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FULLY DISCRETE DYNAMIC MESH DISCONTINUOUS
GALERKIN METHODS FOR THE CAHN-HILLIARD EQUATION

OF PHASE TRANSITION

XIAOBING FENG AND OHANNES A. KARAKASHIAN

Abstract. Fully discrete discontinuous Galerkin methods with variable mesh-
es in time are developed for the fourth order Cahn-Hilliard equation arising
from phase transition in materials science. The methods are formulated and
analyzed in both two and three dimensions, and are proved to give optimal
order error bounds. This coupled with the flexibility of the methods demon-
strates that the proposed discontinuous Galerkin methods indeed provide an
efficient and viable alternative to the mixed finite element methods and non-
conforming (plate) finite element methods for solving fourth order partial dif-
ferential equations.

1. Introduction

This paper develops and analyzes discontinuous Galerkin (DG) methods for the
the following fourth order parabolic problem:

ut + ∆(ε∆u − 1
ε
f(u)) = 0 in ΩT := Ω × (0, T ),(1.1)

∂nu = ∂n∆u = 0 on ∂ΩT := ∂Ω × (0, T ),(1.2)

u = u0 on Ω × {0},(1.3)

where f(s) = F ′(s) and F (s) = 1
4 (s2 − 1)2 and Ω ⊂ Rd, d = 2, 3, is a bounded

domain. ∂n denotes the normal derivative operator on ∂Ω.
Equation (1.1) is the well-known Cahn-Hilliard equation; it was originally intro-

duced by Cahn and Hilliard [10] to describe the complicated phase separation and
coarsening phenomena in a melted alloy that is quenched to a temperature at which
only two different concentration phases can stably exist. The Cahn-Hilliard equa-
tion has been widely accepted as a good (conservative) model to describe the phase
separation and coarsening phenomena in a melted alloy. We note that equation
(1.1) differs from the original Cahn-Hilliard equation (see [10]) in the scaling of the
time so that t here, called the fast time, represents t

ε in the original formulation.
The function u represents the concentration of one of the two metallic components
of the alloy. The parameter ε is an “interaction length”, which is small compared to
the characteristic dimensions on the laboratory scale. For the physical background,
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derivation, and discussion of the Cahn-Hilliard equation and related equations, we
refer to [2, 10, 19, 22, 32] and the references therein.

Another motivation for developing efficient numerical methods for the Cahn-
Hilliard equation is its applications far beyond its original role in phase transition.
The Cahn-Hilliard equation is indeed a fundamental equation and an essential build-
ing block in the phase field theory for moving interface problems (cf. [32]). It is
often combined with other fundamental equations of mathematical physics such
as the Navier-Stokes equation (cf. [20, 28, 31] and the references therein) to be
used as diffuse interface models for describing various interface dynamics, such as
flow of two-phase fluids, from various applications. In addition, the Cahn-Hilliard
equation (1.1) has also been extensively studied in the past due to its connection
to the free boundary problem, known as the Hele-Shaw problem and the Mullins-
Sekerka problem, when ε → 0+; see [2, 23] and the references therein for a detailed
exposition.

Numerical approximations of the Cahn-Hilliard equation (mainly in one and two
dimensions) have been studied by several authors in the past twenty years. Elliott
and Zheng [19] analyzed a (continuous in time) semi-discrete conforming finite el-
ement discretization in one space dimension. Elliott and French [17] proposed a
(continuous in time) semi-discrete nonconforming finite element method based on
the Morley nonconforming finite element method [11]. Optimal order error esti-
mates were also established for the nonconforming method. Elliott, French and
Milner [18] proposed and analyzed a (continuous in time) semi-discrete splitting
finite element method (mixed finite element method) which approximates simul-
taneously the concentration u and the chemical potential w := −ε∆u + ε−1f(u).
Optimal order error estimates were shown under the assumption that the finite
element approximation uh of the concentration u is bounded in L∞. Later, Du
and Nicolaides [16] analyzed a fully discrete splitting finite element method in
one space dimension under weaker regularity assumptions on the solution u of the
Cahn-Hilliard equation, and established optimal order error estimates by first prov-
ing the boundedness of uh in L∞. In one space dimension, French and Jensen [25]
analyzed the long time behavior of the (continuous time) semi-discrete conforming
hp-finite element approximations. Recently, Feng and Prohl [22, 23] carried out a
rigorous study of the convergence of mixed finite element approximations of the
Cahn-Hilliard equation to the Hele-Shaw problem as mesh sizes, and the parameter
ε all tend to zero by first establishing polynomial order a priori error estimates
in 1

ε . Feng and Wu [24] obtained polynomial order a posteriori error estimates
in 1

ε for both mixed finite element and C1 finite element approximations of the
Cahn-Hilliard equation.

Three main difficulties arise in finite element approximations of the Cahn-Hilliard
equation. First, no practical 3-d conforming or nonconforming finite elements are
known in the literature for fourth order equations. All best known plate elements
for the biharmonic operator were designed in 2-d (cf. Chapter 6 of [11]), and
their generalizations to the 3-d case is not available and seems not easy, either.
Hence, the mixed finite element method becomes the only viable method to solve
the Cahn-Hilliard equation in 3-d. Second, since the Cahn-Hilliard equation is a
singularly perturbed equation, to control the parameter ε, which is either small or
approaching zero, both error analysis and numerical simulations are big challenges,
and using adaptive meshes becomes necessary, in particular, for 3-d simulations.



DISCONTINUOUS GALERKIN METHODS 1095

Third, no matter which discretization method is used to approximate the Cahn-
Hilliard equation, the resulting linear or nonlinear algebraic systems are large and
strongly ill-conditioned and hence are difficult to solve either directly or iteratively.
Consequently, the development of fast-converging numerical algorithms (including
efficient preconditioners) for solving the algebraic systems is crucial to the overall
adaptive solution procedure for the Cahn-Hilliard equation and its sharp interface
limit, the Hele-Shaw problem.

In this paper we mainly focus on addressing the first difficulty and only slightly
touch the second one. Specifically, we shall develop and analyze a family of fully
discrete discontinuous Galerkin (DG) methods with dynamic meshes for the Cahn-
Hilliard equation. As is now well known, DG methods have several advantages
over other types of finite element methods. For example, the trial and test spaces
are very easy to construct; they can naturally handle inhomogeneous boundary
conditions and curved boundaries; they also allow the use of highly nonuniform
and unstructured meshes, and have built-in parallelism which permits coarse-grain
parallelization. In addition, the fact that the mass matrices are block diagonal is an
attractive feature in the context of time-dependent problems, especially if explicit
time discretizations are used. We refer to [3, 4, 5, 6, 7, 12, 13, 15, 27, 34, 36] and
the references therein for a detailed account on DG methods.

In addition to the advantages listed above, for fourth order equations, such as
the Cahn-Hilliard equation, DG methods have another big advantage over other
finite element methods in view of their simplicity and dimension-independence in
construction (cf. [6, 21]). As we shall see later in this paper, the formulations of
our DG methods for the Cahn-Hilliard problem (1.1)-(1.3) are exactly the same for
d = 2 and d = 3. In fact, the formulations are exactly the same for all d ≥ 1. We
emphasize that due to the existence of the small scale ε the use of dynamic/adaptive
meshes, which allow local refinement and coarsening, is necessary for simulating
the Cahn-Hilliard problem, in particular, in the 3-d case. Although it will not be
addressed in this paper, we note that at each time step the parallel Schwarz domain
decomposition preconditioners developed by the authors in [21] have an immediate
application for solving algebraic systems resulting from the discontinuous Galerkin
discretizations of the Cahn-Hilliard problem proposed in this paper.

The paper is organized as follows. In Section 2, notations of this paper are intro-
duced, and the trace inequalities and approximation properties of the interpolation
operator are recalled. In Section 3 we consider the (stationary) biharmonic problem
with the boundary conditions (1.2). We first present the DG method of Baker [6].
The results of this section serve as building blocks for us to construct and analyze
our DG methods for the Cahn-Hilliard problem in the next section. In addition, we
present a variant of Baker’s method and a G̊arding type weak coercivity result for
the bilinear forms on the energy space. These results are of independent interest.
In Section 4, we propose a family of fully discrete dynamic mesh DG methods for
the problem (1.1)-(1.3), whereby the time step size as well as the (spatial) meshes,
and consequently the discontinuous finite element spaces, may change at every time
level. The time stepping is done using the implicit Euler method, but the schemes
as well as the error estimates may be extended, with minor modifications, to second
order methods such as the midpoint rule. To alleviate the problem of solving the
nonlinear systems of algebraic equations resulting from the ∆f(u) term, we pro-
pose an implicit-explicit variant whereby at each time tm, the implicit fully discrete
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approximation Um is replaced by a suitable projection PmUm−1 in the nonlinear
term. As a consequence, only linear systems need be solved at every time step.
Given that the convergence rates for this method are the same as those of the fully
implicit method, this variant is of great practical interest. We also point out that
in contrast to schemes using static spatial meshes, if the mesh is changed at certain
times, then the error bounds will contain terms involving jumps of the Riesz pro-
jection of the solution u. In addition, the total number of such changes also enters
into the error bounds. We also give a result that replaces the Riesz projection by
the Lagrange interpolant of u. This improves on the previous result in the sense
that unlike the Riesz projection operator, the interpolant is a local operator. In
Section 5, we give a summary and point out a few possible extentions of the work
presented in this paper.

