (3.19) and diam(U) ≤ C12−j+2 this yields the asserted in-
equality

‖vj‖j,ω,U ≤
4C∗√C3|ω|A1(Ω)(

1 − 4C∗
√

C3|ω|A1(Ω) diam(U)
) diam(U)‖∇vj‖j,ω,U

≤ 8C∗
√

C3|ω|A1(Ω) diam(U)‖∇vj‖j,ω,U .

�

A direct consequence of Theorem 3.6 are the following lower bounds.

Theorem 3.7. Let ω be in the Muckenhoupt class A1(Ω) and consider a sequence
of uniformly refined triangulations Tj and the associated sequence of nested spaces
Vj of linear finite elements. Consider the set U = UT defined in (3.15) for every
T ∈ Tj−1. Let j ≥ j0 so that (3.19) is satisfied and Theorem 3.6 is applicable.
Consider the decomposition uj defined in (3.9) for u ∈ VJ . Then there hold the
estimates

(3.24)
J∑

j=j0

22j‖uj‖2
ω ≤ 4

(
1 + 6C0

)2

C2
L|ω|A1(Ω)a(u, u)

and

(3.25)
J∑

j=j0

22j‖uj‖2
j,ω ≤ 4

(
1 + CB|ω|

1
2
A1(Ω)

)2(
1 + 6C0

)2

C2
L|ω|A1(Ω)a(u, u).

Proof. Using Lemma 3.4, we establish the estimate (3.14),
J∑

j=j0

22j‖uj‖2
ω ≤ 4

(
1 + 6C0

)2 J∑
j=j0

22j‖vj‖2
j,ω

≤ 4
(
1 + 6C0

)2

C2
L|ω|A1(Ω)

J∑
j=j0

a(vj , vj)

after squaring (3.20) and the summation with respect to UT , i.e., over all T ∈ Tj−1.
Then, with (3.8) and a(vj , vj) = ‖∇vj‖2

j,ω the assertion (3.24) follows. We obtain
(3.25) with the help of the left-hand side inequality of Theorem 2.3. �

Finally, let us consider the remainder terms for the coarser levels 0 ≤ j < j0.
Since j0 is independent of J it is sufficient to establish the following equivalence
which explicitly involves j0 in the following lemma.

Lemma 3.8. Let ω be in the Muckenhoupt class A1(Ω) and consider a sequence of
uniformly refined triangulations Tj and the associated sequence of nested spaces Vj

of linear finite elements. Then the estimates
j0−1∑
j=0

22j‖vj‖2
j,ω ≤ 4j0 |ω|A1(Ω)C4C5

j0−1∑
j=0

a(vj , vj)

and
j0−1∑
j=0

22j‖vj‖2
ω ≤ 4j0 |ω|A1(Ω)C4C5(1 + 6C0)2

j0−1∑
j=0

a(vj , vj)
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hold for the decomposition vj defined in (3.7) for u ∈ VJ with constants C4 and C5

depending on the initial triangulation only.

Proof. Let ST = {Si ∈ Tj , i = 1, . . . , m} denote the shortest chain of triangles
S ∈ Tj which connect a triangle T ∈ Tj to the boundary ∂Ω. For any x ∈ T consider
the sequence of points {xi}m+1

i=0 with x0 = x, xm+1 ∈ ∂Ω, and xi, xi+1 ∈ ∂Si for
i = 1, . . . , m which connect x to the boundary ∂Ω. Recall that vj vanishes on the
boundary ∂Ω, hence we have the point-wise estimate

|vj(x)| = |
m∑

i=0

xi+1 − xi| ≤
m∑

i=0

|xi+1 − xi| ≤ ‖∇v|Si
‖ diam(Si).

