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TESTING POLYCYCLICITY OF
FINITELY GENERATED RATIONAL MATRIX GROUPS

BJÖRN ASSMANN AND BETTINA EICK

Abstract. We describe algorithms for testing polycyclicity and nilpotency for
finitely generated subgroups of GL(d, Q) and thus we show that these prop-
erties are decidable. Variations of our algorithm can be used for testing vir-
tual polycyclicity and virtual nilpotency for finitely generated subgroups of
GL(d, Q).

1. Introduction

The Tits’ alternative states that a finitely generated subgroup of GL(d, Q) is
either virtually solvable or contains a non-abelian free subgroup. Algorithms for
deciding the Tits’ alternative are described in [2], [6] and [12].

Polycyclic groups form a large and interesting subclass of the class of virtually
solvable finitely generated groups. Many properties are algorithmically decidable for
polycyclic groups as shown in [5], and various practical algorithms for polycyclically
presented groups are described in [8].

An algorithm for checking whether a given finitely generated subgroup of
GL(d, Q) is polycyclic has not been available so far. It is the central aim of this pa-
per to present a solution for this problem. More precisely, given a finitely generated
subgroup G of GL(d, Q), we describe algorithms for

(1) testing whether G is polycyclic (or virtually polycyclic),
(2) testing whether G is nilpotent (or virtually nilpotent).
Our methods for (1) and (2) rely on an algorithm for testing whether a virtually

polycyclic group G ≤ GL(d, Q) conjugates into GL(d, Z). We describe such an
algorithm in Section 5. An alternative method for this purpose can be found in [3].

Our solutions for the algorithms in (1) and (2) are closely related to each other.
They heavily rely on an application of the Mal’cev correspondence for upper uni-
triangular matrix groups. Based on that, they reduce to some simple applications
of linear algebra methods.
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We implemented our algorithm for testing polycyclicity using the computer al-
gebra system GAP [14] as a basis. A report and comments on this implementation
with runtimes for some example groups is included below.

Our algorithms also apply to finitely generated subgroups of GL(d, K), where
K is an algebraic number field, since such matrix groups can be considered as
subgroups of GL(d[K : Q], Q).

2. Deciding the Tits’ alternative

Let G ≤ GL(d, Q) be finitely generated and denote V = Qd. In this section
we briefly recall the method of [2] for testing whether G is solvable or virtually
solvable, since we need various parts of it later.

2.1. Computing a semisimple series. A series V = V1 > . . . > Vl > Vl+1 = {0}
of G-submodules through V is called semisimple if Vi/Vi+1 is semisimple as a G-
module for 1 ≤ i ≤ l. In this subsection we briefly recall a method to determine a
semisimple series for G.

Recall that the radical RadG(V ) is defined as the intersection of all maximal
G-submodules in V and it is the smallest G-submodule in V with a semisimple
factor module. Thus the determination of a semisimple series can be reduced to an
iterated computation of radicals.

A method to compute the radical RadG(V ) has been introduced by L.E. Dickson
in [7]. It uses that RadG(V ) = V RadG(Q[G]), where Q[G] is the matrix algebra
generated by G, and determines a basis for RadG(Q[G]). For this purpose, it takes
a basis for Q[G] and then reduces to solving a linear equation of size dim Q[G].

2.2. The p-congruence subgroup. Since G is finitely generated, there exists a
finite set of primes π such that G ≤ GL(d, Qπ), where Qπ is the set of all rational
numbers a

b with b divisible by primes in π only. Let p > 2 be a prime with p �∈ π.
Then the natural homomorphism ψp : Qπ → Fp extends to a homomorphism

ϕp : G → GL(d, Fp)

defined by applying ψp to every entry in a matrix element of G. The kernel H of ϕp

is called the p-congruence subgroup and the image I of ϕp is the p-congruence image
of G. By construction, the group H has finite index in G. As G is finitely generated,
this implies that H is finitely generated. Generators for H can be computed from
generators for G using an orbit-stabilizer algorithm, since H = StabG(B), where B
is a basis of Fd

p and G acts via ϕp on Fd
p. However, the resulting generating set for

H is often too large to allow efficient computations. A usually significantly smaller
set of normal subgroup generators for H can be determined from generators for G
as described in [2].

2.3. Testing (virtual) solvability. The following theorem provides a characteri-
sation of the finitely generated solvable or virtually solvable subgroups of GL(d, Q).
This characterisation can be checked easily with available computational tools, and
thus it yields an algorithm for checking solvability and virtual solvability. If the
group G acts on a module W , then GW ≤ GL(W ) denotes the group induced by
the action of G on W . A proof for the following theorem can be found in [2].

1. Theorem. Let G ≤ GL(d, Q) be finitely generated with p-congruence subgroup
H and p-congruence image I. Let V = V1 > . . . > Vl > Vl+1 = {0} be a semisimple
series for G. Then:
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a) G is virtually solvable if and only if HVi/Vi+1 is abelian for 1 ≤ i ≤ l.
b) G is solvable if and only if G is virtually solvable and I is solvable.

