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PRIMITIVE CENTRAL IDEMPOTENTS
OF FINITE GROUP RINGS OF SYMMETRIC GROUPS

HARALD MEYER

Abstract. Let p be a prime. We denote by Sn the symmetric group of degree
n, by An the alternating group of degree n and by Fp the field with p elements.
An important concept of modular representation theory of a finite group G is
the notion of a block. The blocks are in one-to-one correspondence with block
idempotents, which are the primitive central idempotents of the group ring
FqG, where q is a prime power. Here, we describe a new method to compute
the primitive central idempotents of FqG for arbitrary prime powers q and
arbitrary finite groups G. For the group rings FpSn of the symmetric group,
we show how to derive the primitive central idempotents of FpSn−p from
the idempotents of FpSn. Improving the theorem of Osima for symmetric
groups we exhibit a new subalgebra of FpSn which contains the primitive
central idempotents. The described results are most efficient for p = 2. In an
appendix we display all primitive central idempotents of F2Sn and F4An for
n ≤ 50 which we computed by this method.

Introduction and notation

Let p be a prime, let q = ps for some s ∈ N and let G be a finite group. For
the finite field with q elements we write Fq, and FqG denotes the group ring of G
over Fq. We use Sn and An for the symmetric and alternating group of degree n,
respectively. We write Zm for a cyclic group of order m, and Zm �Si for the wreath
product of this group with Si. We use CG(g) for the centralizer of g ∈ G, and
CG(U) for the centralizer of U ⊆ G. The centre of a group ring FG is denoted
by Z(FG) and the radical of the centre by Rad(Z(FG)). We use IrrG for the set
of irreducible characters of G defined over the field C of complex numbers and we
write ord(g) for the order of an element g ∈ G. The symbols Z and N denote the
integers and the natural numbers, respectively.

A big part of modular representation theory deals with blocks. There are several
possibilities to characterize blocks, for instance by the block idempotents, i.e. the
primitive central idempotents of FqG. Therefore it is important to find methods to
compute the primitive central idempotents.

The usual method to compute primitive central idempotents is described in [8],
Lemma 16.6. For this method it is necessary to compute the character table of G
over the field C of complex numbers first. For the symmetric group S50 it is known
that there are 204226 characters over C, but there are only 5 primitive central
idempotents of F2S50. Due to the vast amount of data it is not possible to compute
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the character table of S50, but it is possible to compute the 5 primitive central
idempotents of F2S50 using the algorithm described in [12], 2.21. Thus we use the
first part to give a description of this algorithm, which works for all finite group
rings.

The specialization to symmetric and alternating groups allows us to speed up the
algorithm. We do this by proving theoretical results about the group rings FpSn

and their primitive central idempotents. To state the results we need the following
notation: It is well known that the conjugacy classes of Sn can be indexed by the
partitions of n. We write µ = 1α1 , ..., nαn for the partition

µ = (1, ..., 1︸ ︷︷ ︸
α1

, 2, ..., 2︸ ︷︷ ︸
α2

, ...)

of n. The fact that µ is a partition of n is abbreviated by µ � n. Cµ is the
conjugacy class of Sn belonging to µ, and C+

µ denotes the class sum of Cµ in FpSn.
The n-tuple of multiplicities (α1, ..., αn) appearing in µ is called the cycle type of
the element σ ∈ Cµ. We define

W (µ) :=
n∑

i=2

i · αi

and call it the essential weight of the partition µ. For our purpose it is convenient
to ignore the parts equal to 1 in the partition, because an element like (1, 2, 3) ∈ S3

is also an element of bigger symmetric groups. So we usually write µ = 2α2 , ..., nαn

for a partition and the corresponding class Cµ is a class of an arbitrary symmetric
group Sn with n ≥ W (µ) depending on the context, i.e. C2 denotes the conjugacy
class of transpositions in every symmetric group Sn, n ≥ 2. If we want to emphasize
that Cµ is a class of a certain symmetric group Sn we write Cµ|Sn

and also C+
µ |Sn

for the class sum in FpSn. The class multiplication coefficients cλµν ∈ Fp are defined
via

C+
λ C+

µ =
∑
ν�n

cλµνC+
ν .

Here, the cλµν depend on n, but to keep notation simple we usually suppress the n.
In cases of ambiguity we write cλµν |Sn

for the coefficient of C+
ν |Sn

in C+
λ |Sn

·C+
µ |Sn

.
For an element

B =
∑
g∈G

agg

of a group ring FqG the support is the set supp B := {g ∈ G | ag �= 0}. The theorem
of Osima mentioned above states that the support of primitive central idempotents
of FqG consists of p′-elements, i.e. elements of an order which is not divisible by p.
Usually these elements and the corresponding class sums are called p-regular, but
in symmetric groups this expression is used for partitions µ = 1α1 , ..., nαn , where
αi < p for i = 1, ..., n. Thus we avoid using this expression for the classes and
use the term ‘p′-conjugacy class’ instead for the conjugacy classes of p′-elements.
The corresponding partitions are usually called p-class regular, but we prefer to call
them p′-partitions. Furthermore we define p-near-regular partitions and conjugacy
classes: µ = 1α1 , ..., nαn is called p-near-regular, when αi < p for i = 2, ..., n and
the corresponding conjugacy classes are the p-near-regular classes. A theorem of
Murray ([14], Corollary 5) states that the vector space

ZG
p′ := 〈C+ | C is p′ − conjugacy class of G〉
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is a subalgebra of the centre of FqG, if G is a symmetric group. We also use the
vector spaces

ZSn
p−reg := 〈C+

µ | µ is p − regular partition of n〉
and

ZSn
p−nreg := 〈C+ | C is p − near-regular conjugacy class of Sn〉.

Now we can state our main theorems. Section 2 is devoted to proving the following
result.

Theorem 1. Let m < n and m ≡ n mod p. Let δ be the homomorphism of vector
spaces defined by

δ : ZSn

p′ −→ ZSm

p′ , δ(C+
µ ) :=

{
C+

µ |Sm
, if W (µ) ≤ m,

0, if W (µ) > m.

Then δ is a homomorphism of algebras.
Let e1, ..., er denote the primitive central idempotents of FpSn. Then δ has the

following properties:
1) If δ(ei) �= 0, then δ(ei) is a primitive central idempotent of FpSm.
2) For every primitive central idempotent f of FpSm there is an i ∈ {1, ..., r}

such that f = δ(ei).

We remark that our Theorem 1 is related to Theorem 1.6 of [16].
In Section 3 we prove the following two theorems:

Theorem 2. ZSn

p′ ∩ ZSn
p−nreg is an algebra.

Theorem 3. The primitive central idempotents of FpSn are contained in ZSn

p′ ∩
ZSn

p−nreg, i.e. the support supp ei of a primitive central idempotent ei of FpSn con-
sists of p-near-regular p′-conjugacy classes.

These theorems help to speed up the program, so we were able to compute the
primitive central idempotents of F2Sn and F4An for n ≤ 50 using the computer
algebra package GAP [2] and a program written in SYMMETRICA [10] provided
by A. Kohnert. The Appendix contains the computational results.

We note that there is a theoretical result which provides one of the primitive
central idempotents of the group rings F2Sn, if n is of the form n = m(m+1)

2 with
an integer m. R. Gow proves in Theorem 3 of [3] that in this case one of the primitive
central idempotents of F2Sn has the form e = C+, where C is the conjugacy class
of elements corresponding to the partition (2m − 1, 2m − 5, 2m − 9, ...) of n. We
don’t use this result for our computations for symmetric groups, but we use it to
determine the primitive central idempotents of F4An, because Gow also proves that
this idempotent is the only idempotent of F2Sn which splits in F4An.

1. Computation of primitive central idempotents

of finite group rings

Let F be a splitting field for G of characteristic p > 0. We already mentioned that
the usual method for computing the primitive central idempotents of a group ring
FG uses the character table of G over C. But what if we do not know the character
table? Can we compute the idempotents within FG? The first observation is that
we can assume F to be finite because every group has a finite splitting field of
characteristic p according to a theorem of Brauer ([6], Theorem VII.2.6). Now if
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FG is finite and B ∈ Z(FG), then the sequence (Bn)n∈N has to be periodic, i.e.
there exist r, m ∈ N such that Br = Br+m. This idea can be used to construct
central idempotents and leads to Algorithm 7, which is already described in [12].
The following theorem ([12], Satz 2.1) is the foundation of the algorithm. As we
will need it in section 2, we prove it here again. Now let F be an arbitrary finite
field of characteristic p > 0 and let F denote the algebraic closure of F . We will
mention it explicitly if we assume F to be a splitting field for G or for Z(FG).

Theorem 4. Let B ∈ Z(FG) and let m ∈ N be such that Br = Br+m, for all
r ∈ N suitable large. Choose r = l · m, where l �= 0 and suppose that m = ps · d,
where s ≥ 0 and p � d. Let ζ ∈ F be a primitive d-th root of unity and put

fk := d−1
d−1∑
i=0

(ζk)iBr+ps·i

for 0 ≤ k ≤ d− 1. Then fk = 0 or fk is a central idempotent of F (ζk)G, the group
ring of G over the field F (ζk). For k �= n we have fkfn = 0 in F (ζ)G. If Br �= 0,
then there is a k such that fk �= 0 and Br is a central idempotent itself.

Proof. For 0 ≤ k ≤ d − 1 we define

Dk :=
d−1∑
i=0

(ζk)i · Br+ps·i.

Now let w := ζk. Then we have wd = 1 and get

wjBr+ps·j · Dk =
d−1∑
i=0

wi+jBr+lm+ps·(i+j) = Dk

using the periodicity of the sequence (Bn)n∈N. Hence we obtain D2
k = d · Dk, so

fk = d−1Dk is 0 or a central idempotent in F (ζk)G.
If 0 ≤ n ≤ d − 1 and n �= k, then

DkDn =
d−1∑
i=0

(ζk)i(ζn)−i
[
(ζn)iBr+ps·iDn

]
= Dn ·

d−1∑
i=0

(ζk−n)i = 0.

Therefore the fk with fk �= 0 are orthogonal idempotents.
Finally, if Br �= 0, then

d−1∑
k=0

Dk = dBr �= 0,

i.e. there is an fk �= 0. As the fk are orthogonal we obtain

(Br)2 =

(
d−1∑
k=0

fk

)2

=
d−1∑
k=0

f2
k =

d−1∑
k=0

fk = Br.

A similar computation leads to the following corollary ([12], 2.3):

Corollary 5. Let e1, ..., er be the primitive central idempotents of FG. Then the
span

〈e1, ..., er〉F = {B ∈ Z(FG) | B|F | = B}.

The following theorem (see [12], Satz 2.17) is the foundation for our algorithm:
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Theorem 6. Let F be a splitting field for Z(FG). Let C1, ..., Ck be the p′-conjugacy
classes of G and let e1, ..., er be the primitive central idempotents of FG. Then there
is an n0 ∈ N such that

〈e1, ..., er〉F =
〈
(C+

1 )pn

, ..., (C+
k )pn

〉
F

for all n ≥ n0.

Proof. Let Ck+1, ..., Cc be the p-singular conjugacy classes of G, i.e. the classes of
elements whose order is divisible by p. As the class sums C+

1 , ..., C+
c form a basis

of Z(FG), we get

〈e1, ..., er〉F =
〈
(C+

1 )pn

, ..., (C+
c )pn

〉
F

for all n ∈ N suitable large by [11], p. 434 (an elementary proof can be found in
[12], Satz 2.11). According to the theorem of Osima ([8], Theorem 23.6) we know
〈e1, ..., er〉F ⊂ 〈C+

1 , ..., C+
k 〉F . Now let n0 be a multiple of |F |, which is suitably

large. Then
ϕ : Z(FG) −→ Z(FG), B �−→ Bpn0

is a homomorphism of vector spaces, hence we obtain

〈e1, ..., er〉F = ϕ(〈e1, ..., er〉F ) ⊂
〈
(C+

1 )pn0
, ..., (C+

k )pn0
〉

F

⊂
〈
(C+

1 )pn0
, ..., (C+

c )pn0
〉

F
= 〈e1, ..., er〉.