This yields

‖vj‖2
j,ω =

∑
T∈Tj

∫
T

ω(x)|vj(x)|2dx ≤
∑

T∈Tj

ωT µ(T )
( ∑

S∈ST

diam(S)‖∇vj |S‖
)2

≤
∑

T∈Tj

ωT µ(T )
∑

S′∈ST

diam(S′)
∑

S∈ST

diam(S)‖∇vj |S‖2

≤ |ω|A1(Ω)C4

∑
T∈Tj

∑
S∈ST

diam(S)ωS µ(S)‖∇vj |S‖2

due to the fact that
∑

S∈ST
diam(S) ≤ C diam(Ω) =: C4. Interchanging the sum-

mation and counting multiples of a triangle S by MS , we obtain

‖vj‖2
j,ω ≤ |ω|A1(Ω)C4

∑
S∈Tj

MS diam(S)
∫

S

ω‖∇vj‖2.

The number MS gives the number of chains ST for any T ∈ Tj that contain the
triangle S. It is obvious that MS is larger for triangles S closer to the boundary.
However, it is clear that MS is bounded by the number of triangles intersected
by the diameter. Hence, we have MS diam(S) ≤ C diam(Ω) =: C5 due to the
uniformity of the triangles. This leads to the estimate

‖vj‖2
j,ω ≤ |ω|A1(Ω)C4C5

∑
S∈Tj

∫
S

ω‖∇vj‖2 = |ω|A1(Ω)C4C5a(vj , vj)

and we finally obtain the assertion
j0−1∑
j=0

22j‖vj‖2
j,ω ≤ 4j0 |ω|A1(Ω)C4C5

j0−1∑
j=0

a(vj , vj).

The corresponding estimate for the ‖ · ‖ω norm is obtained by the right-hand in-
equality of Theorem 2.3. �

Altogether, we can now establish our robust and optimal norm equivalencies in
the following theorem which summarizes the results of Theorems 3.3 and 3.7 as well
as of Lemma 3.8. Note that we make use of the fact that 4j0 = 2CL|ω|

1
2
A1(Ω) which

stems from the limited growth condition (3.19), i.e.,

j0 = ln
(
CL|ω|

1
2
A1(Ω)

)
,

to eliminate j0 from the norm equivalencies. However, (3.19) must be satisfied for
some j0 < J .
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Theorem 3.9. Let ω be in the Muckenhoupt class A1(Ω) such that (3.19) holds
for a j0 < J . Consider a sequence of uniformly refined triangulations Tj and
the associated sequence of nested spaces Vj of linear finite elements. Then the
equivalence

(3.26) KUa(u, u) ≤
J∑

j=0

22j‖uj‖2
j,ω ≤ KLa(u, u)

and the equivalence

(3.27) KŨa(u, u) ≤
J∑

j=0

22j‖uj‖2
ω ≤ KL̃a(u, u)

hold for u ∈ VJ and its associated decomposition uj defined in (3.9), where the
constants are given by

KU :=
(
C2

U |ω|A1(Ω)

)−1

,

KL :=
(
4(1 + 6C0)2C2

L|ω|A1(Ω)(1 + CB|ω|
1
2
A1(Ω))

2 + 2CL|ω|
3
2
A1(Ω)C4C5

)
,

KŨ :=
(
C2

U |ω|A1(Ω)(1 + CB|ω|
1
2
A1(Ω))

2
)−1

KL̃ :=
(
4(1 + 6C0)2C2

L|ω|A1(Ω) + (1 + 6C0)22CL|ω|
3
2
A1(Ω)C4C5

)
.

3.3. Examples. Finally, we consider a few examples of weight functions ω for
which our theory holds. First of all, there is a close connection between the Muck-
enhoupt class A1(Ω) with the space BMO(Ω) via the implication

ω ∈ A1(Ω) ⇒ ln(ω) ∈ BMO(Ω).

Let us consider a weight function ω with infx∈Ω ω(x) = mω > 0 and supx∈Ω ω(x)
= Mω. Then there holds for all balls B ⊂ Ω the inequality

‖ω−1‖L∞(Ω)

µ(B)

∫
B

ω =
m−1

ω

µ(B)

∫
B

ω ≤ Mω

mω
.