2.4. Comparing classes of groups. The polycyclic groups form a large subclass
of the class of finitely generated solvable groups. For example, it is known that every
finitely generated solvable subgroup of GL(d, Z) and every finitely generated nilpo-
tent group is polycyclic. Thus, for example, since every finitely generated group
U of upper unitriangular matrices in GL(d, Q) is nilpotent, U is also polycyclic.
However, not every finitely generated solvable subgroup of GL(d, Q) is polycyclic,
as the following example shows:

G = 〈
(

2 0
0 1

)
,

(
1 1
0 1

)
〉.

The group G contains the normal subgroup U = {
(

1 a
2e

0 1

)
| a ∈ Z, e ∈ N0}. The

quotient G/U is infinite cyclic and U is abelian; thus G is solvable. However U is
not finitely generated and hence G is not polycyclic.

3. The Mal’cev correspondence

In this section we recall the Mal’cev correspondence introduced in [11] restricted
to the case that we want to use later and we summarise some of its fundamental
properties. For more background we refer to [13, Chapter 6], [10, Chapter 9,10]
and [4, Chapter 4].

Let Tr1(d, Q) ≤ GL(d, Q) denote the subgroup of all upper unitriangular matri-
ces, and let Tr0(d, Q) denote the Lie algebra of all upper triangular d × d-matrices
over Q having zeros on the diagonal, where the Lie bracket is defined in the stan-
dard form [x, y] = xy − yx. We define the logarithm and the exponential maps as
follows:

log : Tr1(d, Q) → Tr0(d, Q)

: g �→ (g − 1) − 1
2
(g − 1)2 + · · · + (−1)d

(d − 1)
(g − 1)d−1,

exp : Tr0(d, Q) → Tr1(d, Q)

: x �→ 1 + x +
1
2
x2 + · · · + 1

(d − 1)!
xd−1.

These mappings are mutually inverse bijections which facilitate the Mal’cev cor-
respondence between Tr1(d, Q) and Tr0(d, Q). We recall some of the features of
this correspondence in the following.

3.1. The interplay between subgroups and subalgebras. The following the-
orem exhibits the interplay between the subgroups of Tr1(d, Q) and the Lie sub-
algebras of Tr0(d, Q) via the Mal’cev correspondence. Recall that a group G is
radicable if for every g ∈ G and n ∈ N there exists an h ∈ G such that hn = g.
For a subgroup U ≤ Tr1(d, Q) we denote with L(U) := Q log U the Q-vector space
spanned by log U .

2. Theorem. Let U ≤ Tr1(d, Q) and L ≤ Tr0(d, Q) a Lie subalgebra. Then:
a) exp L is a radicable torsion-free nilpotent subgroup of Tr1(d, Q).
b) L(U) is a Lie subalgebra of Tr0(d, Q).
c) U ≤ expL(U) and every element of expL(U) has some power lying in U .
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Proof. See [13, Chapter 6, Theorem 2]. �

A group Û is a radicable hull of a torsion-free nilpotent group U if Û is a radicable
torsion-free nilpotent group that contains U and if every element in Û has some
power lying in U . Theorem 2 asserts that expL(U) is a radicable hull for U ≤
Tr1(d, Q). By [10, Theorem 9.20.] a radicable hull is unique up to isomorphism.

3.2. Compatibility of actions. The following theorem shows that the action of
automorphism groups on subgroups of Tr1(d, Q) is compatible with the Mal’cev
correspondence.

3. Theorem. Let U ≤ Tr1(d, Q) and let Γ = {α ∈ Aut(L(U)) | (log U)α ⊆ log U}.
Then φ : Aut(U) → Γ : β �→ exp ◦ β ◦ log is an isomorphism, where lexp ◦β◦log =
((lexp)β)log.

Proof. See [13, Chapter 6, Theorem 6]. �

Theorem 3 has the following application which will be fundamental for our al-
gorithms. For the proof of the following theorem note that the Baker-Campbell-
Hausdorff formula [10, Definition 9.6] allows us to define a group multiplication on
Tr0(d, Q). This has the form x ∗ y = x + y + 1

2 [x, y] + . . . and allows us to express
the group mulitplication in terms of Lie algebra operations. The logarithm map is
then an isomorphism of groups between Tr1(d, Q) and (Tr0(d, Q), ∗).

4. Theorem. Let U ≤ Tr1(d, Q) and H ≤ Aut(U) such that U = 〈u1, . . . , ul〉H for
certain elements u1, . . . , ul ∈ U . Let W ≤ Tr0(d, Q) be the Lie algebra generated by
log u1, . . . , log ul. Then L(U) = Wφ(H).

Proof. Let S = 〈u1, . . . , ul〉. Since W is a Lie algebra, we have that x∗y ∈ W for all
x, y ∈ W . Since log : Tr1(d, Q) → (Tr0(d, Q), ∗) is an isomorphism, it follows that
log S ⊂ W and therefore L(S) = Q log S ⊂ W . On the other hand, log ui ∈ L(S)
for all i and so W ⊂ L(S). This yields that L(S) = W .