Thus we get our statement for all n ≥ n0.

This leads to the following algorithm for computing primitive central idempo-
tents of finite group rings, which can be found in [12], 2.21. But the algorithm in
[12] contains some minor gaps, which we fill here.

Algorithm 7. Let G be a finite group and p a prime. Let F be a splitting field for
Z(FG) with char F = p. The computation of the primitve central idempotents of
FG can be accomplished by the following steps:

1) Compute the p′-conjugacy classes C1, ..., Cb of G.
2) For i = 1, ..., b, do the following: By computing successive powers of the

class sum C+
i , determine the minimal integers ri, mi ≥ 1 such that (C+

i )ri =
(C+

i )ri+mi , and ri is a multiple of mi. Write mi = psi · di, where si ≥ 0
and p � di.

3) Compute the idempotents

f
(i)
k := d−1

i

di−1∑
j=0

(ζk
i )j(C+

i )ri+psi ·j

for 1 ≤ i < b and 0 ≤ k ≤ di − 1, where ζi denotes a primitive di-th root of
unity in a suitable extension of the field Fp.

4) Choose a basis f1, ..., fr of the mostly linear dependent set{
f

(i)
k | 1 ≤ i ≤ b, 0 ≤ k ≤ di − 1

}
.

If r = 1, then f1 = 1 is the only central idempotent of FG and the compu-
tation is finished. For r > 1 we have to accomplish one more step:

5) For i = 1, ..., r − 1 do:
{ For j = i + 1, ..., r do:
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{ Set w := fi.
If fi · fj = fj then

{ set fi := fj, fj := w, w := fi. }
else

{ If fi · fj �= 0 then { replace fi with fi · fj. }
If dim〈f1, ..., fr〉 < r then

{ k := j.
While dim〈f1, ..., fk−1, w, fk+1, ..., fr〉 < r do

{ k := k + 1. }
fk := w.

}
}

}
For j = i + 1, ..., r do:

{ If fi · fj = fi then:

{ If 1−
(

i−1∑
k=1

fk

)
−fj �= 0 then replace fj with 1−

(
i−1∑
k=1

fk

)
−fj

else replace fj with 1 −
i∑

k=1

fk. }

}
}

The elements f1, ..., fr are the primitive central idempotents of FG.

Remark. 1) It is not necessary to compute a splitting field for Z(FG) in ad-
vance, as the ζi arise during the computation. In general, Fp(ζ1, ..., ζk) is
not a splitting field for G, but it is a splitting field for the centre Z(FG) of
the group ring FG: Indeed it is the minimal splitting field of characteristic
p for Z(FG). A proof can be found in [12], Satz 3.16.

2) Further knowledge about the group ring FG can be used to speed up the
program. For example an automorphism α of Z(FG) can be applied in step
2 of the algorithm to deduce the powers of α(C+) very fast, if the powers
of C+ are already computed.

This remark together with a previous lemma and the decomposition

Z(FG) = 〈f1, ..., fr〉F ⊕ Rad(Z(FG))

of Z(FG) as a vector space ([8], Lemma 25.1) allows us to compute generators of
Rad(Z(FG)) as a vector space:

Theorem 8. Let F be a finite splitting field of characteristic p for Z(FG) with
|F | = pn. Let C1, ..., Cc be the conjugacy classes of G (here we need them all).
Then

Rad(Z(FG)) =
〈
C+

1 − (C+
1 )pn

, ..., C+
c − (C+

c )pn
〉

(as a vector space).

Proof. Let e1, ..., er be the primitive central idempotents of FG. Let i ∈ {1, ..., c}.
According to [11], p. 434, there is an m ∈ N with (C+

i )pm ∈ 〈e1, ..., er〉. Using
Corollary 5 we obtain(

C+
i − (C+

i )pn
)pm

= (C+
i )pm

−
(
(C+

i )pm
)pn

= (C+
i )pm

− (C+
i )pm

= 0

and thus C+
i − (C+

i )pn ∈ Rad(Z(FG)).
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Now we consider the map

ϕ : Z(FG) −→ Z(FG), ϕ(x) := x − xpn

.

ϕ is a homomorphism of vector spaces. According to Corollary 5 the kernel is
〈e1, ..., er〉. The image is a subset of Rad(Z(FG)). By [8], Lemma 25.1, we obtain
our statement.

Remark 9. We keep the notation of the last theorem. The proof of the preceding
theorem also provides a method to compute the projection of an arbitrary element
B ∈ Z(FG) to the vector spaces 〈e1, ..., er〉F and Rad(Z(FG)): Choose m = k · n,
such that Bpm ∈ 〈e1, ..., er〉 (this is true if pm > cpn

). Then B−Bpm ∈ Rad(Z(FG))
and Bpm

and B − Bpm

are the projections of B to 〈e1, ..., er〉F and Rad(Z(FG)),
respectively.

In the following sections we will see how we can improve the algorithm for sym-
metric groups.

2. Connections between primitive central idempotents

of FpSn for different n

The methods developed in the first section work for all finite groups and fields
of characteristic p, even in the case where p � |G|. But to apply the algorithm
successfully to bigger symmetric groups we have to speed up the algorithm. In the
algorithm we have to multiply sums of class sums. How can we do that quickly? If
C1, ..., Cm are the conjugacy classes of Sn, then we get

C+
i C+

j =
m∑

k=1

cijkC+
k

with coefficients cijk ∈ Fp. According to [4], Theorem 4.6, we know that

cijk ≡ |Ci||Cj |
|Sn|

∑
χ∈Irr Sn

χ(gi)χ(gj)
χ(g−1

k )
χ(1)

mod p,

where gi ∈ Ci for i ∈ {1, ..., m}. So we can compute the class multiplication coef-
ficients cijk, if we know some parts of the character table of Sn. Character values
for symmetric groups can be computed very fast with the Murnaghan-Nakayama
formula, see [7], 2.4.7, even for S50. But the number of class multiplication coef-
ficients we have to compute must not be too big, if we want to get results for a
group like S50. So we need theoretical results to reduce the work. A first result in
this direction is a theorem of Murray ([14], Corollary 5): ZSn

p′ is an algebra. So if
we multiply class sums of p′-conjugacy classes we only need to compute the coeffi-
cients of p′-class sums. Due to Algorithm 7 we only need to consider p′-conjugacy
classes, so we can use this result for all our computations. Here and in the following
sections we will prove some more theorems which allow us to reduce the number of
coefficients we need to compute.

The computations are simplified by the fact that Fp is a splitting field for Sn

according to [7], 2.1.12, so we can choose F = Fp.
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Lemma 10. Let n > p and let δn be the homomorphism of vector spaces defined
by

δn : ZSn

p′ −→ Z
Sn−p

p′ , C+
µ �−→

{
C+

µ |Sn−p
, if W (µ) ≤ n − p,

0, if W (µ) > n − p.

Then δn is a homomorphism of algebras.

Proof. We write Sn−p for the subgroup of Sn containing the permutations, which
fix the numbers n − p + 1, ..., n. Let τ := (n − p + 1, ..., n) ∈ Sn. Then for the
centralizer we get CSn

(τ ) = Sn−p × 〈τ 〉. Now let

Br〈τ〉 : Z(FpSn) −→ Z(Fp CSn
(τ ))

be the Brauer-homomorphism (see [15], Theorem 4.9). Br〈τ〉 is a homomorphism
of algebras with Br〈τ〉(C+

µ ) = (Cµ ∩ CSn
(τ ))+. Thus δn is the restriction of Br〈τ〉

to ZSn

p′ , and is therefore a homomorphism of algebras, by [14, Corollary 5].

Remark 11. If we define the homomorphism δn of the preceding lemma for Z(FpSn)
we usually do not get a homomorphism of algebras: If Cτ denotes the conjugacy
class of τ in Sn, then Cτ ∩CSn

(τ ) is not contained in the subgroup Sn−p of CSn
(τ )

and the same problem occurs for conjugacy classes of partitions containing p. For
example for the conjugacy class C2 of transpositions it is easy to see that (C+

2 )2 =
C+

1 + C+
3 for n ≡ 2, 3 mod 4 and (C+

2 )2 = C+
3 for n ≡ 0, 1 mod 4 in F2Sn, n ≥ 3.

Now we can prove our Theorem 1.

Proof of Theorem 1. We keep the notation of Lemma 10. If m = n−k ·p, then δ is
the composition of δn, δn−p, ..., δn−(k−1)p and thus is a homomorphism of algebras.
Therefore {δ(e1), ..., δ(er)}\{0} is a set of central orthogonal idempotents. We prove
the remaining statements in several steps:

1) For every central idempotent f ∈ Z(FpSm) there is a central idempotent
e ∈ Z(FpSn) with δ(e) = f :

We define a homomorphism ∆ of vector spaces by

∆ : Z(FpSm) −→ Z(FpSn), C+
µ |Sm

�→ C+
µ |Sn

and put F := ∆(f). Now let r, m ∈ N such that F r = F r+m and r = l · m
for an l ∈ N. Let m = ps · d with p � d. We set

e := d−1
d−1∑
i=0

F r+ps·i.

Then e is 0 or a central idempotent of FpSn by Theorem 4. We obtain

δ(e) = d−1
d−1∑
i=0

δ(F )r+ps·i = d−1
d−1∑
i=0

f = f �= 0,

so e �= 0 and δ(e) = f .
2) For every primitive central idempotent f ∈ Z(FpSm) there is i ∈ {1, ..., r}

with f = δ(ei):
By 1) there exists a central idempotent e of Z(FpSn) with δ(e) = f . Now

let e =
k∑

i=1

ei be the decomposition of e in primitive central idempotents of
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Z(FpSn). Then we have

f = δ(e) =
k∑

i=1

δ(ei),

and as δ is a homomorphism of algebras, the δ(ei) are 0 or central orthogonal
idempotents of Z(FpSm). But f is primitive, therefore there is an i0 ∈
{1, ..., k} such that δ(ei0) �= 0, δ(ej) = 0 for j �= i0 and we obtain f = δ(ei0).

3) If e ∈ {e1, ..., er} and δ(e) = f �= 0, then f is a primitive central idempotent
of FpSm:

We assume that f is not primitive as a central idempotent. Then let

f =
k∑

i=1

fi be a decomposition of f in primitive central idempotents. By 2)

there are primitive central idempotents e1, ..., ek of FpSn with δ(ei) = fi.
As δ(e) = f �= f1 = δ(e1) we have e �= e1. Now both e and e1 are different
primitive central idempotents of FpSn, so they are orthogonal. Hence we
obtain

0 = δ(e · e1) = δ(e) · δ(e1) = f · f1 = f1,

a contradiction.

Theorem 1 allows us to write down the primitive central idempotents of FpSn

in a very compact way: For example, it will do to write down the primitive central
idempotents of F2S50 and F2S49 to know the primitive central idempotents of F2Sn

for all n ≤ 50. Furthermore our computations in connection with Theorem 1 lead
to statements like the following:

C11 �∈ supp e for all primitive central idempotents e of F2Sn, n ∈ N,

because C11 is neither included in the support of the primitive central idempotents
of F2S11 nor in the according support in F2S12.

For the computation of idempotents the most important part of Theorem 1 is
the fact that δ is a homomorphism of algebras because this provides the following
corollary:

Corollary 12. Let λ, µ, ν be p′-partitions of n with W (µ) ≥ W (λ). Let m ≡ n
mod p be minimal with W (ν) ≤ m. Then for the class multiplication coefficient
cλµν |Sn

we have

cλµν |Sn
=

{
0, if W (ν) ≤ W (µ) − p or W (ν) > W (µ) + W (λ),

cλµν |Sm
, if W (µ) − p < W (ν) ≤ W (µ) + W (λ).

Proof. If π ∈ Cλ and σ ∈ Cµ, then π moves W (λ) points and σ moves W (µ) points,
so πσ moves at most W (λ) + W (µ) points. Thus if W (ν) > W (λ) + W (µ), then
obviously cλµν |Sn

= 0. Now let W (ν) ≤ W (µ) − p and let δn be as in Lemma
10. As δn is a homomorphism and δn(C+

µ ) = 0, but δn(C+
ν ) �= 0, it follows that

cλµν |Sn
= 0, in this case. The remaining statement is clear by applying δn.

