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SUPERCONVERGENCE OF QUADRATIC FINITE ELEMENTS
ON MILDLY STRUCTURED GRIDS

YUNQING HUANG AND JINCHAO XU

Abstract. Superconvergence estimates are studied in this paper on quadratic
finite element discretizations for second order elliptic boundary value problems
on mildly structured triangular meshes. For a large class of practically useful
grids, the finite element solution uh is proven to be superclose to the inter-
polant uI and as a result a postprocessing gradient recovery scheme for uh

can be devised. The analysis is based on a number of carefully derived iden-
tities. In addition to its own theoretical interests, the result in this paper
can be used for deriving asymptotically exact a posteriori error estimators for
quadratic finite element methods.

1. Introduction

Superconvergence of finite element methods has been a subject of active research
for a few decades; see [4, 8, 10, 12]. In recent years, there has been a revitalization
of the research of this subject because of its strong relevance to a posteriori error
estimation for finite element grid adaptation.

Using superconvergence to justify certain types of a posteriori error estimates
can be traced back to the work of [3]. In the early work of this type, there is a
dilemma: adaptive finite element methods often lead to unstructured grids whereas
the classic theory of superconvergence has been mostly established on specially
structured grids (such as the property of strong regularity). Thus there is a serious
theoretical gap between the theory of superconvergence and the theory of finite
element a posteriori error estimation.

Such a gap, however, is gradually closing up with a number of recent develop-
ments. One notable example of development is the recent work of Bank and Xu
[6] who studied superconvergence on some mildly regular finite element grids. The
main conclusion of their result is that superconvergence can be indeed established
for a large class of grids that can be often found in practical computations. More
specifically, for triangular linear elements, they proved that the finite element solu-
tion is superclose to the linear interpolant on the grids where most pairs of elements
form an approximate parallelogram. Let us call these types of grids, at least tem-
porarily, mildly structured grids. Indeed, triangular grids that are generated by
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popular grid generators are found to be mildly structured. In other words, super-
convergence theory can be used to derive new error estimators or to justify the
performance of existing estimators. Among the various existing error estimations,
the so-called Zienkiewizc-Zhu [14] estimator has been proven to be very useful in
many practical applications. Using the result in [6], the Zienkiewizc-Zhu estimator
was given a new theoretical justification by Xu and Zhang [13].

The aforementioned results are all for linear finite elements. Extensions of these
results to higher order elements are certainly of theoretical and practical interests.
The goal of this paper is to extend the results to quadratic finite elements.

The superconvergence analysis of quadratic elements is known to be much more
complicated than linear elements. This problem has been studied by many authors.
Superconvergence of the gradients was obtained in Zhu [15] and supercenvergence of
the function value on the nodes was obtained in Zhu [16] for global strongly-regular
grids. Similar results were derived or rederived by Andreev [1] and Andreev and
Lazarov [2], Goodsel and Whiteman [9] and [7].

In this paper, we will carefully investigate the superconvergence properties for
quadratic triangular elements for mildly structured grids. The basic idea follows
from Bank and Xu [6], but the technical details are quite different and more difficult.

Superconvergence analysis for high order finite elements crucially depends on
the choice of the interpolation operators. According to an observation first made
by Li [11], the more traditional nodal value interpolant was known to be inap-
propriate for the analysis of cubic finite element methods. While the traditional
nodal value interpolant was actually used in the all the existing works mentioned
above for quadratic finite elements, [15, 16], we find in this paper it is more con-
venient to use interpolation operator based on moment conditions on edges (for
quadratic and cubic interpolants) and moment condition on the element (for cubic
interpolants). These are interpolants that preserve the de Rham exact sequences
on the discrete level in the context of differential forms; see Hiptmair [10]. We find
these interpolants are useful in the study of superconvergence.