An element g ∈ SH is of the form g = u
hi1
i1

· · ·uhil
il

for certain hij
∈ H. Therefore

log g = (log ui1)
φ(hi1) ∗ · · · ∗ (log uil

)φ(hil
) which is contained in L(S)φ(H). It follows

that L(U) = L(SH) ⊂ L(S)φ(H) ⊂ L(U)φ(H) = L(U). Thus L(S)φ(H) = L(U). �

Theorem 4 yields that a basis for L(U) can be computed if U ≤ Tr1(d, Q) is given
as U = 〈u1, . . . , ul〉H for a finitely generated group H ≤ Aut(U). For this purpose
we determine log u1, . . . , log ul and then use a spinning algorithm (see for example
[2]) to compute a basis for the smallest vector space that contains these elements
and is closed under taking Lie brackets and acting with the generators of H. This
yields a Lie algebra which is finite dimensional, since it is a subalgebra of the finite
dimensional algebra Tr0(d, Q), and hence the spinning algorithm terminates.

A similar approach could be considered for computing a generating set for U .
However, the group U might not be finitely generated, even if it is finitely generated
as an H-module, and in this case the spinning algorithm would not terminate.

3.3. Finite generation. A subgroup U ≤ Tr1(d, Q) is a lattice group if log U is
closed under addition in Tr0(d, Q). For example, the group Tr1(d, Q) is a lattice
group, since log Tr1(d, Q) = Tr0(d, Q). For a subgroup U ≤ Tr1(d, Q) we define the
lattice hull U lat as the intersection of all lattice groups in Tr1(d, Q) containing U .
If U is finitely generated, then U has finite index in U lat by [13, Chapter 6].
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5. Lemma. a) If U ≤ Tr1(d, Q) is finitely generated, then the additive group
Z log U is free abelian of finite rank and spans L(U) over Q.

b) If M is a finitely generated subgroup of the additive group Tr0(d, Q), then
〈expM〉 is a finitely generated subgroup of Tr1(d, Q).

Proof. a) See [13, Chapter 6].
b) The group Tr0(d, Q) is torsion-free. Thus M has a Z-basis log u1, . . . , log ul

for certain u1, . . . , ul ∈ Tr1(d, Q). Let U = 〈u1, . . . , ul〉. Since U has finite index in
U lat, it follows that U lat is finitely generated. Since log ui ∈ log U lat for i = 1, . . . , l,
we find that M is contained in the lattice log U lat. Therefore, we obtain that
exp M ⊂ U lat and thus 〈expM〉 is finitely generated. �

4. Polycyclic sequences

In this section we briefly recall the basic notations used for computations with
polycyclic groups. We refer to [9, Chapter 10], for further information.

Every polycyclic group G has a subnormal series G = G1 > . . . > Gn > Gn+1 =
{1} with cyclic factors. Choose gi ∈ G with Gi = 〈gi, Gi+1〉 for 1 ≤ i ≤ n. Then
the sequence (g1, . . . , gn) is called a polycyclic sequence for G. The following lemma
shows that a polycyclic sequence is a generating set for its underlying group and it
has some particularly useful features. For a proof see [9], Lemma 8.3.

6. Lemma. Let (g1, . . . , gn) be a polycyclic sequence for a polycyclic group G. Then
every element g of G can be written as g = ge1

1 · · · gen
n for certain e1, . . . , en ∈ Z.

Polycyclic sequences are a fundamental tool in effective computations with poly-
cyclic groups. In particular, every polycyclic sequence defines a finite presentation
for its underlying group G: a so-called polycyclic presentation; see [9]. The algo-
rithm in [2] can be used to determine a polycyclic sequence and its corresponding
presentation for a polycyclic subgroup of GL(d, Q) and for certain of its factor
groups.

5. Checking conjugacy into GL(d, Z)

Let G ≤ GL(d, Q) be a virtually polycyclic group. In this section we exhibit an
effective test to check whether G can be conjugated into GL(d, Z); that is, whether
there exists an element h ∈ GL(d, Q) such that Gh ≤ GL(d, Z). Note that not every
polycyclic subgroup of GL(d, Q) conjugates into GL(d, Z) as the example G = 〈( 1

2 )〉
shows.

As a first step towards this aim, we recall two well-known characterisations of
the groups which conjugate into GL(d, Z). For a subset M of a vector space we
denote by 〈M〉Q and 〈M〉Z its Q-span and its Z-span, respectively. Further, we
denote with Z[G] the subring of Md(Q) which is generated by the matrices in G.
By a Z-order in the matrix algebra Q[G] we mean a subring of Q[G] that is finitely
generated as a Z-module, contains the same identity as Q[G] and spans Q[G] over
Q. Therefore Z[G] is a Z-order in Q[G] if and only if Z[G] is finitely generated as
an additive group.