3. A further subalgebra of FpSn containing the idempotents

To prove Theorem 2 we need the following version of a lemma proved in [1],
which is just a formulation of the statement that the Brauer homomorphism is
an algebra homomorphism. Additionally it is a formulation of another theorem
of Osima ([15, Theorem 4.1]): If C is a conjugacy class of G and g ∈ C, then a
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Sylow-p-subgroup of CG(g) is called a defect group of C. If ZD(FG) denotes the
F -span of all class sums C+ such that the defect groups of C are contained in a
G-conjugate of a certain p-subgroup D of G, then ZD(FG) is an ideal of Z(FG).
But Lemma 13 is more detailed specifying elements and making a statement about
the Sylow-p-subgroups of these elements. In the proof of Theorem 2 we apply this
more detailed version of the theorem of Osima.

Lemma 13. Let G be a finite group. Let C1, ..., Cs be the conjugacy classes of G
and let C+

1 , ..., C+
s be the corresponding class sums in ZG. Now let

C+
i C+

j =
s∑

k=1

aijkC+
k .

If aijk �≡ 0 mod p, then for every element z ∈ Ck and every Sylow-p-subgroup Pz

of CG(z) there are elements x ∈ Ci and y ∈ Cj as well as Sylow-p-subgroups Px of
CG(x) and Py of CG(y), such that xy = z and Pz ≤ Px ∩ Py.

Proof. See the proof of [1], Lemma 87.9.

Proof of Theorem 2. ZSn

p′ is an algebra by Corollary 5 of [14]. Now let (a1, ..., an)
and (b1, ..., bn) be cycle types of p-near-regular p′-partitions σ and τ . We have to
show that Cπ �⊂ suppC+

σ C+
τ for p′-classes Cπ, which are not p-near-regular.

Let (c1, ..., cn) be the cycle type of π. If c1 ≥ p we can apply the Brauer-homo-
morphism and get

Br〈(1,...,p)〉(C+
π ) = C+

π′ �= 0,

where π′ has cycle type (c1 − p, c2, ..., cn−p). Thus we get cστπ|Sn
= cσ′τ ′π′ |Sn−p

,
where C+

σ′ = Br〈(1,...,p)〉(C+
σ ) and analogously for C+

τ ′ . Moreover, Cσ′ and Cτ ′ are
p-near-regular p′-classes. Therefore we can assume that c1 < p.

Now let z ∈ Cπ and let x ∈ Cσ, y ∈ Cτ such that xy = z. It is well known that

(∗) CSn
(x) ∼= Sa1 × (Z2 � Sa2) × ... × (Zn � San

)

and |Zk � Sk| = ak! · kak ([17], 3.2.13). As ak < p for k ≥ 2 and ak = 0 for p | k we
obtain that p divides |CSn

(x)| if and only if a1 ≥ p.
Hence the Sylow-p-subgroup of CSn

(x) is a subgroup of the subgroup isomorphic
to Sa1 . This subgroup is the symmetric group on the set of numbers which are fixed
by x. The same is true for y. Now let Px, Py be Sylow-p-subgroups of CSn

(x),
CSn

(y), respectively and let P := Px ∩ Py. Then all numbers which are moved by
an element of P are fixed by x and y and therefore are fixed by z. But c1 < p, so
z fixes less than p numbers, i.e. no permutation of the fixed points of z has order
p. Thus we obtain Px ∩ Py = 〈1〉.

If Pz is a Sylow-p-subgroup of CSn
(z), then |Pz| > 1 because there is an i ≥ 2

such that ci ≥ p. Thus we obtain Pz �⊂ Px ∩Py for all x ∈ Cσ, y ∈ Cτ with xy = z.
By Lemma 13 we get Cπ �⊂ supp(C+

σ C+
τ ).

Table 1 shows the dimension of Up := ZSn

p′ ∩ ZSn
p−nreg for p = 2, 3 in comparison

with the dimensions of Z(FpSn) and ZSn

p′ .
The following remark is a special case of a more general theorem of Osima already

mentioned above ([15, Theorem 4.1]).

Remark 14. ZSn

p′ ∩ ZSn
p−reg is an algebra.

For the rest of this section we fix the following notation:
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n dim Z(FpSn) dim ZSn

2′ dim U2 dimZSn

3′ dimU3

10 42 10 7 22 18
20 627 64 30 202 129
30 5604 296 95 1225 622
40 37338 1113 260 5834 2405
50 204226 3658 632 23603 8008

Table 1.

Notation 15. By σ = (a1, ..., an) we denote the cycle type of a p′-partition with
ai ≥ p for an i ≥ 2, aj < p for j < i. Cσ denotes the conjugacy class of elements of
cycle type σ in Sn. Thus the p′-partition σ is not p-regular, but elements in Cσ fix
at most p − 1 symbols in {1, ..., n}.

The idea of the proof of Theorem 3 is the following: If the support of an idem-
potent e contains Cσ, then the support also contains supp(C+

σ )p. The support of
(C+

σ )p can contain classes Cµ, where µ is not p-regular. But if (b1, ..., bn) is the
cycle type of such a class Cµ and if bk ≥ p, then k > i, i.e. the position where
the ‘irregularity’ occurs, grows. So a class Cσ in the support of e with a ‘minimal
position of irregularity’ is not contained in the support of ep = e, a contradiction.

For the proof of Theorem 3 we first collect the necessary information about Cσ

in several lemmas. We start with a lemma about the centralizers of an element of
cycle type σ.

Lemma 16. Let x ∈ Cσ and let y ∈ CSn
(x) have order p. Then y is a product of

i or more commuting p-cycles.

Proof. As y centralizes x, it permutes the orbits of x on {1, ..., n}. Let O be one
orbit of x which is not fixed by y. Then O, yO, ..., yp−1O are distinct orbits of x.
Thus the cycle decomposition of x consists of at least p cycles of length |O|. Our
choice of x gives |O| ≥ i, and y is a product of at least |O| commuting p-cycles.

Corollary 17. Let σ be as in Notation 15, let Cµ ⊂ Sn be a p′-conjugacy class
and let λ = (c1, ..., cn) be the cycle type of a p′-partition with Cλ ⊂ supp(C+

µ C+
σ ).

Then cj < p for 2 ≤ j < i.

Proof. Let x ∈ Cµ, y ∈ Cσ and z ∈ Cλ. Suppose that z contains at least p
commuting j0-cycles in its cycle decomposition, where j0 < i. Then an element
permuting p of the orbits of z on {1, ..., n} of length j0 is an element in CSn

(z),
and its cycle decomposition consists of j0 commuting p-cycles. Thus every Sylow-
p-subgroup Pz of CSn

(z) contains an element of this cycle type. But CSn
(x) does

not contain an element of such a cycle type according to Lemma 16. Hence if Px,
Py are Sylow-p-subgroups of CSn

(x), CSn
(y), respectively, then Pz �⊂ Px ∩ Py and

by Lemma 13 we obtain Cλ �⊂ supp(C+
µ C+

λ ).

We remark that we just proved that a defect group of Cλ is not contained in a
defect group of Cµ up to conjugacy, so Corollary 17 also follows by the theorem of
Osima mentioned above ([15, Theorem 4.1]).

Lemma 18. Let π be a product of i commuting p-cycles, where i is coprime to p.
Then all p′-elements of the same cycle type contained in CSp·i(π) are conjugate in
CSp·i(π).
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Proof. CSp·i(π) ∼= Zp � Si (see (∗)) is a semidirect product of a p-group (generated
by the cycles of π) and a copy of Si. Using the explicit description of the conjugacy
classes of Zp � Si in [9, 3.2, 3.13] we can deduce that every p′-element of CSp·i(π)
is conjugate in CSp·i(π) to an element of the copy of Si. Therefore the projection
CSp·i(π) −→ Si induces a bijection between the p′-classes of the two groups. Due
to [7, 4.1.18, 4.2.17] this bijection maps a p′-element of cycle type (pλ1, ..., pλi) to
an element of cycle type (λ1, ..., λi). Thus we obtain our result.

Corollary 19. We keep the notation of Lemma 18. Let g ∈ CSp·i(π) be a p′-
element and let χ ∈ Irr CSp·i(π). Then χ(g) ∈ Z.

Proof. Let m ∈ N with gcd(m, ord g) = 1. By Lemma 18 the elements g and gm

are conjugate in CSp·i(π), thus we obtain χ(g) ∈ Z for χ ∈ IrrCSp·i(π) using [5,
V.13.7.b)] and [4, 6.3b), 6.4a)].

Remark 20. With the notation of Lemma 18 the vector space Z
CSp·i (π)

p′ is an algebra.

Proof. Z
Sp·i
p′ is an algebra by Corollary 5 of [14], and the Brauer homomorphism

Br〈π〉 : Z(FpSp·i) −→ Z(Fp CSp·i(π))

is a projection. By Lemma 18 this projection is surjective: If C is a p′-class of Sp·i,
then C ∩ CSp·i(π) = ∅ or C ∩ CSp·i(π) is a p′-class of CSp·i(π).

Lemma 21. Let π and i be as in Lemma 18. Let C ⊂ CSp·i(π) be the conjugacy
class of elements of cycle type (c1, ..., cpi), where ci = p and cj = 0 for j �= i. Then
(C+)2 = 0 in Fp CSp·i(π).

Proof. supp(C+)2 consists of p′-elements according to Remark 20. Now let D ⊂
CSp·i(π) be a p′-conjugacy class. According to [4], 4.6, the coefficient aCCD of D+

in (C+)2 ∈ Z CSp·i(π) is

aCCD =
|C|2

|CSp·i(π)|
∑

χ∈Irr CSp·i (π)

χ2(g) · χ(h−1)
χ(1)

,

where g ∈ C and h ∈ D. By Corollary 19 we know that χ(g) and χ(h−1) are
integers. Using [9], 3.9, we obtain

|C|2
|CSp·i(π)| =

(pi−1 · (i − 1)!)2

pi · i! =
pi−2(i − 1)!

i
.

The group CSp·i(π) ∼= (Zp)i � Si contains an abelian normal subgroup of order pi,
so by a theorem of Ito ([4], 19.9) we get

χ(1) | [CSp·i(π) : (Zp)i] =
pi · i!

pi
= i!.

As p � i this provides aCCD ≡ 0 mod p for i > 2. For i = 2 the centralizer of π
is a group of order 2p2. Therefore the product of two elements of C is an element
of the Sylow-p-subgroup of CSp·i(π), i.e. C �⊂ supp(C+)2. As p | |C| provides
1 �∈ supp(C+)2, we obtain aCCD ≡ 0 mod p for the case i = 2, because {1} and C
are the only p′-classes of CSp·i(π) in this case.
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We remark that the fact that C+ is nilpotent can already be deduced from [15,
4.7].

Lemma 22. Let σ, i be as in Notation 15, and let µ = (b1, ..., bn) be the cycle type
of a p′-partition with bi ≥ p. Then Cµ �⊂ supp(C+

σ )p.

Proof. There are elements x ∈ Cσ and y ∈ Cµ such that

π = (1, 2, ..., p)(p + 1, ..., 2p)...((i − 1)p + 1, ..., ip)

is an element of CSn
(x) and of CSn

(y). We apply the Brauer-homomorphism

Br〈π〉 : Z(FpSn) −→ Z(Fp CSn
(π))

and get

Cµ ⊂ supp(C+
σ )p ⇐⇒ supp Br〈π〉(Cµ)+ ⊂ supp(Br〈π〉(C+

σ ))p,

as Br〈π〉(Cµ)+ �= 0.
The coefficient aµ of C+

µ in (C+
σ )p ∈ ZSn is the number of solutions (g1, ..., gp)

of the equation
g1 · ... · gp = y,

where gi ∈ Cσ ∩ CSn
(π). Using the decomposition CSn

(π) ∼= CSp·i(π) × Sn−ip we
can write gt = gt,1gt,2 and y = y1y2 with gt,1, y1 ∈ CSp·i(π) and gt,2, y2 ∈ Sn−ip

and obtain equations

g1,1g2,1...gp,1 = y1, g1,2...gp,2 = y2.

