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PARITY-REGULAR STEINHAUS GRAPHS

MAXIME AUGIER AND SHALOM ELIAHOU

Abstract. Steinhaus graphs on n vertices are certain simple graphs in bijec-
tive correspondence with binary {0,1}-sequences of length n−1. A conjecture
of Dymacek in 1979 states that the only nontrivial regular Steinhaus graphs
are those corresponding to the periodic binary sequences 110...110 of any
length n − 1 = 3m. By an exhaustive search the conjecture was known to
hold up to 25 vertices. We report here that it remains true up to 117 vertices.
This is achieved by considering the weaker notion of parity-regular Steinhaus
graphs, where all vertex degrees have the same parity. We show that these
graphs can be parametrized by an F2-vector space of dimension approximately
n/3 and thus constitute an efficiently describable domain where true regular

Steinhaus graphs can be searched by computer.

1. Introduction

Let s = a1 . . . an−1 be a binary sequence of length n − 1 with entries ai in the
2-element field F2 = {0, 1}. The Steinhaus graph associated with s is the simple
graph G(s) on the vertex set {0, 1, . . . , n − 1} whose adjacency matrix M(s) =
(ai,j) ∈ Mn(F2), with indices 0 ≤ i, j ≤ n − 1, is defined as follows:

1. ai,i = 0 for 0 ≤ i ≤ n − 1,
2. a0,i = ai for 1 ≤ i ≤ n − 1,
3. ai,j = ai−1,j−1 + ai−1,j for 1 ≤ i < j ≤ n − 1,
4. aj,i = ai,j for 0 ≤ i < j ≤ n − 1.

Note that the first row of M(s) is the vector (0, a1, . . . , an−1), and that each
subsequent row is determined, in its strict upper triangular part, by its predecessor
using rule 3. For example, if s = a1 . . . a4, then

M(s) =

⎛
⎜⎜⎜⎜⎝

0 a1 a2 a3 a4

a1 0 a1 + a2 a2 + a3 a3 + a4

a2 a1 + a2 0 a1 + a3 a2 + a4

a3 a2 + a3 a1 + a3 0 a1 + a2 + a3 + a4

a4 a3 + a4 a2 + a4 a1 + a2 + a3 + a4 0

⎞
⎟⎟⎟⎟⎠ .

The strict upper triangular part of M(s) is known as the Steinhaus triangle as-
sociated with s, first defined by Steinhaus in [7]. We say that the graph G(s)
is generated by the binary sequence s. Steinhaus graphs (in fact, their comple-
ments) were introduced by John Molluzzo in [6]. It can easily be shown [3] that all
Steinhaus graphs are connected, except those generated by the constant sequences
0...0.
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Here are two easy examples of Steinhaus graphs: if s = 1 of length 1, then
G(s) = K2, the one-edge graph on 2 vertices; if s = 0...0 of length n − 1 (also
denoted s = 0n−1), then G(s) is the zero-edge graph on n vertices. These particular
instances are regular graphs.

A general problem on Steinhaus graphs is that of characterizing those satisfying
a given graph property. For instance, all bipartite and all planar Steinhaus graphs
are now known [2, 4]. As for regular Steinhaus graphs, it is believed that the
currently known ones exhaust them all. Besides the trivial instances mentioned
above, namely G(1) = K2 and G(0n−1), there is also a nontrivial infinite family
of regular Steinhaus graphs on n = 3m + 1 vertices, generated by the periodic
sequence s = 110...110 of length 3m (m ≥ 1). It is an amusing exercise to check
that G((110)m) is indeed regular of degree 2m.

Dymacek first conjectured in 1979 that there are no other regular Steinhaus
graphs besides those described above [3]. Bailey and Dymacek verified this conjec-
ture for n ≤ 25 vertices in 1988 (see [1]). In this paper we extend the verification
as follows.

Computational Result 1. There are no other regular Steinhaus graphs on n ≤
117 vertices besides G(1), G(0n−1) and G((110)m).

