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CUBATURE FORMULAS FOR SYMMETRIC MEASURES
IN HIGHER DIMENSIONS WITH FEW POINTS

AICKE HINRICHS AND ERICH NOVAK

Abstract. We study cubature formulas for d-dimensional integrals with an
arbitrary symmetric weight function of product form. We present a construc-
tion that yields a high polynomial exactness: for fixed degree � = 5 or � = 7
and large dimension d the number of knots is only slightly larger than the lower
bound of Möller and much smaller compared to the known constructions.

We also show, for any odd degree � = 2k + 1, that the minimal number of
points is almost independent of the weight function. This is also true for the
integration over the (Euclidean) sphere.

1. Introduction

Let us start with a special case of our results: We find cubature formulas with

N(5, d, 1) = d2 + 7d + 1, and N(7, d, 1) = (d3 + 21d2 + 20d + 3)/3

points such that the integral

Id(f) =
∫

[−1,1]d
f(x) dx

is exactly computed for all polynomials of degree at most 5 or 7, respectively. This
improves the known cubature formulas for degree 5 and d ≥ 8 and for degree 7 with
d ≥ 10. The lower bound of Möller (1979) takes the form

(1) Nmin(5, d, 1) ≥ d2 + d + 1 and Nmin(7, d, 1) ≥ (d3 + 3d2 + 8d)/3.

Hence, for our method, we obtain

(2) N(5, d, 1) ≈ Nmin(5, d, 1) and N(7, d, 1) ≈ Nmin(7, d, 1).

We use ≈ to denote the strong equivalence of sequences, i.e.,

vn ≈ wn iff lim
n→∞

vn/wn = 1.

The best results (for large d) from the literature, see Stroud (1971) and the online
tables of Cools, see Cools (2003), are given by

(3) Nold(5, d, 1) = 2d2 + 1 and Nold(7, d, 1) = (4d3 − 6d2 + 14d + 3)/3.
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More generally, we study cubature formulas

(4) Qn(f) =
n∑

i=1

ai f(xi), ai ∈ R, xi ∈ Ω,

for d-dimensional integrals

(5) I�
d (f) =

∫
Ω

f(x) �(x) dx.

Concerning the integral we always assume

Ω = Ω1 × · · · × Ωd

with symmetric (and possibly unbounded) intervals Ωj ⊂ R and the product form

�(x) = �1(x1) . . . �d(xd)

of the weight function �. We assume that the �i are symmetric,

�i(x) = �i(−x)

with �i ≥ 0 and integrability of all polynomials, although these assumptions can be
relaxed. Some of our results can be slightly improved in the fully symmetric case
where, in addition, all the �i coincide.

Let P(�, d) be the space of all polynomials in d variables of (total) degree at
most �. A cubature formula Qn has a degree � of exactness if

Qn(f) = I�
d (f), ∀ f ∈ P(�, d).

We define
Nmin(�, d, �)

to be the minimal number n of knots needed by any cubature formula Qn of degree
� of exactness.

The numbers Nmin(�, d, �) and corresponding cubature formulas are only known
in exceptional cases, see, e.g., Schmid (1983), Berens, Schmid and Xu (1995), and
Cools (1997). Thus one is interested in upper and lower bounds for this quantity.

One is often interested in cubature formulas with knots inside the domain and
positive weights. While xi ∈ Ω can always be satisfied by our method, we usually
have positive and negative weights. Actually we request xi ∈ Ω, see (4), although
the lower bound of Möller also holds without this assumption.

2. Problem, main results, and conjecture

The lower bound of Möller (1979) for centrally symmetric weight functions is the
following: If k is odd, then

Nmin(2k + 1, d, �) ≥ 2 dim Pe(k, d) =
(

d + k

d

)
+

d−1∑
s=1

2s−d

(
s + k

s

)
.

If k is even, then

Nmin(2k + 1, d, �) ≥ 2 dim Po(k, d) − 1 =
(

d + k

d

)
+

d−1∑
s=1

(1 − 2s−d)
(

s + k − 1
s

)
.
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Here Pe(k, d) denotes the subspace of P(k, d) generated by even polynomials and
Po(k, d) is the subspace generated by odd polynomials. We obtain (1) as special
cases and for large d the lower bounds are of the order

≈ 2dk

k!
.

See the book Mysovskikh (1981) or Cools (1997) and, for the explicit formula,
Lu and Darmofal (2004).

The best upper bounds were of the form

(6) ≈ 2k dk

k!
.