If r1, r2 denote the number of solutions of the first and second equation, respectively,
then aµ = r1 · r2. We show that r1 ≡ 0 mod p.

According to Lemma 18 there is exactly one conjugacy class C ⊂ CSpi
(π) of

elements of cycle type (c1, ..., cpi) with ci �= 0 and cj = 0 for j �= i, and in fact ci = p
for this class. Let gt = gt,1gt,2 be a decomposition of an element gt ∈ Cσ ∩CSn

(π).
We prove that gt,1 ∈ C and that for every element gt,1 ∈ C there exists an element
gt,2 ∈ Sn−ip such that gt,1gt,2 ∈ Cσ ∩ CSn

(π). Thus we have to count the number
of solutions (g1,1, ..., gp,1) of the first equation, where gt,1 ∈ C for all t. Then we
prove that y1 ∈ C as well and that therefore r1 is the coefficient of C+ in (C+)p.

All p′-elements in CSpi
(π)\{(1)} have a cycle type of the form (pd1, ..., pdi). As

aj < p for 1 ≤ j < i we obtain gt,1 ∈ C for all gt = gt,1gt,2 ∈ CSn
(π) ∩ Cσ and for

every gt,1 ∈ C there exists a gt,2 ∈ Sn−ip such that gt = gt,1gt,2 ∈ CSn
(π) ∩ Cσ.

Now let λ = (b1, ..., bn) be the cycle type of a p′-partition with Cλ ⊂ supp(C+
σ )k.

Using induction and Corollary 17 we see that bj < p for all j < i. This also provides
y1 ∈ C for all y = y1y2 ∈ CSn

(π) ∩ Cµ. Therefore r1 is the coefficient of C+ in
(C+)p ∈ Z(Fp CSp·i(π)). But by Lemma 21 we have (C+)2 = 0 and thus (C+)p = 0,
i.e. r1 ≡ 0 mod p.

Corollary 23. Let σ, i be as in Notation 15, and let µ = (b1, ..., bn) be the cycle
type of a p′-partition with Cµ ⊂ supp(C+

σ )p. Then bj < p for 1 ≤ j ≤ i.

Proof. For 1 ≤ j < i the statement bj < p follows by induction and Corollary 17.
Lemma 22 provides bi < p.

Proof of Theorem 3. We consider a minimal counterexample in the following sense:
For a given prime p let n be minimal such that a primitive central idempotent
e ∈ FpSn exists with e �∈ ZSn

p′ ∩ZSn
p−nreg. According to a theorem of Osima ([8], 7.4)

we know that e ∈ ZSn

p′ , therefore there is a p′-partition σ of cycle type (a1, ..., an)
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with ai ≥ p for some i ≥ 2, such that Cσ ⊂ supp e. Now we choose σ to be the
partition, where i ≥ 2 is minimal with ai ≥ p under all partitions with Cσ ⊂ supp e.

Let e =
∑

Cτ⊂supp e

aτC+
τ . Then

e = ep =
∑

Cτ⊂supp e

ap
τ (C+

τ )p =
∑

Cτ⊂supp e

aτ (C+
τ )p.

For conjugacy class sums C+
τ ∈ ZSn

p′ ∩ ZSn
p−nreg we know (C+

τ )p ∈ ZSn

p′ ∩ ZSn
p−nreg

by Theorem 2, thus Cσ �⊂ supp(C+
τ )p for these τ . Now let (b1, ..., bn) be the cycle

type of a partition τ with Cτ ⊂ supp e and bj ≥ p for some j ≥ 2. Using Theorem
1 and the minimality of n we get that b1 < p for all these τ . Now let j be minimal
with bj ≥ p for the given τ . If j ≥ i, then Cσ �⊂ supp(C+

τ )p according to Corollary
23. As we chose i to be minimal there is no τ such that Cτ ⊂ supp e and bj ≥ p for
a j with 2 ≤ j < i. Hence we obtain

Cσ �⊂ supp ep = supp e,

a contradiction.

Now we want to use the theorems we proved to speed up the algorithm described
in Algorithm 7 for the computation of the primitive central idempotents of finite
group rings of symmetric and alternating groups. For symmetric groups the number
r of primitive central idempotents of FpSn can be computed using Nakayamas
Conjecture, [7], 6.1.21. To compute the primitive central idempotents of FpSn we
use Algorithm 7 with the following changes:

• We compute the p-near-regular p′-conjguacy classes in step 1) of Algo-
rithm 7.

• We subsume steps 2), 3) and 4) of Algorithm 7 in a loop and check if the
basis computed in 4) already has r elements. If this is the case we do not
need to compute further idempotents and we can continue with step 5.

• For step 2) and step 5) of Algorithm 7 it is necessary to compute the product
of class sums in FpSn. We compute the class multiplication coefficients
over the field C of complex numbers according to [4], Theorem 4.6, using
a program written in SYMMETRICA ([10]) provided by A. Kohnert and
then reduce them modulo p. As we are multiplying class sums of p-near-
regular p′-classes we only have to compute coefficients cijk of p-near regular
p′-classes Ck according to Theorem 2. We also use Corollary 12 to reduce
the number of coefficients we have to compute.

• We store the products of class sums because they usually occur several
times during the computation.

Considering the changes described above we see that the best situation occurs
for p = 2, because in this case the numbers of p′-classes and of p-near-regular classes
both are much smaller than for all other primes (see Table 1). But there are even
more possibilities to speed up the program for p = 2. The step of Algorithm 7
consuming the most time is step 5), because the idempotents fi are sums of many
class sums and it takes a long time to compute a product fi · fj . The philosophy
for p = 2 is to compute only squares of class sums if possible. So for p = 2 we also
made the following changes of Algorithm 7:
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• It turned out that we get the right number of idempotents using 1 and the
powers of the class sums C+

3 , C+
7 , ..., C+

4·(r−2)+3. We didn’t prove that the
powers of these class sums always generate the vector space spanned by the
primitive central idempotents, but the program will stop if it doesn’t find
enough linear independent idempotents.

• In step 2) we compute (C+
i )2

j

until (C+
i )2

k

= (C+
i )2

k+1
building only

squares of class sums. Then fi := (C+
i )2

k

is the idempotent occuring in
step 3). We keep in mind that fi ”comes from” Ci for step 5).

• We store all class multiplication coefficients, because we can use them for
bigger symmetric groups according to Corollary 12.

• The products fi · fj occuring in step 5) are computed in the following way:
We kept in mind that fi came from Ci and fj came from Cj . So instead
of multiplying fi and fj directly—both are usually large sums of class
sums—we multiply C+

i and C+
j and compute (C+

i C+
j )2

j

until (C+
i C+

j )2
k

=
(C+

i C+
j )2

k+1
. Then fi ·fj = (C+

i C+
j )2

k

. The advantage of this procedure is
that we only have to compute squares of class sums and no mixed products
except C+

i C+
j . We store all squares we compute, because they usually occur

several times.
If we replace an idempotent fi by fi · fj or by a sum of idempotents,

then we have to keep in mind that our new idempotent comes from C+
i ·C+

j

or from a sum of class sums. Here we get a delicate problem: After several
steps of the loop in step 5) our idempotents are powers of expressions like
(C+

i )2 · C+
j + (C+

k )3 · C+
m + C+

k · (C+
m)2 + .... In every step the expressions

become longer and the multiplying of two such expressions takes more and
more time. Therefore we have to keep these expressions simple: The idem-
potent generated by (C+

i )2 · Cj is also generated by C+
i · Cj so we have

to filter out powers in our expressions. If we do that we will see that the
idempotents generated by the summands (C+

k )3 ·C+
m and C+

k · (C+
m)2 in the

expression above are the same, so we can delete those summands from our
expression. Thus for every idempotent fi we store such an expression, and
this expression has to be updated and simplified whenever we replace an
idempotent fi by a product or a sum of idempotents.

These changes allowed us to compute the primitive central idempotents of F2Sn for
n ≤ 50. The results can be seen in the Appendix. For our computations we used a
dual core computer with two Opteron 265 1.8GHz processors. Approximately the
time needed to compute the idempotents of Sn+2 using the results of the compu-
tation for Sn is twice the time needed for the computation of the idempotents for
Sn. So it takes about 7s to carry out the computation for S20, 4m for S30, 3h31m
for S40 and 10d7h14m for S50 using the results for S28, S38 and S48, respectively.

The necessary information about the primitive central idempotents of the group
rings F2An can be found in corollaries 4 and 5 of [3]: If n is not of the form
n = m(m+1)

2 with an integer m, then the primitive central idempotents of F2Sn are
also the primitive central idempotents of F2kAn. If n = m(m+1)

2 , then this is also
true for all idempotents of F2Sn except for one. In this case e = C+ is a primitive
central idempotent of F2Sn according to Theorem 3 of [3], where C is the conjugacy
class of elements corresponding to the partition (2m − 1, 2m − 5, 2m − 9, ...) of n.
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This idempotent e splits in a sum of two primitive central idempotents of F2kAn.
As the class C splits in two conjugacy classes C− and C+ of An we can compute
the remaining primitive central idempotents of F2kAn by computing the powers of
the class sums C+

− and C+
+ . For alternating groups the field F2 is not always a

splitting field, but at least F4 is a splitting field for An according to Corollary B
of [13]. Thus it may happen that the two idempotents are not elements of F2An,
but they are elements of F4An. The results show that our Theorems 1, 2, 3 are not
true for alternating groups.
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Appendix

Here our notation is slightly different to the notation in the rest of the article:
If µ = 2α2 , ..., nαn is a partition we write 2α2 , ..., nαn for the class sum C+

µ ∈ F2Sm,
where m ≥ W (µ). According to Theorem 1 one can easily deduce the primitive
central idempotents of F2Sn for n < 49 from the primitive central idempotents of
F2S50 and F2S49. To simplify that task we added tokens of the form |16 to indicate
where the primitive central idempotent of F2S16 ends.

Primitive central idempotents of F2Sn for n odd and n ≤ 49:

e1 = 1|1 +3|3 +5|5 +3, 5+9|9 +7, 9+5, 11+3, 13+17|17 +3, 7, 11|21 +5, 7, 11+3, 9, 11+
3, 7, 13|23 + 5, 9, 11 + 5, 7, 13 + 3, 9, 13|25 + 3, 5, 7, 11 + 7, 9, 11 + 5, 9, 13 + 3, 11, 13 +
3, 7, 17|27+3, 5, 9, 11+3, 5, 7, 13+7, 9, 13+5, 11, 13+5, 7, 17+3, 9, 17|29+3, 5, 9, 13+
5, 9, 17|31 +5, 7, 9, 11+3, 5, 11, 13+3, 5, 7, 17+15, 17+13, 19+11, 21+9, 23+7, 25+
5, 27+3, 29+9, 11, 13+7, 9, 17+3, 13, 17+33|33+5, 7, 9, 13+3, 7, 11, 13+3, 5, 9, 17+
3, 5, 7, 9, 11 + 7, 11, 17 + 5, 13, 17 + 3, 11, 21 + 3, 7, 25|35 + 5, 7, 11, 13 + 3, 9, 11, 13 +
3, 5, 7, 9, 13+9, 11, 17+7, 13, 17+3, 15, 19+5, 11, 21+3, 13, 21+3, 11, 23+5, 7, 25+
3, 9, 25+3, 7, 27|37+5, 7, 9, 17+3, 5, 13, 17+5, 15, 19+3, 17, 19+5, 13, 21+3, 15, 21+
5, 11, 23 +3, 13, 23 + 5, 9, 25 + 3, 11, 25 + 5, 7, 27 + 3, 9, 27 + 3, 7, 29|39 +7, 9, 11, 13 +
5, 7, 11, 17 + 3, 7, 13, 17 + 3, 5, 11, 21 + 3, 5, 7, 25 + 3, 5, 9, 11, 13 + 3, 5, 7, 9, 17 +
11, 13, 17 + 5, 17, 19 + 9, 11, 21 + 5, 15, 21 + 5, 13, 23 + 7, 9, 25 + 5, 11, 25 + 5, 9, 27 +
5, 7, 29+3, 9, 29|41 +5, 9, 11, 17+3, 9, 13, 17+3, 5, 15, 19+3, 5, 13, 21+3, 5, 11, 23+
3, 5, 9, 25+3, 5, 7, 27+9, 15, 19+9, 13, 21+3, 19, 21+9, 11, 23+3, 17, 23+3, 15, 25+
7, 9, 27 + 3, 13, 27 + 5, 9, 29 + 3, 11, 29 + 3, 7, 33|43 + 3, 5, 17, 19 + 3, 5, 15, 21 +
3, 5, 13, 23 + 3, 5, 11, 25 + 3, 5, 9, 27 + 3, 5, 7, 29 + 9, 17, 19 + 9, 15, 21 + 5, 19, 21 +
9, 13, 23 + 5, 17, 23 + 9, 11, 25 + 5, 15, 25 + 5, 13, 27 + 7, 9, 29 + 5, 11, 29 + 5, 7, 33 +
3, 9, 33|45 +5, 9, 15, 17+5, 9, 13, 19+5, 9, 11, 21+5, 7, 9, 25+3, 5, 9, 29+5, 9, 33|47 +
3, 5, 7, 9, 11, 13 + 7, 9, 15, 17 + 5, 11, 15, 17 +7, 9, 13, 19 +5, 11, 13, 19 + 3, 11, 13, 21 +
3, 5, 19, 21+5, 9, 11, 23+3, 5, 17, 23+3, 7, 13, 25+3, 5, 15, 25+5, 7, 9, 27+3, 5, 13, 27+
3, 5, 11, 29+3, 5, 7, 33+5, 7, 9, 11, 17+3, 7, 9, 13, 17+3, 5, 11, 13, 17+3, 5, 9, 15, 17+
3, 5, 9, 13, 19+3, 5, 9, 11, 21+11, 17, 21+9, 19, 21+9, 17, 23+3, 5, 7, 9, 25+9, 15, 25+
7, 17, 25 + 9, 13, 27 + 9, 11, 29 + 3, 17, 29 + 7, 9, 33 + 3, 13, 33
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e2 = 3|3 + 5|5 + 3, 5 + 9|9 + 5, 9|15 + 3, 13 + 3, 5, 9 + 17|17 + 7, 11 + 5, 13 + 3, 7, 9 +
3, 5, 11|19 + 9, 11 + 7, 13 + 5, 7, 9 + 3, 7, 11 + 3, 5, 13|21 + 5, 17 + 5, 7, 11 + 3, 9, 11 +
3, 7, 13|23+3, 5, 7, 9+11, 13+7, 17+5, 7, 13+3, 5, 17|25+3, 5, 7, 11+9, 17+7, 9, 11+
5, 9, 13 + 3, 11, 13 +3, 7, 17|27 + 3, 5, 9, 11 + 3, 5, 7, 13 +7, 9, 13 + 5, 11, 13 + 5, 7, 17 +
3, 9, 17|29 + 3, 5, 9, 13 + 5, 9, 17|31 + 3, 7, 9, 13 + 3, 5, 7, 17 + 11, 21 + 7, 25 + 3, 29 +
9, 11, 13 + 5, 11, 17 + 33|33 + 5, 7, 9, 13 + 3, 7, 11, 13 + 3, 5, 9, 17 + 15, 19 + 13, 21 +
11, 23+9, 25+7, 27+5, 29+3, 5, 7, 9, 11+7, 11, 17+5, 13, 17+3, 15, 17+3, 13, 19+
3, 9, 23+3, 5, 27|35 +5, 7, 11, 13+3, 9, 11, 13+17, 19+15, 21+13, 23+11, 25+9, 27+
7, 29 + 3, 5, 7, 9, 13 + 9, 11, 17 + 7, 13, 17 + 5, 15, 17 + 5, 13, 19 + 3, 15, 19 + 3, 13, 21 +
5, 9, 23 + 3, 11, 23 + 3, 9, 25 + 3, 7, 27 + 3, 5, 29|37 + 5, 7, 9, 17 + 3, 5, 13, 17 + 5, 33 +
5, 15, 19 + 3, 17, 19 + 5, 13, 21 + 3, 15, 21 + 5, 11, 23 + 3, 13, 23 + 5, 9, 25 + 3, 11, 25 +
5, 7, 27 + 3, 9, 27 + 3, 7, 29|39 + 7, 9, 11, 13 + 5, 7, 11, 17 + 3, 7, 13, 17 + 3, 5, 15, 17 +
3, 5, 13, 19+19, 21+3, 5, 9, 23+17, 23+15, 25+13, 27+11, 29+7, 33+3, 5, 9, 11, 13+
3, 5, 7, 9, 17+11, 13, 17+9, 15, 17+9, 13, 19+5, 17, 19+5, 15, 21+5, 13, 23+5, 11, 25+
5, 7, 29+3, 5, 33|41 +5, 9, 11, 17+3, 9, 13, 17+3, 5, 15, 19+3, 5, 13, 21+3, 5, 11, 23+
3, 5, 9, 25 + 3, 5, 7, 27 + 9, 33 + 9, 15, 19 + 9, 13, 21 + 3, 19, 21 + 9, 11, 23 + 3, 17, 23 +
3, 15, 25+7, 9, 27+3, 13, 27+5, 9, 29+3, 11, 29+3, 7, 33|43+3, 5, 17, 19+3, 5, 15, 21+
3, 5, 13, 23 + 3, 5, 11, 25 + 3, 5, 9, 27 + 3, 5, 7, 29 + 9, 17, 19 + 9, 15, 21 + 5, 19, 21 +
9, 13, 23 + 5, 17, 23 + 9, 11, 25 + 5, 15, 25 + 5, 13, 27 + 7, 9, 29 + 5, 11, 29 + 5, 7, 33 +
3, 9, 33|45 +5, 9, 15, 17+5, 9, 13, 19+5, 9, 11, 21+5, 7, 9, 25+3, 5, 9, 29+5, 9, 33|47 +
3, 5, 7, 9, 11, 13 + 3, 13, 15, 17 + 7, 9, 11, 21 + 3, 5, 19, 21 + 3, 9, 13, 23 + 3, 5, 17, 23 +
5, 7, 11, 25 + 3, 5, 15, 25 + 23, 25 + 21, 27 + 3, 7, 9, 29 + 19, 29 + 3, 5, 7, 33 + 15, 33 +
5, 7, 9, 11, 17+3, 7, 9, 13, 17+3, 5, 11, 13, 17+3, 5, 9, 15, 17+3, 5, 9, 13, 19+13, 17, 19+
3, 5, 9, 11, 21+9, 19, 21+3, 5, 7, 9, 25+9, 15, 25+9, 13, 27+5, 17, 27+9, 11, 29+5, 11, 33

e3 = 5, 9|15 + 7, 9 + 5, 11 + 3, 5, 9|17 + 7, 11 + 5, 13 + 3, 7, 9 + 3, 5, 11|19 + 9, 11 + 7, 13 +
5, 7, 9+3, 7, 11+3, 5, 13|21 +5, 17+5, 7, 11+3, 9, 11+3, 7, 13|23 +3, 5, 7, 9+11, 13+
7, 17+5, 7, 13+3, 5, 17|25+3, 5, 7, 11+9, 17+7, 9, 11+5, 9, 13+3, 11, 13+3, 7, 17|27+
3, 5, 9, 11+3, 5, 7, 13+7, 9, 13+5, 11, 13+5, 7, 17+3, 9, 17|29+3, 5, 9, 13+5, 9, 17|31+
3, 7, 9, 13+3, 5, 7, 17+15, 17+13, 19+9, 23+5, 27+9, 11, 13+5, 11, 17|33+5, 7, 9, 13+
3, 7, 11, 13 + 3, 5, 9, 17 + 15, 19 + 13, 21 + 11, 23 + 9, 25 + 7, 27 + 5, 29 + 3, 5, 7, 9, 11 +
7, 11, 17+5, 13, 17+3, 15, 17+3, 13, 19+3, 9, 23+3, 5, 27|35+5, 7, 11, 13+3, 9, 11, 13+
17, 19 + 15, 21 + 13, 23 + 11, 25 + 9, 27 + 7, 29 + 3, 5, 7, 9, 13 + 9, 11, 17 + 7, 13, 17 +
5, 15, 17 + 5, 13, 19 + 3, 15, 19 + 3, 13, 21 + 5, 9, 23 + 3, 11, 23 + 3, 9, 25 + 3, 7, 27 +
3, 5, 29|37 +5, 7, 9, 17+3, 5, 13, 17+5, 33+5, 15, 19+3, 17, 19+5, 13, 21+3, 15, 21+
5, 11, 23 +3, 13, 23 + 5, 9, 25 + 3, 11, 25 + 5, 7, 27 + 3, 9, 27 + 3, 7, 29|39 +7, 9, 11, 13 +
5, 7, 11, 17+3, 7, 13, 17+3, 5, 15, 17+3, 5, 13, 19+19, 21+3, 5, 9, 23+17, 23+15, 25+
13, 27+11, 29+7, 33+3, 5, 9, 11, 13+3, 5, 7, 9, 17+11, 13, 17+9, 15, 17+9, 13, 19+
5, 17, 19+5, 15, 21+5, 13, 23+5, 11, 25+5, 7, 29+3, 5, 33|41+5, 9, 11, 17+3, 9, 13, 17+
3, 5, 15, 19+3, 5, 13, 21+3, 5, 11, 23+3, 5, 9, 25+3, 5, 7, 27+9, 33+9, 15, 19+9, 13, 21+
3, 19, 21 + 9, 11, 23 + 3, 17, 23 + 3, 15, 25 + 7, 9, 27 + 3, 13, 27 + 5, 9, 29 + 3, 11, 29 +
3, 7, 33|43 +3, 5, 17, 19+3, 5, 15, 21+3, 5, 13, 23+3, 5, 11, 25+3, 5, 9, 27+3, 5, 7, 29+
9, 17, 19 + 9, 15, 21 + 5, 19, 21 + 9, 13, 23 + 5, 17, 23 + 9, 11, 25 + 5, 15, 25 + 5, 13, 27 +
7, 9, 29 + 5, 11, 29 + 5, 7, 33 + 3, 9, 33|45 + 5, 9, 15, 17 + 5, 9, 13, 19 + 5, 9, 11, 21 +
5, 7, 9, 25 + 3, 5, 9, 29 + 5, 9, 33|47 + 3, 5, 7, 9, 11, 13 + 3, 13, 15, 17 + 7, 9, 11, 21 +
3, 5, 19, 21 + 3, 9, 13, 23 + 3, 5, 17, 23 + 5, 7, 11, 25 + 3, 5, 15, 25 + 23, 25 + 21, 27 +
3, 7, 9, 29+19, 29+3, 5, 7, 33+15, 33+5, 7, 9, 11, 17+3, 7, 9, 13, 17+3, 5, 11, 13, 17+
3, 5, 9, 15, 17 + 3, 5, 9, 13, 19 + 13, 17, 19 + 3, 5, 9, 11, 21 + 9, 19, 21 + 3, 5, 7, 9, 25 +
9, 15, 25 + 9, 13, 27 + 5, 17, 27 + 9, 11, 29 + 5, 11, 33