2. Notation and preliminaries

Throughout this paper, we adopt the standard norm and inner product notation
on the Lp spaces and the Sobolev spaces Hm (cf. [1]). In particular, for a regular
domain D, ‖ · ‖D and (·, ·)D will denote the norm and inner product on L2(D) (we
shall use (·, ·) := (·, ·)Ω, ‖·‖ := ‖·‖Ω), and ‖·‖m,D will denote the norm on Hm(D).
Also, | · |m,D will denote the seminorm of derivatives of order m. We shall also use
| · |∂D and 〈·, ·〉∂D to denote the norm and inner product respectively on L2(∂D).

Let Th = {K} be a family of star-like partitions (triangulations) of the domain Ω
parametrized by 0 < h < 1. We assume that Th satisfies the following assumptions:

(i) The elements (cells) of Th satisfy the minimal angle condition.
(ii) Th is locally quasi-uniform, that is, if two elements K and K ′ are adjacent

(i.e., the (n− 1)-dimensional measure of ∂K ∩ ∂K ′ is positive), then hK ≈
hK′ , where hK , hK′ denote the diameters of K and K ′ respectively.

The weak formulations as well as the approximations themselves will involve
functions that are discontinuous across interelement boundaries. This motivates
the use of so-called “broken” spaces

Hm(Th) = ΠK∈Th
Hm(K).

In particular, the “energy space” for fourth order problems will be Eh := H4(Th).
Note that members of these spaces are not functions in the proper sense since they
can be multivalued on the interelement boundaries; so care must be applied in
interpreting traces and other related quantities.

Another consequence of the discontinuous nature of the functions is that the
edges/faces of the partition Th play a prominent role in the formulation of the
methods as well as their analysis. So we define

EI := set of all interior edges/faces of Th,

EB := set of all boundary edges/faces of Th,

E := EI ∪ EB = set of all edges/faces of Th.

For e ∈ EI , we have e = ∂K+ ∩ ∂K− for some K+, K− ∈ Th. For v ∈ Eh we
define the jump [v] of v on e as [v] |e = v+|e − v−|e, where v+ and v− denote the
restrictions of v to K+ and K− respectively. For e ∈ EB, we set [v]|e = v|e. For
e ∈ E , he will denote the length of e for n = 2, or the diameter of e for n ≥ 3.
It follows from the local quasiuniformity assumption that he ≈ hK+ ≈ hK− . This
fact is used repeatedly in this paper. For e ∈ EI we define the average of v on e
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to be {v}|e := 1
2

(
v+|e + v−|e

)
. If e ∈ EB, set {v}|e = v|e. In [6] {v} was set to

v+|e for e ∈ E . We remark that the results of this paper cover both of the above
conventions. We also let ∂n denote the normal derivative operator in the direction
outward from K+.

The following trace inequality is well known

Lemma 2.1. There exists a positive constant C, which is independent of h, such
that for any K ∈ Th, if φ ∈ H1(K), then

(2.1) |φ|2∂K ≤ C
(
h−1

K ‖φ ‖2
K + hK‖∇φ ‖2

K

)
,

where hK is the diameter of K.

For any K ∈ Th and integer r ≥ 0, let Pr−1(K) denote the set of all polynomials
of degree less than or equal to r− 1 on K (we let P−1 = {0}). The (discontinuous)
finite element space Vh is defined by

Vh :=
∏

K∈Th

Pr−1(K).

Clearly, Vh ⊂ Eh ⊂ L2(Ω). But Vh 
⊂ H2(Ω). In fact, Vh 
⊂ H1(Ω).
We shall make frequent use of so-called inverse inequalities that hold on spaces

of polynomial functions.

Lemma 2.2. There exists a constant c depending only on the minimum angle of
K and r such that

(2.2) ‖χ‖j,K ≤ ch−j
K ‖χ‖K ∀χ ∈ Pr−1(K), j = 1, . . . , r − 1.

An immediate consequence of the trace and the inverse inequalities for polyno-
mials are the following trace inequalities (cf. [3, 21]). For e = EI and v ∈ Vh there
hold

| {v} |2e ≤ Ch−1
e

(
‖ v ‖2

K+ + ‖ v ‖2
K−

)
,(2.3)

| {∂nv} |2e ≤ Ch−3
e

(
‖ v ‖2

K+ + ‖ v ‖2
K−

)
.(2.4)

For e ∈ EB, the above inequalities hold without K−.
The spaces Vh have good approximation properties due to the fact that the

approximations can be localized to individual elements. From a result of Scott-
Dupont (cf. [9] and also [7]) we have

Lemma 2.3. For K ∈ Th let φ ∈ Hs(K), s ≥ 0. Then for each r with 0 ≤ r ≤ s,
there exists χ ∈ Pr−1(K) such that

(2.5) |φ − χ|j,K ≤ Chr−j
K |φ|r,K , 0 ≤ j ≤ r,

where C is independent of hK , φ, r.

We will also make use of the usual nodal based Lagrangian interpolation oper-
ators IK : C(K) → Pr−1(K). The approximation properties of this operator are
well known and can be found in [11].

Lemma 2.4. For K ∈ Th, let φ ∈ Hs(K) ∩ C(K), with 2 ≤ r ≤ s. Then

(2.6) |φ − IKφ|j,K ≤ C hr−j
K |φ|r,K , 0 ≤ j ≤ r.

Furthermore, if φ ∈ W 2,∞, then

(2.7) |φ − IKφ|L∞(K) ≤ ch2
K |φ|W 2,∞(K).
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3. DG methods for the biharmonic equation

In this section, we shall consider discontinuous Galerkin approximations of the
biharmonic problem

∆2u = g in Ω,(3.1)

∂nu = ∂n∆u = 0 on ∂Ω.(3.2)

The discontinuous Galerkin method considered in this paper for discretizing prob-
lem (1.1)-(1.3) is related to one proposed in [6]. We emphasize that the discontin-
uous Galerkin method and the results of this paper are valid for both d = 2 and
d = 3.

The results of this section, which are of independent interest and appear in the
name of elliptic projections in the next section, will serve as a basis for us to analyze
our fully discrete DG methods for the Cahn-Hilliard problem (1.1)-(1.3).

First, we recall the family of DG methods developed by Baker in [6] (also see
[21]), and then quote the main properties of the DG methods. Second, we shall
propose a variant of Baker’s methods and briefly analyze this new family of DG
methods.

In [6] G. Baker constructed and analyzed DG formulations for (3.1) with homo-
geneous Dirichlet conditions u = ∂nu = 0 on ∂Ω using as template the formula

(3.3)
∫

K

∆2uv dx =
∫

K

∆u∆v dx +
∫

∂K

(∂nK
∆u) v dσ −

∫
∂K

∆u (∂nK
v) dσ.

Since the boundary conditions considered in this paper are different from those in
[6], our bilinear form was modified to

b̂h(u, v) =
∑

K∈Th

(∆u, ∆v)K +
∑
e∈EI

(
〈{∂n∆u} , [v]〉e + 〈{∂n∆v} , [u]〉e

+γh−3
e 〈[u] , [v]〉e

)
−

∑
e∈E

(
〈{∆u} , [∂nv]〉e + 〈{∆v} , [∂nu]〉e(3.4)

−γh−1
e 〈[∂nu] , [∂nv]〉e

)
.

Here (·, ·)K denotes the L2 integral over K; 〈·, ·〉e stands for the L2 integral over
the edge e; γ is a positive constant independent of h, and the terms including γ are
the so-called penalty terms. The difference between our formulation and Baker’s is
that here the first sum on edges does not include the boundary edges for the simple
reason that boundary values of the solution u are not known on ∂Ω. The absence
of the boundary edges has the interesting consequence that our bilinear form is no
longer coercive on the finite element spaces. This is just as it should be since the
solution to (3.1), (3.2) is unique up to an additive constant.