Let us use ΠQ and ΠC to denote such quadratic and cubic interpolants respec-
tively. One main technical result in this paper is the following expansion on each
triangular element τ :

(1.1)
∫

τ

∇(u − ΠQu) · ∇vQ =
3∑

k=1

3∑
s=0

(
as

k(τ )
∫

τ

+bs
k(τ )

∫
ek

)
∂3(ΠCu)
∂ns

k∂t3−s
k

∂2vQ

∂t2
k

which holds for any function u ∈ H1(τ )∩C0(τ̄) and quadratic polynomial vQ. Here
ek are the edges of τ , nk and tk are the normal and tangential direction of ek

respectively; as
k(τ ) and bs

k(τ ) are constants depending on the geometry of τ .
By summing up (1.1) on all elements τ for a given triangulation of Ω, we obtain

the following global error expansion for a Poisson problem:∫
Ω

∇(uh − ΠQu) · ∇vh =
∫

Ω

∇(u − ΠQu) · ∇vh(1.2)

=
∑

e=τ∩τ ′∈Eh

3∑
s=0

(
as

e(τ )
∫

τ

−as
e(τ

′)
∫

τ ′
+[bs

e(τ ) − bs
e(τ

′)]
∫

e

)
∂3(ΠCu)
∂ns

e∂t3−s
e

∂2vh

∂t2e

which holds for any quadratic finite element function vh. Here uh is the Galerkin
projection (namely finite element approximation) of u.
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The expansion (1.1) is neat and easy to use for superconvergence analysis. Su-
perconvergence occurs when the terms under the summations in (1.2) have certain
cancellations that would lead to a higher order error estimate. More specifically
such cancellations would indeed occur in (1.2) if τ and τ ′ are two adjacent tri-
angles that form an approximate parallelogram. If Ω is partitioned by a strongly
regular triangulation in which every pair of triangles forms an O(h2)-approximate
parallelogram, then it is very easy to deduce from (1.2) that

(1.3) |(∇(uh − ΠQu),∇vh)| � h4|u|4,p,Ω‖∇2
hvh‖0,q,Ω � h3|u|4,p,Ω|vh|1,q,Ω.

Here ∇2
hvh = ∇2vh on each element.

With such a basic error estimate, the derivation of the superconvergence is stan-
dard. Taking p = q = 2 and vh = uh − ΠQu in (1.3), we obtain

(1.4) |uh − ΠQu|1,Ω � h3|u|4,Ω.

Taking p = ∞, q = 1 and vh to be some appropriate discrete Green’s function, we
obtain

(1.5) ‖uh − ΠQu‖0,∞,Ω � h4| log h||u|4,∞,Ω.

Both (1.4) and (1.5) are superconvergence results that were already known in the
literature, but they are obtained here using a quite different and more transparent
approach. We can use the same approach to obtain a new superconvergence result
that is valid on a mildly structured grid in which most pairs of triangles form an
approximate parallelogram:

(1.6) |uh − ΠQu|1,Ω � h2+min(σ,1)/2 (||u||4,Ω + |u|3,∞,Ω) .

Here σ > 0 in some sense measures the extent to which the approximate parallelo-
gram property is violated; see Section 2 for details. Roughly speaking, such mildly
structured meshes have a smooth transition between large and small elements, and
appear locally to be quasi-uniform. This is typical for meshes generated by some
adaptive meshing procedures [5].

The relaxation from a globally strongly regular grid to such a mildy structured
grid is a significant step from a practical point of view. As a result, superconver-
gence estimates such as (1.6) would then hold for most grids that are actually used
in practice. Similar to the work of Xu and Zhang [13], such a type of new supercon-
vergence estimate can be used to theoretically justify that the popular Zienkiewicz-
Zhu [14] error estimator is asymptotically exact for most practical grids for second
order elliptic problems.

The rest of this paper is organized as follows: Section 2 contains technical iden-
tities and estimates that form the basis for the estimate (1.1). In Section 3, some
basic error expansions are given for quadratic finite elements, mainly on any given
element. In Section 4, the basic error expansions from the previous section are
applied to obtain superconvergence results first for uniform grids, then for strongly
regular grids and finally for mildly structured grids. In Section 5, some numerical
examples are given.
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2. Preliminary Lemmas

In this section, we will establish a number of identities related to finite element
triangulations and finite element spaces that will be used in our analysis.