e4 = 3, 7, 11|21 +5, 7, 11+3, 9, 11+3, 7, 13|23 +5, 9, 11+5, 7, 13+3, 9, 13|25 +3, 5, 7, 11+
7, 9, 11 + 5, 9, 13 +3, 11, 13 + 3, 7, 17|27 + 3, 5, 9, 11 + 3, 5, 7, 13 + 7, 9, 13 +5, 11, 13 +
5, 7, 17 + 3, 9, 17|29 + 3, 5, 9, 13 + 5, 9, 17|31 + 5, 7, 9, 11 + 3, 5, 11, 13 + 3, 5, 7, 17 +
9, 11, 13 + 7, 9, 17 + 3, 13, 17|33 + 5, 7, 9, 13 + 3, 7, 11, 13 + 3, 5, 9, 17 + 3, 5, 7, 9, 11 +
7, 11, 17 + 5, 13, 17 + 3, 11, 21 + 3, 7, 25|35 + 5, 7, 11, 13 + 3, 9, 11, 13 + 3, 5, 7, 9, 13 +
9, 11, 17 + 7, 13, 17 + 3, 15, 19 + 5, 11, 21 + 3, 13, 21 + 3, 11, 23 + 5, 7, 25 + 3, 9, 25 +
3, 7, 27|37+5, 7, 9, 17+3, 5, 13, 17+5, 15, 19+3, 17, 19+5, 13, 21+3, 15, 21+5, 11, 23+
3, 13, 23+5, 9, 25+3, 11, 25+5, 7, 27+3, 9, 27+3, 7, 29|39 +7, 9, 11, 13+5, 7, 11, 17+
3, 7, 13, 17+3, 5, 11, 21+3, 5, 7, 25+3, 5, 9, 11, 13+3, 5, 7, 9, 17+11, 13, 17+5, 17, 19+
9, 11, 21 + 5, 15, 21 + 5, 13, 23 + 7, 9, 25 + 5, 11, 25 + 5, 9, 27 + 5, 7, 29 + 3, 9, 29|41 +
5, 9, 11, 17+3, 9, 13, 17+3, 5, 15, 19+3, 5, 13, 21+3, 5, 11, 23+3, 5, 9, 25+3, 5, 7, 27+
9, 15, 19 + 9, 13, 21 + 3, 19, 21 + 9, 11, 23 + 3, 17, 23 + 3, 15, 25 + 7, 9, 27 + 3, 13, 27 +
5, 9, 29 + 3, 11, 29 + 3, 7, 33|43 + 5, 9, 13, 17 + 3, 5, 17, 19 + 3, 5, 15, 21 + 3, 5, 13, 23 +
3, 5, 11, 25 + 3, 5, 9, 27 + 3, 5, 7, 29 + 9, 17, 19 + 9, 15, 21 + 5, 19, 21 + 9, 13, 23 +
5, 17, 23 + 9, 11, 25 + 5, 15, 25 + 5, 13, 27 + 7, 9, 29 + 5, 11, 29 + 5, 7, 33 + 3, 9, 33|45 +
7, 9, 13, 17 + 5, 11, 13, 17 + 5, 9, 11, 21 + 5, 7, 9, 25 + 3, 5, 9, 29 + 3, 5, 9, 13, 17 +
5, 9, 33|47 + 3, 5, 7, 9, 11, 13 + 7, 11, 13, 17 + 5, 9, 15, 19 + 5, 9, 13, 21 + 3, 11, 13, 21 +
3, 5, 19, 21+5, 9, 11, 23+3, 5, 17, 23+3, 7, 13, 25+3, 5, 15, 25+5, 7, 9, 27+3, 5, 13, 27+
3, 5, 11, 29+3, 5, 7, 33+5, 7, 9, 11, 17+3, 5, 9, 11, 21+11, 17, 21+9, 19, 21+9, 17, 23+
3, 5, 7, 9, 25 + 9, 15, 25 + 7, 17, 25 + 9, 13, 27 + 9, 11, 29 + 3, 17, 29 + 7, 9, 33 + 3, 13, 33
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e5 = 5, 9, 13, 17|45 +7, 9, 13, 17+5, 11, 13, 17+5, 9, 15, 17+5, 9, 13, 19+3, 5, 9, 13, 17|47 +
7, 11, 13, 17 + 7, 9, 15, 17 + 5, 11, 15, 17 + 7, 9, 13, 19 + 5, 11, 13, 19 + 5, 9, 15, 19 +
5, 9, 13, 21 + 3, 7, 9, 13, 17 + 3, 5, 11, 13, 17 + 3, 5, 9, 15, 17 + 3, 5, 9, 13, 19

Primitive central idempotents of F2Sn for n even and n ≤ 50:

e1 = 1|2 +5|6 +7+3, 5|8 +9|10 +15+7, 9+5, 11+3, 13|16 +17|18 +5, 9, 13|28 +7, 9, 13+
5, 11, 13+5, 9, 15+3, 5, 9, 13|30+7, 11, 13+7, 9, 15+5, 11, 15+5, 9, 17+31+3, 7, 9, 13+
3, 5, 11, 13+3, 5, 9, 15+15, 17+13, 19+11, 21+9, 23+7, 25+5, 27+3, 29|32+9, 11, 13+
7, 11, 15 + 5, 13, 15 + 7, 9, 17 + 5, 11, 17 + 33 + 5, 7, 9, 13 + 3, 7, 11, 13 + 3, 7, 9, 15 +
3, 5, 11, 15 + 3, 5, 9, 17|34 + 9, 11, 15 + 7, 13, 15 + 7, 11, 17 + 5, 13, 17 + 5, 7, 11, 13 +
3, 9, 11, 13+5, 7, 9, 15+3, 5, 13, 15+3, 7, 9, 17+3, 5, 11, 17|36+3, 5, 7, 9, 13+9, 11, 17+
7, 13, 17+5, 13, 19+5, 9, 23+5, 7, 9, 17+3, 5, 13, 17|38 +3, 5, 7, 11, 13+3, 5, 7, 9, 15+
11, 13, 15+7, 13, 19+5, 15, 19+5, 13, 21+7, 9, 23+5, 11, 23+5, 9, 25+7, 9, 11, 13+
5, 9, 11, 15 + 3, 9, 13, 15 + 3, 5, 13, 19 + 3, 5, 9, 23|40 + 3, 5, 9, 11, 13 + 3, 5, 7, 9, 17 +
11, 13, 17+9, 13, 19+7, 15, 19+5, 17, 19+7, 13, 21+5, 15, 21+7, 11, 23+5, 13, 23+
7, 9, 25 + 5, 11, 25 + 5, 9, 11, 17 + 3, 9, 13, 17 + 3, 7, 15, 17 + 3, 7, 13, 19 + 3, 5, 15, 19 +
3, 7, 11, 21+3, 5, 13, 21+3, 7, 9, 23+3, 5, 11, 23+3, 5, 9, 25|42 +9, 15, 19+7, 17, 19+
9, 13, 21+7, 15, 21+9, 11, 23+7, 13, 23+7, 11, 25+5, 9, 29+5, 7, 15, 17+3, 9, 15, 17+
5, 7, 13, 19+3, 9, 13, 19+3, 5, 17, 19+5, 7, 11, 21+3, 9, 11, 21+3, 5, 15, 21+5, 7, 9, 23+
3, 5, 13, 23 + 3, 7, 9, 25 + 3, 5, 11, 25|44 + 9, 17, 19 + 9, 15, 21 + 5, 19, 21 + 9, 13, 23 +
5, 17, 23 + 9, 11, 25 + 5, 15, 25 + 5, 13, 27 + 7, 9, 29 + 5, 11, 29 + 5, 9, 31 + 5, 9, 15, 17 +
5, 9, 13, 19 + 5, 9, 11, 21 + 5, 7, 9, 25 + 3, 5, 9, 29|46 + 5, 7, 9, 11, 15 + 3, 7, 9, 13, 15 +
3, 5, 11, 13, 15 + 3, 5, 7, 15, 17 + 3, 5, 7, 13, 19 + 13, 15, 19 + 3, 5, 7, 11, 21 + 7, 19, 21 +
3, 5, 7, 9, 23 + 9, 15, 23 + 7, 17, 23 + 7, 15, 25 + 7, 13, 27 + 5, 15, 27 + 7, 11, 29 +
7, 9, 31+5, 11, 31+5, 9, 33+3, 5, 7, 9, 11, 13+7, 9, 15, 17+3, 13, 15, 17+5, 11, 13, 19+
7, 9, 11, 21 + 3, 11, 13, 21 + 3, 5, 19, 21 + 5, 9, 11, 23 + 3, 5, 17, 23 + 3, 7, 13, 25 +
3, 5, 15, 25 + 3, 5, 13, 27 + 3, 7, 9, 29 + 3, 5, 11, 29 + 3, 5, 9, 31|48 + 5, 7, 9, 11, 17 +
3, 7, 9, 13, 17+3, 5, 11, 13, 17+3, 5, 9, 15, 17+3, 5, 9, 13, 19+13, 17, 19+3, 5, 9, 11, 21+
13, 15, 21+9, 19, 21+11, 15, 23+3, 5, 7, 9, 25+9, 13, 27+7, 15, 27+5, 17, 27+9, 11, 29+
5, 15, 29 + 7, 11, 31 + 5, 13, 31 + 7, 9, 33 + 5, 11, 33 + 7, 11, 15, 17 + 5, 13, 15, 17 +
7, 11, 13, 19 + 7, 9, 15, 19 + 5, 11, 15, 19 + 7, 9, 13, 21 + 3, 11, 15, 21 + 5, 9, 13, 23 +
3, 11, 13, 23 + 3, 9, 15, 23 + 5, 9, 11, 25 + 5, 7, 13, 25 + 3, 9, 13, 25 + 3, 7, 15, 25 +
3, 7, 13, 27 + 3, 5, 15, 27 + 5, 7, 9, 29 + 3, 7, 11, 29 + 3, 7, 9, 31 + 3, 5, 11, 31 + 3, 5, 9, 33