This is achieved by computer-searching regular Steinhaus graphs inside the larger
class of parity-regular Steinhaus graphs, which, for n vertices, are proved to depend
on at most �n/3� binary parameters.

2. Parity-regular graphs

We shall say that a locally finite graph is parity-regular if its vertex degrees all
have the same parity. For instance, regular graphs are parity-regular. We say that
a parity-regular graph G is of odd type if its vertex degrees are all odd, and of even
type otherwise. Note that finite parity-regular graphs of even type are also known
as even graphs, or Eulerian graphs if connected.

It is well known that in a finite graph, the number of vertices of odd degree is
even. This implies the following.

Lemma 1. There are no parity-regular graphs of odd type with an odd number of
vertices.

Proof. If V and E denote the vertex set and the edge set, respectively, then 2|E| =∑
x∈V deg(x) ≡ |V | mod 2. �

We now show that parity-regular Steinhaus graphs on n vertices can be para-
metrized by approximately n/3 binary parameters. This fact greatly accelerates
the search for true regular Steinhaus graphs.

Theorem 2. Let n ≥ 2 be an integer. The set of parity-regular Steinhaus graphs
on n vertices is in bijection with a vector space over F2 of dimension �n

3 � − ε(n),
where ε(k) = 0 or 1 and ε(k) ≡ k mod 2.

Proof. Let s = a1 . . . an−1 be a binary sequence of length n − 1, or equivalently
let s ∈ F

n−1
2 . Let Li(s) ∈ F2 denote the ith row coefficient sum of the associated
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matrix M(s), for each i = 0, . . . , n − 1. Thus, we have

M(s) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠ =

⎛
⎜⎝

L0(s)
...

Ln−1(s)

⎞
⎟⎠

as matrices with coefficients in F2. For example, if n = 5, then L0(s) = a1 + a2 +
a3 + a4, L1(s) = a4, L2(s) = a2 + a3 + a4, L3(s) = a4 and L4(s) = a1. (Compare
with the matrix shown in the Introduction.)

Let R(n) = {s ∈ F
n−1
2 : Li(s) = Lj(s) for 0 ≤ i, j ≤ n − 1}. Then R(n) is

a subspace of F
n−1
2 , as the Li(s) are linear forms in s. It easily follows from the

definitions that the graph G(s) is parity-regular if and only if s ∈ R(n). Thus, the
subspace R(n) corresponds bijectively to the set of parity-regular Steinhaus graphs
on n vertices.

It is convenient to decompose R(n) as the disjoint union R0(n) ∪ R1(n), where
Rλ(n) = {s ∈ F

n−1
2 : Li(s) = λ for 0 ≤ i ≤ n − 1} for λ ∈ F2 = {0, 1}.

The set R0(n) is a subspace of R(n), corresponding to even1 Steinhaus graphs
on n vertices. The set R1(n) corresponds to the odd type, and is either empty or
an affine translate of R0(n). It follows from Lemma 1 that R1(n) = ∅ if n is odd.

The dimension count of R(n) is made possible by wonderful results in [3]. There,
Dymacek shows (Theorem 3.5, page 409) that the set of even Steinhaus graphs on
n vertices is of cardinality 2�

n−1
3 �. This is equivalent to the formula dimR0(n) =

	n−1
3 
. He further shows (Corollary 3.7, page 411) that for n even, there are also

2�
n−1

3 � Steinhaus graphs on n vertices with all vertices of odd degree (i.e., parity-
regular of odd type, in our terminology). Thus, for n even, the set R1(n) is an
affine translate of the subspace R0(n). For n odd, we have already observed that
R1(n) is empty. Hence, for the disjoint union R(n) = R0(n) ∪ R1(n), we get

|R(n)| =

{
2�

n−1
3 � if n is odd,

2�
n−1

3 �+1 if n is even.