They can be proved with “fully symmetric formulas” (if the �i are equal) or (in the
general case) with the “Smolyak method” or with “sparse grids”. All these notions
are very much related; see Section 3. Even for special weight functions � and/or
for special � = 2k +1 better bounds were not known. Hence there is a gap between
the lower and the upper bound of a factor of 2k−1, and we only knew (before we
wrote this paper) of one exception: For the weight function

(7) �(x) = exp(−‖x‖2
2),

it is known for � = 5 that

(8) d2 + 3d + 3

function values are enough; see Lu and Darmofal (2004).
Observe that the weight function (7) is invariant with respect to rotations. Hence

one might ask whether a result similar to (8) holds for all symmetric weight func-
tions. We conjecture that

(9) Nmin(2k + 1, d, �) ≈ 2dk

k!
holds for all � and all k, hence the Möller bound is almost optimal. In this paper
we prove this conjecture for k = 2 and k = 3; see Theorem 1 for more details. We
also prove that the numbers Nmin(2k + 1, d, �) only mildly depend on the weight
function �; see Theorem 2 for the details.

3. Some facts about the Smolyak method

We study a special case of the Smolyak method, as we need it in the following.
We also present methods with the upper bound (6), since they are used (twice) for
our new algorithm with the improved bound. We believe that this proof technique
can be used to establish the conjecture (9) in full generality. Everything in this
section is known or is a minor modification of known results; see Novak and Ritter
(1999).

We construct cubature formulas to compute the integral (5) as follows. First we
select quadrature formulas U1

j , U2
j , . . . to compute the one-dimensional integrals∫
Ωj

f(x) �j(x) dx.

These formulas should have the following properties: The formula U i
j is exact for

all univariate polynomials of degree mi, where

(10) mi ≥ 2i − 1.
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The formula U i
j uses the knots Xi

j , and the number ni = |Xi
j | of knots satisfies

(11) ni ≤ 2i − 1.

We also assume that the Xi
j are symmetric and “embedded” or “nested”, i.e.,

(12) Xi−1
j ⊂ Xi

j for every i and j.

By (10) and (11) the weights of U i
j are uniquely determined by its knots. For-

mulas with this property are often called interpolatory quadrature formulas. For
simplicity we assume in this paper that the numbers mi and ni do not depend on
the coordinate j. The formula U i

j , however, may depend on j.
A product formula U i1

1 ⊗ · · · ⊗ U id

d needs ni1 . . . nid
function values, sampled on

a grid. The Smolyak formulas A(q, d) are linear combinations of product formulas
with the following key properties. Only products with a relatively small number
of knots are used, and the linear combination is chosen in such a way that the
interpolation property for d = 1 is preserved for d > 1. The formula A(q, d) is
defined by

(13) A(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i| ·
(

d − 1
q − |i|

)
· (U i1

1 ⊗ · · · ⊗ U id

d ),

where q ≥ d, i ∈ Nd, and |i| = i1 + · · · + id.
The cubature formula A(q, d) is based on the sparse grid

H(q, d) =
⋃
|i|=q

Xi1
1 × · · · × Xid

d ;

we use
n = n(q, d)

to denote the cardinality of H(q, d).1 In particular we have n(q, 1) = nq and we
put n(0, 1) = n0 = 0. The recursion formula

(14) n(q + 1, d + 1) =
q−d+1∑

s=1

n(q + 1 − s, d) · (ns − ns−1)

for n(q, d) is known; Novak and Ritter (1999).

Remark 1. Cubature formulas with high polynomial exactness are not often used
if d is large, say d > 5. One major exception is the class of fully symmetric rules
for the fully symmetric case, where also

�1 = · · · = �d.

Fully symmetric cubature formulas were developed by Lyness (1965a,b), McNamee and Stenger
(1967), Genz (1986), Cools and Haegemans (1994), Capstick and Keister (1996),
Genz and Keister (1996) and other authors. The best results with respect to
polynomial exactness are obtained by Genz (1986) and Genz and Keister (1996).
The fully symmetric formulas from Genz (1986) and Genz and Keister (1996) are
of the Smolyak form (13). Numerical integration with the Smolyak construc-
tion was already studied in Smolyak (1963). There are many other papers on
the Smolyak method. The papers Gerstner and Griebel (1998), Novak and Ritter

1Observe that some elements of the sparse grid might get a zero weight in the formula A(q, d).
This would decrease the number of needed function values. Hence the “actual” number of needed
function values for A(q, d) might be smaller than n(q, d).
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(1999), and Petras (2003) study the polynomial exactness of A(q, d). See also
Novak, Ritter, Schmitt and Steinbauer (1999) and the recent survey on sparse grids
by Bungartz and Griebel (2004).