e2 = 5|6 + 7 + 3, 5|8 + 9 + 3, 7|10 + 5, 7 + 3, 9|12 + 5, 9|14 + 3, 5, 7 + 15 + 5, 11|16 + 3, 5, 9 +
17+7, 11+5, 13+3, 15|18 +9, 11+7, 13+5, 15+3, 17|20 +5, 7, 9+3, 5, 13+5, 17|22 +
5, 7, 11+3, 7, 13+3, 5, 15+3, 5, 7, 9+11, 13+9, 15|24 +5, 9, 11+3, 9, 13+3, 5, 17+
9, 17|26 +5, 9, 13|28 +7, 9, 13+5, 11, 13+5, 9, 15+3, 5, 9, 13|30 +7, 11, 13+3, 13, 15+
5, 9, 17 + 31 + 5, 7, 9, 11 + 3, 5, 9, 15 + 13, 19 + 9, 23 + 5, 27|32 + 9, 11, 13 + 7, 11, 15 +
5, 13, 15+3, 13, 17+33+5, 7, 9, 13+3, 7, 11, 13+3, 7, 9, 15+3, 5, 11, 15+3, 5, 9, 17+
15, 19+13, 21+11, 23+9, 25+7, 27+5, 29+3, 31|34 +9, 11, 15+7, 13, 15+7, 11, 17+
5, 13, 17+5, 7, 11, 13+3, 9, 11, 13+5, 7, 9, 15+3, 5, 13, 15+3, 7, 9, 17 +3, 5, 11, 17+
17, 19 + 15, 21 + 13, 23 + 11, 25 + 9, 27 + 7, 29 + 5, 31 + 3, 33|36 + 3, 5, 7, 9, 13 +
9, 11, 17+7, 13, 17+5, 15, 17+5, 11, 21+5, 7, 25+3, 5, 29+5, 7, 9, 17+3, 5, 13, 17+
5, 33|38 + 3, 5, 7, 11, 13 + 3, 5, 7, 9, 15 + 11, 13, 15 + 7, 15, 17 + 5, 15, 19 + 7, 11, 21 +
5, 13, 21 + 5, 11, 23 + 5, 9, 25 + 5, 7, 27 + 3, 7, 29 + 3, 5, 31 + 7, 9, 11, 13 + 5, 9, 11, 15 +
3, 9, 13, 15 + 3, 5, 15, 17 + 3, 5, 11, 21 + 19, 21 + 17, 23 + 3, 5, 7, 25 + 15, 25 + 13, 27 +
11, 29+9, 31|40+3, 5, 9, 11, 13+3, 5, 7, 9, 17+11, 13, 17+9, 15, 17+7, 15, 19+5, 17, 19+
9, 11, 21 + 7, 13, 21 + 5, 15, 21 + 7, 11, 23 + 5, 13, 23 + 5, 11, 25 + 5, 9, 27 + 3, 9, 29 +
3, 5, 33+5, 9, 11, 17+3, 9, 13, 17+3, 7, 15, 17+3, 7, 13, 19+3, 5, 15, 19+3, 7, 11, 21+
3, 5, 13, 21+3, 7, 9, 23+3, 5, 11, 23+3, 5, 9, 25+9, 33|42+9, 15, 19+7, 17, 19+9, 13, 21+
7, 15, 21+9, 11, 23+7, 13, 23+7, 11, 25+5, 9, 29+5, 7, 15, 17+3, 9, 15, 17+5, 7, 13, 19+
3, 9, 13, 19+3, 5, 17, 19+5, 7, 11, 21+3, 9, 11, 21+3, 5, 15, 21+5, 7, 9, 23+3, 5, 13, 23+
3, 7, 9, 25+3, 5, 11, 25|44+9, 17, 19+9, 15, 21+5, 19, 21+9, 13, 23+5, 17, 23+9, 11, 25+
5, 15, 25+5, 13, 27+7, 9, 29+5, 11, 29+5, 9, 31+5, 9, 15, 17+5, 9, 13, 19+5, 9, 11, 21+
5, 7, 9, 25+3, 5, 9, 29|46+5, 7, 9, 11, 15+3, 7, 9, 13, 15+3, 5, 11, 13, 15+3, 5, 7, 15, 17+
3, 5, 7, 13, 19+3, 5, 7, 11, 21+11, 15, 21+7, 19, 21+3, 5, 7, 9, 23+7, 17, 23+7, 13, 27+
7, 11, 29+3, 15, 29+3, 13, 31+5, 9, 33+3, 5, 7, 9, 11, 13+5, 11, 15, 17+7, 9, 13, 19+
3, 5, 19, 21 + 3, 9, 13, 23 + 3, 5, 17, 23 + 5, 7, 11, 25 + 3, 5, 15, 25 + 23, 25 + 5, 7, 9, 27 +
21, 27+19, 29+3, 5, 9, 31+17, 31|48 +5, 7, 9, 11, 17+3, 7, 9, 13, 17+3, 5, 11, 13, 17+
3, 5, 9, 15, 17 + 3, 5, 9, 13, 19 + 3, 5, 9, 11, 21 + 13, 15, 21 + 11, 17, 21 + 9, 19, 21 +
11, 15, 23+9, 17, 23+3, 5, 7, 9, 25+7, 17, 25+9, 13, 27+7, 15, 27+9, 11, 29+5, 15, 29+
3, 17, 29 + 7, 11, 31 + 5, 13, 31 + 3, 13, 33 + 7, 11, 15, 17 + 5, 13, 15, 17 + 7, 11, 13, 19 +
7, 9, 15, 19 + 5, 11, 15, 19 + 7, 9, 13, 21 + 3, 11, 15, 21 + 5, 9, 13, 23 + 3, 11, 13, 23 +
3, 9, 15, 23+5, 9, 11, 25+5, 7, 13, 25+3, 9, 13, 25+3, 7, 15, 25+3, 7, 13, 27+3, 5, 15, 27+
5, 7, 9, 29 + 3, 7, 11, 29 + 3, 7, 9, 31 + 3, 5, 11, 31 + 3, 5, 9, 33 + 17, 33
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e3 = 3, 7|10 + 5, 7 + 3, 9|12 + 5, 9|14 + 3, 5, 7 + 7, 9 + 3, 13|16 + 3, 5, 9 + 7, 11 + 5, 13 +
3, 15|18 + 9, 11 + 7, 13 + 5, 15 + 3, 17|20 + 5, 7, 9 + 3, 5, 13 + 5, 17|22 + 5, 7, 11 +
3, 7, 13+3, 5, 15+3, 5, 7, 9+11, 13+9, 15|24 +5, 9, 11+3, 9, 13+3, 5, 17+9, 17|26 +
5, 9, 13|28 +7, 9, 13+5, 11, 13+5, 9, 15+3, 5, 9, 13|30 +7, 11, 13+3, 13, 15+5, 9, 17+
5, 7, 9, 11+3, 5, 9, 15+15, 17+11, 21+7, 25+3, 29|32+9, 11, 13+7, 11, 15+5, 13, 15+
3, 13, 17+5, 7, 9, 13+3, 7, 11, 13+3, 7, 9, 15+3, 5, 11, 15+3, 5, 9, 17+15, 19+13, 21+
11, 23 + 9, 25 + 7, 27 + 5, 29 + 3, 31|34 + 9, 11, 15 + 7, 13, 15 + 7, 11, 17 + 5, 13, 17 +
5, 7, 11, 13 + 3, 9, 11, 13 + 5, 7, 9, 15 + 3, 5, 13, 15 + 3, 7, 9, 17 + 3, 5, 11, 17 + 17, 19 +
15, 21 + 13, 23 + 11, 25 + 9, 27 + 7, 29 + 5, 31 + 3, 33|36 + 3, 5, 7, 9, 13 + 9, 11, 17 +
7, 13, 17 +5, 15, 17 + 5, 11, 21 + 5, 7, 25 + 3, 5, 29 + 5, 7, 9, 17+ 3, 5, 13, 17 +5, 33|38 +
3, 5, 7, 11, 13 + 3, 5, 7, 9, 15 + 11, 13, 15 + 7, 15, 17 + 5, 15, 19 + 7, 11, 21 + 5, 13, 21 +
5, 11, 23+5, 9, 25+5, 7, 27+3, 7, 29+3, 5, 31+7, 9, 11, 13+5, 9, 11, 15+3, 9, 13, 15+
3, 5, 15, 17+3, 5, 11, 21+19, 21+17, 23+3, 5, 7, 25+15, 25+13, 27+11, 29+9, 31|40+
3, 5, 9, 11, 13 + 3, 5, 7, 9, 17 + 11, 13, 17 + 9, 15, 17 + 7, 15, 19 + 5, 17, 19 + 9, 11, 21 +
7, 13, 21 + 5, 15, 21 + 7, 11, 23 + 5, 13, 23 + 5, 11, 25 + 5, 9, 27 + 3, 9, 29 + 3, 5, 33 +
5, 9, 11, 17+3, 9, 13, 17+3, 7, 15, 17+3, 7, 13, 19+3, 5, 15, 19+3, 7, 11, 21+3, 5, 13, 21+
3, 7, 9, 23+3, 5, 11, 23+3, 5, 9, 25+9, 33|42+9, 15, 19+7, 17, 19+9, 13, 21+7, 15, 21+
9, 11, 23 + 7, 13, 23 + 7, 11, 25 + 5, 9, 29 + 5, 7, 15, 17 + 3, 9, 15, 17 + 5, 7, 13, 19 +
3, 9, 13, 19+3, 5, 17, 19+5, 7, 11, 21+3, 9, 11, 21+3, 5, 15, 21+5, 7, 9, 23+3, 5, 13, 23+
3, 7, 9, 25+3, 5, 11, 25|44+9, 17, 19+9, 15, 21+5, 19, 21+9, 13, 23+5, 17, 23+9, 11, 25+
5, 15, 25+5, 13, 27+7, 9, 29+5, 11, 29+5, 9, 31+5, 9, 15, 17+5, 9, 13, 19+5, 9, 11, 21+
5, 7, 9, 25+3, 5, 9, 29|46+5, 7, 9, 11, 15+3, 7, 9, 13, 15+3, 5, 11, 13, 15+3, 5, 7, 15, 17+
3, 5, 7, 13, 19+3, 5, 7, 11, 21+11, 15, 21+7, 19, 21+3, 5, 7, 9, 23+7, 17, 23+7, 13, 27+
7, 11, 29+3, 15, 29+3, 13, 31+5, 9, 33+3, 5, 7, 9, 11, 13+5, 11, 15, 17+7, 9, 13, 19+
3, 5, 19, 21 + 3, 9, 13, 23 + 3, 5, 17, 23 + 5, 7, 11, 25 + 3, 5, 15, 25 + 23, 25 + 5, 7, 9, 27 +
21, 27+19, 29+3, 5, 9, 31+17, 31|48 +5, 7, 9, 11, 17+3, 7, 9, 13, 17+3, 5, 11, 13, 17+
3, 5, 9, 15, 17 + 3, 5, 9, 13, 19 + 3, 5, 9, 11, 21 + 13, 15, 21 + 11, 17, 21 + 9, 19, 21 +
11, 15, 23+9, 17, 23+3, 5, 7, 9, 25+7, 17, 25+9, 13, 27+7, 15, 27+9, 11, 29+5, 15, 29+
3, 17, 29 + 7, 11, 31 + 5, 13, 31 + 3, 13, 33 + 7, 11, 15, 17 + 5, 13, 15, 17 + 7, 11, 13, 19 +
7, 9, 15, 19 + 5, 11, 15, 19 + 7, 9, 13, 21 + 3, 11, 15, 21 + 5, 9, 13, 23 + 3, 11, 13, 23 +
3, 9, 15, 23+5, 9, 11, 25+5, 7, 13, 25+3, 9, 13, 25+3, 7, 15, 25+3, 7, 13, 27+3, 5, 15, 27+
5, 7, 9, 29 + 3, 7, 11, 29 + 3, 7, 9, 31 + 3, 5, 11, 31 + 3, 5, 9, 33 + 17, 33