Hence, any positive piecewise constant function ω is in A1(Ω). Let us now assume
that mω = 1 and Mω = ε−1, i.e., it is suffcient to assume a maximal jump of height
ε−1. Then we obtain a minimal refinement level

j0 ≈ ln(ε−1).

Thus j0 is a rather small number even for very large jumps. Note that we do not
require the jumps to be aligned with the mesh on any level, i.e., no mesh must
resolve the jumps. There is no restriction on the frequency or the location of the
jumps.

4. Concluding remarks

We presented two optimal and robust norm equivalencies based on certain weight-
ed norms for diffusion problems −∇ω∇u = f in two space dimensions with a scalar
diffusion coefficient ω. We only require ω to be in the Muckenhoupt class A1(Ω)
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to obtain our optimal bounds. This covers all piecewise constant functions inde-
pendent of the location of jumps, their number or their frequency. In contrast to
previous results, we do not require the resolution of the jumps on a particular level,
i.e., the coarsest level. However, the constants of our norm equivalence involve the
height of the maximal jump and thus for all practical purposes it is necessary to
assume |ω|A1(Ω) to be small.

Appendix

Proof of Lemma 3.5. Consider the scaled domain Ω̂ := RŨ and the spaces

V (Ω̂) := {ϕ ∈ W 2
2 (Ω̂) :

∫
Ω̂

ϕdx = 0} and

W (Ω̂) := {〈f, g〉 ∈ L2(Ω̂) × W
1
2
2 (∂Ω̂) :

∫
Ω̂

fdx +
∫

∂Ω̂

gds = 0}

and the mapping T : ϕ ∈ V �→ Tϕ ∈ W defined by

Tϕ :=

{
f = ∆ϕ ∈ L2(Ω̂),

g = ∂ϕ/∂ν ∈ W
1
2
2 (∂Ω̂).

This mapping is linear and continuous; i.e., there exists a constant MΩ̂ such that

‖Tϕ‖W ≡ ‖f‖0,2,Ω̂ + ‖g‖1/2,2,∂Ω̂ ≤ MΩ̂‖ϕ‖2,2,Ω̂

holds. Furthermore, T is also bijective from V onto W ; see [23], pp. 336-339. Hence
by the open mapping theorem its inverse T−1 : 〈f, g〉 �→ ϕ is also continuous and
satisfies

‖ϕ‖V ≡ ‖ϕ‖2,2,Ω̂ ≤ LΩ̂

(
‖∆ϕ‖0,2,Ω̂ + ‖∂ϕ/∂ν‖1/2,2,∂Ω̂

)
, ϕ ∈ W (Ω̂),

with a constant LΩ̂. However, it is still necessary to determine the dependence
of LΩ̂ on the size of Ω̂ = RŨ , i.e., on the scaling R, since by definition (3.15)
U = UT depends on the level j. To this end, let us consider the scaling R such that
R−1 := diam(Ũ) ≤ 2 diam(U) so that

(4.1) ‖ψ‖2,2,Ω̂ ≤ CR

(
‖∆ψ‖0,2,Ω̂ + ‖∂ψ/∂ν‖1/2,2,∂Ω̂

)
, ψ ∈ W (Ω̂),

with CR depending only on the shape of U but not on the size. Hence, CR depends
only on the initial triangulation T0. The connection between ϕ and ψ is given by
ψ(t) = ϕ(t/R) := ϕ(x). Therefore, there hold the equivalencies

‖ψ‖0,2,Ω̂ = R‖ϕ‖0,2,Ũ , |ψ|1,2,Ω̂ = |ϕ|1,2,Ũ , and |ψ|2,2,Ω̂ = R−1|ϕ|2,2,Ũ .