This yields the formula dimR(n) = 	n−1
3 
 + ε(n − 1). It is a simple matter to see

that 	n−1
3 
 + ε(n − 1) = �n

3 � − ε(n) for all n ≥ 1, as witnessed by the following
table:

n 6k 6k + 1 6k + 2 6k + 3 6k + 4 6k + 5
	n−1

3 
 + ε(n − 1) 2k 2k 2k + 1 2k 2k + 2 2k + 1
�n

3 � − ε(n) 2k 2k 2k + 1 2k 2k + 2 2k + 1

As a last remark, note that dimR(n) satisfies the relation

dimR(n + 6) = dimR(n) + 2

for all n ≥ 1. �

1As observed earlier, all Steinhaus graphs are connected except the zero-edge ones. Thus,
nontrivial even Steinhaus graphs are actually Eulerian.
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3. Parametrizations up to 30 vertices

As an illustration of Theorem 2, here we give the parametrizations of all parity-
regular Steinhaus graphs up to 30 vertices. For a given number n of vertices, the
sequence s = (x1, . . . , xn−1) ∈ F

n−1
2 yields a parity-regular Steinhaus graph if and

only if s is of the form shown below. Observe that the number of free parameters
is everywhere �n

3 � − ε(n), as expected. The cases n = 7 and n = 9 are illustrated
in the next section.

These parametrizations were obtained by a simple Mathematica program, in the
spirit of the one given in [5]. One key function is GroebnerBasis, used to perform
Gaussian elimination on the family of linear forms Li(s) − Lj(s) defining the set
R(n) in the proof of Theorem 2. Our program easily produces such parametrizations
for n in the hundreds.

n = 2 : (x1)
n = 3 : (0, 0)
n = 4 : (x1, x1, x3)
n = 5 : (0, x2, x2, 0)
n = 6 : (x1, x1, x1, x1, x5)
n = 7 : (x1, x2, x1 + x2, x2, x2, 0)
n = 8 : (x1, x2, x2, x1, x2, x2, x7)
n = 9 : (0, x2, x3, x2, x3, x2, x2, 0)

n = 10 : (x1, x1, x3, x4, x1, x1 + x3 + x4, x1, x1, x9)
n = 11 : (x1, x2, x1 + x2, x4, x1 + x2, x2, x1 + x4, x2, x2, 0)
n = 12 : (x1, x2, x2, x1, x5, x1 + x2 + x5, x2, x1, x2, x2, x11)
n = 13 : (x1, x2, x3, x2, x1 + x3, x6, x2 + x3 + x6, x2, x3, x2, x2, 0)
n = 14 : (x1, x2, x3, x4, x2, x1 + x3 + x4, x1 + x2 + x3, x1 + x2 + x4, x2, x2

+ x3 + x4, x2, x2, x13)
n = 15 : (x1, x2, x3, x4, x3, x2, x1 + x4, x4, x3, x2, x2 + x3 + x4, x2, x2, 0)
n = 16 : (x1, x2, x3, x4, x5, x3 + x4 + x5, x2, x1, x2 + x3 + x5, x2 + x4 + x5, x2, x2

+ x3 + x4, x2, x2, x15)
n = 17 : (0, x2, x3, x4, x5, x6, x3 + x4 + x6, x2, x5, x2 + x4 + x6, x2 + x3 + x6, x2, x2

+ x3 + x4, x2, x2, 0)
n = 18 : (x1, x1, x3, x4, x5, x6, x4 + x5 + x6, x3 + x5 + x6, x1, x1 + x5 + x6, x1

+ x4 + x6, x1 + x3 + x6, x1, x1 + x3 + x4, x1, x1, x17)
n = 19 : (x1, x2, x1 + x2, x4, x5, x6, x7, x4, x1 + x2, x2, x1 + x5 + x6 + x7, x2

+ x4 + x6, x1 + x6, x2, x1 + x4, x2, x2, 0)
n = 20 : (x1, x2, x2, x1, x5, x6, x7, x8, x1 + x6 + x7, x2 + x6 + x7, x2, x1 + x5