7. Lemma. The following properties are equivalent:
a) G is conjugated to a subgroup of GL(d, Z).
b) There exists a G-invariant lattice L ≤ V = Qd with 〈L〉Q = V .
c) Z[G] is a Z-order.
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Proof. a) ⇒ c): Suppose that G is conjugated to a subgroup H of GL(d, Z). Then
Z[H] is a Z-order in Md(Z) and thus also Z[G] is a Z-order.

c) ⇒ b): Suppose that Z[G] is a Z-order and let B = {b1, . . . , bs} be a Z-basis
for Z[G]. Then for all g ∈ G there exist ag,k ∈ Z such that big =

∑s
k=1 ag,kbk for

1 ≤ i ≤ s. Let ri,j be the j-th row of bi. Then ri,jg =
∑s

k=1 ag,krk,j follows. Thus
L = 〈ri,j | 1 ≤ i ≤ s, 1 ≤ j ≤ d〉Z is a G-invariant lattice. Further 〈L〉Q = V ,
because the rows of 1 ∈ Z[G] are linear independent.

b) ⇒ a): Let L be a G-invariant lattice. Then G acts on L as a subgroup of
GL(d, Z). Since a basis for L is also a basis for V , it follows that G is conjugate to
a subgroup of GL(d, Z). �

As a next step, we introduce an effective method to check whether Z[G] is a
Z-order. We first consider the special case of a cyclic group. For g ∈ GL(d, Q)
denote with χg the minimal polynomial of g.

8. Lemma. Let g ∈ GL(d, Q) and U = 〈g〉. Then the following are equivalent:
a) Z[U ] is a Z-order.
b) χg, χg−1 ∈ Z[x].
c) χg ∈ Z[x] and χg has the constant term ±1.

Proof. a) ⇒ b) and a) ⇒ c): If Z[U ] is a Z-order, then U conjugates into GL(d, Z).
As the minimal polynomial is invariant under conjugation, it follows that χg, χg−1 ∈
Z[x]. As the constant term of χg is the determinant of g, it also follows that this
constant term is ±1.

b) ⇒ a): Let n = degχg and m = degχg−1 . As χg and χg−1 are normed
polynomials over Z, it follows that {g−m+1, . . . , g−1, 1, g, . . . , gn−1} generates Z[U ]
as an additive group and hence Z[U ] is a Z-order.

c) ⇒ a): Let χg = xn + αn−1x
n−1 + · · · + α1x + α0. Then

g(gn−1 + αn−1g
n−2 + · · · + α1) = −α0.

As α0 =±1, it follows that g−1 =∓(gn−1+αn−1g
n−2+· · ·+α1). Thus {1, g, . . . , gn−1}

generates Z[U ] as an additive group and so Z[U ] is a Z-order. �

The following theorem yields a reduction to the case of cyclic groups.

9. Theorem. Let {g1, . . . , gn} be a generating set of G ≤ GL(d, Q) such that every
element of g can be written as a collected word g = ge1

1 . . . gen
n with e1, . . . , en ∈ Z.

Then Z[G] is a Z-order if and only if Z[〈gi〉] is a Z-order for 1 ≤ i ≤ n.

Proof. Write Ui = 〈gi〉. If Z[G] is a Z-order, then Z[Ui] is a Z-order. Thus it suffices
to show the converse. Let ai,1, . . . , ai,li be a Z-basis for Z[Ui]. Then for every g ∈ G
there exist αiji

∈ Z with

g = ge1
1 · · · gen

n

=

⎛
⎝ l1∑

j1=1

α1j1a1j1

⎞
⎠ · · ·

⎛
⎝ ln∑

jn=1

αnjn
anjn

⎞
⎠

=
l1∑

j1=1

· · ·
ln∑

jn=1

α1j1 · · ·αnjn
a1j1 · · · anjn

.
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Thus
S = {a1j1 · · · anjn

|1 ≤ ji ≤ li}
is a finite generating set for Z[G] as an additive group. �

As G is virtually polycyclic, there exists a polycyclic normal subgroup N of finite
index in G. Let T be a transversal for N in G and let R = (r1, . . . , rl) be a polycyclic
sequence for N . Then every element g in G can be written as g = tre1

1 · · · rel

l for
some t ∈ T and e1, . . . , el ∈ Z. Thus T ∪R is a generating set for G which satisfies
the hypothesis of Theorem 9. Hence we obtain the following corollary to Theorem
9 which provides an effective check whether G conjugates into GL(d, Z).

10. Corollary. Let G be virtually polycyclic with normal polycyclic subgroup N of
finite index. Let T be a transversal for N in G and let R be a polycyclic sequence for
N . Then G is conjugated to a subgroup of GL(d, Z) if and only if χg, χg−1 ∈ Z[x]
for every g ∈ T ∪ R.

6. Testing polycyclicity

In this section we introduce an effective method to test whether a finitely gen-
erated subgroup G of GL(d, Q) is polycyclic. Every polycyclic group is solvable.
Thus as a first step in our method, we use the algorithm of Section 2.3 to check
whether G is solvable. We then assume throughout that the considered group G is
solvable.

Let V = Qd and let V = V1 > . . . > Vl > Vl+1 = {0} be an arbitrary, fixed
semisimple series of G. Then the centralizer of this series U = ∩l

i=1CG(Vi/Vi+1) is
called a unipotent radical of G. Note that by choosing a basis for V exhibiting the
semisimple series, we can assume that U ≤ Tr1(d, Q).

The following lemma summarizes some information of the structure of G and U
which will be used throughout.

11. Lemma. Let G ≤ GL(d, Q) be finitely generated and solvable and let U be a
unipotent radical of G. Then U is nilpotent and G/U is polycyclic.