The following result is well known; see Corollary 1 of Novak and Ritter (1999).

Lemma 1. Assume (10). Then A(d + k, d) has (at least) a degree � = 2k + 1 of
exactness.

Now we present formulas for the number n(q, d) of knots that are used by A(q, d).
We consider two cases, important for the following.

The case ni = 2i − 1. Using (14) one obtains the recursion

(15) n(q + 1, d + 1) = n(q, d + 1) + n(q, d) + n(q − 1, d)

for q ≥ d and n(q, 1) = 2q − 1 and n(d, d) = 1. Table 1 consists of numbers n(q, d)
with minimal q such that n(q, d) ≥ �; these numbers are called N(�, d).

Table 1. Number of knots for Smolyak’s method with ni = 2i − 1

� N(�, 5) N(�, 10) N(�, 15) N(�, 20) N(�, 25)
3 11 21 31 41 51
5 61 221 481 841 1 301
7 231 1 561 4 991 11 521 22 151
9 681 8 361 39 041 118 721 283 401

11 1 683 36 365 246 047 982 729 2 908 411
13 3 653 134 245 1 303 777 6 814 249 24 957 661
15 7 183 433 905 5 984 767 40 754 369 184 327 311
17 13 073 1 256 465 24 331 777 214 828 609 1 196 924 561

Using (15) one can get an explicit formula for n(k + d, d); see Novak and Ritter
(1999).

Lemma 2. For every k ∈ N0 and d ∈ N we have

n(k + d, d) =
min(k,d)∑

s=0

(
k

s

)
·
(

k + d − s

k

)
.

Remark 2. Lemma 2 immediately implies

(16) n(k + d, d) ≤
(

k + d

d

)
· min(2k, 2d).

The case ni = 2i − 1 for i 	= 3 and n3 = 3. If we take the Gaussian formulas U2
j

with 3 knots for �j , then we already have exactness 5, and so we can take U3
j = U2

j

and still have (10). Altogether we have

(17) ni = 2i − 1 for i 	= 3, n3 = 3.

Observe that in this case the sets X2
j are determined by the weights �j ; we cannot

choose these sets. All the other sets Xi
j can be chosen arbitrarily for i > 2, but we

still assume (12). Similarly as (15) we now obtain from (14) the recursion

n(q + 2, d + 1) = n(q + 1, d + 1) + n(q + 1, d) + n(q, d)
−2n(q − 1, d) + 4n(q − 2, d) − 2n(q − 3, d).

With this simple modification we obtain the values of Table 2.
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Table 2. Number of knots for method (17)

� N(�, 5) N(�, 10) N(�, 15) N(�, 20) N(�, 25)
3 11 21 31 41 51
5 51 201 451 801 1 251
7 151 1 201 4 151 10 001 19 751
9 401 5 301 27 701 90 601 227 001

11 1 003 19 505 146 507 643 009 2 040 011
13 2 133 63 805 655 017 3 775 769 15 056 061
15 4 223 188 745 2 584 167 19 111 089 94 680 111
17 8 113 511 625 9 224 937 85 920 449 522 028 561

Remark 3. Later the following will be important for the two versions of Smolyak’s
algorithm: In the case ni = 2i − 1 we can take arbitrary symmetric sets Xi

j , in
particular we can take

X2
1 = · · · = X2

d .

We can also normalize the weights �j in such a way that the U2
j have the form

U2
j (f) = γf(−x) + βjf(0) + γf(x),

where γ (and x) do not depend on j. In addition, we can choose the Xi
j in such

a way that ‖x‖2 ≤ α for each x ∈ H(q, d), where α is the (given) radius of the
domain Ω of integration. This means that each rotation maps x to a point in Ω.

In the second case, however, we have to use the 3 Gauß-knots for X2
j = X3

j .

Remark 4. Later we project the points H(q, d) of A(q, d) to a sphere of fixed radius.
The origin is not projected. This projection reduces the number of points; the
number of projected points n∗(d+ k, d) also depends on the sets Xi

j . We only need
the second case, where ni = 2i − 1 for i 	= 3 and n3 = 3. In the case k = 2 and
k = 3 one obtains

n(d + 2, d) = 2d2 + 1 and n∗(d + 2, d) = 2d2

and

n(d + 3, d) = (4d3 − 6d2 + 20d + 3)/3 and n∗(d + 3, d) = (4d3 − 6d2 + 8d)/3.

For the last formula observe that H(d + 3, d) contains 7 points of the form x =
(α, 0, . . . , 0) that are projected onto two different points, hence

n(d + 3, d) = n∗(d + 3, d) + 4d + 1.