2.1. Elementary geometric identities. We begin with some geometric identi-
ties for a canonical element τ . Let τ have vertices pt

k = (xk, yk), 1 ≤ k ≤ 3,
oriented counterclockwise, and corresponding nodal basis functions (barycentric
coordinates) {φk}3

k=1. Let {ek}3
k=1 denote the edges of element τ , {θk}3

k=1 the
angles, {nk}3

k=1 the unit outward normal vectors, {tk}3
k=1 the unit tangent vec-

tors with counterclockwise orientation, {xk}2
k=1 the unit vectors of the Cartesian

coordinates, {�k}3
k=1 the edge lengths, and {dk}3

k=1 the perpendicular heights (see
Figure 1). Let p̃ be the point of intersection for the perpendicular bisectors of the
three sides of τ . Let |sk| denote the distance between p̃ and side k. If τ has no
obtuse angles, then the sk will be nonnegative; otherwise, the distance to the side
opposite the obtuse angle will be negative.

Figure 1. Parameters associated with the triangle τ

There are many relationships among these quantities; in particular we note the
following, which hold for 1 ≤ k ≤ 3 and k ± 1 permuted cyclically:

�kdk = �k+1�k−1 sin θk = 2|τ |,
2�k+1�k−1 cos θk = �2k+1 + �2k−1 − �2k,

sin θk = nk−1 · tk+1 = −nk+1 · tk−1,

cos θk = −tk−1 · tk+1 = −nk−1 · nk+1,

∇φk = −nk/dk.

Following Bank and Xu [6], let us now deduce several simple identities that will
be used later. We first note that

nk =
nk+1 · nk

nk+1 · tk−1
tk−1 +

nk−1 · nk

nk−1 · tk+1
tk+1 =

cos θk−1

sin θk
tk−1 −

cos θk+1

sin θk
tk+1.

Therefore
sin θknk = cos θk−1tk−1 − cos θk+1tk+1
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and hence

(2.1) sin θk
∂

∂nk
= cos θk−1

∂

∂tk−1
− cos θk+1

∂

∂tk+1
.

Similarly
∂

∂tk+1
= − cos θk−1

∂

∂tk
− sin θk−1

∂

∂nk
,(2.2)

∂

∂tk−1
= − cos θk+1

∂

∂tk
+ sin θk+1

∂

∂nk
.(2.3)

Squaring the above two identities leads to:

∂2

∂t2
k+1

= cos2 θk−1
∂2

∂t2k
+ 2 cos θk−1 sin θk−1

∂2

∂tk∂nk
+ sin2 θk−1

∂2

∂n2
k

,(2.4)

∂2

∂t2k−1

= cos2 θk+1
∂2

∂t2
k

− 2 cos θk+1 sin θk+1
∂2

∂tk∂nk
+ sin2 θk+1

∂2

∂n2
k

.(2.5)

Multiplying (2.3) with (2.4) and (2.2), we obtain

∂3

∂t2k+1∂tk−1

= . . . cos2 θk−1
∂2

∂t2k
+ 2 cos θk−1 sin θk−1

∂2

∂tk∂nk
+ sin2 θk−1

∂2

∂n2
k

,

(2.6)

∂3

∂t2k−1∂tk+1

= . . . cos2 θk+1
∂2

∂t2k
− 2 cos θk+1 sin θk+1

∂2

∂tk∂nk
+ sin2 θk+1

∂2

∂n2
k

.

(2.7)

∂3

∂t1∂t2∂t3
= . . . cos2 θk+1

∂2

∂t2
k

− 2 cos θk+1 sin θk+1
∂2

∂tk∂nk
+ sin2 θk+1

∂2

∂n2
k

.(2.8)

A proper linear combination of the identities (2.4) and (2.5) (namely �2k+1 ∗
(2.4) − �2k−1 ∗ (2.5)) yields that

(2.9) 4|τ | ∂2

∂tk∂nk
= (�2k−1 − �2k+1)

∂2

∂t2k
+ �2k+1

∂2

∂t2k+1

− �2k−1

∂2

∂t2
k−1

.

