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IMPLICIT A POSTERIORI ERROR ESTIMATES
FOR THE MAXWELL EQUATIONS

FERENC IZSAK, DAVIT HARUTYUNYAN, AND JAAP J.W. VAN DER VEGT

ABSTRACT. An implicit a posteriori error estimation technique is presented
and analyzed for the numerical solution of the time-harmonic Maxwell equa-
tions using Nédélec edge elements. For this purpose we define a weak for-
mulation for the error on each element and provide an efficient and accurate
numerical solution technique to solve the error equations locally. We inves-
tigate the well-posedness of the error equations and also consider the related
eigenvalue problem for cubic elements. Numerical results for both smooth and
non-smooth problems, including a problem with reentrant corners, show that
an accurate prediction is obtained for the local error, and in particular the
error distribution, which provides essential information to control an adapta-
tion process. The error estimation technique is also compared with existing
methods and provides significantly sharper estimates for a number of reported
test cases.

1. INTRODUCTION

The solution of the Maxwell equations frequently contains structures with limited
regularity, such as singularities near corners and non-convex edges. These structures
can be efficiently captured using hp-adaptive techniques, in which the mesh is locally
refined and coarsened (h-adaptation) or the polynomial order in individual elements
is adjusted (p-adaptation). Examples of hp-adaptive techniques applied to the
Maxwell equations can be found in e.g. [12] 16} 24} 25] 26 29]. The hp-adaptation
technique is a promising approach to obtain efficient numerical algorithms to solve
the Maxwell equations, but requires a reasonably accurate estimate of the local
error in the numerical solution in order to control the adaptation process. In simple
cases one can predict the regions which need to be adapted, but a more general
approach requires the use of a posteriori error estimates in which the local error is
predicted based on the numerical solution. General techniques for a posteriori error
estimation are discussed in e.g. [1I, [B], [4], [17], [18], [28], but providing accurate a
posteriori error estimates for the Maxwell equations still poses many problems.

In the a posteriori error analysis of the Maxwell equations one encounters two ba-
sic problems: the bilinear form of the Maxwell equations is in general not coercive,
and the analytic solution is not necessarily smooth. Moreover, in real-life situations
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computations often have to be done in three-dimensional domains of complex geom-
etry (e.g. with reentrant corners) and consisting of different materials (so that the
coefficients of the equations are discontinuous). To avoid these difficulties, several
studies [6], [7], [23] only investigate a problem defined by a coercive bilinear form.
Others, e.g. [21], assume some regularity in the solution of the dual problem.

There are several techniques to obtain a posteriori error bounds for the Maxwell
equations. Explicit methods, see e.g. [6], [2I], give an error estimate based on
the available numerical solution and are relatively easy to implement. The error
bounds in explicit methods contain in general unknown coefficients, which also
depend on the wave number in the equations, and frequently result in unsharp es-
timates. Another approach is provided by using a hierarchical basis; see e.g. [II,
[5]. This approach has been applied in [7] to the (curl) elliptic Maxwell equations.
The analysis of this method is based on some assumptions, such as the satura-
tion assumption ([I, Section 5.2]), and the replacement of the bilinear form by an
equivalent (localized) bilinear form which ignores coupling terms to obtain a small
linear system for the error equations. The validity and effect of these assumptions
on the accuracy requires, however, careful attention. Implicit error estimators for
the Maxwell equations have been developed in [26], based on the approach in [14],
and successfully applied to an hp adaptive finite element algorithm for the Maxwell
equations in 3D. Lacking a complete analysis, the authors applied an equilibration
technique to ensure well-posedness which results in a rather complicated computa-
tional procedure.

In this paper we further investigate the use of implicit error estimators. We fol-
low an approach originally developed for elliptic partial differential equations (see
e.g. [1]) which when properly formulated, is also applicable to obtain local error
estimates for the Maxwell equations. For this purpose, we first define a weak formu-
lation for the error in each element, which is solved with a finite element method.
This is the main difference with explicit a posteriori error estimates which only
use the data provided by the numerical solution. We consider the time-harmonic
Maxwell equations with perfectly conducting boundaries discretized with Nédélec
edge elements, but many ideas can be applied in a more general setting. The main
benefit of implicit error estimates is that we do not encounter unknown or very
large constants in the a posteriori error estimates. The success of this approach,
however, strongly depends on the definition of the boundary conditions for the lo-
cal error equations and the choice of a proper basis for the numerical solution of
the local problems. The latter is achieved by using higher order face and element
bubble functions.

The second topic we address is the theoretical properties of the implicit a pos-
teriori error estimation technique. First, we investigate the well-posedness of the
weak formulation for the local error, in particular in relation to the boundary con-
ditions used in the local error equations. Also, the eigenvalue problem related to
the local error equations is investigated in detail. Following the lines in [I] we in-
troduce an error indicator and point out that this provides a lower bound for the
exact error and an upper bound for our implicit estimate (up to a constant factor
in both cases). These results give the implicit a posteriori error estimation tech-
nique a sound theoretical basis and make it possible to avoid some of the involved
techniques used in [26], [29].
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Instead of giving sharp error estimates we check the preciseness of our method
using numerical experiments. We pay special attention to cases where the analytic
solution is non-smooth and also investigate the problem in computational domains
with reentrant corners. Both the local and global error are estimated in the H (curl)
norm and compared with the exact error. We also consider the error distribution,
since this is essential information to decide in which areas the mesh has to be
adapted. Despite of the expected difficulties we obtain rather precise estimates in
each case.

The outline of the paper is as follows. In Section 2 we start with the mathe-
matical formulation and define the finite element discretization. The implicit error
estimation technique is formulated and analyzed in Section 3. Next, we discuss
lower and upper bounds on the error indicator in Section 4. The implicit a pos-
teriori error estimation technique is tested numerically on a number of problems
of increasing difficulty in Section 5. Finally, Section 6 contains conclusions and
suggestions for future work.

In this paper we frequently use notations and techniques discussed in the mono-
graph [2I]. For a short, self-contained introduction to finite element methods for
the Maxwell equations we refer to [15].

2. MATHEMATICAL FORMALIZATION

Consider the time harmonic Maxwell equations for the electric field E : Q — R3
with perfectly conducting boundary conditions, which are defined as

. curlcurl E — k?E = J), in Q,
(1) Exv=0 ono,

where ) C R3 is a Lipschitz domain with outward normal vector v and J; €
[L2(£2)]? is a given source term which is related to the wave number k. Here k = ¢
with the frequency w and the speed of light ¢. Here E x v is defined in a trace
sense [10], [21] discussed later.
In the subsequent derivations we will need the following spaces and operators.
The Hilbert space corresponding to the Maxwell equation is

H(curl, Q) = {u € [Lo(Q)]? : curl w € [Lo(Q)]?},
equipped with the curl norm

(2) [wflcuro = (HUH[QLQ(Q)]?’ + \|CUY1U||[2L2(Q)]3)1/2~

The differential operators div and curl are understood in a distributional sense.
While analyzing () a subspace of H(curl, Q) is commonly used, namely
Hy(curl, ) = {u € H(curl, Q) : v x u|pq = 0}.

The above definition of Hy(curl, Q) makes sense only if u|sq is well defined and a
duality between this trace and the outward normal can be defined. To be more
precise we first define for a smooth function v € C°°() the operators v, and m,
with

(3) YV =V X v|gq and v = (¥ X v|pq) X V.

One can prove that v, can be extended to a continuous operator mapping H (curl, 2)
into [H~'/2(0Q)]*. The trace operator 7, can also be extended to H(curl,Q),
however, a natural norm on the range is more involved. For the details we refer to
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[21], or for a more extensive analysis to [I1]. The above definitions and notations
will also be used for a subdomain K C 2.

The scalar product in [Ly(2)]* and [Ly(K)]? are denoted with (-,-) and (-,-)x,
respectively. Similarly, (+,-)sq and (-, -)sx denote the duality pairing between the
two types of traces on 0f2 and 0K, respectively.