It seems to be difficult to compute the smallest possible number n∗(d + k, d) for
general k, but it is clear that

n(d + k, d) ≥ n∗(d + k, d) ≥ 2k

(
d

k

)
.

Hence, for large d, we have n(d + k, d) ≈ n∗(d + k, d).
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4. Known results for the Lebesgue measure

Here we explain the best known upper bounds for Nmin(�, d, 1) that we found in
the literature. Again we only discuss results for large d.2

The results for � ∈ {3, 5, 7} are classical results that can be found in Stroud
(1971):

n = 2d for the degree � = 3; this bound is sharp, Nmin(3, d, �) = 2d;
n = 2d2 + 1 for the degree � = 5;
n = (4d3 − 6d2 + 14d + 3)/3 for the degree � = 7.
These results can be obtained with Smolyak’s method. We explain the case

� = 7: First we take, as in (17), the values n2 = n3 = 3 and n4 = 7. Now observe
that the 4 new points of X4

j are symmetric but otherwise arbitrary. Hence we can
take (together with 0) the 5-point Gauß rule with degree 9. This means that 2d
weights disappear, and hence n is decreased by 2d compared to the general situation
of (17).

The best results (so far) for � > 7 can be described in the following way: We
again use the sequence mi ≥ 2i − 1 and so called “delayed Kronrod-Patterson-
formulas”. The ni are defined as follows: n1 = 1, n2 = n3 = 3, n4 = n5 = n6 = 7,
n7 = · · · = n12 = 15, n13 = · · · = n24 = 31 and so on. Some of these numbers are
larger than 2i − 1 and hence we can modify those ni, used by Petras (2003), to

ñi := min(ni, 2i − 1).

In this way one obtains the values from Table 3; see Genz (1986) who obtained the
same results.

Table 3. Known values for the Lebesgue measure

� N(�, 5) N(�, 10) N(�, 15) N(�, 20) N(�, 25)
3 10 20 30 40 50
5 51 201 451 801 1 251
7 141 1 181 4 121 9 961 19 701
9 391 5 281 27 671 90 561 226 951

11 903 19 105 145 607 641 409 2 037 511
13 1 733 60 205 642 417 3 745 369 14 996 061
15 3 263 168 825 2 473 287 18 743 249 93 755 311
17 5 983 431 265 8 522 247 82 703 329 511 676 911

Remark 5. Observe that, up to now, there is nothing better known than the fully
symmetric formulas that were introduced more than 40 years ago. We do not claim
that the results of Table 3 are optimal for fully symmetric (or Smolyak) rules. It was
proved by Petras (2003), however, that only minor improvements are possible if one
uses Smolyak formulas. The same also holds for the more general fully symmetric
formulas. For fixed � = 2k + 1 and large d, the number of points is (at least) of the
order

(18) N(2k + 1, d, �) ≈ 2k dk

k!
,

2We illustrate this by an example. In the case d = 10 and � = 13 we will mention a method of
Genz (1986) using n = 60 205 function values. In the same paper Genz presents another method
using only n = 37 389. This method, however, uses more than 2d points for general d and hence
is not good for “large” d.
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while the lower bound of Möller is only of the order 2dk

k! . Observe that (18) holds
for all the versions of Smolyak’s method that we presented here.

Remark 6. By Lemma 2 we have the bound

N(2k + 1, d, 1) ≤
(

k + d

d

)
· min(2k, 2d)

for the Smolyak methods described here. For fixed k also Kuperberg (2004) obtains
a bound of the form

N(2k + 1, d, 1) ≤
(

k + d

d

)
· Ck.

The constant Ck is of the order 2 ·kk ·k!, much bigger than 2k. However, Kuperberg
(2004) obtains cubature formulas with positive (even equal) weights. This is a great
advantage, in particular if the function values f(xi) are given only approximately.

For a cubature formula Qn we define its condition number

σ(Qn) =
‖Qn‖∞
‖I�

d‖∞
=

∑n
i=1 |ai|∫

Ω
�(x)dx

.

A cubature formula with positive weights has condition number σ(Qn) = 1 if it is
exact for the constant functions. The known Smolyak formulas of degree 5 and 7
have a condition number of roughly d2 and d3, respectively. See Remark 8 which
also shows that our new formulas have roughly the same condition numbers.

5. Cubature formulas for the sphere and for Md,k

In the following we need some known results for cubature formulas for the sphere.
We use these results and the Smolyak method to construct efficient cubature for-
mulas for the linear functional

Md,k(f) =
∑

x∈F (d,k)

f(x)

where
x ∈ F (d, k) ⇐⇒ xi ∈ {±1, 0},

∑
x2

i = k.

