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ON GENERALIZED AVERAGED GAUSSIAN FORMULAS

MIODRAG M. SPALEVIĆ

Abstract. We present a simple numerical method for constructing the opti-
mal (generalized) averaged Gaussian quadrature formulas which are the opti-
mal stratified extensions of Gauss quadrature formulas. These extensions exist
in many cases in which real positive Kronrod formulas do not exist. For the
Jacobi weight functions w(x) ≡ w(α,β)(x) = (1 − x)α(1 + x)β (α, β > −1) we
give a necessary and sufficient condition on the parameters α and β such that
the optimal averaged Gaussian quadrature formulas are internal.

1. Introduction

Let w be a given nonnegative and integrable weight function on an interval [a, b].
We call an interpolatory quadrature formula (abbreviated q.f.) of the form

(1.1)
∫ b

a

f(x) w(x) dx = Qn[f ] + Rn[f ], Qn[f ] =
n∑

j=1

ωjf(xj),

where x1 < x2 < · · · < xn, ωj ∈ R (j = 1, . . . , n) and Rn[f ] = 0 for f ∈ P2n−m−1

(Pn denotes as usual the set of polynomials of degree at most n), 0 ≤ m ≤ n, a
(2n − m − 1, n, w) q.f. If in addition all quadrature weights ωj , j = 1, . . . , n, are
positive then it is called a positive (2n−m− 1, n, w) q.f. Furthermore we say that
a polynomial tn ∈ Pn generates a (2n − m − 1, n, w) q.f. if tn has n simple zeros
x1 < x2 < · · · < xn, tn(x) =

∏n
j=1(x − xj), and if the interpolatory q.f. based on

the nodes xj , j = 1, . . . , n, is a (2n − m − 1, n, w) q.f. A (2n − m − 1, n, w) q.f. is
internal if all its nodes belong to the closed interval [a, b]. A node not belonging to
the interval [a, b] is called an exterior node.

Next let us denote by pk the monic polynomial of degree k which is orthogonal
to Pk−1 with respect to w, i.e.∫ b

a

xjpk(x) w(x) dx = 0, j = 0, 1, . . . , k − 1,

and let us recall that (pk) satisfies a three-term recurrence relation of the form

(1.2) pk+1(x) = (x − αk)pk(x) − βkpk−1(x), k = 0, 1, . . . ,

where p−1(x) = 0, p0(x) = 1 and the βk’s have the property to be positive.
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The unique q.f. with l nodes and highest possible degree of exactness 2l − 1 is
the Gaussian formula with respect to the weight w,

QG
l [f ] =

l∑
j=1

ωG
j f

(
xG

j

)
.

As shown by Golub and Welch [8], the nodes of the q.f. QG
l are the eigenvalues,

and the weights are proportional to the squares of the first components of the
eigenvectors, of the symmetric Jacobi tridiagonal matrix

JG
l (w) =

⎡
⎢⎢⎢⎢⎣

α0

√
β1 0

√
β1 α1

. . .
. . . . . .

√
βl−1

0
√

βl−1 αl−1

⎤
⎥⎥⎥⎥⎦ .

An important but difficult task in practical calculations is the estimation of the
error of the Gaussian q.f. QG

l [f ]. A typical method, used in most of the standard
software libraries, consists of computing a second q.f. with more nodes, typically
2l + 1, and to use its difference to the Gaussian formula as an error estimate for
the Gaussian formula. For economical reasons most often the function values which
were used to compute the Gauss q.f. are used again by the 2l + 1 point formula,
such that only l + 1 new function values have to be considered. Note that for a
nontrivial extension of Gaussian formulas, l + 1 is the minimum number of nodes.
Conversely, l + 1 is a natural number of new nodes, in particular if these interlace
with the l nodes of the Gaussian formula. One may consider the l + 1 new nodes
as free parameters and choose them in such a way that the degree of exactness of
the 2l +1 point formula is as high as possible. This leads to the well-known Gauss-
Kronrod q.f. with 2l + 1 points and degree of exactness at least 3l + 1. For the
Legendre weight function w(x) ≡ 1 on [−1, 1], and for many other ones on compact
intervals, the Gauss-Kronrod q.f. with 2l+1 points and degree of exactness at least
3l+1, are known to exist, i.e., to have real zeros inside the integration interval that
interlace with the nodes of Gaussian formula, and to have positive weights. The
polynomial of degree l+1 which vanishes at the l+1 additional nodes, the so-called
Stieltjes polynomial, usually denoted by El+1, is characterized by an orthogonality
relation with respect to a sign changing weight. The efficient numerical methods
for calculating the positive Gauss-Kronrod q.f. are proposed by Laurie [12], and
Calvetti et al. [2] (see also Monegato [13], and Gautschi [6]). But often the weight
function w is such that the Gauss q.f. does not possess a real Kronrod extension,
e.g. the Gauss-Laguerre and Gauss-Hermite cases [9]. Recently, for the Gegenbauer
weight w(α,α)(x) = (1 − x2)α, Peherstorfer and Petras [18] showed nonexistence of
a Gauss-Kronrod formulae for l sufficiently large and α > 5/2. Analogous results
for the Jacobi weight function w(α,β)(x) = (1 − x)α(1 + x)β can be found in their
paper [19], in particular nonexistence for large l of Gauss-Kronrod formulae when
min(α, β) ≥ 0 and max(α, β) > 5/2.