Proof. As U ≤ Tr1(d, Q), it follows that U is nilpotent. Let V = V1 > . . . > Vl >
Vl+1 = {0} be the semisimple series underlying U . Then the factor G/U embeds
into the direct product GV1/V2 × . . .×GVl/Vl+1 . It follows from Theorem 1 (see also
[2]) that this direct product is (finitely generated abelian)-by-(finite solvable) and
hence G/U is polycyclic. �

The following theorem provides a characterisation for polycyclic rational matrix
groups.

12. Theorem. Let G ≤ GL(d, Q) be finitely generated and solvable and let U be a
unipotent radical of G. Then G is polycyclic if and only if U is finitely generated.

Proof. If G is polycyclic, then every subgroup of G is finitely generated and hence
U is finitely generated. Conversely, if U is finitely generated, then U is polycyclic,
because U is nilpotent by Lemma 11. As G/U is also polycyclic by Lemma 11, the
result follows. �

As described in [2], we can compute a polycyclic presentation for G/U . By
evaluating the relators of such a presentation, we obtain a finite set of normal
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subgroup generators for U ; that is, U = 〈u1, . . . , ul〉G for certain u1, . . . , ul ∈ U .
By Theorem 12, it remains to check whether U is finitely generated.

We employ the Lie algebra L(U) for this purpose. First, we note that a basis for
the finite dimensional L(U) can be computed using Theorem 4. The conjugation
action of G on U induces a subgroup H ≤ Aut(U). In turn, this subgroup H acts
on L(U) by Theorem 3. Let φB : Aut(U) → GL(e, Q) describe this action with
respect to the basis B of L(U) and let φ = φB for some arbitrary, fixed basis B.

Our aim in the following is to show that we can read off from the action of G
on L(U) whether U is finitely generated. The following theorem is a first step into
that direction.

13. Theorem. Let U ≤ Tr1(d, Q) and H ≤ Aut(U) such that U = 〈u1, . . . , ul〉H
for certain u1, . . . , ul ∈ U . Then U is finitely generated if and only if φ(H) can be
conjugated into GL(e, Z).

Proof. Assume that U is finitely generated. By Lemma 5, the additive group Z log U
is free abelian of finite rank and spans L(U) over Q. Thus there exists a Z-basis
B for Z log U which is also a Q-basis for L(U). By Theorem 3, the lattice Z log U
is invariant under the action of H. Hence φB(H) ≤ GL(e, Z) and φ(H) can be
conjugated into GL(e, Z).

Now assume that φ(H) can be conjugated into GL(e, Z). Let B be a basis
of L(U) such that φB(H) ≤ GL(e, Z) and let L be the Z-span of B. Denote
W = 〈u1, . . . , ul〉. Then Z log W is finitely generated by Lemma 5 and hence there
exists z ∈ N such that Z log W ⊂ M := 1

z L. As φB(H) ≤ GL(e, Z), the lattice M
is invariant under the action of H. Therefore for all u ∈ W and h ∈ H, it follows
that log(uh) = log(u)h ∈ M . Thus U = WH ⊆ 〈exp(M)〉. By Lemma 5, the group
〈exp(M)〉 is finitely generated. Hence U is finitely generated. �

Let ϕ : G → GL(e, Q) denote the action of G on L(U) with respect to an
arbitrary, fixed basis B of L(U). Then Theorem 13 yields that the group U is
finitely generated if and only if ϕ(G) can be conjugated into GL(e, Z). Section 5
contains a method to check whether a polycyclic subgroup of GL(e, Q) conjugates
into GL(e, Z). However, this method does not apply directly, as ϕ(G) might not
be polycyclic. The next theorem shows that the method of Section 5 generalises
to the case considered here. For g ∈ G we denote with χϕ(g) ∈ Q[x] the minimal
polynomial of ϕ(g).

14. Theorem. Let G ≤ GL(d, Q) be finitely generated and solvable and let U be a
unipotent radical of G. Let (g1U, . . . , gnU) be a polycyclic sequence for G/U . Then
G is polycyclic if and only if χϕ(gi), χϕ(g−1

i ) ∈ Z[x] for 1 ≤ i ≤ n.

Proof. Suppose that G is polycyclic. Then U is finitely generated and thus ϕ(G) can
be conjugated into GL(e, Z) by Theorem 13. Thus χϕ(gi), χϕ(g−1

i ) ∈ Z[x] follows.
Conversely, suppose that χϕ(gi), χϕ(g−1

i ) ∈ Z[x] for 1 ≤ i ≤ n. Let L(U) = L1 >

· · · > Ll+1 = {0} be a refinement of the upper central series of L(U) to a QG-
composition series. We use induction on l to show that ϕ(G) can be conjugated
into GL(e, Z). As U is finitely generated as a G-normal subgroup, this yields by
Theorem 13 and Theorem 12 that G is polycyclic.