Of course Md,k itself is a cubature formula using 2k
(

d
k

)
function values, where k ≤ d.

The point is to find a cubature formula for Md,k that is exact for polynomials from
P(2k + 1, d) and uses only about 2

(
d
k

)
≈ 2dk/k! points, which is the order of the

lower bound of Möller.
To achieve this we use two cubature formulas for the sphere that are exact for

polynomials in P(2k+1, d). The first formula is obtained from the Smolyak method
for the Gaussian weight function (7) by projection onto the sphere of radius

√
k. It

has the form

(19) w Md,k(f) + Qr(f)

where Qr(f) is a cubature formula with r = O(dk−1) points and w > 0. In partic-
ular, we can take r ≤ n∗(d + k, d) − 2k

(
d
k

)
with n∗(d + k, d) from Remark 4. This

leads to
r ≤ 2d for k = 2 and r ≤ 2d2 for k = 3.

This works for any degree 2k + 1 of exactness. The second formula Q̃n(f) for
k = 2, 3 is taken from Mysovkikh (1968); see also Mysovskikh (1981). It uses

n = d2 + 3d + 2 points if k = 2 and d ≥ 4
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and
n = (d3 + 9d2 + 14d + 6)/3 points if k = 3 and d ≥ 6.

It follows that the formula w−1(Q̃n(f) − Qr(f)) is a cubature formula for Md,k

exact for polynomials from P(2k + 1, d) which uses at most

(20) d2 + 5d + 2 and (d3 + 15d2 + 14d + 6)/3

points for k = 2 and k = 3, respectively.
Let us finally explain how a Smolyak formula for the Gaussian weight function

leads via projection onto the sphere R S
d−1 of radius R =

√
k to a cubature formula

of the same degree of exactness. To this end, for r > 0, let ωr be the surface measure
on the sphere of radius r. Also let P be the radial projection from Rd \ {0} onto
R Sd−1 given by Px = Rx/‖x‖2

2. Furthermore, let

Qn(f) =
n∑

i=1

aif(xi)

be an arbitrary cubature formula which is centrally symmetric. Obviously, any
Smolyak formula considered above has this property. We assume that Qn has
degree of exactness 2k + 1 for the Gaussian weight function. Let xα = xα1

1 . . . xαd

d

be a monomial of degree |α| = α1 + . . . + αd = 2k. Using polar coordinates, we
obtain ∫

Rd

xα exp(−‖x‖2
2)dx =

∫ ∞

0

∫
r Sd−1

xαdωr(x)e−r2
dr

=
∫ ∞

0

(r/R)d−1+2ke−r2
dr

∫
R Sd−1

xαdωR(x)

= c(R, d, k)
∫

R Sd−1
xαdωR(x).

We also have

Qn(xα) =
n∑

i=1

aixα
i =

n∑
i=1

ai(‖xi‖2/R)2k(Pxi)α.

Whenever one of the points xi = 0, we simply drop the corresponding term. Since

Qn(xα) =
∫

Rd

xα exp(−‖x‖2
2)dx,

we obtain that
PQn(xα) =

∫
R Sd−1

xαdωR(x)

where

PQn(f) =
n∑

i=1

bif(Pxi)

with

bi =
ai‖xi‖2k

2

R2kc(R, d, k)
.

So PQn(f) is a cubature formula for the sphere R Sd−1 which is exact for homoge-
neous polynomials of degree 2k. Since it inherits the central symmetry from Qn, it
is also exact for homogeneous polynomials of degree 2k + 1. Since any polynomial
in P(2k + 1, d) restricted to R Sd−1 is a sum of two homogeneous polynomials of
degree 2k and 2k + 1, respectively, PQn is exact for all such polynomials.
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If we choose the sets X2
j in the construction of the Smolyak formula for the

Gaussian measure equal, say X2
j = X2 = {−a, 0, a}, then the points x ∈ aF (d, k)

are present in the Smolyak formula and get equal positive weights. So the projection
of this formula to the sphere R Sd−1 indeed has the form (19).

Remark 7. It will be important later on that the cubature formula derived for Md,k

uses only points on the same sphere of radius R =
√

k where the points in F (d, k)
live.

6. Cubature formulas for general weight functions

We now derive our main result which is formulated in the following theorem.