We also recall an appropriate Green’s formula: for any w, v € H(curl, ) we have
the identity

(4) (curlu,v) — (u,curl v) = (y,u, 7,v)oq, Vu,ve H(curl,Q),

and a corresponding formula holds on K.
Turning to the variational formulation of ({l) we introduce the bilinear form

B: H(curl,Q) x H(curl, Q) — R

with
B(u,v) = (curl u, curl v) — k*(u, v),
and By will denote the corresponding bilinear form on H (curl, K) x H(curl, K).

Using the above notations the weak formulation of the problem () is to find
E € Hy(curl, Q) such that

(5) (curl E, curlw) — k*(E,v) = (Jg,v) Vv € Hy(curl, Q).

2.1. Finite elements in H(curl): Edge elements. For the numerical solution of

() we use the H(curl) conforming edge finite element method initiated by Nédélec
The finite element (K, P, A) [§] is defined on the unit cube K, and an isopara-

metric mapping ([§], Section 4.7) Dy : K — K is used to define it on a hexahedron

K. In general, Dk could be non-linear, but we restrict the analysis to affine maps.
In the numerical experiments we use the lowest order elements

(6) P ={u=[ui,uz,us)’ s us € Qo.1,1;u2 € Qro1;5u3 € Qr1,0}

with Q,i,m the vector space of k,l and m order polynomials with respect to their
first, second and third variables, respectively.

It is well known that the covariant transformation preserves line integrals under
a change of coordinates [21], 27], so that the basis functions for a given hexahedron
K can be defined as

(7) w; i (T,y,2) = ((dD;(l)TW?) o Dt (z,y, 2),

where dDj is the Jacobian of the transformation D, and {W}}12, is a basis in

[@).

Using the transformation in ([7]) one easily computes the curl of the basis functions
(see [21], (3.76) and the corresponding statements: Lemma 3.57, Corollary 3.58).
A similar transformation for divergence conforming finite elements ([21], (3.77)]) is
well known and called the Piola transformation ([20, p. 112]).

Next, we introduce a hexahedral tessellation 7;, of Q. The space W), of Nédélec’s
edge elements is then defined by

Wi, = {uy € H(curl, Q) : up|x € span(w; i), VK € Tp,},

where span(w; k) denotes the linear hull of wy x, w2 K, ..., w12k, and with this
the discretized version of () reads:
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Find E}, € W}, such that for all W € W), the following relation is satisfied:
(8) (curl Ep,, curl W) — k*(E),, W) = (J, W).

3. IMPLICIT ERROR ESTIMATION

Providing reliable explicit bounds for the computational error in the case of the
Maxwell equations is still an unsolved problem due to many difficulties as mentioned
in the Introduction. The idea of implicit a posteriori error estimation can help
to overcome these problems. In this procedure we are not interested in explicit
error bounds (depending on the data from some existing numerical approximation),
rather, we formulate a local problem for the error using the available information.
This local problem has to be equipped with some meaningful boundary condition
and we have to ensure that it is well posed.

3.1. Formulation of the local problem. Assume that E}, is a computed numer-
ical solution. Our aim is to estimate the computational error e, = (E — E},)|x on
a subdomain K consisting of a set of elements K € 7j,, with 7}, being the finite ele-
ment tessellation. For this we state a variational problem for e; on the subdomain
K as follows:

Bi(en,v) = (curl ey, curl v) g — k?(epn, v)x
= (curl (E — Ey),curlv) g — k*(E — Ep,v) g
9) = (curl E, curl v) g — k*(E,v)x — ((curl By, curl v)g — k*(Ep,v) k)
= (curl curl E,v) g — (yrcurl E, 7m,v)9x — k*(E,v)x — Br(Ep,v)K
= (Jg,v)k — (yrewl E, m,0)sx — B (Ep,v), Yv € H(curl, K).

In order to get a well defined right hand side we should use an approximation

(10) vreurl E = ’ymE

on the interelement faces. The quantity v,curl E will be called the natural boundary
data from now on. In the literature, the homogeneous natural boundary condition is
called the magnetic symmetry wall condition [I5]. Introducing this approximation
into (@) we arrive at the variational problem for the implicit error estimate: Find
ey € H(curl, K) such that

(11) Bx(én,v) = (Ji,v)k — (yocurl B, m,0)ox — Bi(Ep,v), Vo € H(curl, K).

3.2. Numerical solution of the local problem. We will now give a discretized
form of the local problem ([I]) which requires a concrete choice for the approxi-
mation (I0) of the natural boundary condition and a finite element basis on the
subdomain K.

3.2.1. Approzimation of the natural boundary condition. We first specify the ap-
proximation in ([IQ). For the definition of the boundary condition for the local
error equation ([I0) we introduce [; as the common face of the two neighboring
elements K and K; and v; as the outward normal on [; with respect to K. We
approximate yrcurl E on [; with the average of the tangential traces of the nu-
merical approximation E} on its two sides K and K. That is, we shall use the
approximation

1
§(I/j X [curl E} |k + curl Eh|KjD

which can be straightforwardly implemented.

(12) yreurl E|; = v x curl B, ~
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3.2.2. Choice of the local basis. The local error equation (cf. () is solved nu-
merically in a finite-dimensional space which we denote with V}. As discussed in
1] (see Section 3.4.2 in [I] for several examples), the space V3, has to be selected
carefully.

It is known that the finite element solution E}, is a quasioptimal approximation
of E within the finite element space W},. Therefore, it does not make sense to use
this space to solve the error equation; we should rather estimate the components
of &, which are not present in Wj,.

On the other hand, Nédélec type edge elements are related to the electric field
strength along the edges. Therefore, to enhance the approximation of the error we
should use elements in the local problems which are zero on all edges since the error
is mainly non-zero away from the edges. This corresponds to the technique in [9],
Section 2.2 for elliptic problems and helps to localize the error equation.

Based on these requirements we use a finite dimensional space which is zero on
all edges and for all faces we associate a basis function which is non-zero only on

that face. In concrete terms, the finite element space V}, = span(qu), j=1,...,9,
on each element K is given by
(13) ¢j(337y72’) :qﬁg(f,n,C)OD}}l(x,y,z),

and V = span (gb?), j=1,2,...,9, where the face and the element bubble functions
on the reference element K are

@ = (1 -1 —n)n(1—¢)¢,0,0)", ¢6 =(0,0,(1 = &1 —mmQ)",

@9 = (£(1—mn(1—)¢,0,0)" = (1= &&= n)n(1 - )¢, 0,0)"
@9 = (0,(1 - & —n)(1-)¢,0)7, ¢8 = (0,(1 = &1 = mn(1 = ¢)¢,0)"
@9 = (0,(1—&én(1 - )¢, 0", @9 = (0,0,(1 = &1 —n)n(1 — )",
@9 = (0,0,(1— )& —n)n(1 - )"

Compared to () the transformation in ([3)) is a minor simplification which results
in the same finite element space as the one in (7)) but makes the computations
slightly easier.

The analysis of the local problem given in Appendix A confirms that this basis
results in a well posed problem for the discrete form of the error equation ([ITJ).

3.2.3. Weak form of the local problem. Using the approximation (I2]) and the local
basis V}, we obtain the discrete form of ([IIl): Find é; € V}, such that Vw € V},

(curl ey, curl w) g — k*(én, w) g = (Jp, w) g — (curl By, curl w) g
(14) 1
+k2(Eh7’w)K — 5(1/]‘ X (curl Eh|K + curl Eh|Kj) ,’w)aK.