+ x6 + x7 + x8, x1 + x2 + x6, x6, x2, x1, x2, x2, x19)
n = 21 : (x1, x2, x3, x2, x1 + x3, x6, x7, x8, x1 + x3, x2 + x6

+ x8, x3 + x6 + x8, x2, x1 + x6 + x7 + x8, x6, x2 + x3 + x6, x2, x3, x2, x2, 0)
n = 22 : (x1, x2, x3, x4, x2, x1 + x3 + x4, x7, x8, x9, x1 + x2 + x3 + x4 + x9, x1

+ x3 + x9, x1 + x4 + x9, x2, x1 + x7 + x8, x1 + x2 + x3, x1 + x2 + x4, x2, x2 +
x3 + x4, x2, x2, x21)

n = 23 : (x1, x2, x3, x4, x3, x2, x1 + x4, x8, x9, x10, x1 + x2 + x3 + x4 + x9

+ x10, x2 + x4 + x10, x2 + x3 + x10, x2, x1 + x8, x4, x3, x2, x2 + x3 + x4, x2,
x2, 0)

n = 24 : (x1, x2, x3, x4, x5, x3 + x4 + x5, x2, x1, x9, x10, x2 + x3 + x4 + x5

+x10, x1 +x5 +x9, x2 +x4 +x10, x2 +x3 +x10, x2, x1, x2 +x3 +x5, x2 +x4

+ x5, x2, x2 + x3 + x4, x2, x2, x23)
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n = 25 : (x1, x2, x3, x4, x5, x6, x3 + x4 + x6, x2, x1 + x5, x10, x11, x2 + x6

+ x10, x3 + x4 + x5 + x6 + x11, x2 + x4 + x10, x2 + x3 + x10, x2, x5, x2 + x4

+ x6, x2 + x3 + x6, x2, x2 + x3 + x4, x2, x2, 0)
n = 26 : (x1, x2, x3, x4, x5, x6, x4 + x5 + x6, x3 + x5 + x6, x2, x1 + x5 + x6, x11, x12,

x1 +x2 +x5, x1 +x2 +x3 +x4 +x6 +x11 +x12, x1 +x2 +x4 +x5 +x6, x1 +x2

+x3+x5 +x6, x2, x2 +x5+x6, x2 +x4 +x6, x2+x3 +x6, x2, x2 +x3+x4, x2,
x2, x25)

n = 27 : (x1, x2, x3, x4, x5, x6, x7, x4, x3, x2, x1 + x5 + x6 + x7, x12, x1 + x3

+ x5 + x6, x6, x1 + x3 + x4 + x6 + x7 + x12, x4, x3, x2, x2 + x3 + x5 + x6

+ x7, x2 + x4 + x6, x2 + x3 + x6, x2, x2 + x3 + x4, x2, x2, 0)
n = 28 : (x1, x2, x3, x4, x5, x6, x7, x8, x4 + x6 + x7, x3 + x6 + x7, x2, x1 + x5

+ x6 + x7 + x8, x13, x1 + x2 + x3 + x4 + x5 + x6 + x13, x2 + x3 + x7, x1 + x4

+ x8, x2 + x3 + x4 + x6 + x7, x2 + x6 + x7, x2, x2 + x3 + x4 + x5 + x6 + x7

+ x8, x2 + x4 + x6, x2 + x3 + x6, x2, x2 + x3 + x4, x2, x2, x27)
n = 29 : (x1, x2, x3, x4, x5, x6, x7, x8, x5, x4 + x6 + x8, x3 + x6 + x8, x2, x1

+x6 +x7 +x8, x14, x2 +x4 +x6 +x7 +x14, x2 +x4 +x8, x5, x2 +x6 +x8, x2

+ x3 + x4 + x6 + x8, x2, x2 + x3 + x4 + x5 + x6 + x7 + x8, x2 + x4 + x6, x2

+ x3 + x6, x2, x2 + x3 + x4, x2, x2, 0)
n = 30 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x5 + x6 + x9, x4 + x6 + x9, x3 + x6