An interesting approach, initiated by Laurie [10, 11] and Patterson [14], is to
construct, for given θ ∈ R, a new quadrature formula Ql+1 for the functional

Iθ[f ] :=
∫ b

a

f(x)w(x) dx − θQG
l ,
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and to use the so-called stratified quadrature formulas

Q2l+1 = θQG
l + Ql+1

for the estimation of the error of QG
l . As a special case, the so-called anti-Gaussian

formulas QA
l+1 were introduced by Laurie [11],

(1.3) RA
l+1[x

k] = −(1 + γ)RG
l [xk], k = 0, 1, . . . , 2l + 1 .

Laurie’s definition in [11] is for γ = 0. The more general definition in (1.3) has been
used by Ehrich [4] to construct modified formulas. The averaged formula

(1.4) QGA
2l+1 =

1
2 + γ

(
(1 + γ)QG

l + QA
l+1

)
, γ > −1,

also introduced in [11] for γ = 0, is of stratified type and has at least the degree of
exactness 2l + 1. In Ehrich [4] the construction of QGA

2l+1 in (1.4), in the sense of
a higher degree of exactness, for the Laguerre and Hermite weight functions, has
been improved. By construction (he chooses γ such that the degree of the extension
is increased), these modified averages are also stratified extensions, and among all
stratified extensions they are the unique formulas with highest possible degree of
exactness. We denote them by QGF

2l+1.
This paper studies the q.f. which is the same as the just quoted optimal (gen-

eralized) averaged Gaussian q.f. QGF
2l+1. In the following section we propose the

construction of the formula via a (2l+1)× (2l+1) matrix rather than in two stages
by an (l+1)×(l+1) and l×l matrix. In Section 3 we investigate for which values of
α, β is the new formula internal in the case of the Jacobi weight function w(α,β)(x).

2. Numerical construction

We study the quadrature formula Q2l+1 obtained as the Gaussian formula arising
from the (2l + 1) × (2l + 1) tridiagonal matrix JGF

2l+1(w) constructed as follows:
(C1) The upper (l + 1) × (l + 1) submatrix is the same as the Jacobi matrix for

the (l + 1)-point Gaussian rule for a certain weight w, i.e., JG
l+1(w).

(C2) The lower l × l submatrix is the same as the reverse Jacobi matrix for the
l-point Gaussian rule for w,

J∗
l (w) =

⎡
⎢⎢⎢⎢⎣

αl−1

√
βl−1 0√

βl−1 αl−2
. . .

. . . . . .
√

β1

0
√

β1 α0

⎤
⎥⎥⎥⎥⎦ .

(C3) The remaining codiagonal element is the same as the corresponding element
of the Jacobi matrix for the (l + 2)-point Gaussian rule JG

l+2(w).
Therefore,

JGF
2l+1(w) =

⎡
⎣ JG

l+1(w)
√

βl el 0√
βl eT

l αl

√
βl+1 eT

1

0
√

βl+1 e1 J∗
l (w)

⎤
⎦ ,

where ek denotes the kth coordinate vector in R
l.

It is well-known (see e.g. [5]) that there is a one-to-one correspondence between
Jacobi matrices and quadrature formulae with positive weights.
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This construction causes the resulting (2l +1)-point quadrature rule to have the
following properties:

(P1) The degree of exactness is 2l + 2.
(P2) The nodes of the l-point Gaussian rule QG

l for w are a subset of the new
formula.

(P3) The weights of these nodes are constant multiples of the original weights.
Therefore, the formula Q2l+1 is identical to the optimal (generalized) averaged

Gaussian q.f. QGF
2l+1 first considered by Ehrich [4] (based on a suggestion of Patter-

son [14]), since:
• Any q.f. that satisfies (C1) and (C2) must necessarily have properties (P2)

and (P3), since if y is an eigenvector of JG
l (w), then

[
yT ; 0; rev(y)T

]T is
an eigenvector of JGF

2l+1(w), with the same eigenvalue.
• (P1) follows from (C1) and (C3) by the degree-revealing property of the

Jacobi matrix.