Here we have used the following elementary identities:

�2k+1 sin2 θk−1 − �2k−1 sin2 θk+1 = 0,

�2k+1 cos2 θk−1 − �2k−1 cos2 θk+1 = �2k+1 − �2k−1,

�2k+12 cos θk−1 sin θk−1 + �2k−12 cos θk+1 sin θk+1 = 4|τ |.
By a direct integration by parts, we have

(2.10)
∫

τ

∂u

∂tk
=

3∑
j=1

nj · tk.

∫
ej

u = − sin θk+1

∫
ek−1

u + sin θk−1

∫
ek+1

u.

2.2. Hierarchical representation of quadratic and cubic polynomials.
Given a smooth function u, we shall make use of linear (ΠLu), quadratic (ΠQu)
and cubic (ΠCu) polynomial interpolations of u. Given each element τ , all three of
these interpolations assume the same value as u at the three vertices of τ . Further-
more, the quadratic interpolation ΠQu has the same integral as u on each edge∫

ei

(u − ΠQu) = 0, i = 1, 2, 3.
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The cubic interpolation ΠCu has the same first order moment as u on each edge ei

of τ , ∫
ei

(u − ΠCu)p1 = 0, ∀p1 ∈ P1, i = 1, 2, 3

and has the same integral on the element τ as u,∫
τ

(u − ΠCu) = 0.

A more common type of interpolant used in superconvergence study is the tradi-
tional nodal value interpolant. For a linear element, the above defined interpolation
ΠL is simply the nodal value interpolant. For a quadratic element, the nodal value
interpolant, denoted by IQ, is slightly different. It assumes the same value as u at
all vertices of τ and it assumes the same value as u at all the midpoints of element
edges.

We have the following simple but very important property for these interpolants.

Lemma 2.1. The following identity holds:

IQΠC = ΠQ

or equivalently, for every midpoint aij = (ai + aj)/2, we have

(ΠQu − ΠCu)(aij) = 0.

Proof. By definition, we have∫
e

(u − IQΠCu) =
∫

e

(u − IQu) +
∫

e

IQ(u − ΠCu)

=
∫

e

(I − IQ)u − (I − IQ)(u − ΠCu)

=
∫

e

(I − IQ)ΠCu

= 0

where the last step is verified by a direct calculation. �
Using the subscripts L, Q and C, we shall use uL, uQ and uC to denote any

linear, quadratic and cubic function respectively. In the following, the subscripts
are equivalent mod 3, for example, �i = �i(mod 3), φi = φi(mod 3)

Lemma 2.2. For any quadratic function uQ,

(2.11) (I − ΠL)uQ(x) = −1
2

3∑
i=1

�2i φi+1φi+2
∂2uQ

∂t2
i

and

(2.12) ∆uQ = − 1
4|τ |2

3∑
i=1

�2i �i+1�i+2 cos θi
∂2uQ

∂t2
i

.

Here φi (i = 1, 2, 3) are barycentric coordinate functions for τ .

Proof. Since uQ −ΠLuQ vanishes at all three vertices, we can write in the following
form:

uQ − ΠLuQ =
3∑

i=1

αiφi+1φi+2.
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To determine the coefficients αi, we take a second order derivative on both sides of
the above identity to obtain

∂2uQ

∂t2i
= αi

∂2(φi+1φi+2)
∂t2i

= −2αi
1
�2i

.

The first identity (2.11) then follows. The proof of the second identity (2.12) follows
from the identity (2.11) together with the following sequence of identities:

∆uL = 0, ∆(φi+1φi+2) = 2∇φi+1 · ∇φi+2,

and

|∇φi+1| = −∇φi+1 · ni+1 = d−1
i+1 =

�i+1

2|τ | ,

and

∇φi+1 · ∇φi+2 = |∇φi+1||∇φi+2| cos θi =
�i+1�i+2

4|τ |2 cos θi. �

Next we will give a representation of uC − uQ in terms of the following cubic
“bubble” functions:

(2.13) ψ0 = φ1φ2φ3

and

(2.14) ψi = φ2
i+1φi+2 − φi+1φ

2
i+2.