With the bilinear form b̂h(·, ·) we naturally associate the following seminorm on
the space Eh:

‖v‖2,h,b̂ =
( ∑

K∈Th

‖∆v ‖2
K +

∑
e∈EI

(
h3

e | {∂n∆v} |2e + h−3
e | [v] |2e

)
(3.5)

+
∑
e∈E

(
he | {∆v} |2e + h−1

e | [∂nv] |2e
))1/2

.
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Before stating our next result, we recall the definition of a quotient space X/R of
a Banach

(
X, ‖ · ‖X

)
. X/R is the quotient space of equivalence classes of functions

in X that differ by constants. X/R is a Banach space with norm infc∈R ‖x − c‖X .

Lemma 3.1. (i) ‖ · ‖2,h,b̂ is a norm on the quotient space Eh/R.
(ii)

(3.6) |̂bh(u, v)| ≤ (1 + γ)‖u‖2,h,b̂‖v‖2,h,b̂ ∀u, v ∈ Eh.

(iii) There exist positive constants γ0 and c0 such that for γ ≥ γ0

(3.7) b̂h(v, v) ≥ c0‖v‖2
2,h,b̂

∀v ∈ Vh.

Proof. The proof of (ii) is a simple application of the Cauchy-Schwarz inequality.
The proof of (iii) follows the outline of a similar proof in [6]. Essential use is made
of the trace and inverse inequalities. As for (i), it suffices to show that ‖v‖2,h,b̂

can vanish only if v is constant on Ω. So, integrating by parts, we easily get the
well-known identity

(3.8)
∑

K∈Th

‖∇v‖2
K = −

∑
K∈Th

(∆v, v)K +
∑
e∈E

(
〈{∂nv}, [v]〉e + 〈{v}, [∂nv]〉e

)
.

It is easy to see that the vanishing of ‖v‖2,h,b̂ implies the vanishing of the right hand
side above. Thus v must be piecewise constant on Th. On the other hand, since
the jumps of v on the interior edges are also zero, it follows that v is constant. �

The weak formulation of (3.1)-(3.2) can be phrased as seeking u ∈ Eh such that

(3.9) b̂h(u, v) = (g, v) ∀v ∈ Eh.

This formulation is indeed consistent with the boundary value problem (3.1)-(3.2)
Based on the weak formulation (3.9), we define the DG formulation as follows:

find uh ∈ Vh such that

(3.10) b̂h(uh, vh) = (g, vh) ∀vh ∈ Vh.

3.1. A variant of Baker’s DG methods. In contrast to DG methods for second-
order elliptic problems where ‖∇v‖ is a seminorm on H1, the term ‖∆v‖ is not a
seminorm on H2. This creates additional technical problems not all of which are
resolved. Interestingly, the following integration by parts formula∫

K

∆u∆v dx =
∫

K

D2u · D2v dx −
∫

∂K

(∂nK
∇u) · ∇v dσ +

∫
∂K

∆u (∂nK
v) dσ,

where D2v denotes the Hessian of v, can be used to rewrite (3.3) as∫
K

∆2uv dx =
∫

K

D2u · D2v dx +
∫

∂K

(∂nK
∆u) v dσ(3.11)

−
∫

∂K

(∂nK
∇u) · ∇v dσ.

Based on (3.11) we propose the following variant of Baker’s DG method:

(3.12) b̃h(uh, vh) = (g, vh) ∀vh ∈ Vh,
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where

b̃h(u, v) =
∑

K∈Th

(D2u, D2v)K +
∑
e∈EI

(
〈{∂n∆u} , [v]〉e + 〈{∂n∆v} , [u]〉e

+γh−3
e 〈 [u], [v] 〉e

)
−

∑
e∈E

(
〈{∂n∇u} , [∇v]〉e + 〈{∂n∇v} , [∇u]〉e(3.13)

+γ h−1
e 〈[∇u] , [∇v]〉e

)
.

With the new bilinear form b̃h(·, ·) we associate the following mesh-dependent
seminorm on the energy space Eh:

(3.14)

‖ v ‖2,h,b̃ =

( ∑
K∈Th

‖D2v ‖2
K +

∑
e∈EI

(
h3

e | {∂n∆v} |2e + h−3
e | [v] |2e

)

+
∑
e∈E

(
he | {∆v} |2e + he | {∂n∇v} |2e + h−1

e | [∇v] |2e
)) 1

2

.

It is not hard to check that (3.9) can be reformulated as seeking u ∈ Eh satisfying

(3.15) b̃h(u, v) = (g, v) ∀v ∈ Eh,

which is also consistent with the boundary value problem (3.1)-(3.2).
The results of Lemma 3.1 apply to the bilinear form b̃(·, ·) and the associated

seminorm ‖ · ‖2,h,b̃ as well. Therefore, we introduce the corresponding DG approx-
imation uh ∈ Vh by

(3.16) b̃h(uh, vh) = (g, vh) ∀vh ∈ Vh.

Given the common properties of the two methods introduced in this section and
the fact that the error estimates turn out to be similar, we will henceforth, unless
explicitly indicated otherwise, use the common symbol b(·, ·) to stand for either
of the two bilinear forms (3.4) and (3.13) and ‖ · ‖2,h to denote either of the two
seminorms ‖ · ‖2,h,b̂, ‖ · ‖2,h,b̃ respectively.

We introduce the negative norm ‖ψ‖−2,h := sup (ψ,v)
‖v‖2,h

, the supremum being
taken over all nonconstant v in H4(Th), and the space H−2(Th) of all measurable
functions with finite ‖ · ‖−2,h norm.

3.2. A priori error estimates. In [6] Baker obtained optimal a priori error es-
timates for his method in the energy norm as well as negative norms under the
assumption that u ∈ Hs(Ω), s ≥ 4 and r ≥ 4. Estimates for the case r = 3 can
also be obtained except that the rate for the L2-norm of the error is suboptimal.
We have obtained similar results for both of our formulations for the BVP (3.1),
(3.2). Theorem 3.1 summarizes these results. The proof follows the same lines as
those found in [6] and is omitted. The basic approach is classical: First, estimates
in the energy norm ‖ · ‖2,h are obtained. Then, Nitsche’s duality argument can be
employed to derive L2 as well as negative norm estimates.

Since our estimates encompass variable meshes in space, we opt to cast the
energy estimates in terms of local quantities. Indeed, it follows easily from the
approximation properties (2.5) that for v ∈ Hs(Th), s ≥ 4,
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‖φ − χ‖2,h ≤
{

C|hr−2φ|Hr(Th), 4 ≤ r ≤ s,
C|hφ|H3(Th) + |h2φ|H4(Th), r = 3,

(3.17)

where |hjv|H�(Th) :=
( ∑

K∈Th
h2j

K |v|2�,K
)1/2

.

Theorem 3.1. Assume that the solution u of the BVP (3.1)-(3.2) is in H3(Ω) ∩
Hs(Th), s ≥ 4, and let uh ∈ Vh be given by (3.10) or (3.12). Then,

(i) For 4 ≤ r ≤ s, there holds

‖u − uh ‖2,h ≤ c|hr−2u|Hr(Th).(3.18)

If in addition
∫
Ω

uh dx =
∫
Ω

u dx, then

‖u − uh‖ ≤ ch2|hr−2u|Hr(Th).(3.19)
For K ∈ Th and multi-index α, 1 ≤ |α| ≤ r, we have

‖Dα(u − uh)‖K ≤ ch
r−|α|
K |u|Hr(K) + ch

−|α|
K ‖u − uh‖K .(3.20)

(ii) Similarly, for r = 3, there holds

‖u − uh ‖2,h ≤ c|hu|H3(Th) + c|h2u|H4(Th).(3.21)

If in addition
∫
Ω

uh dx =
∫
Ω

u dx, then

‖u − uh‖ ≤ ch
(
|hu|H3(Th) + |h2u|H4(Th)

)
.(3.22)

For K ∈ Th and multi-index α, 1 ≤ |α| ≤ 3, we have

‖Dα(u − uh)‖K ≤ ch
3−|α|
K |u|Hr(K) + ch

−|α|
K ‖u − uh‖K .(3.23)

Remark 3.1. We first note the sub-optimality of the L2 estimate (3.22). Also, the
requirement of

∫
Ω

uh dx =
∫
Ω

u dx in the estimates (3.19) and (3.22) is due to the
fact that these are obtained via Nitsche’s trick; this involves using the error u− uh

as the forcing term g in the BVP (3.1), (3.2). This in turn requires the compatibility
condition

∫
Ω
(u − uh)dx = 0 which can be imposed since u and uh are determined

modulo additive constants anyway.