e4 = 5, 9, 13|28 +7, 9, 13+5, 11, 13+5, 9, 15+3, 5, 9, 13|30 +7, 11, 13+7, 9, 15+5, 11, 15+
5, 9, 17+3, 7, 9, 13+3, 5, 11, 13+3, 5, 9, 15|32+9, 11, 13+7, 11, 15+5, 13, 15+7, 9, 17+
5, 11, 17 + 5, 7, 9, 13 + 3, 7, 11, 13 + 3, 7, 9, 15 + 3, 5, 11, 15 + 3, 5, 9, 17|34 + 9, 11, 15 +
7, 13, 15 + 7, 11, 17 + 5, 13, 17 + 5, 7, 11, 13 + 3, 9, 11, 13 + 5, 7, 9, 15 + 3, 7, 11, 15 +
3, 5, 13, 15+3, 7, 9, 17+3, 5, 11, 17|36 +3, 5, 7, 9, 13+9, 11, 17+7, 13, 17+5, 13, 19+
5, 9, 23+5, 7, 11, 15+3, 9, 11, 15+3, 7, 13, 15+5, 7, 9, 17+3, 7, 11, 17+3, 5, 13, 17|38+
3, 5, 7, 11, 13 + 3, 5, 7, 9, 15 + 11, 13, 15 + 7, 13, 19 + 5, 15, 19 + 5, 13, 21 + 7, 9, 23 +
5, 11, 23 + 5, 9, 25 + 7, 9, 11, 13 + 5, 7, 13, 15 + 5, 7, 11, 17 + 3, 9, 11, 17 + 3, 7, 13, 17 +
3, 5, 13, 19 + 3, 5, 9, 23|40 + 3, 5, 9, 11, 13 + 3, 5, 7, 11, 15 + 3, 5, 7, 9, 17 + 11, 13, 17 +
9, 13, 19 + 7, 15, 19 + 5, 17, 19 + 7, 13, 21 + 5, 15, 21 + 7, 11, 23 + 5, 13, 23 + 7, 9, 25 +
5, 11, 25+7, 9, 11, 15+5, 9, 13, 15+3, 11, 13, 15+5, 7, 13, 17+3, 7, 13, 19+3, 5, 15, 19+
3, 5, 13, 21 + 3, 7, 9, 23 + 3, 5, 11, 23 + 3, 5, 9, 25|42 + 3, 5, 9, 11, 15 + 3, 5, 7, 13, 15 +
3, 5, 7, 11, 17+9, 15, 19+7, 17, 19+9, 13, 21+7, 15, 21+9, 11, 23+7, 13, 23+7, 11, 25+
5, 9, 29+7, 9, 13, 15+5, 11, 13, 15+7, 9, 11, 17+5, 9, 13, 17+3, 11, 13, 17+5, 7, 13, 19+
3, 9, 13, 19+3, 7, 15, 19+3, 5, 17, 19+3, 7, 13, 21+3, 5, 15, 21+5, 7, 9, 23+3, 7, 11, 23+
3, 5, 13, 23+3, 7, 9, 25+3, 5, 11, 25|44 +3, 5, 9, 13, 15+3, 5, 9, 11, 17+3, 5, 7, 13, 17+
9, 17, 19 + 9, 15, 21 + 5, 19, 21 + 9, 13, 23 + 5, 17, 23 + 9, 11, 25 + 5, 15, 25 + 5, 13, 27 +
7, 9, 29 + 5, 11, 29 + 5, 9, 31 + 7, 9, 13, 17 + 5, 11, 13, 17 + 5, 9, 13, 19 + 5, 7, 15, 19 +
3, 9, 15, 19+3, 7, 17, 19+5, 7, 13, 21+3, 9, 13, 21+3, 7, 15, 21+5, 7, 11, 23+3, 9, 11, 23+
3, 7, 13, 23 + 5, 7, 9, 25 + 3, 7, 11, 25 + 3, 5, 9, 29|46 + 3, 7, 9, 13, 15 + 3, 5, 9, 13, 17 +
3, 5, 7, 13, 19 + 13, 15, 19 + 7, 19, 21 + 3, 5, 7, 9, 23 + 9, 15, 23 + 7, 17, 23 + 7, 15, 25 +
7, 13, 27 + 5, 15, 27 + 7, 11, 29 + 7, 9, 31 + 5, 11, 31 + 5, 9, 33 + 3, 5, 7, 9, 11, 13 +
9, 11, 13, 15 + 5, 11, 13, 19 + 5, 9, 15, 19 + 5, 7, 17, 19 + 3, 9, 17, 19 + 5, 9, 13, 21 +
5, 7, 15, 21+3, 9, 15, 21+3, 5, 19, 21+5, 7, 13, 23+3, 9, 13, 23+3, 5, 17, 23+5, 7, 11, 25+
3, 9, 11, 25 + 3, 5, 15, 25 + 3, 5, 13, 27 + 3, 7, 9, 29 + 3, 5, 11, 29 + 3, 5, 9, 31|48 +
5, 7, 9, 13, 15+3, 7, 11, 13, 15+3, 7, 9, 13, 17+3, 5, 9, 13, 19+3, 5, 7, 15, 19+13, 17, 19+
3, 5, 7, 13, 21+13, 15, 21+9, 19, 21+3, 5, 7, 11, 23+11, 15, 23+3, 5, 7, 9, 25+9, 13, 27+
7, 15, 27 + 5, 17, 27 + 9, 11, 29 + 5, 15, 29 + 7, 11, 31 + 5, 13, 31 + 7, 9, 33 + 5, 11, 33 +
3, 5, 7, 9, 11, 15+9, 11, 13, 17+7, 11, 13, 19+5, 11, 15, 19+3, 13, 15, 19+5, 9, 17, 19+
5, 11, 13, 21 + 5, 9, 15, 21 + 3, 7, 19, 21 + 7, 9, 11, 23 + 3, 9, 15, 23 + 3, 7, 17, 23 +
3, 7, 15, 25+3, 7, 13, 27+3, 5, 15, 27+5, 7, 9, 29+3, 7, 11, 29+3, 7, 9, 31+3, 5, 11, 31+
3, 5, 9, 33
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e5 = 3, 7, 11, 15|36 + 5, 7, 11, 15 + 3, 9, 11, 15 + 3, 7, 13, 15 + 3, 7, 11, 17|38 + 5, 9, 11, 15 +
5, 7, 13, 15 + 3, 9, 13, 15 + 5, 7, 11, 17 + 3, 9, 11, 17 + 3, 7, 13, 17|40 + 3, 5, 7, 11, 15 +
7, 9, 11, 15 + 5, 9, 13, 15 + 3, 11, 13, 15 + 5, 9, 11, 17 + 5, 7, 13, 17 + 3, 9, 13, 17 +
3, 7, 15, 17+3, 7, 11, 21|42 +3, 5, 9, 11, 15+3, 5, 7, 13, 15+3, 5, 7, 11, 17+7, 9, 13, 15+
5, 11, 13, 15 + 7, 9, 11, 17 + 5, 9, 13, 17 + 3, 11, 13, 17 + 5, 7, 15, 17 + 3, 9, 15, 17 +
3, 7, 15, 19 + 5, 7, 11, 21 + 3, 9, 11, 21 + 3, 7, 13, 21 + 3, 7, 11, 23|44 + 3, 5, 9, 13, 15 +
3, 5, 9, 11, 17 + 3, 5, 7, 13, 17 + 7, 9, 13, 17 + 5, 11, 13, 17 + 5, 9, 15, 17 + 5, 7, 15, 19 +
3, 9, 15, 19+3, 7, 17, 19+5, 9, 11, 21+5, 7, 13, 21+3, 9, 13, 21+3, 7, 15, 21+5, 7, 11, 23+
3, 9, 11, 23+3, 7, 13, 23+3, 7, 11, 25|46+5, 7, 9, 11, 15+3, 5, 11, 13, 15+3, 5, 9, 13, 17+
3, 5, 7, 15, 17 + 3, 5, 7, 11, 21 + 9, 11, 13, 15 + 7, 9, 15, 17 + 3, 13, 15, 17 + 5, 9, 15, 19 +
5, 7, 17, 19 + 3, 9, 17, 19 + 7, 9, 11, 21 + 5, 9, 13, 21 + 3, 11, 13, 21 + 5, 7, 15, 21 +
3, 9, 15, 21 + 5, 9, 11, 23 + 5, 7, 13, 23 + 3, 9, 13, 23 + 5, 7, 11, 25 + 3, 9, 11, 25 +
3, 7, 13, 25|48 + 5, 7, 9, 13, 15 + 3, 7, 11, 13, 15 + 5, 7, 9, 11, 17 + 3, 5, 11, 13, 17 +
3, 5, 9, 15, 17 + 3, 5, 7, 15, 19 + 3, 5, 9, 11, 21 + 3, 5, 7, 13, 21 + 3, 5, 7, 11, 23 +
3, 5, 7, 9, 11, 15+9, 11, 13, 17+7, 11, 15, 17+5, 13, 15, 17+7, 9, 15, 19+3, 13, 15, 19+
5, 9, 17, 19 + 7, 9, 13, 21 + 5, 11, 13, 21 + 5, 9, 15, 21 + 3, 11, 15, 21 + 3, 7, 19, 21 +
7, 9, 11, 23+5, 9, 13, 23+3, 11, 13, 23+3, 7, 17, 23+5, 9, 11, 25+5, 7, 13, 25+3, 9, 13, 25

For alternating groups F4 is always a splitting field. The primitive central idem-
potents of F4An are the primitive central idempotents of F2Sn except for one case:
If n = m(m+1)

2 , then there is an idempotent e = C+ of F2Sn, where C is the
conjugacy class corresponding to the partition (2m − 1, 2m − 5, 2m − 9, ...) of n.
This idempotent splits in two primitive central idempotents f1 and f2 of F4An. We
computed these two idempotents. If a class C of Sn splits in two conjugacy classes
of An, then we write C− and C+ for the An-classes. ζ denotes a generator of F4

over F2. To save space we only write f1, the second idempotent f2 can easily be
computed via f2 = f1 +2m − 1, 2m − 5, 2m − 9, ...+ +2m − 1, 2m − 5, 2m − 9, ...−.

n f1

3 1 + ζ2 · 3+ + ζ · 3−
6 3 + ζ2 · 5+ + ζ · 5− + 32

10 7 + 3, 5 + 33 + 52 + ζ2 · 3, 7+ + ζ · 3, 7−
15 5, 7 + 3, 9 + 33, 5 + 72 + ζ · 5, 9+ + ζ2 · 5, 9− + 53 + 3, 5, 7+ + 3, 5, 7− + 32, 9

21 7, 11+3, 7, 9+3, 5, 11+3, 52, 7+33, 11+33, 5, 7+73 +5, 7, 9+ +5, 7, 9− +3, 92 +

52, 11 + 3, 7, 11+

28 5, 9, 11+5, 7, 13+3, 9, 13+3, 53, 9+32, 5, 7, 9+93 +7, 9, 11+ +7, 9, 11− +5, 112 +

33, 5, 13+72, 13+5, 9, 13++5, 72, 9+3, 5, 9, 11++3, 5, 9, 11−+53, 13+3, 5, 7, 13++

3, 5, 7, 13− + 32, 9, 13

36 7, 11, 15 + 3, 7, 11, 13 + 3, 7, 9, 15 + 3, 5, 11, 15 + 3, 73, 11 + 3, 5, 7, 9, 11+ +

3, 5, 7, 9, 11− +3, 52, 7, 15+33, 11, 15+3, 53, 7, 11+33, 7, 9, 11+7, 92, 11+3, 113 +

5, 7, 11, 13+ + 5, 7, 11, 13− + 3, 9, 11, 13+ + 3, 9, 11, 13− + 3, 7, 132 + 33, 5, 7, 15 +

73, 15 + 5, 7, 9, 15+ + 5, 7, 9, 15− + 3, 92, 15 + 52, 11, 15 + 3, 7, 11, 15+

45 5, 9, 13, 15 + 5, 9, 11, 17 + 5, 7, 13, 17 + 3, 9, 13, 17 + 53, 7, 9, 13 + 3, 5, 72, 9, 13 +

32, 5, 9, 11, 13 + 9, 112, 13 + 5, 133 + 7, 9, 13, 15+ + 7, 9, 13, 15− + 5, 11, 13, 15+ +

5, 11, 13, 15− + 5, 9, 152 + 3, 53, 9, 17 + 32, 5, 7, 9, 17 + 93, 17 + 7, 9, 11, 17+ +

7, 9, 11, 17− + 5, 112, 17 + 33, 5, 13, 17 + 72, 13, 17 + 5, 9, 13, 17+ + 5, 93, 13 +

5, 7, 9, 11, 13+ + 5, 7, 9, 11, 13− + 3, 5, 9, 13, 15+ + 3, 5, 9, 13, 15− + 5, 72, 9, 17 +

3, 5, 9, 11, 17+ + 3, 5, 9, 11, 17− + 53, 13, 17 + 3, 5, 7, 13, 17+ + 3, 5, 7, 13, 17− +

32, 9, 13, 17
55 7, 11, 15, 19 + 3, 7, 11, 15, 17 + 3, 7, 11, 13, 19 + 3, 7, 9, 15, 19 + 3, 5, 11, 15, 19 +

3, 7, 92, 11, 15 + 3, 5, 7, 11, 13, 15+ + 3, 5, 7, 11, 13, 15− + 3, 73, 11, 19 +

3, 5, 7, 9, 11, 19++3, 5, 7, 9, 11, 19−+3, 52, 7, 15, 19+33, 11, 15, 19+3, 5, 73, 11, 15+

3, 52, 7, 9, 11, 15 +7, 113, 15+33, 7, 11, 13, 15+7, 9, 11, 13, 15+ +7, 9, 11, 13, 15− +

3, 11, 132, 15 + 3, 7, 153 + 5, 7, 11, 15, 17+ + 5, 7, 11, 15, 17− + 3, 9, 11, 15, 17+ +

3, 9, 11, 15, 17− +3, 7, 13, 15, 17+ +3, 7, 13, 15, 17− +3, 7, 11, 172 +3, 53, 7, 11, 19+

33, 7, 9, 11, 19 + 7, 92, 11, 19 + 3, 113, 19 + 5, 7, 11, 13, 19+ + 5, 7, 11, 13, 19− +

3, 9, 11, 13, 19+ + 3, 9, 11, 13, 19− + 3, 7, 132, 19 + 33, 5, 7, 15, 19 + 73, 15, 19 +

5, 7, 9, 15, 19+ +5, 7, 9, 15, 19− +3, 92, 15, 19+52, 11, 15, 19+ ζ2 ·3, 7, 11, 15, 19+ +
ζ · 3, 7, 11, 15, 19−
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