First consider the case l = 1. Then U acts trivially on L(U) and thus ϕ(G)
is polycyclic with polycyclic sequence (ϕ(g1), . . . , ϕ(gn)). Corollary 10 now yields
that ϕ(G) can be conjugated into GL(e, Z).
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Now let l > 1. We assume by induction that there exists a basis B of L(U) which
exhibits L1 > L2 > {0} and with respect to which GL1/L2 and GL2 have integral
matrix representations and thus are polycyclic. With respect to B every element
ϕ(g) is represented by a matrix of the form(

α(g) γ(g)
β(g)

)

where α(g), respectively β(g), are the representations of the action of g on L1/L2,
respectively L2. For g, h ∈ G, it follows that γ(gh) = α(g)γ(h) + γ(g)β(h). Thus,
since α(G), β(G) are integral matrix groups and by assumption G is finitely gen-
erated, we deduce that the denominators of the entries of γ(G) are bounded.
Since α(G) and β(G) are polycyclic, it follows that ϕ(G) is polycyclic. There-
fore there exists a polycyclic sequence (ϕ(g1), . . . , ϕ(gn), ϕ(u1), . . . , ϕ(ul)) of ϕ(G),
where u1, . . . , ul ∈ U . Since U is unipotent, the minimal polynomial of ϕ(u±1

j ) is
of the form (x − 1)mj for some mj ∈ N and 1 ≤ j ≤ l. By Corollary 10, ϕ(G) can
be conjugated into GL(e, Z). �

The results of this section yield the following algorithm to test polycyclicity. Let
G be a finitely generated subgroup of GL(d, Q) and let V = Qd.

IsPolycyclic( G )
1: test whether G is solvable and return false if this is not the case.
2: compute a pc-sequence (g1U, . . . , gnU) for G/U where U is a unipotent radical.

3: compute normal subgroup generators for U .
4: compute a basis B for the Lie algebra L(U).
5: compute the induced action ϕ(gi) with respect to B for 1 ≤ i ≤ n.
6: let χϕ(gi) be the minimal polynomial of ϕ(gi) for 1 ≤ i ≤ n.
7: if χϕ(gi) ∈ Z[x] and has constant term ±1 for 1 ≤ i ≤ n, then
8: return true
9: else

10: return false
11: end if

7. Testing virtual polycyclicity

A variation of the method to test polycyclicity yields a method to determine
whether a finitely generated subgroup of GL(d, Q) is virtually polycyclic. The
following theorem characterises the virtually polycyclic groups in a computationally
useful form.

15. Theorem. Let G ≤ GL(d, Q) be finitely generated and virtually solvable, and
let H be a p-congruence subgroup of G. Then G is virtually polycyclic if and only
if H is polycyclic.

Proof. If H is polycyclic, then G is virtually polycyclic, because [G : H] < ∞. If
G is virtually polycyclic, then there exists a normal polycyclic subgroup K with
[G : K] < ∞. Being a subgroup of K, the group H ∩ K is polycyclic. We have
that H/H ∩ K ∼= KH/H ≤ G/K and thus H/H ∩ K is finite. Since H is solvable
by Theorem 1, H/H ∩K is solvable. Thus H/H ∩K is polycyclic. Therefore H is
polycyclic. �
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Generators for a p-congruence subgroup H of G can be computed from a gener-
ating set of G as discussed in Section 2.2. Thus the method of Section 6 extends
to testing virtual polycyclicity.

8. Testing nilpotency

Let G ≤ GL(d, Q) be finitely generated. In this section we describe a method to
test whether G is nilpotent. Every finitely generated nilpotent group is polycyclic.
Hence as a first step to our algorithm we check whether the given group G is
polycyclic using the method of Section 6. Thus we can assume in the following that
G is polycyclic.

A possible approach towards testing nilpotency is to determine a polycyclic pre-
sentation for G using the method of [2] and, based on that, to check nilpotency
as described in [8]. In the following we outline an alternative approach. This al-
ternative shows that testing nilpotency is closely related to testing polycyclicity as
in Section 6 and, further, the alternative extends to testing virtual nilpotency as
shown in Section 9 below.

As a first step, we characterise the nilpotent matrix groups among the polycyclic
matrix groups. For this purpose we use the following notation: if H is a group which
acts by automorphisms on a group U , then H acts nilpotently on U if there exists
a series of H-invariant normal subgroups through U such that H centralizes every
factor of the series. For a proof of the following lemma and more background on
nilpotency see [13, Chapter 1].

16. Lemma. Let G be a polycyclic subgroup of GL(d, Q) and let U be a unipotent
radical of G. Then G is nilpotent if and only if G/U is nilpotent and G acts
nilpotently on U .

As side-results of the algorithm IsPolycyclic of Section 6, we have given normal
subgroup generators for a unipotent radical U of G and a polycyclic sequence
G = (g1U, . . . , gkU) of G/U . We can use this to determine a polycyclic presentation
for G/U and, based on that, we can test whether G/U is nilpotent.

It remains to find a criterion which decides whether G acts nilpotently on U . As
in the test for polycyclicity, one can use the action of G on the Lie algebra L(U)
for this purpose. The following theorem provides a first step towards proving this.

17. Theorem. Let U ≤ Tr1(d, Q) and let H ≤ Aut(U). Then H acts nilpotently
on U if and only if H acts nilpotently on L(U).

Proof. Assume that H acts nilpotently on U . Then there exists a central series
1 = Uk < · · · < U1 = U of U with H-central factors. Define a chain of Lie
subalgebras of L(U) by Li = L(Ui). Using [10, Lemma 10.12.], a straightforward
calculation shows that this is an H-central series of L(U).