We next revisit the issue of coercivity of the bilinear form bh(·, ·). Lemma 3.1(iii)
establishes coercivity on Vh under the condition that the penalty parameter γ is
larger than a threshold value γ0 which depends on the minimum angle of the ele-
ments and quadratically on r through the trace inequalities and inverse estimates
used in “hiding” the terms {∂n∆v} and other similar terms. The dependence of
γ0 on r indicates that bh(·, ·) cannot be coercive on the energy space Eh, since the
latter can be thought of as being the limiting case of Vh as r → ∞. We next es-
tablish a weaker result than full coercivity on Eh which is reminiscent of G̊arding’s
inequality and which proves useful.

Theorem 3.2. Let 3 ≤ r ≤ s with s ≥ 4. Then there exist constants c0, c1, γ0 with
γ0 depending on r and the minimum angles of the elements such that for γ ≥ γ0

there holds

(3.24) bh(v, v) ≥ c0‖v‖2
2,h − c1|hrv|2Hr(Th) ∀v ∈ Hs(Th).
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Proof. We will consider only the case of b̂(·, ·), that of b̃(·, ·) being entirely similar.
We have

b̂(v, v) =
∑

K∈Th

‖∆v‖2
K +

∑
e∈EI

(
2〈{∂n∆v}, [v]〉e + γh−3

e | [v] |2e
)

+
∑
e∈E

(
− 2〈{∆v}, [∂nv]〉e + γh−1

e | [∂nv] |2e
)
.

For a constant c0 to be chosen later, we have from Cauchy-Schwarz and the arith-
metic geometric mean inequality

(3.25)

b̂(v, v) − c0‖v‖2
2,h,b̂

= (1 − c0)
∑

K∈Th

‖∆v‖2
K

+
∑
e∈EI

(
2〈{∂n∆v}, [v]〉e − c0h

3
e|{∂n∆v}|2e +(γ − c0)h−3

e | [v] |2e
)

+
∑
e∈E

(
− 2〈{∆v}, [∂nv]〉e−c0he|{∆v}|2e + (γ − c0)h−1

e | [∂nv] |2e
)

≥ (1 − c0)
∑

K∈Th

‖∆v‖2
K +

(
γ − c0 −

1
ε

) ∑
e∈EI

h−3
e | [v] |2e

+
(
γ − c0 −

1
ε

)∑
e∈E

h−1
e | [∂nv] |2e − (c0 + ε)

∑
e∈EI

h3
e|{∂n∆v}|2e

− (c0 + ε)
∑
e∈E

he|{∆v}|2e for any ε > 0.

Now using the trace inequality, for any χ ∈ Vh we have

|{∂n∆v}|2e ≤ 2|{∂n∆(v − χ)}|2e + 2|{∂n∆χ}|2e
≤ c

∑
K=K+,K−

(
h−1

K |∆(v − χ)|21,K + hK |∆(v − χ)|22,K

+ h−3
K ‖∆χ‖2

K

)
≤ c

∑
K=K+,K−

(
h−1

K |∆(v − χ)|21,K + hK |∆(v − χ)|22,K

+ h−3
K ‖∆v‖2

K + h−3
K ‖∆(v − χ)‖2

K

)
,

where we have also used the inverse inequality on the ∆χ terms. We now choose χ
so that by the approximation properties (2.5)

(3.26) h3
e|{∂n∆v}|2e ≤ c

∑
K=K+,K−

(
h2r

K |v|2r,K + ‖∆v‖2
K

)
.

In an entirely similar way we obtain

(3.27) he|{∆v}|2e ≤ c
∑

K=K+,K−

(
h2r

K |v|2r,K + ‖∆v‖2
K

)
.
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Now using (3.26) and (3.27) in (3.25), we obtain

b̂(v, v) − c0‖v‖2
2,h,b̂

≥ (1 − c0 − c(c0 + ε))
∑

K∈Th

‖∆v‖2
K +

(
γ − c0 −

1
ε

) ∑
e∈EI

h−3
e | [v] |2e

+
(
γ − c0 −

1
ε

) ∑
e∈E

h−1
e | [∂nv] |2e − c(c0 + ε)|hru|2Hr(Th).

We now choose c0 = ε small enough so that 1− c0 − c(c0 + ε) ≥ 0. We then choose
γ0 such that γ0 − c0 − 1

ε ≥ 0. This implies (3.24) with c1 = c(c0 + ε). �

The next lemma, which is Lemma 3.1 of [21], establishes an interpolation result
which bounds the piecewise H1-seminorm in terms of the L2-norm and the ‖ · ‖2,h-
norm for totally discontinuous functions.

Lemma 3.2. There exists a constant C > 0, which is independent of h, such that
for any v ∈ Vh and any δ > 0∑

K∈Th

‖∇v‖2
K ≤ C

(
δ−1‖v‖2 + δ|v|22,h

)
+

∑
e∈EB

〈∂nv, v〉e ,(3.28)

∑
K∈Th

‖∇v‖2
K ≤ C

(
δ−1‖v‖2 + δ‖v‖2

2,h

)
.(3.29)

Here
|v|22,h =

∑
K∈Th

‖∆v‖2
K +

∑
e∈EI

(
h−3

e |[v]|2e + h−1
e |[∂nv]|2e

)
.

4. Fully discrete dynamic mesh DG methods

for the Cahn-Hilliard equation

4.1. Formulation of fully discrete dynamic mesh DG methods. Let Jm :=
(tm−1, tm], m = 1, . . . , M be a partition of [0, T ] and τm := tm − tm−1. For each
Jm, m = 1, . . . , M , let T m

h be a partition of Ω as defined in Section 2 and let V m
h

denote the finite element space associated with the partition T m
h . We set V 0

h = V 1
h .

At certain times tm the spatial mesh may be changed via a process of refinement
and coarsening based on information supplied by an a posteriori error estimator.
Both the algorithmic implementation and the error estimation were seen to benefit
from the imposition of the following mild conditions designed to govern the process
T m−1

h → T m
h :

(M1) A cell (the father) in T m−1
h marked for refinement is cut into a number

of cells (the sons). In 2-d, a triangle may be subdivided into four similar
triangles.

(M2) A cell in T m−1
h marked for coarsening is removed from the mesh only if the

remaining sons of its father are all marked for coarsening. Then all sons
are removed from the mesh.

Supposing that a new mesh T m
h has been obtained from T m−1

h by the process
of refinement/coarsening described above, we shall need an operator that serves
as a natural injection operator from spaces defined on T m−1

h to those defined on
T m

h . We define Pm : L2(T m−1
h ) → L2(T m

h ) as follows: Let v ∈ L2(T m−1
h ) and let

K ∈ T m
h . Then the restriction Pmv|K of Pmv to K is given by:
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(1) If K also belongs to T m−1
h or if K is the son of an element in T m−1

h , then
Pmv|K = v|K .

(2) If K is obtained by the merger of its sons that belonged to T m−1
h , then

Pmv|K is the L2 projection of v|K into Pr−1(K).
We first note that Pm is defined as a local operator, and we let Pm

K denote the
restriction of Pm to K. Moreover, Pm is the identity operator except on the part
of T m

h which has been obtained from T m−1
h by coarsening.

The operator Pm has good approximation properties. Indeed, it follows from
Lemma 2.3 and the polynomial inverse inequalities that

|φ − Pm
K φ|j,K ≤ chr−j

K |φ|r,K ∀φ ∈ Hs(T m
h ), s ≥ 0, 0 ≤ j ≤ r ≤ s.

Then, our fully discrete dynamic mesh DG methods for (1.1)-(1.3) are defined
as follows:

Fully implicit scheme. For each m = 1, . . . , M , given Um−1 ∈ V m−1
h , find Um ∈

V m
h such that(

dtU
m, vh

)
+ εbm

h (Um, vh

)
+

1
ε

cm
h (Um, vh) = 0 ∀vh ∈ V m

h ,(4.1)

with some starting value U0 ∈ V 0
h . Here dtU

m := (Um − Um−1)/τm, and bm
h (·, ·)

represents the mesh-dependent bilinear form b̂h(·, ·) or b̃h(·, ·) defined on the parti-
tion T m

h , and the mesh-dependent nonlinear-linear form cm
h (·, ·) is defined by

cm
h (u, v) = −

∑
K∈T m

h

(f(u), ∆v)K +
∑

e∈Em

〈f({u}), [∂nv]〉e(4.2)

−
∑

e∈EI
m

〈f ′({u}) {∂nu} , [v]〉e ,

where EI
m, Em denote respectively the interior and total edge sets of the partition

T m
h .

Implicit-Explicit scheme.

(4.3)
(
dtU

m, vh

)
+ εbm

h (Um, vh

)
+

1
ε

cm
h (PmUm−1, vh) = 0 ∀vh ∈ V m

h .