+x9, x2, x1+x7+x8, x1+x2+x3+x4+x5+x6+x7, x1+x2+x3+x4+x5+x6

+x8, x2+x5+x9, x2+x6+x9, x2+x4+x5+x6+x9, x2+x3+x5+x6+x9, x2, x2

+x3 +x4 +x5 +x6 +x7 +x8, x2 +x4 +x6, x2 +x3 +x6, x2, x2 +x3 +x4, x2,
x2, x29)

4. The cases n = 7 and n = 9

We illustrate the above parametrizations with two examples, the cases n = 7
and n = 9. According to the preceding section, the complete list of parity-regular
Steinhaus graphs G(s) on 7 vertices is given by all sequences s ∈ F

6
2 of the form

s = (x1, x2, x1 + x2, x2, x2, 0) with x1, x2 ∈ F2. Thus, there are exactly four such
graphs. Among them, two are truly regular, namely for x1 = x2 = 0, yielding
s = (0, 0, 0, 0, 0, 0), and for x1 = x2 = 1, yielding s = (1, 1, 0, 1, 1, 0).

For n = 9, the complete list of parity-regular Steinhaus graphs on 9 vertices
is given by all sequences s ∈ F

8
2 of the form s = (0, x2, x3, x2, x3, x2, x2, 0) with

x2, x3 ∈ F2. Again, there are four such graphs. But here, only the zero-edge one is
truly regular. The other three graphs are pictured in Figure 1. (There, the vertices
are denoted 1, 2, . . . , 9 rather than 0, 1, . . . , 8).

5. The main result

Using Theorem 2 and our explicit parametrizations of parity-regular Steinhaus
graphs, we have been able to greatly extend the verification of the conjecture of
Dymacek, by searching regular Steinhaus graphs inside the larger class of parity-
regular ones. Our result is as follows:

There are no new regular Steinhaus graphs on n ≤ 117 vertices other than those
already known, i.e. G(1), G(0n−1) and G((110)�n/3�).

Recall from Section 2 that for any given n, the search space R(n) is of size
2�n/3�−ε(n). Up to n ≤ 81 vertices, our search was performed in a few days on a
standard PC running a simple uncompiled Mathematica 5.0 program.
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Figure 1. All nontrivial parity-regular Steinhaus graphs on 9 vertices
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However, to treat the range 82 ≤ n ≤ 117, we had to switch to a carefully written
and highly optimized program in C. This computation was run on a 16-processor
Bull NovaScale machine in less than two weeks.

6. Related problems

Two interesting problems arose during our investigations on parity-regular Stein-
haus graphs. As for regularity, they both concern the vertex degree distribution of
such graphs. For convenience, we shall sometimes write “PRS graph” for “parity-
regular Steinhaus graph” in this section.

Question 1. Are there parity-regular Steinhaus graphs on n vertices with exactly
two distinct vertex degrees?

For even n, the following binary sequences yield solutions to Question 1:

• If s = 0n−21 or 1n−1, the set of vertex degrees of G(s) is {1, n − 1}.
• If s = 1n−20, the set of vertex degrees of G(s) is {2, n − 2}.

The hypothesis that n is even ensures that the above graphs are indeed parity-
regular. There are other systematic solutions, depending on the class of n mod
6:

• If n ≡ 1 mod 6 and s = (101000)(n−1)/6, then the degree set of G(s) is
{k, 2k} where k = n−1

3 .
• If n ≡ 2 or 5 mod 6 and s = 0(110)(n−2)/3, then G(s) has degree set equal

to {2k, 2k + 2} where k = n−2
3 .

Surprisingly, in the remaining case n ≡ 3 mod 6, there seem to be no solutions,
except for n = 3 and n = 15. We have verified this up to n ≤ 45 vertices.

Conjecture 1. For every n ≡ 3 mod 6 with n ≥ 21, there are no parity-regular
Steinhaus graphs on n vertices having exactly two distinct vertex degrees.