Assume conversely that H acts nilpotently on L(U). Then L(U) has a central
series 0 = Lk < · · · < L1 = L(U) with H-central factors. Define a descending
chain of subgroups of U by Ui = exp(Li) ∩ U . Again using [10, Lemma 10.12], a
straightforward calculation shows that this is a central series of U with H-central
factors. �

Let ϕ : G → GL(e, Q) denote the action of the polycyclic group G on the Lie
algebra L(U) of a unipotent radical of G with respect to an arbitrary, fixed basis
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of L(U). The following theorem shows how the nilpotency of G can be read off the
action ϕ in a similar form as polycyclicity can be read off.

A polycyclic sequence (g1, . . . , gk) is called a nilpotent sequence if its correspond-
ing polycyclic series Gi = 〈gi, . . . , gk〉 is a central series (and hence the underlying
group is nilpotent).

18. Theorem. Let G ≤ GL(d, Q) be polycyclic and let U be a unipotent radical
of G. Let G/U be nilpotent with nilpotent sequence (g1U, . . . , gnU). Then G is
nilpotent if and only if χϕ(gi)(x) = (x− 1)mi for certain mi ∈ Z and for 1 ≤ i ≤ n.

Proof. Assume that G is nilpotent. Then G acts nilpotently on U by Lemma 16
and thus on L(U) by Theorem 17. Hence χϕ(gi)(x) = (x− 1)mi for certain mi and
1 ≤ i ≤ n follows.

Conversely, assume that χϕ(gi)(x) = (x − 1)mi for all i. Denote by ζk(L(U))
the k-th term of the upper central series of L(U). That is ζ1(L(U)) = {x ∈
L(U) | [y, x] = 0 ∀y ∈ L(U)} and ζi+1(L(U))/ζi(L(U)) = ζ1(L(U)/ζi(L(U))). Note
that ζi(L(U)) is an ideal of L(U) and so in particular a Lie subalgebra. Further
ζi(L(U)) is invariant under autmorphisms of L(U) and therefore invariant under
the action of G.

We show that G acts nilpotently on the factors Fk = ζk(L(U))/ζk+1(L(U)). This
implies that G acts nilpotently on L(U) and thus on U by Theorem 17. In turn,
this yields the desired result by Lemma 16.

Let k ∈ N and let ϕk(G) denote the action induced by G on Fk. Using
[10, Lemma 10.12] we deduce that U acts trivially on Fk. Thus the sequence
(ϕk(g1), . . . , ϕk(gn)) is a polycyclic sequence of ϕk(G). Let Gi = 〈gi, . . . , gn〉. Then
the groups ϕk(Gi) for 1 ≤ i ≤ n form a central series of ϕk(G). Let l ∈ {1, . . . , n}
be maximal such that ϕk(gl) �= 1. Let W be the eigenspace of ϕk(gl). Then
Fk > W > {0}, since ϕk(gl) is non-trivial and satisfies (x − 1)ml = 0. By the
choice of l, the element ϕk(gl) is contained in the center of ϕk(G). This implies
that W is a G-invariant subspace of Fk. The actions induced by G on Fk/W and
W satisfy the assumption of the theorem. Thus by induction on the dimension, we
can assume that G acts nilpotently on Fk/W and W . Thus G acts nilpotently on
Fk. �

The results of this section yield the following algorithm to test nilpotency. Let
G be a finitely generated subgroup of GL(d, Q) and let V = Qd.

IsNilpotent( G )
1: test whether G is polycyclic and return false if this is not the case.
2: as side-results of step 1, obtain a polycyclic sequence G of G/U and a basis B

of L(U) for a unipotent radical U of G,
3: using G, test whether G/U is nilpotent and return false if this is not the case.
4: compute a nilpotent sequence (g1U, . . . , gnU) for G/U .
5: compute the induced action ϕ(gi) with respect to B for 1 ≤ i ≤ n.
6: compute the minimal polynomial χϕ(gi)(x) of ϕ(gi) for 1 ≤ i ≤ n.
7: if χϕ(gi)(x) = (x − 1)mi for 1 ≤ i ≤ n, then
8: return true
9: else

10: return false
11: end if



1680 BJÖRN ASSMANN AND BETTINA EICK

9. Testing virtual nilpotency

A modification of the nilpotency testing algorithm yields a method for testing
virtual nilpotency. Let G ≤ GL(d, Q) be finitely generated. As a first step, we check
whether G is virtually polycyclic with the method of Section 7. As a side-result of
this algorithm, we obtain normal subgroup generators for a unipotent radical U of
G and a polycyclic sequence for H/U where H is a p-congruence subgroup of G.

Note that H/U is free abelian; see [2]. Since [G : H] < ∞ and two subgroups
of finite index intersect in a subgroup of finite index, G is virtually nilpotent if
and only if H is virtually nilpotent. The latter condition can be checked with the
following theorem. Recall that for h ∈ GL(e, Q) we denote by χh(x) the minimal
polynomial of h.

19. Theorem. Let H ≤ GL(d, Q) and let U be a unipotent radical of H. Suppose
that H/U is finitely generated abelian with polycyclic sequence (g1U, . . . , gnU). Then
H is virtually nilpotent if and only if all roots of χϕ(gi)(x) = 0 are roots of unity
for 1 ≤ i ≤ n.