Remark 4.1. (a) The existence of solutions of the fully implicit scheme can be
established by using the standard fixed point argument in finite dimensional spaces
under the condition that τm is sufficiently small. As for the implicit-explicit scheme,
existence follows without such conditions given that Um is the solution of a linear
system with a positive definite matrix.

(b) We emphasize that the above fully discrete DG methods are consistent meth-
ods since (∆2u, v) = bm

h (u, v) for any v ∈ V m
h and u ∈ H4(Ω) satisfying the bound-

ary conditions in (1.2), and −(∆f(u), v) = cm
h (u, v) for any v ∈ V m

h and u ∈ H2(Ω)
satisfying the homogeneous Neumann boundary condition.

(c) Since V m
h ⊂ L2(Ω) for all m ≥ 0, the first term on the left-hand side of (4.1)

and (4.3) is well-defined although Um−1 and Um reside in different finite element
spaces.

(d) In defining the nonlinear-linear form cm
h (·, ·), we have performed integration

by parts twice after multiplying the nonlinear term −∆f(u) by a test function v. It
turns out that this step plays an important role in simplifying the error estimates
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in the next subsection. We note that this is not possible with conforming methods
without generating jump terms on the edges.

(e) Since both bm
h (·, v) and cm

h (·, v) are zero when v is constant, it follows that
both of our schemes (4.1) and (4.3) conserve mass exactly, i.e.

∫
Ω

Um dx =
∫
Ω

U0 dx
for all m = 1, . . . , M .

4.2. Convergence analysis. In this subsection we will derive optimal error es-
timates for the fully discrete dynamic mesh DG methods (4.1) and (4.3). The
strategy will be to compare the fully discrete solution Um to the “elliptic projec-
tion” um

h of u(tm) which we define as follows: For t ∈ (tm−1, tm], m = 1, . . . , M ,
uh(t) is the solution of the stationary problem

(4.4) bm
h (uh(t), v) = bm

h (u(t), v) ∀v ∈ V m
h .

It is clear that for any fixed t ∈ [0, T ], uh(t) satisfies the a priori estimates of
Theorem 3.1. We also introduce the function um+

h = limt→t+m
uh(t). If V m

h 
= V m+1
h ,

then um+
h 
= um

h . In that case, the difference [um
h ] := um+

h − um
h is called the jump

of the elliptic projection at time tm and will appear in an important way in the
error estimates.

Since the nonlinear function f is not globally Lipschitz, we will use a well-known
technique which consists in analyzing instead a modified scheme where f is replaced
by a smooth and globally Lipschitz function fL that agrees with f on a sufficiently
large interval [−L, L]. After obtaining the error estimates, we then show that
the (modified) fully discrete solutions are such that they also satisfy the original
schemes. Let L = 2 max0≤t≤T ‖u(t)‖∞(Ω). Then, there exists a function fL such
that fL, f ′

L, f ′′
L are continuous and uniformly bounded on R and

fL(x) = f(x), x ∈ [−L, L], and |fL(x) − fL(y)| ≤ CL|x − y| ∀x, y ∈ R.

With the function fL at hand we prove a result which will allow the estimation
of the nonlinear term cm

h .

Proposition 4.1. Let cm
h be defined in terms of fL. Let φ, ψ, ξ ∈ Em

h where also
∇φ ∈ L∞(Ω). Then for any δ > 0 we have

|cm
h (φ, ξ) − cm

h (ψ, ξ)| ≤ C(L)
δ

∑
K∈T m

h

(
‖φ − ψ‖2

K + h2
K‖∇(φ − ψ)‖2

K

+h4
K |φ − ψ|22,K

)
+ C(L) δ |ξ|22,h,(4.5)

where | · |2,h is defined in (3.29).

Proof.

cm
h (φ, ξ) − cm

h (ψ, ξ) = −
∑

K∈T m
h

(
fL(φ, ξ) − fL(ψ, ξ)

)
K

+
∑

e∈Em

〈
fL({φ}) − fL({ψ}), [∂nξ]

〉
e

(4.6)

+
∑

e∈EI
m

〈
f ′

L({φ}){∂nφ} − f ′
L({ψ}){∂nψ}, [ξ]

〉
e
.
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Since f ′
L is bounded, for any δ > 0 we have∣∣∣(fL(φ) − fL(ψ), ∆ξ

)
K

∣∣∣ =
∣∣∣∣∫ 1

0

(
f ′

L(ψ + s(φ − ψ))(φ − ψ)ds, ∆ξ
)

K

∣∣∣∣
≤ c(L)‖φ − ψ‖K‖∆ξ‖K ≤ c(L)

{
1
δ
‖φ − ψ‖2

K + δ‖∆ξ‖2
K

}
.(4.7)

Also, with K̃ = K+ ∪ K− and using the trace inequality (2.1), we obtain∣∣∣〈fL({φ}) − fL({ψ}), [∂nξ]
〉

e

∣∣∣
=

∣∣∣∣∫ 1

0

〈
f ′

L({ψ} + s({φ − ψ}))({φ − ψ})ds, [∂nξ]
〉

e

∣∣∣∣
≤ c(L) |{φ − ψ}|e |[∂nξ]|e(4.8)

≤ c(L)
{

1
δ

(
‖φ − ψ‖2

K̃
+ h2

K‖∇(φ − ψ)‖2
K̃

)
+ δh−1

e |[∂nξ]|2e
}

,

where ‖∇(φ − ψ)‖2
K̃

is shorthand for
∑

K=K+,K− ‖∇(φ − ψ)‖2
K . Finally, since f ′

L

and f ′′
L are bounded∣∣∣〈f ′

L({φ}){φ} − f ′
L({ψ}){ψ}, [ξ]

〉
e

∣∣∣ ≤ ∣∣∣∣∫ 1

0

〈
f ′

L({ψ}){∂n(φ − ψ)}, [ξ]
〉

e

∣∣∣∣
+

∣∣∣∣∫ 1

0

〈
f ′′

L({ψ} + s({φ − ψ})){∂nφ}({φ − ψ})ds, [ξ]
〉

e

∣∣∣∣
≤ c(L)

{
|{∂n(φ − ψ)}|e + ‖∇φ‖L∞(K̃) |{φ − ψ}|e

}
|[ξ]|e(4.9)

≤ c(L)
δ

{
h2

K‖∇(φ − ψ)‖2
K̃

+ h4
K |φ − ψ|22,K̃

+h2
K‖∇φ‖2

L∞(K̃)

(
‖φ − ψ‖2

K̃
+ h2

K‖∇(φ − ψ)‖2
K̃

)}
+C(L) δ h−3

e |[ξ]|2e .

Combining (4.7), (4.8) and (4.9) we obtain (4.5). �

As further preparation for the first main result of this paper, we define the
quantities

τ := max
1≤m≤M

τm,

h := max
1≤m≤M

hm, hm = max
K∈T m

h

hK , hmin = min
1≤m≤M

min
K∈T m

h

hK ,

r̃ = r if r ≥ 4 and r̃ = 2 if r = 3,

and assume that the solution u of (1.1)-(1.3) satisfies the following regularity as-
sumptions:

u ∈ C((0, T ) × Ω),
u, ut ∈ L2((0, T ); H3(Ω) ∩ Hs(T m

h )), s ≥ 4, m = 1, . . . , M,

utt ∈ L2((0, T ); H−2(T m
h )), m = 1, . . . , M.

Theorem 4.1. Suppose that the solution u of (1.1)-(1.3) satisfies the regularity
assumptions above and let the fully discrete approximations {Um}M

m=1 be given by
(4.1) or (4.3) with f replaced by fL and U0 chosen so that ‖u0 −U0‖ = O(hr̃

1) and
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(U0, 1) = (u0, 1). Then for τ and h sufficiently small the following estimates hold
for the error em := u(tm) − Um:

max
1≤m≤M

‖em‖ ≤ c eCT
(
τ + hr̃ + Nc max

1≤m≤M−1
‖[um

h ]‖
)
,(4.10)

( M∑
m=1

τm‖em‖2
2,h

) 1
2 ≤ c eCT

(
τ + hr−2 + Nc max

1≤m≤M−1
‖[um

h ]‖
)
,(4.11)

( M∑
m=1

τm

∑
K∈T m

h

‖∇em‖2
K

) 1
2 ≤ c eCT

(
τ + hr̃−1 + Nc max

1≤m≤M−1
‖[um

h ]‖
)
,(4.12)

where the constant C is proportional to C(L)2/ε and Nc denotes the total number of
times where V m

h 
= V m−1
h , m = 1, 2, · · · , M . Furthermore, there exists a constant

c0 such that if also h
− d

2
min

(
τ+hr̃+Nc max1≤m≤M−1 ‖[um

h ]‖
)
≤ c0, then the estimates

(4.10)-(4.12) also hold for the (unmodified) schemes (4.1) and (4.3).