In the same type of question, we can show that, for every n ≥ 9, there are PRS
graphs on n vertices with exactly three distinct degrees. Solutions s ∈ F

n−1
2 of the

form 0(1)2k0, (001)2k+1, 1(001)2k, (0110)2k110 and 0(0110)2k+104 suffice to cover
all n ≥ 9.

Our second problem concerns the reconstructibility of PRS graphs from their
degree distributions. We denote by di the degree of vertex i.

Question 2. Is it true that a parity-regular Steinhaus graph on n vertices is de-
termined by its degree sequence (d0, d1, . . . , dn−1)?

For example, there are exactly four PRS graphs on n = 6 vertices. Their
respective degree sequences are (0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 5), (5, 1, 1, 1, 1, 1) and
(4, 2, 2, 2, 2, 4). These four sequences being distinct, Question 2 has a positive an-
swer for n = 6.

While the answer to Question 2 turns out to be negative in general, counterex-
amples seem to be very rare. To facilitate their discussion, we define a collision to
be a pair of distinct binary sequences s1, s2 ∈ F

n−1
2 such that

• the associated Steinhaus graphs G(s1), G(s2) are parity-regular, and
• the degree sequences of G(s1), G(s2) are identical.
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The smallest collision occurs at n = 26 vertices. It is given by the pair s1, s2 ∈
F

25
2 , where

s1 = (0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1),
s2 = (1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1).

Observe the relation s1 + s2 = (1, 1, . . . , 1, 0) ∈ F
25
2 . The common degree sequence

of their associated Steinhaus graphs G(s1), G(s2) is

(13, 15, 9, 9, 13, 13, 17, 11, 9, 19, 9, 9, 11, 11, 9, 9, 19, 9, 11, 17, 13, 13, 9, 9, 15, 13).

(As required, all vertex degrees have the same parity.)
This is the sole collision for n ≤ 26. We found that, up to 50 vertices, the only

other collisions occur at n = 34, 38, 42, 46 and 50. Moreover, each one satisfies the
relation s1+s2 = (1, 1, . . . , 1, 0) ∈ F

n−1
2 . Below we give the complete list of collisions

s1, s2 up to n ≤ 50 vertices. As these pairs all satisfy s2 = s1 + (1, 1, . . . , 1, 0), we
display s1 only, in the form of a binary string.

n = 26 : 0010101001111110010101001
n = 34 : 000011101110110000110111011100001
n = 38 : 0000001011110110111101101111010000001
n = 42 : 00001100001111101110011101111100001100001

00100110010011101011110101110010011001001
00101010011100100111111001001110010101001
00101010011111000101101000111110010101001
00101010011111001010010100111110010101001
00101010011111101000000101111110010101001

n = 46 : 000000101111010011110110111100101111010000001
000011100011010011101111011100101100011100001
001001100110010010111111110100100110011001001
001010101010010001111111111000100101010101001

n = 50 : 0000110011001100001111111111110000110011001100001
0000111011101100001101011010110000110111011100001
0000111011101100001110011001110000110111011100001
0010011010010110010011111111001001101001011001001
0010011010110010011001111110011001001101011001001
0010011010110010011010111101011001001101011001001
0010100001011110010111100111101001111010000101001
0010100001111010011101100110111001011110000101001
0010100001111010011110100101111001011110000101001
0010100010101110010111011011101001110101000101001
0010101001011010011111000011111001011010010101001
0010101001111110010101000010101001111110010101001
0010101001111110010110000001101001111110010101001
0010101010001110010101111110101001110001010101001
0010101010001110010110111101101001110001010101001
0010101010101010011100111100111001010101010101001

This leads us to the following conjecture.

Conjecture 2. If s1, s2 ∈ F
n−1
2 is a collision, then n ≡ 2 mod 4 and s1 + s2 =

(1, 1, . . . , 1, 0).
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In other words, we conjecture that whenever n �≡ 2 mod 4, a parity-regular Stein-
haus graph on n vertices is completely determined by its vertex degree sequence.
If true, it would be extremely interesting to know how to reconstruct the sequence
s from the degree sequence of G(s).
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