Proof. Assume that H is virtually nilpotent. Let K ≤ H with s = [H : K] < ∞
and K nilpotent. Then K acts nilpotently on U ∩ K and therefore, by Theorem
17, K acts nilpotently on L(U ∩K). Since [U : U ∩K] = [KU : K] ≤ [H : K] < ∞,
L(U ∩ K) = L(U) and thus K acts nilpotently on L(U). Therefore, since gs

i ∈ K,
the minimal polynomial of ϕ(gs

i ) = ϕ(gi)s is (x − 1)mi for some mi ∈ N. Thus
χϕ(gi)(x) divides (xs − 1)mi . This implies that all roots of χϕ(gi)(x) = 0 are roots
of unity.

Assume conversely that E ⊂ C, the set of all eigenvalues of ϕ(g1), . . . , ϕ(gn),
contains only roots of unity. Let l ∈ N such that λl = 1 for all λ ∈ E. Define
K = 〈gl

1, . . . , g
l
n, U〉. In order to show that K acts nilpotently on U , by Theorem

18, it is sufficient to show that χϕ(gi
l) = (x − 1)mi for some mi ∈ N for 1 ≤ i ≤ n.

Let θ be an eigenvalue of ϕ(gl
i). From the Jordan-Normal form of ϕ(gi) it can be

read off that θ = λl for some eigenvalue λ of ϕ(gi). Since λ ∈ E, θ = 1 follows and
thus χϕ(gi

l) = (x − 1)mi for some mi ∈ N. �

10. Implementation and examples

We illustrate our algorithms on the simple example group G, already mentioned
in Section 2.4, which is generated by

g =
(

2 0
0 1

)
and h =

(
1 1
0 1

)
.

The series V = Q2 > W = 〈(0, 1)〉Q > {0} is a semisimple series for G. The
induced actions GV/W and GW are both polycyclic, and thus G is solvable. Let
U be the centraliser of the semisimple series; thus U is a unipotent radical for G.
Then G/U is an infinite cyclic group and (gU) is a polycyclic sequence for G/U .
Further U = 〈h〉G. It follows that

L(U) = L(〈h〉)ϕ(g) = (Q log〈h〉)ϕ(g) =
(
〈
(

0 1
0 0

)
〉Q

)ϕ(g)

= 〈
(

0 1
0 0

)
〉Q.

It can be seen that the induced action of g on L(U) with respect to the basis
B = {

(
0 1
0 0

)
} is given by the matrix ϕ(g) = ( 1

2 ). The minimal polynomial of ϕ(g) is
not in Z[X] and thus G is not polycyclic.
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10.1. Runtimes. The algorithm IsPolycyclic of Section 6 was implemented in GAP
[14] as a part of the Polenta package [1]. Instead of computing minimal polynomials
in step 6 of the algorithm we determine characteristic polynomials because this is
more efficient and because the minimal polynomial of a rational matrix is integral
if and only if the characteristic polynomial is integral.

Alternatively the method in [3], which is also implemented in GAP, could be used
to test whether the induced action of G to L(U) conjugates into GL(e, Z). Therefore
this method could replace the steps 6 to 11 of our algorithm “IsPolycyclic”. We
compared this variation with our method and did not notice any difference in the
runtimes for our example groups.

A method for testing virtual polycyclicity has not yet been implemented. To
handle this case it is necessary to compute short finite presentations of finite non-
soluble matrix groups.

In Table 1 we display runtimes for some example matrix groups and we also
summarise some of the properties of the considered groups. All example groups
considered in Table 1 are solvable and not contained in GL(d, Z). The groups G1, G2

are unipotent, G3, G4 are almost crystallographic groups. G5 was constructed using
the Kronecker product of generators of an almost crystallographic group. The group
G6 is a randomly generated subgroup of the direct product of a unipotent and a
free-abelian-by-finite group. The group G7 is the group G from the beginning of
Section 10. G8, G9 are randomly generated upper-block-triangular matrix groups.

Every example group Gi is available in the package Polenta via the function
“SolvableMatGroupExams(i)”. A group G ≤ GL(d, Q) given by generators can
be tested to be polycyclic using the command “IsPolycyclicMatGroup(G)”. All
computations where carried out in GAP Version 4.4.7 on a Pentium 4 machine
with 3.2 gigahertz and 90 MB of memory for GAP.

Table 1. Testing polycyclicity: The columns display the degree
d, the number of generators, the rank (or Hirsch length) and the
dimension of L(U) for every of the considered examples G1, . . . , G9.
If no rank is given, then the example group is not polycyclic. The
last column contains the time which is needed by the algorithm
IsPolycyclic of Section 6 in minutes:seconds.milliseconds.

Group Degree No. gens Rank Dim L(U) Runtime
G1 4 2 4 4 0.047
G2 5 2 6 6 0.109
G3 5 5 4 4 0.822
G4 5 5 4 4 0.568
G5 16 5 3 3 0.557
G6 20 11 7 4 6:13.083
G7 2 2 - 1 0.150
G8 6 4 - 10 15.966
G9 8 4 - 13 14.379
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