Remark 2.1. The degree of exactness in (P1) is 2l + 3, if w is an even weight
function, i.e., w(−x) = w(x).

The optimal (generalized) averaged Gaussian q.f. QGF
2l+1, as well as the averaged

Gaussian q.f. QGA
2l+1 from (1.4) for γ = 0, can also be derived with the aid of

Peherstorfer’s characterization results in the theory of positive interpolatory q.f.
(1.1) which are as follows (see [17, Theorem 3.2] and also [15, 16]):

A polynomial tn generates a positive (2n − 1 − m, n, w) q.f. (0 ≤ m ≤ n) if and
only if tn can be generated by a three-term recurrence relation of the form

(2.1) tj+1(x) = (x − α̃j)tj(x) − β̃jtj−1(x), j = 0, 1, . . . , n − 1,

t−1(x) = 0, t0(x) = 1, with α̃j ∈ R and β̃j > 0 for j = 0, 1, . . . , n − 1, and with

α̃j = αj for j = 0, 1, . . . , n−1−
[
m + 1

2

]
and β̃j = βj for j = 0, 1, . . . , n−1−

[m

2

]
and

sgn tj(a) = (−1)j , tj(b) > 0, j = 1, . . . , n,

which is again equivalent to the fact (see the proof of d) =⇒ a) in [17, Thm. 3.2])
that tn can be represented in the form (l := [(m + 1)/2], n ≥ 2l)

(2.2) tn = glpn−l − β̃n−lgl−1pn−l−1,

where gl−1 and gl are generated by a three-term recurrence relation of the form

gj+1(x) = (x − α̃n−1−j)gj(x) − β̃n−jgj−1(x), j = 0, 1, . . . , l − 1,

g−1(x) = 0, g0(x) = 1, with α̃n−1−j ∈ R and β̃n−j > 0 for j = 0, 1, . . . , l − 1;
β̃n−l > 0, β̃n−l = βn−l if m = 2l − 1; and

sgn gj(a) = (−1)j , gj(b) > 0, j = 1, . . . , l.

Now let us derive the cases under consideration. Let n = 2l + 1 and put

(2.3) α̃n−1−j = αj and β̃n−j = βj for j = 0, 1, . . . , l − 1,

β̃n−l = βn−l (m = 2l − 1), i.e., β̃n−l = βl (m = 2l) ,

which immediately yields
gj ≡ pj , j = 1, . . . , l.
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Conversely putting

(2.4) gl ≡ pl and gl−1 ≡ pl−1,

the relations (2.3) follow. Hence if (2.4) or (2.3) holds, then (2.2) is reduced to

tn ≡ t2l+1 = plFl+1 ,

where

(2.5) Fl+1(x) = pl+1(x) − β̃l+1pl−1(x)
= (x − αl)pl(x) − β̄lpl−1(x) ,

where β̄l = βl + β̃l+1.
Thus the optimal (generalized) averaged Gaussian q.f. QGF

2l+1, where β̃l+1 =
βl+1 (m = 2l − 1),∫ b

a

f(x) w(x) dx = QGF
2l+1[f ] + RGF

2l+1[f ],

QGF
2l+1[f ] =

l∑
j=1

ωGF
j f

(
xG

j

)
+

l+1∑
k=1

ω̃GF
k f

(
xF

k

)
,

which has at least degree of exactness 2l+2, is based on the zeros of t2l+1 = plFl+1.
xG

j (j = 1, . . . , l) denotes the zeros of pl, i.e., the nodes in the corresponding Gauss
q.f. QG

l , and xF
k (k = 1, . . . , l+1) denotes the zeros of Fl+1. Ehrich [4] showed that

this formula is exactly the optimal stratified extension for the Gauss-Laguerre and
Gauss-Hermite q.f., in the corresponding cases.

The interpolatory q.f. based on the zeros of Fl+1 has the form

(2.6)
∫ b

a

f(x) w(x) dx = QF
l+1[f ] + RF

l+1[f ], QF
l+1[f ] =

l+1∑
k=1

ωF
k f

(
xF

k

)
,

and it has the degree of exactness 2l − 1 since Fl+1 is orthogonal on Pl−2 with
respect to w.