Theorem 1. Let Ω and � be as always and let k = 2, 3. In the case k = 2 we
assume d ≥ 4, in the case k = 3 we assume d ≥ 6. Then there exists a cubature
formula Qn for I�

d with degree 2k + 1 of exactness which uses at most

(21) d2 + 9d + 1 and (d3 + 33d2 + 14d + 3)/3

points for k = 2 and k = 3, respectively. If the one-dimensional weight functions �i

are equal (the fully symmetric case), then the number of points can be reduced to

(22) d2 + 7d + 1 and (d3 + 21d2 + 20d + 3)/3

for k = 2 and k = 3, respectively.

Proof. We start by describing how one can pass from the special cubature formulas
for Md,k constructed in the preceding section to cubature formulas for general
weight functions � as in the introduction. By proper scaling, we may assume that
the radius of the domain Ω of integration is at least

√
k. First, choose a Smolyak

formula Qm for � that is exact for polynomials from P(2k + 1, d) and satisfies
X2

1 = . . . = X2
d = {−1, 0, 1}. Then Qm has the form

(23) Qm = vMd,k + Qs

for some v > 0 and

s = n(k + d, d) − 2k

(
d

k

)
.

In general, we have to use the case where ni = 2i− 1 for all i ≥ 1. Then we obtain

s = 4d + 1 and s = (18d2 + 3)/3

for k = 2 and k = 3, respectively. Now we replace the part Md,k in (23) with
the formula derived in the preceding section which uses at most as many points as
given in (20). By Remark 7 all points of the final cubature formula

v

w
(Q̃n − Qr) + Qs

are in the interior of Ω. This cubature formula needs at most n + r + s function
values. This leads to cubature formulas with

d2 + 9d + 3 and (d3 + 33d2 + 14d + 9)/3

points for k = 2 and k = 3, respectively, which exceeds (21) by just two knots.
A further reduction is possible if knots of Q̃n, Qr and/or Qs coincide. We explain

how this leads to the reduced number of knots in (22) in the fully symmetric case.
The reduction by two knots in the general case is achieved similarly (and easier).
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To simplify notation, we denote by Mr
d,k for r > 0 the cubature formula

Mr
d,k(f) =

∑
x∈F r(d,k)

f(x)

where
x ∈ F r(d, k) ⇐⇒ xi ∈ {±r, 0},

∑
x2

i = kr2.

Observe that M1
d,k = Md,k.

Further, we need some notation for fomulas derived from the simplex. Let S be
a regular simplex with vertices in the unit sphere Sd−1. Let Sr

d,k be the cubature
formula

Sr
d,k(f) =

∑
x∈Gr(d,k)

(f(x) + f(−x))

where Gr(d, k) is the set of all projections of the centers of the (k− 1)-dimensional
faces of S onto the sphere of radius r. For the formulas of degree 7 we need one
more cubature formula. Denote by pij the (d + 1)d points of the form

pij =
1
4
vi +

3
4
vj ,

where vi and vj are different vertices of the simplex. Then let Hr(d) be the set of
all rpij/‖pij‖ and define the cubature formula S̃r

d by

S̃r
d(f) =

∑
x∈Hr(d)

(f(x) + f(−x)).

Finally, let ωd be the surface area of Sd−1.
So assume now that �1 = . . . = �d. We further assume without loss of generality

that Ω ⊃ [−1, 1]d. We treat the degree five and seven cases separately.

Degree five. The projected Smolyak formula with degree of exactness 5 for the
sphere Sd−1 with d ≥ 3 needs 2d2 points and has the form

(24) u1 M1
d,1 + u2 M

1/
√

2
d,2

with
u1 =

4 − d

2d(d + 2)
ωd and u2 =

1
d(d + 2)

ωd.

This formula can be found in Stroud (1971) or as formula 11) for the sphere in
Mysovskikh (1981).

The second formula with degree of exactness 5 for the sphere S
d−1 with d ≥ 4

needs (d + 1)(d + 2) points and has the form

(25) v1 S1
d,1 + v2 S1

d,2

with

v1 =
d(7 − d)

2(d + 1)2(d + 2)
ωd and v2 =

2(d − 1)2

d(d + 1)2(d + 2)
ωd.

This formula can be found in Mysovkikh (1968) or as formula 7) for the sphere in
Mysovskikh (1981).