3.3. Analysis of implicit error estimation. Our objective is to solve the local
problems arising in ([I4)) for the unknown error term éj. In this section, we estab-
lish that any reasonable approximation in (I0) results in a well posed problem in
(). Observe that this equation is the variational form of the Maxwell equations
equipped with natural boundary data. Note that a similar procedure for elliptic
problems results in ill-posed local problems which require some postprocessing to
be solvable [1].
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3.3.1. Lifting of the local problem. The well-posedness of (1) will be investigated
for the case of homogeneous natural boundary conditions. To do this we apply the
trace lifting [ : Ran(~; o curl|gx) — H(curl, K) (or equivalently, take an inverse of
the tangential trace of the curl operator on H(curl, K')) such that

- (curl lu) = u, Vu € Ran(v, o curl|gg).
Now defining €5, = é5, — l(v; x curl é,|ox) we can rewrite ([l as follows:
Bk (en,v) = Bi(ép,v) — Bg(l(v; x curl é,ok ), v)

= (Jk,v)Kx — (%ElFEﬂTTU)aK — B (Ep,v)

(15) — (curl curll(yﬁE),v)K
+ (yrewl B, m0)ak + k2 (I(yrcurl E), )
= (Jj — curl curl l('yﬁE) + kQZ(VTgJEE), v)k — B (Ep,v),
Vv € H(curl, K).

Observe that on the right hand side we obtained a bounded linear functional of v
such that using the Riesz representation theorem we will denote it with (f V) K-
This approach is only necessary for our analysis; we do not need to compute the
lifting operator explicitly, since in the finite element procedure the inhomogeneous
natural boundary condition can be included in the variational form.

3.3.2. Preliminaries to the well-posedness result. In the following two subsections
we prove some well-posedness results which are formulated in an arbitrary simply
connected domain with a Lipschitz boundary. In this way, all of the results can also
be applied in the case when local problems will be investigated in the subdomains of
the original domain (2. Before proving the well-posedness of the variational problem
we state a lemma which will be the cornerstone of our compactness arguments.

Lemma 1. The Hilbert space H(curl, Q) can be decomposed as the direct sum of
orthogonal subspaces:

(16) H(curl, Q) = ker curl @ (ker curl)®,
and the imbedding of the second component into [La(Q)]? is compact.

Proof. Using the decomposition theorem in [I3] p. 216] and the imbedding in The-
orem 2.8 in [2], a standard argument gives the statement of the lemma. For a
complete proof we refer to [19]. O

3.3.3. Well-posedness of the local problem. We can state now the well-posedness of
(@) and prove the following:

Lemma 2. Assume that k is not a Mazwell eigenvalue in the sense that the problem:
Find w € H(curl,Q) such that

B(u,v) =0, VwveH(curl,Q)
has only the trivial (w = 0) solution. Then the variational problem: Find u €
H(curl, Q) such that

(17) B(u,v) = (Jy,v), Ywve H(curl,Q)
has a unique solution for all Jj, € [Lo(Q)]>.
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Proof. The proof can be carried out using Lemma [Tland the technique in [21]. For
a complete proof, we refer to [19]. O

We should also prove that (at least) a smooth solution of the variational equation
(@) in the lemma satisfies the homogeneous (natural) boundary condition, as well.

Lemma 3. Assume that for the solution u of ([[Q) curl curlu € [Lo(Q)]3 holds.
Then u solves the Maxwell equation equipped with the natural boundary condition:
curlcurlu — k2w = J;, in Q,

(18)

vXxcurlu =0 on Jf.
Proof. Using the assumption in this lemma and the Green theorem () for the curl
operator we obtain that

0 = (curl u, curl w) — k*(u,v) — (Jg,v) = (curl curl w, v) — k2 (u,v) — (Jy, v)

holds for every v € D(Q2) with D(Q) = {v € C*°(Q) : v has compact support}.
Since the embedding D(Q) C H(curl, Q) is dense, (curl curl u — k?u — Jj,v) = 0
for all v € H(curl, Q) curl curl w — k*u = J} holds in [Ly(9)]°.

Using the Green theorem again we obtain that for all v € H(curl, 2)

0 = (curl curl uw — k*u — J, v)
(19) = (curl u, curl v) + (yrcurl u, m,v) a0 — k*(u,v) — (jk, v)

= (’YTcurl u, WTU)BKL

In this way, it also holds for any v € [H'(9)]?, therefore, by the surjectivity of the
trace mapping H' (Q) — H'Y?(9Q) we obtain that v curlu = 0 in the [H~/2(9Q)]?
sense. 0

Remarks. 1. Indeed, the dual space of the 7, map of H(curl, Q) is the kernel space
of the natural boundary trace «, o curl. For the details, see [11].

2. As far as we consider a finite element scheme with piecewise polynomial basis
functions, the eigenvalue problem in the weak sense (discussed in Lemma [ is also
equivalent with the eigenvalue problem for the original equation ().

3.4. The eigenvalue problem for the time-harmonic Maxwell equations
with natural boundary conditions. The well posedness of the local problems
for the error can be guaranteed if we ensure that k is not a Maxwell eigenvalue of
these problems.

More specifically, recall that in Section 2, the weak form (@) for the local error
equation equipped with the natural boundary condition ([I2)) results in the vari-
ational problem (&) which is well posed by Lemma [ if and only if %k is not an
eigenvalue of the appropriate boundary value problem (). In this section, we
determine the eigenvalues belonging to cubic subdomains. In this way, for any k
(given in the original problem (Il)) we will be able to choose the subdomain K in
the tessellation such that the boundary value problem (@) (or even (IIJ)) on K will
be well posed.

First, we reduce the eigenvalue problem such that we can apply some techniques
and results which are available for the Laplacian operator.
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Lemma 4. If k # 0 is a Mazwell eigenvalue of the differential operator on the left
hand side of ([I8), then its eigenfunction w is in the subspace uw € (ker curl): and

solves the following Helmholtz equation:
Au—FKu=0 inQ,

(20)

vxcurlu =0 on 90,

where the operator A is defined componentwise: forv : Q — R3 with v = (vy,va,v3),
Av := (Avy, Avg, Avs).

Proof. Assume that ©w = uq + us (according to the decomposition (I6)) is an
eigenfunction of (). Then

(21) curl curl(u; + ug) — k?(uy + ug) = curl curl uy — k*(u; + ug) = 0.

Note that the boundary condition v x curl u = 0 implies that v x curl us = 0 and
therefore, taking the [Lo(€)]? scalar product of both sides with w; and using the
orthogonality in ([I€]), we obtain

0 = (curl curl uy — kg(u1 +uz), up)

= (curl wg, curl uy) + (yrcurl ug, Ty )og — k2 (wy, ur) = —k?|luq |2
This means that w; = 0, and using the relation curlcurlus = —Awus +graddivus =
—Awus in ([ZI)) we obtain the statement in the lemma. O

In the following we use the conditions arising from the fact that u € (ker curl)* C
Hy(div 0,) (see proof of Lemma 1) and the boundary condition in (20):

(22) dive = 0 inQ,
(23) u-v = 0 ondQ,
(24) vxcurlu = 0 ond.

Accordingly, our objective is to find the eigenvalues and eigenfunctions of the fol-
lowing operator L:

L: L) — [La(Q)],
(25) Dom £ = {u € Hy(div0,Q) : Au € [Ly(Q)]? and v x curlu = 0 on 90N},
Lu = Au.

3.5. Eigenvalues in a rectangular domain. In this subsection, we investigate
the eigenvalue problem on the cube © = (0,7) x (0,7) x (0, 7). Applying a linear
transformation for the eigenfunctions on §2 allows us to solve the eigenvalue problem
on rectangular domains.

This result makes it possible to choose the subdomains in the finite element
tessellation in such a way that the local problem for the error is well posed on each
subdomain.

We present only the results in this section; the proofs are provided in [19].

Theorem 1. The eigenfunctions of L defined in [28) are given by:

Cy sin k121 cos koo cos ksxg
(26) u(x1, 9, x3) = | Cacoskixy sinkoxs coskszs |,

C3 cos k1x1 cos koxo sin ksxs
for any kq, ko, ks € N with

(27) k1C1 + koCy + k3C3 =0 and Cp,C5,C3 € R.
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Based on Theorem [l we can give the eigenfunctions and eigenvalues of the
Maxwell eigenvalue problem with homogeneous natural boundary conditions

curl curlv = kv in B )
(28) a,b,c
vxcurlv=0 ondBgy.,,

where B, . is a rectangular domain with edge lengths a,b and c, respectively.