Proof. Since the proof is long, we divide it into several steps.
Step 1: Derivation of the error equation.
Let um = u(tm), um

h = uh(tm), m = 1, . . . , M (u0 = u0), where u is the solution
of the differential problem (1.1)-(1.3) and uh denotes its elliptic projection defined
by (4.4). We see that

(4.13)
(
dtu

m, vh

)
+ εbm

h (um, vh

)
+

1
ε

cm
h (um, vh) =

(
Rm, vh

)
∀vh ∈ V m

h ,

where Rm = −τ−1
m

∫ tm

tm−1
(t − tm−1)utt(t) dt.

Subtracting (4.1) or (4.3) from (4.13) yields the following error equation: For
any vh ∈ V m

h ,

(4.14)
(
dte

m, vh

)
+ εbm

h (em, vh

)
+

1
ε
cm
h (um, vh) − 1

ε
cm
h (ψm, vh) =

(
Rm, vh

)
,

where ψm = Um for (4.1) and ψm = PmUm−1 for (4.3). Now introduce the
decomposition

em := ηm + ξm
h , where ηm := um − um

h , ξm
h := um

h − Um.

Then from the definition of the elliptic projection um
h , we can rewrite (4.14) as(

dtξ
m
h , vh

)
+ εbm

h (ξm
h , vh

)
+

1
ε
cm
h (um, vh) − 1

ε
cm
h (ψm, vh)(4.15)

=
(
Rm, vh

)
−

(
dtη

m, vh

)
.

Setting vh = ξm
h in (4.14) and using the coercivity of the bilinear form bm

h (·, ·) yield
1
2
dt‖ξm

h ‖2 +
τm

2
‖dtξ

m
h ‖2 + cb ε‖ξm

h ‖2
2,h ≤

(
Rm, ξm

h

)
−

(
dtη

m, ξm
h

)
+

1
ε

(
( cm

h (ψm, ξm
h ) − cm

h (um, ξm
h )

)
.(4.16)

Step 2: Estimation of the (Rm, ξm
h ) and (dtη

m, ξm
h ) terms.

Without loss of generality, we may assume that ξm
h is nonconstant over Ω. Thus,

(Rm, ξm
h ) ≤ ‖Rm‖−2,h ‖ξm

h ‖2,h ≤ cbε

8
‖ξm

h ‖2
2,h +

2
εcb

‖Rm‖2
−2,h

≤ cbε

8
‖ξm

h ‖2
2,h +

2τm

εcb
Am

0 ,(4.17)
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where

(4.18) Am
0 = ‖utt‖2(

L2(Jm;H−2(T m
h )

) =
∫ tm

tm−1

‖utt(t)‖2
−2,h dt.

Let d+
t ηm = τ−1

m (ηm − η(m−1)+). We have∣∣(dtη
m, ξm

h

)∣∣ =
(
d+

t ηm, ξm
h

)
+ τ−1

m

(
[ηm−1], ξm

h

)
≤ 1

2
‖d+

t ηm‖2 +
1
2
‖ξm

h ‖2 +
βmτ−1

m

2
‖ξm

h ‖2 +
β−1

m τ−1
m

2
‖[ηm−1]‖2,(4.19)

where βm = 0 if V m−1
h = V m

h in which case [ηm−1] = 0 and will be chosen appro-
priately if V m−1

h 
= V m
h .

Now d+
t ηm = τ−1

m

∫ tm

tm−1
ηt(t) dt, so using the a priori estimate (3.19) or (3.22),

we obtain

(4.20) ‖d+
t ηm‖2 ≤ τ−2

m

(∫ tm

tm−1

‖ηt(t)‖ dt
)2

≤ τ−1
m

∫ tm

tm−1

‖ηt(t)‖2 dt ≤ τ−1
m Am

1 ,

where

(4.21) Am
1 =

{ (
h2|hr−2ut|L2(Jm;Hr(T m

h ))

)2
, r ≥ 4,(

h
(
|hut|L2(Jm;H3(Th)) + |h2ut|L2(Jm;H4(Th))

))2
, r = 3.

Step 3: Estimation of the nonlinear terms.
For the fully implicit scheme, we use Proposition 4.1 with φ = um, ψ = Um and

ξ = ξm
h . Writing um − Um = ηm + ξm

h , from (4.5) it follows that

|cm
h (um, ξm

h ) − cm
h (Um, ξm

h )| ≤ C

δ

{
‖ηm‖2

K + h2
K‖∇ηm‖2

K + h4
K |ηm|22,K

+‖ξm
h ‖2

K + h2
K‖∇ξm

h ‖2
K + h4

K |ξm
h |22,K

}
+ Cδ|ξm

h |22,h.(4.22)

Now using the approximation properties of the elliptic projection for the terms in
ηm, specifically (3.19) and (3.20) for r ≥ 4 or (3.22) and (3.23) for r = 3, we obtain

(4.23)
∑

K∈T m
h

(
‖ηm‖2

K + h2
K‖∇ηm‖2

K + h4
K |ηm|22,K

)
≤ cAm

2 ,

where

(4.24) Am
2 =

{ (
h2|hr−2um|Hr(T m

h )

)2
, r ≥ 4,(

h
(
|hum|H3(Th) + |h2um|H4(Th)

))2
, r = 3.

For the ξm
h terms in (4.22) we use the inverse inequalities to get

(4.25)
∑

K∈T m
h

(
‖ξm

h ‖2
K + h2

K‖∇ξm
h ‖2

K + h4
K |ξm

h |22,K

)
≤ c‖ξm

h ‖2.

Using (4.23) and (4.25) in (4.22), we obtain

(4.26) |cm
h (um, ξm

h ) − cm
h (Um, ξm

h )| ≤ C(L)
δ

(
‖ξm

h ‖2 + Am
2

)
+ C(L) δ |ξm

h |22,h.

For the implicit-explicit method we use Proposition 4.1 with φ = um and ψ =
PmUm−1. Then,

φ − ψ = um − um−1 + um−1 − Pmum−1 + Pmηm−1 + Pmξm−1
h .
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Now um − um−1 =
∫ tm

tm−1
ut(s)ds, thus,

(4.27)
∑

K∈T m
h

(
‖u− um−1‖2

K + h2
K‖∇(u− um−1)‖2

K + h4
K |u− um−1|22,K

)
≤ τmAm

3 ,

where

(4.28) Am
3 =

∫ tm

tm−1

(
‖ut‖2 + |hut|2H1(T m

h ) + |h2ut|2H2(T m
h )

)
.

Also note that um−1 − Pmum−1 =
∑

K∈T m
h,C

(um−1 − Pm
K um−1)|K where T m

h,C

is the set of elements in T m
h that were obtained from T m−1

h through coarsening.
Hence, using the approximation properties of the operator Pm, we obtain∑

K∈T m
h

(
‖um−1 − Pmum−1‖2

K + h2
K‖∇(um−1 − Pmum−1)‖2

K

+h4
K |um−1 − Pmum−1|22,K

)
≤ cAm−1

4 ,(4.29)

where

(4.30) Am−1
4 = |hrum−1|2Hr(T m

h,C).

Now using the polynomial inverse inequalities and the stability of the operator Pm

in the L2 norm, we obtain∑
K∈T m

h

(
‖Pmηm−1‖2

K + h2
K‖∇Pmηm−1‖2

K + h4
K |Pmηm−1|22,K

)
≤ c

∑
K∈T m

h

‖Pmηm−1‖2
K ≤ c

∑
K∈T m

h

‖ηm−1‖2
K ≤ cAm−1

5 ,(4.31)

where

(4.32) Am−1
5 =

{ (
h2|hr−2um−1|Hr(T m

h )

)2
, r ≥ 4,(

h
(
|hum−1|H3(Th) + |h2um−1|H4(Th)

))2
, r = 3.