Putting (24) and (25) together gives the following formula with degree of exact-
ness 5 for M

1/
√

2
d,2 :

(26)
1
u2

(v1S
1
d,1 + v2 S1

d,2 − u1M
1
d,1).
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We also need a Smolyak type formula for the weight function � with degree of
exactness 5 which has the form

(27) a1 M
1/

√
2

d,2 + a2 M
1/

√
2

d,1 + a3 Mγ
d,1 + a4Q0,

where Q0(f) = f(0) and γ ∈ (0, 1) \ {1/
√

2}. The coefficients a1, . . . , a4 can be
derived either from the Smolyak construction or from direct computation using
Sobolev’s theorem which tells us that our formula has the required degree of exact-
ness if it integrates the polynomials 1, x2

1, x
4
1, x

2
1x

2
2 correctly. This leads to a linear

system of 4 equations for a1, . . . , a4 which has a unique solution. To minimize the
number of knots we choose γ = 1.

Finally, we replace M
1/

√
2

d,2 in formula (27) with the expression (26). This leads
to a formula

(28) α1

(
S

1/
√

2
d,2 +

d2(7 − d)
4(d − 1)2

S
1/

√
2

d,1

)
+ α2 M

1/
√

2
d,1 + α3 M

1/2
d,1 + α4Q0

which is exact of degree 5 for integration with respect to � with d ≥ 4. The
coefficients α1, . . . , α4 can be directly derived using the polynomials 1, x2

1, x
4
1, x

2
1x

2
2.

Alternatively, they are related to a1, . . . , a4 via

α1 =
2(d − 1)2

(d + 1)2
a1, α2 = a3 −

4 − d

2
a1, α3 = a2, α4 = a4.

Observe that we have chosen our formulas so that the final number of knots is
d2 + 7d + 3. This can be further reduced to

d2 + 7d + 1

if we choose one of the vertices of the regular simplex S as the unit vector (1, 0, . . . ,
0). Observe also that in the case d = 7 the number of knots reduces even further.

Degree seven. Let us now derive a formula with degree of exactness 7, i.e., k = 3.
The projected Smolyak formula with degree of exactness 7 for the sphere S

d−1 with
d ≥ 3 needs (4d3 − 6d2 + 8d)/3 points and has the form

(29) u1 M1
d,1 + u2 M

1/
√

2
d,2 + u3 M

1/
√

3
d,3 .

This formula can be found in Stroud (1971) or as formula 21) for the sphere in
Mysovskikh (1981).

The second formula with degree of exactness 7 for the sphere Sd−1 with d ≥ 6
needs (d3 + 9d2 + 14d + 6)/3 points and has the form

(30) v1 S1
d,1 + v2 S1

d,2 + v3 S1
d,3 + v4 S̃1

d .

This formula can be found in Mysovkikh (1968) or as formula 13) for the sphere in
Mysovskikh (1981).

Putting (29) and (30) together gives the following formula with degree of exact-
ness 7 for M

1/
√

3
d,3 :

(31)
1
u3

(
v1 S1

d,1 + v2 S1
d,2 + v3 S1

d,3 + v4 S̃1
d − u1 M1

d,1 − u2 M
1/

√
2

d,2

)
.

We also need a Smolyak type formula for the weight function � with degree of
exactness 7 which has the form

(32) a1 M
1/

√
3

d,3 + a2 M
1/

√
3

d,2 + a3 M
1/

√
3

d,1 + a4 Mγ1
d,2 + a5 Mγ1

d,1 + a6 Mγ2
d,1 + a7Q0,
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where Q0(f) = f(0) and the numbers γ1 and γ2 and 1/
√

3 are pairwise different,
between 0 and 1. To minimize the number of knots in the following we choose
γ1 = 1/

√
2 and γ2 = 1.

Finally, we replace M
1/

√
3

d,3 in formula (32) with the expression (31). This leads
to a formula of the form

α1

(
v1 S1

d,1 + v2 S1
d,2 + v3 S1

d,3 + v4 S̃1
d

)
+ α2 M1

d,1 + α3 M
1/

√
2

d,2 + α4 M
1/

√
2

d,1 + α5 M
1/

√
3

d,2 + α6 M
1/

√
3

d,1 + α7 Q0.

The constants α1, . . . , α7 can be determined by using the 7 polynomials 1, x2
1, x4

1,
x2

1x
2
2, x2

1x
2
2x

2
3, x4

1x
2
2 and x6

1. Observe that we have chosen our formulas so that the
number of knots is

(d3 + 21d2 + 20d + 9)/3.

This can be further reduced to

(d3 + 21d2 + 20d + 3)/3

if we choose one of the vertices of the regular simplex S as the unit vector (1, 0, . . . ,
0). �

Table 4 contains the number of function values for fully symmetric weight func-
tions. Observe that for � = 7 we have to assume d ≥ 6.