Theorem 2. The eigenfunctions of the Mazwell equation [28) are

k:lTr k}27l' k37r

Csin *L%x cos “37y cos 2
k}27l' k37r
C

v(x,y,z) = | Cycos ’C}Tﬂx sin %%y cos

klﬂ' k‘271' :
C3 cos =% x cos 7y sin

z
Z 0,

k‘371'z

for any ki, ko, k3 € N with

]%”cﬁk%”@ﬂ%”cg:o and Cy,Cy,C5 €R

and the appropriate eigenvalues are k? = (%)2 + (kQTTr)2 + (1‘?’7”)2 with ky, ko, k3 €
N arbitrary.

4. IMPLICIT ERROR ESTIMATE AS A LOWER BOUND OF THE ERROR

If the a posteriori error estimates have to be used in an adaptation procedure
we also have to investigate a lower bound for the exact error. This will ensure that
we do not get a pessimistic overestimate of the actual error when the mesh size is
reduced. For the estimates in this section we will define an error indicator nx on K.
Our analysis consists of two steps: first, we point out that the implicit a posteriori
error estimate e, discussed in this paper provides a lower bound estimate of nx (up
to a certain factor). Second, we verify that the error indicator can also be used as a
lower bound (up to a certain factor and some computable remainders) of the exact
error on a patch of the subdomain K. The proof is based on the approach in [IJ.
While the second step is a rather straightforward modification of the original proof
for elliptic problems, the first one needs a more careful analysis since the bilinear
form B in the variational problem is not coercive.

Since the mappings Dy are affine, the subdomains in the tesselation 7j, consist
of parallelepipeds. Moreover, we assume that the mesh is non-degenerated, i.e.
the ratio of the diameter of elements and their minimal edge length rfliii’?ef‘ is
bounded. An important consequence of this assumption is that there are constants
K1, K5 € RT such that for any K with max |ex| < h we have

(29) K1h < min |eig dDg| < max |eig dDg| < Ksh,

where eig denotes the spectrum. Since the mapping Dy is affine, dDy is the linear
part of Dg.

For solving the local problem for the error we use the finite dimensional space V},
on K. This choice should lead to a well posed local problem. A necessary condition
for this is given in Lemma

In the finite element discretization we use the notation v x - instead of -,
and similarly, for functions v € [H'(K)]® we may omit the operator 7, on the
boundary making a closer link to the numerical procedure. For the consecutive
computations we also recall a Green’s formula according to ([{l) which states that
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for all u € H(curl,Q2) and v € [H!(Q)]? the following identity holds (Theorem 3.29
in [210):

(30) (curl u, v) — (u, curl v) = (v x u, v)gq.

Using (@) and the approximation (I2) we obtain the weak form for the error estimate

ép, on the bubble function space V}, (introduced in Section B:2Z2) as follows: Find
an ey € Vj, such that Yv € V}, the following relation is satisfied:

N 1
Bg(ép,v) = (Jk,v)k — Bx(Ep,v) — 5 Z(Vj X [curl Ep|x + curl Eh|K].] V)1,
J
= (Jg,v)k — (curl curl Ep,v) g + k:2(Eh,'U)K + (v x curl Ep,v)ak

1
(31) ~5 Z(Vj X [curl Ej |k + curl E;L|Kj] L),
J

= (Jp,v)k — (curl curl Ep,, v)x + k*(Ep,v) g

1
+ 3 Z(Vj X [curl Ej |k — curl Eh|Kj] ;)1
J

= (rK? U)K + Z(le?v)lj7

J

where we have used the notations
rg=Ji—curlcurl B, + kK*’E;, in K

for the residual within the subdomain K and

1
R, = 5(uj X [curl E}|k — curl Eh|Kj])

J

for the tangential jump of the curl at {; within the subdomain K and where &y
denotes the desired implicit error estimate. Note that (BII) gives a variational form
for &, which includes the approximation in (IZ). In the following we drop the
subscript for the residual and the tangential jump, respectively, the localization
will be shown when taking the norm (or some bilinear map) of these quantities.
Using the above quantities 7 and R we define nx as an error indicator as follows:

K = (thTH[sz(K)]S + h||R||[2L2(8K)]3)§'

4.1. Bubble functions. For the analysis we use the bubble function technique
outlined in [I] and recall some basic definitions:

Definition 1. Let U : K — R be given by
B(&n,¢) = E(1 = On(1 - n)¢(1-¢)

and \;l K — ]IAQ deﬁnedAusing the isoparametric mapping Dy . Similarly, for a given
P € P where P C [P}(K)]?, with P(K) a finite dimensional space of polynomials,
an appropriate p € P C [P*(K)]? can be defined by p(x) = p(Dy'(x)).

In the error estimation process we substitute v € P with Yv on K, where
Vv can be extended by continuity to K. The following lemmas ensure that the
multiplication with ¥ does not influence the magnitude of the Lo or the curl norm
compared to that of v. The proofs are based on scaling arguments.
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Lemma 5. Consider a non-degenerate family Tp, of parallelepiped meshes on 2.
Then there exists a positive constant C' such that for all subdomains K C Ty, and
peP

(32) CH I, ks < (¥P,p)k < ClIPIITL, (50

and

33)  C Ml o < 1PN, rype + PEllewrl Up|1Z ) segs < ClplIFL, ()6
with h the diameter of K.

Definition 2. According to [, p. 24] we define the face bubble functions <i>j ‘K —
R,j5=1,...,6, which vanish on all edges of K and all faces l,,, m=1,...,6, m #*
J.

Using the mapping Dg : K — K we define ®;,j = 1,...,6, the bubble functions
associated with the faces I; of K € Tj,.

We localize a face bubble function ®;, associated to the face [;, by restricting it
to the subdomain K; = K Ul; U K;, where [; is the common face of K and K;. For
the consecutive estimates we again provide some inequalities:

Lemma 6. Let us consider a non-degenerate family 7y, of parallepiped elements on
Q. Then there exists a positive constant C' such that for all subdomains K C Ty,
functions p € P (where P is a fived finite dimensional subspace of [L2(K)]?) and
faces l;,; i =1,...,6, the following inequalities hold:

(34) C Ml < [ 42 < Clplf e
(35) 1LiplI?,, 0 < CRIPITL, 00

(36) 1@iplI7, gz < ClPNT, 02

(37) 12:pl%0 2, < CRTHIPIL, 5

Proof. The proof can be carried out again using scaling arguments similar to The-
orem 2.4 in [I] using the fact that the mesh is non-degenerate. O

We also state a lemma on the comparison of the different norms in the finite
element spaces when they are given on a scale of cubes.

Lemma 7. For all subdomains K C T;, (with the faces l;,i = 1,...,6) and for all
v € Vi, we have the estimates

(38) ||UkH[L2(K)]3 < ChH(Jurl vk||[L2(K)]3
and
(39) [vkll{zaye < ChE||curl vgl|z, e

with a constant C which does not depend on h.

Proof. The proof can be carried out with a change of variables according to Dg. [
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4.2. Lower bound for the computational error in terms of the residuals.
When the bilinear form B is restricted to V x V we may identify it with the stiffness
matrix By, which is given as By = By ey — k*B1o such that the (i, j)th entries
1,7 =1,2,...,n are as follows:

Bicun[illj] = (curl ®f,curl &), Buolillj] = (2], )z

with a basis {@j " of V. By i denotes the appropriate mass matrix on K which
can be again decomposed as

2
B,k = Bi,cwl,k — k"Bio,K,
where the components are defined as

Bi curl, ik (D], @;) = (curl @7, curl )k and BLO)K(@;*,(I);) = (P, (D;)K

with an appropriate basis {®;}" , of V,.
We can state now the following lemma, which is central in our analysis.