Using the equalities (1.2) for k = 0, 1, . . . , l−1, together with (2.5), because of the
uniqueness of interpolatory q.f., the nodes xF

k and the (positive) weight coefficients
ωF

k of the q.f. (2.6), we obtain it very easily by the well-known method for the
Gauss q.f. (cf. [8]) based on the QR algorithm, and for the following Jacobi matrix

J
F

l+1(w) =

⎡
⎣ JG

l (w)
√

βl el√
βl e

T
l αl

⎤
⎦ .

Note, if β̃l+1 = βl (m = 2l), i.e., βl = 2βl in (2.5), the corresponding positive
q.f. has at least a degree of exactness 2l + 1, hence it is the averaged Gaussian q.f.
QGA

2l+1 introduced by Laurie [11] (γ = 0), who obtained it by halving the sum of the
Gauss q.f., based on the nodes of pl, and the anti-Gauss q.f. QA

l+1, based on the
nodes of Fl+1. Recently, Calvetti and Reichel [3] proposed a modification of the
anti-Gauss q.f., and showed that the symmetric Gauss-Lobatto q.f. are modified
anti-Gauss q.f.

Since βl > 0, it is not difficult to show that the zeros of pl and Fl+1 interlace.
Therefore, the inner nodes xF

k (k = 2, . . . , l) are in [a, b].
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Example 2.2. Consider the Jacobi weight function w(α,β)(x) with α = 1/10, β =
13/5, on [−1, 1]. Respective Matlab routines r jacobi.m, for the coefficients in the
three-term recurrence relation of the corresponding Jacobi orthogonal polynomials,
and gauss.m, for the nodes and weight coefficients in the corresponding Gauss q.f.,
are downloadable from the Web site

http : //www.cs.purdue.edu/archives/2002/wxg/codes/

which contains a suite of many other useful routines, in part assembled as a com-
panion piece to the book in [6].

−9.686625499734723e − 001 4.439648661211199e − 006

−9.316692166472302e − 001 3.966117290264903e − 005

−8.878728134056509e − 001 1.749978150852832e − 004

−8.349036773445199e − 001 5.583868232282013e − 004

−7.743502857984884e − 001 1.425092005936056e − 003

−7.059593891708822e − 001 3.142720776391268e − 003

−6.309958682484870e − 001 6.149123770464934e − 003

−5.497023099157536e − 001 1.103233081864974e − 002

−4.632684854851569e − 001 1.830113296473133e − 002

−3.722105713938731e − 001 2.861180701173614e − 002

−2.776956155761358e − 001 4.222027743844664e − 002

−1.804207250606203e − 001 5.958699164188983e − 002

−8.152901380092521e − 002 8.029503177639899e − 002

1.816291970948764e − 002 1.043666148326018e − 001

1.175565290185397e − 001 1.303863072192636e − 001

2.157670908809297e − 001 1.578805710572899e − 001

3.117686462151886e − 001 1.844044403039764e − 001

4.046555992796639e − 001 2.092174951833064e − 001

4.935042803199599e − 001 2.292146928349319e − 001

5.774329480111343e − 001 2.438732902126057e − 001

6.556481067408614e − 001 2.501387802213795e − 001

7.273342841018780e − 001 2.482762745348956e − 001

7.918514028863188e − 001 2.361134134425601e − 001

8.484906865990399e − 001 2.151210788530024e − 001

8.967804407043425e − 001 1.846686923159468e − 001

9.361603420077345e − 001 1.475369227885079e − 001

9.663230344398555e − 001 1.049200118498772e − 001

9.869271655228162e − 001 6.099624959468915e − 002

9.977311827889372e − 001 1.945739390825556e − 002

The nodes in the increasing order (the first column) and corresponding weight
coefficients (the second column) of the corresponding q.f. QGF

29 are displayed in the
previous table.

As we have seen, the q.f. QGF
2l+1, which has the degree of exactness 2l + 2, is

an extension of the Gauss formula. Nonexistence for large l of Gauss-Kronrod
formulae, for the case of the Jacobi weight function considered in Example 2.2, has
been recently proved by Peherstorfer and Petras [19]. Using the Matlab routine
kronrod.m, which is downloadable from the above-mentioned Web site, we obtain
in the considered case (w(1/10,13/5)(x), l = 14) that the Gauss-Kronrod q.f. does not
exist. For 1 ≤ l ≤ 13 the Matlab routine kronrod.m generates the corresponding
Gauss-Kronrod q.f.
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3. QGF
2l+1 for the Jacobi weight functions

Since the q.f. QGF
2l+1 under consideration is of particular interest when all its

nodes belong to [a, b], we will consider this question in this section. For the classical
weights, the three-term recurrence coefficients and the values of the orthogonal
polynomials at the end points are explicitly known (see for instance [1]).