Using the explicit form of the trace norm ‖ · ‖1/2,2,∂Ω̂ (see e.g. [23], p. 94) given by

‖ψ‖2
1/2,2,∂Ω̂

:=
∑

i

‖ψi‖2
0,2,∂Ω̂

+
∑

i

|ψi|21/2,2,∂Ω̂

|ψi|21/2,2,∂Ω̂
:=

∫
∂Ω̂

∫
∂Ω̂

|ψi(t) − ψi(s)|2
|t − s|2 dσdσ,(4.2)

where ψ =
∑

i ψi is a partition of ψ with respect to the representation by charts of
the curve ∂Ω̂ with curve element dσ, we conclude that

‖∂ψ/∂ν‖1/2,2,∂Ω̂ = R−1/2‖∂ϕ/∂ν‖0,2,∂Ũ + R−1|∂ϕ/∂ν|1/2,2,∂Ũ .
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Consequently, by (4.1) we obtain the estimate

(4.3)
|ϕU |1,2,Ũ + diam(U)|ϕU |2,2,Ũ ≤ 2CR diam(U)

(
‖ṽj‖0,2,Ũ

+|g|1/2,2,∂Ũ +
‖g‖0,2,∂Ũ√

diam(U)

)
for the data of the Neumann problem above, i.e., ϕ = ϕU ∈ W 2

2 (Ũ),−∆ϕU = ṽj in
Ũ and ∂ϕ/∂ν = g on ∂Ũ . Now we use the fact that g is piecewise linear on ∂Ũ by
construction. Therefore,

|g|1/2,2,∂Ũ ≤ C(diam(U))−1‖g‖0,1,∂Ũ ,(4.4)

‖g‖0,2,∂Ũ ≤ C(diam(U))−1/2‖g‖0,1,∂Ũ(4.5)

holds with a constant C independent of Ũ and g. For completeness, we give the
proof of the inequalities (4.4) and (4.5) here. To this end, let ∂Ũi be one of the
two pieces of the segment of ∂Ũ between two vertices of Tj−1. Here g is a linear
function. Then by (4.2) with ψi = g

|g|1/2,2,∂Ũi
=

(∫
∂Ũi

∫
∂Ũi

|g(t) − g(s)|2
|t − s|2 dσdσ

) 1
2

≤ diam(∂Ũi)|∇g|∞,∂Ũi

follows. Furthermore, we can replace g by g̃ := g − ḡ where ḡ := min∂Ũi
|g|. Then

g̃ has a zero on ∂Ũi and we have the equivalence

(4.6)
∫

∂Ũi

|g̃|dσ � (diam(∂Ũi))2|∇g|∞,∂Ũi
,

with constants independent of Ũi and g. Since∫
∂Ũi

|g̃|dσ ≤
∫

∂Ũi

|g|dσ + diam(∂Ũi)ḡ ≤ 2
∫

∂Ui

|g|dσ = 2‖g‖0,1,∂Ũi
,

the comparison with the previous inequality yields (4.4). The second inequality
(4.5) follows from∫

∂Ũi

|g|2dσ ≤ 2
(∫

∂Ũi

|g̃|2dσ +
∫

∂Ũi

|ḡ|2dσ
)

≤ 2
(
diam(∂Ũi))3|∇g|2∞,∂Ũi

+ (diam(∂Ũi))−1
(∫

∂Ũi

|g|dσ
)2)

≤ C(diam(∂Ũi))−1
(∫

∂Ũi

|g|dσ
)2

where we have used (4.6) in the last step. This completes the proof of (4.4) and
(4.5), since we can choose Ũ such that diam(Ũ) � diam(∂Ũ).

Inserting (4.4) and (4.5) into inequality (4.3) and taking (3.16) and (3.18) into
account, the desired inequality (3.17) directly follows as

|ϕU |2,2,U ≤ Ĉ
(
‖ṽj‖0,2,Ũ + (diam(U))−1‖g‖0,1,∂Ũ

)
= Ĉ

(
‖ṽj‖0,2,Ũ + (diam(U))−1‖ṽj‖0,1,Ũ

)
≤ Ĉ‖vj‖0,2,U .

�
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