Lemma 8. Assume that T, is a cubic mesh. Then for a sufficiently fine mesh
the bilinear form By satisfies the discrete inf-sup condition uniformly on Vi x Vp,
namely there is positive hg and a constant Cy > 0 such that for any 0 < h < hg

B
(40) Co sup Br(u,v)
VeV, H’UHCurLK

2 Huchrl,Ka Vuc Vh7
where K is the cube with edge length h and Cy does not depend on h.
The proof of Lemma [Bis given in Appendix A.

Lemma 9. If we choose the bubble function space Vi and consider a cubic tes-
selation, then the bilinear form for the error on K = (0,h) reads as By =
%BLCW»Z — k‘QhBLQ and the mesh size hg can be taken as

o 20(16 — v/246)
O V2kZ + 1(16 + v/246)

in Lemma Bl

It is easy to see that By is continuous on the whole of H(curl, K) x H(curl, K)
as stated in the following lemma.

Lemma 10. For the bilinear form By we have the continuity estimate:

(41) |Br (w,v)| < V2(1 + k) ||[w]|curt & ||| curt.ic, ¥V w,v € H(curl, K).

Proof. We prove the lemma with a straightforward computation as follows:

|Bi (w,v)|* = |(curl w, curl v) g — k*(u, v) g|?

< 2(curl w, curl v)% + 2k* (u, v)%
< 2||CUYIUH[2L2(K)]3HCUT1 UH[2L2(K)]3 + 2k4HuH[2L2(K)]3||v||[2L2(K)]3
<201+ k4)Hquurl,KHngurl,K'

Taking the square roots on both sides we obtain the estimate in the lemma. O

We now compare the error indicator nx with the implicit error estimate éy
obtained from the weak form (BII) and state the following lemma.
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Lemma 11. There is a constant Cy independent from the mesh parameter h such
that

(42) llenllcu,x < Cing,

where €y, is the implicit error estimate on the subdomain K.

Proof. Using the weak form (BI]) we obtain

B é b b R7
||éh||curl,K <0 sup M =0 sup (7’ ’U)K +( 'U)('?K
VEV, H’Uchrl,K VeV, ||’Uchr1,K
< Cph su r sl|v 3
(43) ool Tolou i (I llzacone 1ol oy

+ | Rll(Lo0r 2 10l (Lo 0k
< C - Cohllrllzawy? + h2 IRl oo < C - Cov2nic.

In the first inequality we used ([@Q]), then the weak formulation (BIJ) followed by the
Cauchy-Schwarz inequality. Finally, we applied the estimates ([B8) and (B9) and a
basic inequality. 0

Note that the error estimate &;, in Lemma [Tl gives the exact error (according
to the weak form (BI])) assuming that the boundary condition (I2)) is exact. In the
following we will compute an approximation of & in the finite element space V.

The upper estimate of the error indicator nx will be obtained using the bubble
function technique [I]. We first provide a variational form for the exact error ey,
based on the third line of ([@) and using the notations of the previous sections:

Blep,v) = (Jy,v) — ((curl By, curl v) — k*(Ep,v))

= Z {(Jg,v)x — (curl curl Ej, — K*E},,v)
KeTy,

(44) +3 (v; x cwl By, mov), }

J

= Z (r,v)g + 2:(R,v)v7 Vv e H(curl, ),

KeT, 2l
where the last sum is taken over all of the interelement faces 7 inside of €. To
obtain the second line in ([#4]) we used the perfect conducting boundary condition
on 0f2, while the final expression was obtained by summation of the components
of a given face from the both sides. This expression can also be related with 3II);
on the whole domain €, the variational form for the exact and the estimated error
coincide since the boundary conditions are given.

We will choose v in (44]) using the bubble function technique such that the
boundary integral vanishes, which will result in a lower bound for the error on each
subdomain depending only on the element residual r in the subdomain K. It is also
important that the choice for v is suitable for the estimates ([B2)-([33)), which only
apply in a finite dimensional space. In light of this, we denote by 7 the elementwise
interpolation of the residual r using the function space V}, and choose v = U7 on
each subdomain K and zero elsewhere. Inserting this choice for v into (@) gives
that

(45) B(eh,\Ile) = (T‘,\I/KT”‘)K.
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In the following estimates we use C for a generic constant independent of the mesh
size h and frequency k, which can be different in each formula. Using (@H]), and
inequalities ([B2)), B3) for h < 1 we obtain the following estimate:
(46)
17T, e < C(VrT, 7k = C (P, 7 —7)k + Blen, Vi)
< CUNY kP oz 17 = llipacrop + (14 &) lenllourt, & ¥ & Plleu, k)
< CIF o oy 17 = llizacrone + (L + E2)A7 enllourt, )17, oype-
Dividing by ||7||;z,(k,)? and using the triangle inequality we finally obtain that

47) 7o e < P lipacrne + 17— Pllipa e
<C(IP = rllizaron + L+ £ enleurx)-

We proceed similarly for the boundary jumps and denote by R the approximation
of the boundary jump using the trace of V} on the element boundaries, which is
then defined on the interelement faces [;. The error arising from these terms can
be localized on K by the choice:

v = (I)ZR,

associated to the face [ as in Lemma [G which is again extended (preserving the
continuity) to be zero outside of K. This leads us to the identity

(48) ((I)lR, R)l = B[((eh, CI)ZR) - (CI)ZR,’I")R.

Using then ([{8]), the Cauchy—Schwarz inequality and inequalities (34)), (38]), (36,
and (B7)) we obtain the following estimate:
(49) - o o B

IR|[?, s < C(®R,R); = C(®;R,R— R),+ C(®,R, R),

=C((®,R,R— R), + Bi(en, ®,R) — (2R, 7))
< C(12iR] @y |1 R = Rz, e
+V2(1+ B[l enllown, & | PR et & + I191R 1y ey 17l 12, 0)
< CIR @y |1 R = Rl iz, a0
+ 072 (L4 K) el 1 RN oy + 22 | Rl oy Irll i, ys)s
which after division by [|R||z, s, yields
(50) [|1Rlliz,aye < CIR = Rlljzo@ye + 272 (1+ k)|l enll g + 77 7l iz )2)-
Finally, adding ||R — R||{z,() to both sides results in the estimate
51 IRz, @ < IIRIIEL2(1>13 +[R- RIHLf(zn?’ 1
< C(IR = Ry +h72 (14 E)llenllwn, g + 52 17l 2, (z02)-
Using (A7) we obtain that

_1
IRl L, < C(h™2 (14 k) llenll e,

(52) 1 7
HhET =l ke + IR = Rllzaore)-
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Taking the square of (52) and (7)) respectively, we obtain:
IRz, 0y < C(THL+ K lenl?

K
(53) ) o
+ hHT‘ - TH[QLQ(I”()]S + ”R - RH[2L2(1)]3)
and
(54) 171, xeye < CUIT =TIl xeyp + 1+ K2R 72 enl2u x)-
Using the obvious equality
6
HR||[2L2(8K)]3 = Z ||RH[2L2(1]-)]3
j=1

we sum up ([B3)) for all faces I; of K and multiply ||7*||[2L2(K)]3 with k2 and HR||[2L2(8K)]3
with h, respectively. Using the definition of nx we finally get the estimate:

1 B —
677%( < h2||7’7’l’||[2L2(}~()]3 +h Z ||R*RH[2L2(Z)]3
(55) ICOK

+ (14K lenll?,, &

Summarizing, we obtained that the error indicator nx provides a lower bound for
the exact error on the patch K plus some computable remainders (arising from
interpolation errors):

(56) nmp <C((1+ k2)2‘|eh||iur1’f( + |7 — 7‘||[2L2(f<)]s + h||R — R||[2L2(8K)]3)'

Using in addition Lemma [I1] we state the main result of this section:

Theorem 3. The implicit a posteriori error estimate e can be used as a lower
bound for the exact error with respect to the curl norm as follows:

enlleurt,c < Cine < C((1+ k)2 |lenZ &

(57) ) ¢
+ B2l — 7|7, gy + RIR — R, 0my2) ">

Proof. We get the desired result immediately using the estimates {@2) and (G6). O

Remarks. 1. Up to the estimate (B6) we kept track of the k-dependence in the
estimates.