The Jacobi weight function w(α,β)(x) = (1 − x)α(1 + x)β over [−1, 1] with
α, β > −1 will be considered. From (2.5) with β̃l+1 = βl+1, we derive the fol-
lowing condition for xF

l+1 to be in [−1, 1]:

(3.1) Lα,β
l (1) ≥ 1 ,

where we put

(3.2) Lα,β
l (·) =

pl+1(·)
βl+1 pl−1(·)

.

The derivation for xF
1 is similar.

Using the tables from [1], we obtain

βl =
4l(α + l)(β + l)(α + β + l)

(α + β + 2l − 1)(α + β + 2l)2(α + β + 2l + 1)
,

pl(1) =
2l

(
α + l

l

)
(

α + β + 2l

l

) ,

and hence, using (3.2),

(3.3) Lα,β
l (1) =

(α + l)(α + β + l)
(

l + 1 +
α + β

2

)
(α + β + 2l + 3)

(l + 1)(l + β + 1)
(

l +
α + β

2

)
(α + β + 2l − 1)

.

If l ≥ 2, we have that α+β +2l−1 ≥ α+β +3 > 0, and hence the denominator
in the last fraction is positive, since α, β > −1.

From (3.3), after some simple but tedious calculation, we obtain

(3.4) Lα,β
l (1) = 1 +

A(l, α, β)

(l + 1)(l + β + 1)
(

l +
α + β

2

)
(α + β + 2l − 1)

,

where

A(l, α, β) = (α + β + 2l + 1)
{

(2α + 1)l2 + (2α + 1)(α + β + 1)l

+
1
2
(α + β)[(α + 1)(α + β + 1) + 2(α − β)]

}
.

Therefore, Lα,β
l (1) ≥ 1, if A(l, α, β) ≥ 0 is fulfilled, since α + β + 2l + 1 > 0, if

(3.5) (2α+1)l2+(2α+1)(α+β+1)l+
1
2
(α+β)[(α+1)(α+β+1)+2(α−β)] ≥ 0 .
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Figure 1. The corresponding optimal averaged Gaussian q.f.
QGF

2l+1 (l ≥ 2) for the Jacobi weight functions are internal when
α and β are within the unbounded region to the north-east of the
heavy lines, i.e., the region which is lined.

By concluding in an analogous way the point −1, we obtain the following con-
dition:

(3.6) (2β+1)l2+(2β+1)(α+β+1)l+
1
2
(α+β)[(β+1)(α+β+1)+2(β−α)] ≥ 0 .

Therefore, we have proved the following theorem.

Theorem 3.1. The optimal averaged Gaussian q.f. QGF
2l+1, based on the zeros

of the quasi-orthogonal polynomial plFl+1, corresponding to Jacobi weight function
w(α,β)(x) = (1−x)α(1+x)β with α, β > −1, is internal if and only if the conditions
(3.5) and (3.6) hold.

Let us point out that if (3.5) and (3.6) hold for l = 2, then they hold for all
l ≥ 2. Figure 1 shows the region in the (α, β) plane in which the conditions (3.5)
and (3.6) are satisfied for l = 2. Outside that region, the corresponding optimal
averaged Gaussian q.f. QGF

2l+1 for at least one value of l (≥ 2) has an exterior node.
Some sufficient conditions for an optimal averaged Gaussian q.f. QGF

2l+1 for the
Jacobi weight to require exterior nodes can be deduced from Theorem 3.1. We
mention only cases with α < β: other cases can be obtained by interchanging α
and β. Denoting the left-hand side of (3.5) by f(l, α, β), we have:

1. For α < −1/2, the formulas for sufficiently large l require an exterior node,
because the coefficient of l2 is negative.

2. For α = −1/2, β > 1/2 (l ≥ 2), we have f(l,−1/2, β) = −3(β2 − 1/4) < 0.
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3. For β > 1/2 and α close enough to −1/2 (α = −1/2+ ε, ε > 0), the formulas
require an exterior node for l small enough, because f(l,−1/2 + ε, β) has zeros at

l =
1
2

(
−1

2
− β − ε ±

√
∆

)
,

where

∆ =
1
2
(5 − 3ε + 3(β2 − 1/4)/ε) .

The positive zero is therefore O(ε−1/2).
We omit the case when l = 1 (α, β > −1), which can be done easily by the

reader.
The cases with Laguerre and Hermite weights are studied by Ehrich [4].
We have used the traditional way of naming the Gauss-Kronrod q.f. although

it would have been better to use the name Gauss-Kronrod-Skutsch q.f. (see [7] for
details).
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