Table 4. New values for fully symmetric weight functions

� N(�, 5) N(�, 10) N(�, 15) N(�, 20) N(�, 25) N(�, 50) N(�, 100)
5 61 171 331 541 801 2 851 10 701
7 - 1 101 2 801 5 601 9 751 59 501 404 001

It is interesting to compare these values with the lower bound (1) of Möller; see
Table 5.

Table 5. Möller’s lower bound

� N(�, 5) N(�, 10) N(�, 15) N(�, 20) N(�, 25) N(�, 50) N(�, 100)
5 31 111 241 421 651 2 551 10 101
7 80 460 1 390 3 120 5 900 44 300 343 600

Remark 8. For the cube [−1, 1]d with Lebesgue measure, Tables 6 and 7 contain
the coefficients ai and αi in the cubature formulas (27), (28), (32). The values
of v1, . . . , v4 and u1, u2, u3 for the degree 7 formula can be found in Mysovskikh
(1981).

Table 6. Coefficients for the degree 5 formulas (27) and (28)

i 1 2 3 4

2−dai
1
9

22
45 − 2d

9
1
30

2d2

9 − 37d
45 + 1

2−dαi
2(d−1)2

9(d+1)2
d
18 − 17

90
22
45 − 2d

9
2d2

9 − 37d
45 + 1
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Table 7. Coefficients for the degree 7 formula (32)

i 1 2 3 4

2−dai
1
8

7
20 − d

4
23
70 − 9

20 + d2

4
8
45

i 5 6 7

2−dai
32
63 − 16d

45
1
21 −d3

6 + 5d2

9 − 659d
630 + 1

Remark 9. Victoir (2004) and Kuperberg (2004) describe, in particular, methods
for � = 5 and positive weights. For d = 100 Victoir has n = 412 = 16 777 216 and
this was further improved by Kuperberg to n = 65 536 points with positive weights.
See the discussion in Kuperberg (2004).

For general weights the old record was 20 001; see (3). Our method needs 10 701
function values; the lower bound of Möller is 10 101.

7. Independence of the weight function

We now use the Smolyak formulas to show that, for any fixed k, the minimal
number of knots needed by a cubature formula of degree 2k+1 does not essentially
depend on the weight function. Since the Möller lower bound is of order dk, the
following theorem shows that the difference can only be in the lower order terms.

Theorem 2. Let Ω(j) and �(j), j = 1, 2, be two regions and weight functions in Rd

as described in the introduction. For k = 2, 3, . . ., define

ck =
22k

(k − 1)!
.

Then
|Nmin(2k + 1, d, �(1)) − Nmin(2k + 1, d, �(2))| ≤ ckdk−1

for all d ≥ k.

Proof. Without loss of generality, we assume that the cube [−1, 1]d is contained
in the interior of Ω(1) and Ω(2). We choose a cubature formula Qn for �(1) exact
for polynomials in P(2k + 1, d) with n = Nmin(2k + 1, d, �(1)). By proper scaling if
necessary we may now assume that the knots of Qn are in the interior of Ω(2). We
also choose, for j = 1, 2, Smolyak formulas

QSmol
mj

= wjMd,k + Qrj

for �(j) of degree 2k + 1 with wj > 0. To assure their existence, we have to work
with the case ni = 2i − 1 for all i. In this case we can also arrange that the knots
of Qrj

are contained in [−1, 1]d. Then, for d ≥ k, the estimate

(33) rj ≤ 2k

(
d + k

k

)
− 2k

(
d

k

)
follows from (16). Now

w2

w1
(Qn − Qr1) + Qr2
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defines a cubature rule for �(2) exact for polynomials in P(2k + 1, d) with at most
n + r1 + r2 knots. Observe that all the knots used are in the interior of Ω(2). By
(33), to prove the theorem it is enough to verify the elementary inequality

2k

(
d + k

k

)
− 2k

(
d

k

)
≤ 22k

(k − 1)!
dk−1

for d ≥ k, which is equivalent to

(d + k)(d + k − 1) . . . (d + 1) − d(d − 1) . . . (d − k + 1) ≤ k 2k dk−1.

Since the left-hand side of this inequality does not exceed (d + k)k − (d − k)k, this
is an immediate consequence of

(d + k)k − (d − k)k = 2
∑

0≤i≤k

i odd

(
k

i

)
dk−iki ≤ 2dk−1k

∑
0≤i≤k

i odd

(
k

i

)
= k 2k dk−1.

�

Remark 10. Similarly, it can be shown that

|Nmin(2k + 1, d, µd) − Nmin(2k + 1, d, �)| ≤ ckdk−1,

where µd is the surface measure on the sphere Sd−1 and � is a weight function as
in Theorem 2.
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