2. If the local divergence free property of the estimate €, is desirable (for exam-
ple, to ensure the equivalence of some norms in the error estimates [14]), one should
enforce this condition by projecting to a divergence free basis. Although the finite
element space that we used (see Section 2.1]) consists of second order elements as
well, the choice of V}, should be done according to the above requirement, when E},
is obtained using a higher order Nédélec space.

3. Another special situation occurs; if curl Ej, = 0, then R;; = 0. In this way,
one expects that the result in Theorem [3] cannot be sharpened in the sense that
neither e; nor nx will provide an upper bound for the error. In this case the
Helmholtz decomposition (see Lemma 4.5 in [21]) of E), consists of only a gradient
which can be non-smooth. For the smoothness of the components in the Helmholtz
decomposition we refer to [2], Remark 2.16 and Theorem 2.17. This is in good
agreement with the fact that in the proof of upper bounds in residual based error
estimation techniques one needs the regularity of solutions ([I, Section 2.2 and
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Section 3.2.3]). This can fail for the present solution Ej; see the test case in Section
5.1.2.

4. The remaining terms in Theorem Bl can make the estimate unsharp when ||7 —
7|1, (r)2 and || R — R||[1, o)z are of the same order as the residuals |7 ||,k )2
and [|R||(z,(oK))?, respectively. This can happen if the right hand side J is non-
smooth or if we take a more general type of Maxwell equation with discontinuous
material coefficients. Then in an adaptive refinement technique we should generate
7Ty in such a way that the solution in the subdomains is smooth. If this is not
possible (e.g. if we want to avoid the use of curvilinear hexahedra), then some extra
refinement should be performed in this critical region.

5. NUMERICAL RESULTS

In this section, we demonstrate the performance of the implicit error estimator
() applied to the time harmonic Maxwell equations. We consider the Maxwell
equations on a domain 2 which is taken to be a cubic domain or a so-called Fichera
cube; see Figure

In order to be able to evaluate the discretization errors, we pick up a vector field
E, substitute it into the Maxwell equations and choose the source term Jj such
that E is the solution.

Recall that E) denotes the numerical solution of the Maxwell equations ()
obtained by using the edge finite elements given in Section 21l In the rest of this
section the elements of the tessellation 7;, are cubes with size h x h X h.

5.1. Test cases. We verify the performance of the implicit error estimator for the
Maxwell equations on three different test cases. The local problems (1) are solved
by using the numerical model discussed in Section

Several aspects determine the usefulness of an a posteriori error estimator:

e The error estimator has to be able to find those areas in the domain where
the finite element solution has a large error, since this information is for
local mesh adaptation.

e The error estimator should be close in magnitude to the real error, both
locally and globally.

We check the performance of the implicit error estimator in the following way.
First, we check if the estimator provides the right type of error distribution in the
domain. Second, the magnitude of the global error estimate and its convergence
under mesh refinement are compared with the exact error.

Define the exact error dx and the implicit local error estimate S on element K
as

(58) Ok = |E — Epllcurl, ks Ok = ||€n]|curt, k-

The exact global error § and the implicit global error estimate §; are obtained
by summing up the local contributions

1/2 1/2
(59) 5:(25%) : 5;;(25%) .

KeTn KeTy
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FIGURE 1. Error distribution in the H(curl) norm for the smooth
test case with p =m = 1.

5.1.1. Smooth solution. The first test case we consider are the Maxwell equations
) on the domain Q = (0,1)? with the given source term J defined as

sin(mpy) sin(rmz)
sin(mpz) sin(mmz) | ,
sin(mpx) sin(mmy)

(60) Jr(z,y,2) = (7%(p* +m?) — 1)

and which have a smooth exact solution
sin(mpy) sin(mmz)

sin(mpz) sin(rme)
sin(mpx) sin(mmy)

(61) E(z,y,2) =

with p,m € N.

In Figures [l and 2l we plot the local errors (58]) obtained with the implicit error
estimator and the exact error on a representative set of elements. The error dis-
tribution diagram for the case p = 1,m = 1 is given in Figure [I, and for the case
p = 5,m = 1 the results are shown in Figure The locations of some elements
where the error is computed in the mesh with mesh size h = % are shown in Fig-
ure Bl The labels on the horizontal axis in Figures [Il and @] refer to the element
numbers shown in Figure Bl

The error distribution obtained with the implicit error estimator shows a good
agreement with the exact results. In the case p =m =1, where the analytic solution
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FIGURE 2. Error distribution in the H(curl) norm for the smooth

test case with p = 5, m =1.
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FIGURE 4. The global error estimate and the exact global error in
the H(curl) norm versus the mesh size h for the smooth test case
with p =m = 1.

has only one period in the domain, the error distribution is very close to the exact
one. For the case p =5, m =1, where the analytic solution is more oscillatory, we
observe that in some elements the distribution is slightly different, but the scheme
is still able to detect subdomains with relatively large errors.

The rate of convergence and a global estimate of the error (B9) for the case
p =m = 1 are given in Figure @ It shows the same convergence behavior under
mesh refinement as the analytic error. Also, the predicted error magnitude is close
to the true error.

5.1.2. Test case with singularities in the solution. Let us consider the domain €2 =
(—1,1)? and the function

J:Q— Rwith f = max{m, |y|a |Z‘}

Define E: Q@ — R as E := =V f(z,y, z). Then E solves the following Maxwell
problem:

curlcurl E — E=Vf in Q,

(62) Exv=0 on 0.

In this example the right hand side function is in [L2(£2)]? but the exact solution
is not smooth; it is not even in [Hz(9)]3. Therefore, theoretically we cannot
guarantee even 1/2 order of convergence for the finite element solution. Numerically
we have observed almost 1/2 order convergence in the H(curl) norm; see Figure [
For a similar example we refer to [0], where V f was smooth and the bilinear form
B remained coercive. However, compared to the results given in [G], we could
improve the accuracy of the estimator using the implicit error estimation technique
(see also Section [5.2)).

The error distribution computed on different elements for different values of the
mesh size is depicted in Figure B and the plot of the global error estimator is given
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FIGURE 5. Error distribution in the H(curl) norm for the singular

test case.
in Figure [l The location of the elements on a mesh with h = % is depicted in
Figure[fl The labels on the horizontal axis in Figure [ refer to the elements shown
in Figure [0l We observe that the implicit error estimator provides the same type
of error distribution as the exact error and also that the estimates are close to the
exact values. The convergence rate of the implicit error estimator is of the same
order as the exact error.

5.1.3. Fichera cube. In this subsection we analyze the method on the Fichera cube
Q = (—1,1)3\[-1,0]3. The solution on this domain has corner and edge singularities
and can serve as a difficult test case. The boundary conditions and the source term
in () are chosen such that the exact solution is E = grad(r*®sin(2¢)) in spherical
coordinates, with » = /22 + 42 + 22, ¢ = arccos g It is clear that E does not
belong to [H'(Q)]?.

The error distribution diagram is given in Figure[ The large errors correspond
to those elements which are close to the Fichera corner, located in the point (0,0, 0);
see Figure[@ The plot of the global error estimate is given in Figure As in the
previous test cases, we observe a good agreement between the implicit error estima-
tor and the exact errors, both in the error distribution and in the numerical values.
The implicit error estimation is clearly capable of providing a rather accurate error
estimate for a range of smooth and non-smooth flows, but even more important
for an adaptation algorithm, it gives a clear indication of those regions where the
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error is large. The numerical results also show that the implicit error estimates are
always bounded by the true error, which was proven in Theorem [3l
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FIGURE 6. Location of some of the elements where the implicit
error estimation was conducted (singular test case, Section [L.T.2))

on a mesh with h = %.
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F1GURE 7. The global error estimate and the exact global error in
the H(curl) norm for the singular test case (Section [E.1.2)).
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FicURE 10. The global error estimate and the exact global error
in the H(curl) norm on the Fichera cube.