In the same way we obtain∑
K∈T m

h

(
‖Pmξm−1

h ‖2
K + h2

K‖∇Pmξm−1
h ‖2

K + h4
K |Pmξm−1

h |22,K

)
≤ c

∑
K∈T m

h

‖Pmξm−1
h ‖2

K ≤ c
∑

K∈T m
h

‖ξm−1
h ‖2

K .(4.33)

So gathering (4.27)-(4.33), for the implicit-explicit scheme we obtain

|cm
h (um, ξm

h ) − cm
h (PmUm−1, ξm

h )|(4.34)

≤ C(L)
δ

(
τmAm

3 + Am−1
4 + Am−1

5 + ‖ξm−1
h ‖2

)
+ C(L)δ|ξm

h |22,h.
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Step 4: Stability and convergence.
From (4.16) and using (4.17),(4.19),(4.20) and (4.26), for the fully implicit scheme

we have
1
2
dt‖ξm

h ‖2 +
τm

2
‖dtξ

m
h ‖2 + cbε‖ξm

h ‖2
2,h ≤ cbε

4
‖ξm

h ‖2
2,h +

τm

cbε
Am

0

+ τ−1
m Am

1 +
1
2
‖ξm

h ‖2 +
βmτ−1

m

2
‖ξm

h ‖2 +
β−1

m τ−1
m

2
‖[ηm−1]‖2(4.35)

+
C(L)

δ

(
‖ξm

h ‖2 + Am
2

)
+ C(L) δ|ξm

h |2,h.

We now choose δ =
cbε

4C(L)
and multiply (4.35) by 2τm to get

(4.36) (1 − αm)‖ξm
h ‖2 + Γm

1 ≤ ‖ξm−1
h ‖2 + Γm

2 , m = 1, . . . , M,

where

αm = τm + 8
C(L)2

cbε
τm + βm,

Γm
1 = ‖ξm

h − ξm−1
h ‖2 + τmcbε‖ξm

h ‖2
2,h,

Γm
2 =

2
cbε

τ2
mAm

0 + 2Am
1 + β−1

m ‖[ηm−1]‖2 + 8
C(L)2

cbε
τmAm

2 .

We assume that αm < 1. This is achieved if 0 ≤ βj ≤ 1/2 (see below) and if τm is
sufficiently small. We then replace m by � in (4.36), multiply (4.36) by

∏�−1
j=1(1−αj),

sum over � from 1 to m, and finally multiply the sum by
∏m−1

j=1 (1−αj)−1 to obtain

‖ξm
h ‖2 +

m∑
�=1

m∏
j=�

(1 − αj)−1Γ�
1 ≤

m∏
j=1

(1 − αj)−1‖ξ0
h‖2(4.37)

+
m∑

�=1

m∏
j=�

(1 − αj)−1Γ�
2.

Next, we bound the quantities
∏m

j=�(1−αj)−1. First we have (1−αj)−1 ≤ e2αj ,

the inequality holding for 0 ≤ αj < 1/2 which we assume. Also, to simplify the

notation we let κ := 1+8
C(L)2

cbε
. Let Nc denote the number of times where T m−1

h 
=

T m
h , m = 1, . . . , M . If Nc = 0, we let βj = 0. Otherwise we let βj = min{ 1

2 ,
1
Nc

}.
Hence,

(4.38)
m∏

j=�

(1 − αj)−1 ≤
m∏

j=�
βj<κτj

e4κτj

m∏
j=�

βj≥κτj

e4/Nc ≤ e4κ(tm−t�−1)e4.

Here we have used the fact that the number of times when βj 
= 0 is bounded by
Nc. Similarly, using the inequality (1 − αj)−1 ≥ eαj , which holds for 0 ≤ αj < 1,
we obtain the lower bound

(4.39)
m∏

j=�

(1 − αj)−1 ≥ eκ(tm−t�−1).
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Thus, using (4.38) and (4.39) in (4.37), we obtain

(4.40) ‖ξm
h ‖2 +

m∑
�=1

eκ(tm−t�−1)Γ�
1 ≤ e4+4κtm‖ξ0

h‖2 +
m∑

�=1

e4+4κ(tm−t�−1)Γ�
2.

Now recalling the definition of Γ�
2, for m = 1, . . . , M , we obtain

‖ξm
h ‖2 + cbε

m∑
�=1

τ�e
κ(tm−t�)‖ξ�

h‖2
2,h

≤ c ec1tm

(
‖ξ0

h‖2 + τ2 + h2r̃ +
(
Nc

)2 max
1≤�≤m

‖[u�−1
h ]‖2

)
.(4.41)

Here the constant c1 is proportional to C(L)2

cbε . The implicit-explicit scheme is treated
in a similar manner: using (4.34) instead of (4.26) the analog of (4.36) is

(4.42) (1 − τm − βm)‖ξm
h ‖2 + Γm

1 ≤
(

1 + 8
C(L)2

cbε
τm

)
‖ξm−1

h ‖2 + Γm
3 ,

with

Γm
3 =

2
cbε

τ2
mAm

0 + 2Am
1 + β−1

m ‖[ηm−1]‖2 + 8
C(L)2

cbε
(τ2

mAm
3 + τmAm−1

4 + τmAm−1
5 ),

leading again to the estimate (4.41).
Given the choice of U0, it follows from the triangle inequality and the approxi-

mation properties of the elliptic projection um
h (Theorem 3.1) that ‖ξ0

h‖ = O(hr̃).
Thus (4.10) and (4.11) follow readily from (4.41), Theorem 3.1 and the triangle
inequality. As to (4.12), from (4.41) and the interpolation inequality (3.29) (δ = 1)
it follows that

M∑
m=1

τm

∑
K∈T m

h

‖∇ξm
h ‖2

K ≤ cT max
1≤m≤M

‖ξm
h ‖2 + c

M∑
m=1

τm‖ξm
h ‖2

2,h

≤ c ec1tm

(
τ2 + h2r̃ +

(
Nc

)2 max
1≤�≤m

‖[u�−1
h ]‖2

)
.

Thus, (4.12) follows from this, (3.20) or (3.23) and the triangle inequality.
Step 5: Back to f . We have proved that the estimates (4.10)-(4.12) hold for the

solution of the modified schemes (4.1) and (4.3) obtained by replacing the function
f by the Lipschitz function fL. As the final step of the proof, we will show that
under the additional CFL condition h

− d
2

min

(
τ + hr̃ +Nc max1≤m≤M−1 ‖[um

h ]‖
)
≤ c0

the same estimates also hold for the solutions of the schemes themselves. This is a
simple consequence of the bound max0≤m≤M ‖Um‖L∞(Ω) ≤ L. which is established
next. Indeed, let Im

h denote the interpolant on T m
h induced by the local interpolant

operators IK in Lemma 2.4. Then, using the well-known L∞−L2 inverse inequality
‖χ‖L∞(Ω) ≤ ch− d

2 ‖χ‖ together with the estimate (4.10) and (2.7), for each m, 1 ≤
m ≤ M , we get

‖Um‖L∞(Ω) ≤ ‖Um − Im
h u(tm)‖L∞(Ω) + ‖Im

h u(tm) − u(tm)‖L∞(Ω)

+‖u(tm)‖L∞(Ω)

≤ ch
− 1

2
min

(
τ + hr̃ + Nc max

1≤m≤M−1
‖[um

h ]‖
)

+ch2
m|u(tm)|W 2,∞(Ω) + ‖u(tm)‖L∞(Ω).
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Thus the required L∞ bound follows from the stated conditions. The same bound
on U0 (needed only for the implicit-explicit scheme) is obtained in a similar manner.
This concludes the proof. �

Remark 4.2. (a) If V m
h = Vh, m = 1, . . . , M , then Nc = 0 and the error estimates

obtained are optimal in τ and h. In addition, ‖ξm
h ‖2,h enjoys superconvergence in

h.
(b) If V m

h 
= V
(m+1)
h , then one still has

‖[um
h ]‖ = ‖(u(tm) − um

h ) − (u(tm) − u
(m+1)+
h )‖ = O(hr),

i.e. the jump terms are optimal in h. However, one cannot say that the estimates
of Theorem 4.1 are optimal unless Nc ≤ c independently of τ . This is not an
unreasonable assumption in many practical situations.

(c) If V m
h and V m+1

h differ only slightly, e.g. if T m
h is modified in a small region

only, then it is possible to obtain an improved estimate for the jump term. For
instance, the bound ‖[um

h ]‖ = O
(
hr+d

2
)

was obtained in [30] for a standard Galerkin
formulation of the nonlinear Schrödinger equation.

(d) As expected, the constants in (4.10)-(4.12) depend exponentially on ε, more
precisely c = O(e

1
ε ). By using nonstandard error analysis techniques, this depen-

dence was reduced to a low order polynomial in [22],[23] for mixed finite element
approximations. We will present such a result and analysis for the DG method in
a forthcoming work.

To further elaborate on the issues raised in Remark 4.2, we observe that the
inability to estimate precisely ‖[um

h ]‖ in terms of the local changes in the mesh
stems from the global nature of the elliptic projection operator. Since the La-
grange interpolation operator Im

h is local to each cell, we consider modifying the
proof of Theorem 4.1 by comparing Um to Im

h um instead. This technique goes
back to Douglas and Dupont [14] and was largely forgotten after the introduction
by M. Wheeler [35] of the elliptic projection as a tool in the error estimation of
evolution equations.