5.2. Comparisons with some existing schemes. In [0] Beck, Hiptmair et al.
consider the following elliptic boundary value problem:

(63) curl (xycwl E) + E = J;, in €,
Exv=0 ono,

where x and 3 are given positive functions on §2.

We apply our implicit error estimator to (G3]) and compare the results with those
given in [6] and [7].

For comparison purposes we consider the first example given in [6] and [7] on
the domain Q = (0,1)3.

In this example the parameter y is set to one and different values of 3 are
taken into account. The exact solution is rather smooth and is given by E =
(0,0, sin(mwx)). Roughly speaking, the system (G3]) reduces to () if we choose 3 =
—k? and no other changes are necessary to the algorithm discussed for (). Note
that the bilinear form for this problem is coercive, contrary to the bilinear form (&)
discussed in this paper which is indefinite.

For the finite element solution in the first example in [6] the authors start with
a coarse grid (level 0) consisting of 6 tetrahedrons, which is refined uniformly up to
five levels. In [6] an adaptive strategy has also been presented for other test cases;
see Experiments 6-8 therein. In [7] a hierarchical type (implicit) error estimator is
applied using preconditioning for solving the global problems for the error.

We make comparisons in terms of the effectivity index ¢, := —h, which gives the

ratio between the estimated and the true global error, where § and d;, are given by
(E9). This quantity merely reflects the quality of the global estimate, while we are
mainly interested in local error estimates. The comparison table of the effectivity
of the estimators given in [0], [7] and the implicit error estimator developed in
this paper are listed in Table [l In comparison to the results given in [6] and [7]
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TABLE 1. Comparison of the effectivity indices.

8 Level | gy 9 3 4 5
1074 4.05 8.05 8.18 824 827 8.29
102 4.05 805 8.17 8.23 827 8.29
1 3.01 764 7.78 7.84 7.87 7.89
102 2.29 427 470 495 5.20 5.26
10% 2.33 423 466 4.86 4.95 5.00

Effectivity index €, for the error estimator given in [6].

8 Level | 1 2 3 4 5
107 055 082 092 096 0.98 0.99
102 055 0.82 092 0.96 098 0.99
1 056 0.83 092 095 0.97 0.93
102 071 087 092 091 090 0.90
107 0.72 088 093 094 0.94 0.93

n] 1T 1 1 1 1

g 4 8 16 32 64
10-7 ]0.67 0.67 0.67 0.67 0.67
1072 ]0.67 0.67 0.67 0.67 0.67
1 0.67 0.67 0.67 0.67 0.67
102 ] 0.63 0.65 0.67 0.67 0.67
10" 044 037 040 053 0.63

Effectivity index ey, for the Gauss-Seidel-based hierarchical error estimator given in [1].
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Effectivity index ej, for the implicit error estimator given by ().

the estimates obtained with the implicit error estimator given by (1) are nearly
insensitive to the value of f.

The above index is not capable of indicating the correlation between the dis-
tribution of the estimated and the exact error, which influences the effectivity of
an adaptive technique. Therefore, we investigate a second quantity used for the
comparison, the so-called “fraction of incorrect decisions”, denoted by pu(*). This
measures how much the refinement controlled by the estimator differs from the re-
finement based upon an “ideal” estimator. The indicator (1) is defined using the
following sets:

The set of elements marked for refinement by the error estimator are defined as

. 2
A:{Keﬂ:5%>05—h},
N

where 0 = 0.95 and ng denotes the number of elements in the tessellation 7, and
where the set of elements that should have been marked

52
A::{KE’T;L:6§(>J—}.
nK
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TABLE 2. Comparison of the “incorrect decisions”.

8 Level | 2 3 4 5
10~4 0.33 0.17 0.12 0.1 0.1 0.085
102 0.33 0.17 0.12 0.1 0.1 0.086

1 0.33 0.25 0.18 0.14 0.13 0.13
102 0 0.42 0.088 0.14 0.15 0.16
10* 0 044 0.11 0.15 0.16 0.16

Fraction of incorrect decisions u(l) for the error estimator given in [6].

pl 1T 1 1 1 1

g 4 8 16 32 64
10" 0o 0 0 0 0
02 0 0 0 0 0

1 0 0 0 0 0
102 0 0 0 0 0

10T 025 031 0.07 0.00 0.03

Fraction of incorrect decisions pu) for the implicit error estimator given by @@.

Then the indicator (1) is defined as
1 . R
(64) ;N%:__#“AmAﬂupfmAﬁ,
ng

where for any set S C 7}, the compliment with respect to 7, is denoted by S°.

In [6] satisfactory performance of the estimator means that 1V stays bounded
below 1 as refinement proceeds. The results are given in Table 2l For the implicit
estimator this parameter is close to 0, which shows a much better performance
than that given in [6]. In other words it means that the implicit error estimator
developed in this paper is able to find almost all elements which need refinement.
The error indicator from [6] gives between 8.5% and 16% error (1) - 100%) on the
finest mesh; see Table 2

6. CONCLUSIONS AND FURTHER WORKS

In this paper we have developed and analyzed an implicit a posteriori error
estimation technique for the time harmonic Maxwell equations. The algorithm is
well suited both for cases where the bilinear form is coercive and for the more
complicated indefinite case. A nice feature of the implicit error estimator is that
no unknown constants appear. The algorithm is tested on a number of increasingly
complicated test cases and the results show that it gives an accurate prediction
of the error distribution and the local and global error. Also, in comparison with
other a posteriori error estimation techniques [6l 23], for all considered tests it gives
a sharper estimate of the error and its distribution.

In future work we will apply the implicit a posteriori error estimator in an adap-
tive algorithm and also consider different types of elements including the effect of
mesh deformation on hexahedral elements.
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APPENDIX A.

For the proof of Lemma [§ we recall some notations and results from linear
algebra.

If the symmetric matrix A is positive semidefinite, we shortly write it as A > 0,
while A > 0 is used for positive definite symmetric matrices. We use the fact
that the maximal eigenvalue A4 max of a symmetric matrix A € R™ "™ can be
characterized as
(65) A,max = max (Au, u)

UER™
[ul=1

and similarly, for the minimal eigenvalue A4 min of A

(66) Ad,min = min (Au, u),
UER™
[u]=1
where (-, -) yields the standard scalar product in R™. We will also use the notation
)\:min > 0 for the minimal non-zero eigenvalue of a positive semidefinite matrix A.
For the proof of Lemma [§] we need the following linear algebraic estimate.

Lemma 12. Assume that k € R and the symmetric matrices A > 0, B > 0 in R™*"
are given such that ker A is an invariant space of B. Then, there are constants
¢, ho € RT such that for any h with 0 < h < hy and any uw € R™ there is a v € R"
such that

1
(67) WﬁA — k’B)u,v)]* > c¢((+5 A+ B)u,u)((—5 A+ B)v,v).
Proof. In the proof we assume that k£ > 1. The remaining case can be handled in
the same way; we have only to consider kB instead of B.

According to the assumptions every u € R"™ can be decomposed as u = uy + us,
where u; € ker A and uo 1 ker A. Note that according to the assumptions, Bu; €
ker A and therefore, (Buy,v2) = 0 for all vo L ker A.

We distinguish two cases:

Case 1. u; = 0. Then we can choose v = u = us and hg such that

1
(68) k2B max < T}%Aj,min.
In this way, the characterizations in ([63]) and (G6) imply that for any 0 < h < hg
the eigenvalues of the matrix #A — k% B will be positive and their minimum is at
least ﬁ)\z min- With these the left hand side of (7)) can be estimated as

1
N minlu2]?)?.

1
(-5 A — E*B)ug, us)|? > (2h2 A,min
0

2
The scalar products on the right hand side of (G7)) can also be estimated (using
[©8)) as follows:
1

(5 »

hZ

1
h?
2
S (h_g)\A,max‘u2|2)2'

A+ B)u,u)((—A+ B)v,v) = (( A"_B)UQ,UQ)((%A"'B)/U/Q,'UJQ)

2
. A i . . .
Therefore, the choice ¢ = (1 A—“) is appropriate in the first case.