Theorem 4.2. Let Im
h denote the standard nodal interpolation operator from C(Ω)

to V m
h . Then under the assumptions of Theorem 4.1 the errors em = u(tm) − Um

satisfy

max
1≤m≤M

‖em‖ +
( M∑

m=1

τm‖em‖2
2,h

) 1
2

(4.43)

≤ C
(
τ + hr−2 + Nc max

1≤m≤M−1
‖[Im

h u(tm)]‖
)
.

Proof. Since the proof is similar to that of Theorem 4.1, we only highlight the main
points. First, we introduce the new error decomposition

em = ηm + ξm
h , where now ηm := um − Im

h um, ξm
h := Im

h um − Um.

Setting vh = ξm
h = em − ηm in the error equation (4.14) yields(

dte
m, em

)
+ εbm

h (em, em
)

=
(
Rm, em − ηm

)
+

(
dte

m, ηm
)

+ εbm
h (em, ηm

)
+

1
ε

(
cm
h (ψm, ξm

h ) − cm
h (um, ξm

h )
)
,(4.44)
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with ψ as in Theorem 4.1. We now bound each term (except the second term on
the right-hand side) in (4.44) as follows:(

dte
m, em

)
=

1
2
dt‖em‖2 +

τm

2
‖dte

m‖2,(4.45)

εbm
h (em, em

)
≥ εc0‖em‖2

2,h − εc1|hrem|Hr(T m
h ),(4.46) ∣∣(Rm, em − ηm

)∣∣ ≤ εc0

8
‖em‖2

2,h + c‖ηm‖2
2,h +

c

ε
‖Rm‖2

−2,h,(4.47) ∣∣εbm
h (em, ηm

)∣∣ ≤ εc0

8
‖em‖2

2,h + cε‖ηm‖2
2,h.(4.48)

(4.45) is obvious. (4.47) is obtained as in Theorem 4.1; (4.48) expresses the conti-
nuity of the form bh while (4.46) follows from weak coercivity estimate (3.24). In
this context it is important to notice that |hrem|Hr(T m

h ) = |hrum|Hr(T m
h ).

We next bound the nonlinear terms. As in Theorem 4.1, it follows from Propo-
sition 4.1 that for the fully implicit scheme we have

|cm
h (um, ξm

h ) − cm
h (Um, ξm

h )| ≤ C(L)
δ

(
‖ξm

h ‖2 + Am
2

)
+ C(L) δ |ξm

h |22,h

≤ C(L)
δ

(
‖em‖2 + ‖ηm‖2 + Am

2

)
(4.49)

+ C(L) δ
(
|em|22,h + |ηm|22,h

)
,

where the term Am
2 now satisfies (compare with (4.24))

(4.50) Am
2 ≤ c|hrum|Hr(T m

h ), r ≥ 3.

For the implicit-explicit scheme we have

(4.51)

|cm
h (um, ξm

h ) − cm
h (PmUm−1, ξm

h )|

≤ C(L)
δ

(
τmAm

3 + Am−1
4 + Am−1

5 + ‖ξm−1
h ‖2

)
+ C(L)δ|ξm

h |22,h

≤ C(L)
δ

(
τmAm

3 + Am−1
4 + Am−1

5 + ‖em−1‖2 + ‖ηm−1‖2
)

+ C(L)δ
(
|em|22,h + |ηm|22,h

)
,

where Am
3 , Am−1

4 are exactly as in Theorem 4.1 and satisfy (4.28) and (4.30)
respectively, while Am−1

h satisfies

(4.52) Am−1
5 ≤ |hrum−1|Hr(T m−1

h ).

Now multiplying the error equation (4.44) by 2τm, from (4.45)-(4.48) and (4.49)
with δ =

εc0

4C(L)
, for the fully implicit scheme we obtain

(4.53) ‖em‖2 + Γm
1 ≤ ‖em−1‖2 + τmα‖em‖2 + Γm

2 + 2τm(dte
m, ηm),

where

α = 8
C(L)2

cbε
,

Γm
1 = ‖em − em−1‖2 + τmc0ε‖em‖2

2,h,

Γm
2 = cτm

C(L)2

c0ε
‖ηm‖2

2,h + cτmε|hrum|2Hr(T m
h ) +

c

ε
τ2
mAm

0 + cτm
C(L)2

c0ε
Am

2 ,
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with Am
0 given by (4.18). Now replacing m in (4.53) by � and summing over it from

1 to m = 1, . . . , M gives

(4.54) ‖em‖2 +
m∑

�=1

Γ�
1 ≤ ‖e0‖2 + α

m∑
�=1

τ�‖e�‖2 +
m∑

�=1

Γ�
2 + 2

m∑
�=1

τ�(dte
�, η�).

We next consider the last term in (4.54). To the end, we recall the following discrete
integration by parts formula:

m∑
�=1

τ�

(
dte

�, η�
)

= −
m∑

�=1

τ�

(
e�−1, dtη

�
)

+
(
em, ηm

)
−

(
e0, η0

)
.

As seen before, τldtη
� = η� − η(�−1)+ + [η�−1], thus,∣∣τ�

(
e�−1, dtη

�
)∣∣ ≤ 1

2

(
τ�‖e�−1‖2 + τ−1

� ‖η� − η(�−1)+‖2(4.55)

+β�‖e�−1‖2 + β−1
� ‖[η�−1]‖2

)
.

Now η� − η(�−1)+ =
∫ t�

t�−1
ηt dt, thus,

(4.56) ‖η� − η(�−1)+‖2 ≤ τ�

∫ t�

t�−1

|hrut|2Hr(T m
h ) dt.

Furthermore,

(4.57)
∣∣(em, ηm) + (e0, η0)

∣∣ ≤ 1
4
‖em‖2 + ‖ηm‖2 +

1
2
‖e0‖2 +

1
2
‖η0‖2.

Using these estimates in (4.54), we obtain

(1 − 2ατm)‖em‖2 +
m∑

�=1

Γ�
1 ≤ c

(
‖e0‖2 + ‖η0‖2 + ‖ηm‖2

)
+

m−1∑
�=1

γ�‖e�‖2

+
m∑

�=1

(
Γ�

2 + β−1
m ‖[η�−1]‖2 + τ�

∫ t�

t�−1

|hrut|2Hr(T m
h ) dt

)
,(4.58)

where γ� = (2α + 1)τ� + β�. Note that ‖e0‖2, ‖η0‖2, ‖ηm‖2 are O(hr) terms while∑m
�=1 Γ�

2 = O(τ2 + hr−2). Thus, a discrete version of Gronwall’s inequality readily
implies (4.43). In particular, the choice of the βm terms and their contribution
to the error are as in Theorem 4.1. Furthermore, the implicit-explicit scheme is
handled in the same, and so is the the transition from fL to f . The details are
omitted. The proof is now complete. �

5. Concluding remarks

In this paper we have presented fully discrete approximations for the Cahn-
Hilliard equation arising from phase transitions in materials science. The discon-
tinuous Galerkin method is used in space, while the time stepping is effected by
the backward Euler method. The schemes allow changing the spatial mesh as well
as the time step size at every time level. One of the methods analyzed is of an
implicit-explicit type, whereby the nonlinear term is rendered explicit via a simple
extrapolation from the previous level. While yielding the same convergence rates
as the fully implicit version, also analyzed in this paper, this method offers the
advantage of solving only one linear system at a given time level. Furthermore, the
coefficient matrix remains the same unless the spatial mesh is changed. Energy as
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well as L∞(L2) a priori estimates are shown. These estimates are optimal provided
that the number of times the spatial mesh is changed is bounded independently of
the total number of time steps taken.

The extension of the analysis to higher order methods in time using multistep
or implicit Runge-Kutta methods should be rather straightforward. There are
other more interesting directions in which this work might be further pursued.
Indeed, the constant appearing in the error estimates depends exponentially on the
final time and also on ε−1. This is unfortunately, with very few exceptions, the
state of the art in the error analysis of nonlinear evolution equations. In [23], this
dependence was shown to be of a polynomial, rather than exponential, type for a
mixed finite element approximation using continuous elements. Such a result in
this context would also be quite significant since there is great interest in the sharp
interface limit (as ε → 0) of the Cahn-Hilliard equation which is known as the
Hele-Shaw problem. Another worthwhile endeavor would be one that would fully
take advantage of the flexibility offered by the discontinuous Galerkin method, to
obtain a posteriori error estimates and to construct adaptive algorithms based on
them.
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