Z )\A,max
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Case 2. uy # 0. We now choose v = u; — ug. The left hand side of (7)) can be
then rewritten as

(A~ K Byu,v)]?

= (7 A~ BB) (s + w2, w1 — )

= (A~ BB ) — (54 = K BJuz, ua)]

= |~ R (Bur,w) (5 A~ K BJus, )P

= (B )P 20 (B, ) (A — 1 Bz, wa)
(A~ B BYua,ua) P

The right hand side of (@7) can be simplified according to the following equality:

(o A+ BJu, w)((G5 A+ B)o,v)
- ((%A + B)(u1 + ’U:g),’ul + 'U/Q)((%A_‘_ B)(u1 — u2),u1 — UQ)

(70) 1
e

1 1
= [(But,wh)” + 2(Bur, wa) (754 + BJuz, ua) + (554 + BJus, ua) .

= ((Bur,u1) + ((+5 A + B)ug, us))?

Comparing ([G9) and (Z0), using the fact that k& > 1, the positive definiteness of B
and choosing ¢ = %, then a sufficient condition for the inequality to hold is that we
need an hg such that for any A with 0 < h < hg and for all R™ > usl ker A the
following inequality holds:

1 1.1
((ﬁA — k2B)UQ, ’LLQ) 2 5((ﬁA + B)’U,Q, ’LLQ).
In fact we need that the matrix ﬁAf (k2+ %)B is positive semidefinite. According
to Case 1 this holds whenever hg is chosen according to the inequality

1 1
2 - < 2\t .
(71) (k + 2)>\B,max > Qh% )\A,mln

Comparing the estimates in (G8) and (1) gives that the choice

1T A
72 h2 < - ,1N1n
(72) 0= 2k2 4 1 \B max

is sufficient in both cases. O
Using this result we can prove Lemma

Proof of Lemma Bl Using the notations introduced in Section and a simple
change of variables we obtain that the mass matrix on a cube K with edge length
h can be written as

1
Bk = EBl,curl — k*hBig
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and accordingly, for u = Y"1 u;¢p; € Vj and v =Y v;¢;, €V,

1
(73) Bg(u,v) = ((EBl,curl — kZhBl,o)(ul,ug, o)t (v, vy )T,
In the same way,

1
(74) Hquurl,K - ((EBl,curl + hBl,O)(ula ug, . .. 7un)T7 (ulv Uz, ... aun)T)-

Substituting (73) and (4) into the desired inequality (@0) we have to find positive
constants hg and a Cy > 0 such that for any 0 < h < hy and any uw € R" there is a
v € R™ such that

(75)

1 1
Co((ﬁ ((hBl curl + hB1o)u, U)((ﬁ
Dividing both sides with h2, we can apply Lemma[l2 with A = Bj curl and B = By .
For this, we have to check that the conditions in Lemma [I2] hold.

A lenghty computation gives that

Bl,curl k hBl O)u ’U) BLcurl + hBLO)'Ua ’U).

8 4 -1 1 -1 1 2 0 0
4 8 1 -1 1 -1 2 0 0
-1 1 8 4 -1 1 0 2 0
1 1 -1 4 8 1 -1 0 2 0
Biewml=—— -1 1 -1 1 8 4 0 0 2
08017 1 1 1 4 8 0 o0 2
2 2 0 0 0 0 4/5 0 0
0 0 2 2 0 0 0 4/5 0
0 0 0 0 2 2 0 0 4/5
and
2/5 1/5 0 0 0 0 1/10 0 0
1/5 2/5 0 0 0 0 1/10 0 0
o 0 255 1/5 0 0 0 1/10 0
oo s 25 0 00 0 1100 0
Bio=——| 0 0 0 0 2/5 1/5 0 0 1/10
0801 g o 0o 0o 1/5 2/5 0 0 1/10
110 110 0 0 0 0 1/25 0 0
0O 0 1/10 110 O 0 0 1/25 0
o 0o 0 0 1/10 1/10 0 0 1/25
By definition, for any vector u = (uy, ug,...,u,) € R"

(76)

(Bl curlW, ’LL

B10’U, ’LL

(curl Z ulcﬁZ ,curl Z u; @

[LZ(K E chrl Zuld) ||[L2 K))3?

where the basis {¢?}?_; is defined in (B:QZI) Similarly,

Zuz¢zvzuz¢ [La(K))2 — = || ZUZ¢ H (L2 (K]

which show that By cyn > 0 and Bio > 0. Moreover (70) gives that for any
non-zero vector w € R™ the condition (Bj curite,w) = 0 can only be fulfilled if

curl Z?Zl u; @) = 0.
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In order to determine such a linear combination, observe that an arbitrary ele-
ment P in the finite dimensional bubble function space V' given in B22) can be

written as
. (@182 4 b1€ 4 e1)n(1 —n)¢(1 = ¢)
D(&,n,¢) = | (1 = &) (aan® + ban + c2)¢(1 = )
E(1=&n(1 —n)(as¢® + bs¢ + c3)
and accordingly,

curl @(&,7,¢)

E(1—8)(1—2n)(asC® + bs¢ + c3) — (1 — &) (azn® + ban + ¢2) (1 — 2()
= | (@1& + b1 +c1)n(1 —n)(1 —2¢) — (1 = 26)n(1 = n)(as¢® + b3 + c3)
(1= 28)(agn® + ban + c2)¢(1 = ¢) — (a1€? + b€ + 1) (1 — 20)¢(1 = ¢)

This can be zero on K if the following equalities hold:
(1= 2n)(a3¢® + b3 + ¢3) = (a2n® + ban + c2)(1 — 2(),
(a18” + 01€ +e1)(1 = 2¢) = (1 — 26)(asC® + bs( + c3),
(1= 26)(asn® + ban + ¢2) = (1€ + b1€ + e1)(1 = 21).

Here using the first equation we obtain that

b b
4y =a3 =0, == =-2 by=bg, =03
C2 C3
or, alternatively, as = az = by = ¢3 = bs = c3 = 0. Similarly, the second one gives
that

az =a; =0, b—szb—1=—27 by =b1, c3 =01
C3 C1
or, alternatively, a; = as = bs = ¢3 = by = ¢; = 0. The third equation is trivially
satisfied with these coefficients. We may assume that ¢; = 1 and in this way,
¢y =cy =c3=1and by = by = b3 = —2. This gives the eigenfunction
(1 =28)n(1—n)C(1—-0)
(77) (&n.¢) — [ €1 =&A—2n)¢(1 )

§(1=&n( —n)(1 —2¢)

which is a linear combination Z?:l w;®Y, with w = (1,-1,1,-1,1,-1,0,0,0)T.
This gives that ker By ¢y = span (1, —1,1,—1,1,—1,0,0,0), which is an invariant
space of By since By g(ker By cur1) = ker By oy. In this way, the conditions in
Lemma [I2] are fullfilled for A = Bj ¢y and B = B o, which gives the statement in

Lemma B 0
Proof of Lemma [@ Symbolic calculations give that )\El,curlgmin = % — Q—V?(;lg and

A = 1L V26
Bi,0,max = 3375 T 54000 o ) )
Using the above numerical results and substituting them into (72) we obtain the

statement of Lemma O

Remarks. 1. In the proof of Lemma [8 we determined that the kernel of the curl
operator in the bubble function space is the one dimensional subspace generated by
the function in (7). This coincides with the subspace of the bubble function space
which consists of discrete gradients, namely (77) is the gradient of the function
given by



A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS 1385

2. The reason why we did not include k into the matrix B in Lemma [I2]is that
we wanted to demonstrate the dependence of the mesh size parameter hg on k.

3. An easy calculation gives that for K = (0, h)? the condition number of Bk is
proportional to h~2. However, this does not harm the solution of the local problem
due to Lemma
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