The function ψ0 vanishes on ∂τ , the boundary of the element τ , and ψi vanishes at
the three nodal points of ei and also vanishes on the remaining two edges of ∂τ .

The following identities can be obtained by direct calculations:

∂3ψi

∂t3j
= δij

12
�3i

,(2.15)

∂3ψ0

∂t1∂t2∂t3
= 0,

∂3ψi

∂t1∂t2∂t3
=

4
�1�2�3

, i = 1, 2, 3,(2.16)

∂3ψ0

∂t2i ∂ti+1

= − 2
�2i �i+1

,
∂3ψi−1

∂t2i ∂ti+1

=
−2

�2i �i+1
, i = 1, 2, 3,(2.17)

∂3ψi

∂t2
i ∂ti+1

=
−6

�2i �i+1
,

∂3ψi+1

∂t2
i ∂ti+1

=
2

�2i �i+1
, i = 1, 2, 3.(2.18)

Using the formula ∫
τ

φα
1 φβ

2φγ
3 =

2|τ |
(α + β + γ + 2)!

we have ∫
τ

ψi = 0 for i = 1, 2, 3

and ∫
τ

ψ0 =
1
60

|τ |.
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Lemma 2.3. For any cubic function uC,
(2.19)

uC − IQuC =

(
3∑

i=1

�2i �i+1

6
∂3uC

∂t2i ∂ti+1

+
�1�2�3

4
∂3uC

∂t1∂t2∂t3

)
ψ0 +

3∑
i=1

�3i
12

∂3uC

∂t3
i

ψi

and

(2.20)
∂3uC

∂t1∂t2∂t3
=

1
3�1�2�3

3∑
i=1

�3i
∂3uC

∂t3i
.

Proof. By Lemma 2.1, uC−IQuC is a cubic polynomial vanishing at all three nodes
and all three midpoints of edges, so we can write it as

(2.21) uC − IQuC =
3∑

i=0

αiψi

where the constants αi are determined as follows. A direct calculation gives the
following identities. Using (2.15) and taking the derivative ∂3

∂t3
i

on (2.21) we have

αi =
�3i
12

∂3uC

∂t3i
.

Similarly, using (2.16), we have

∂3uC

∂t1∂t2∂t3
=

4
�1�2�3

3∑
i=1

αi =
1

3�1�2�3

3∑
i=1

�3i
∂3uC

∂t3
i

.

Using (2.17) and (2.18) we have

6α0 − 6
3∑

i=1

αi =
3∑

i=1

�2i �i+1
∂3uC

∂t2
i ∂ti+1

.

So,

α0 =
3∑

i=1

αi +
1
6

3∑
i=1

�2i �i+1
∂3uC

∂t2i ∂ti+1

=
�1�2�3

4
∂3uC

∂t1∂t2∂t3
+

1
6

3∑
i=1

�2i �i+1
∂3uC

∂t2i ∂ti+1

.

Combining these identities completes the proof of the lemma. �

3. Basic variational error expansions

In this section, we will derive some basic variational error expansions for the
quadratic finite element interpolant ΠQ, namely (1.1) and its consequences.

The following is a fundamental identity in our analysis.

Lemma 3.1.∫
τ

∇(uC − IQuC) · ∇vQ = −
∫

τ

(
3∑

i=1

�2i �i+1

360
∂3uC

∂t2
i ∂ti+1

+
�1�2�3
240

∂3uC

∂t1∂t2∂t3

)
∆vQ

+
1

2880|τ |

3∑
i=1

∫
ei

(
�4i (�

2
i+1 − �2i+2)

∂3uC

∂t3i
+ �i�

5
i+1

∂3uC

∂t3
i+1

− �i�
5
i+2

∂3uC

∂t3i+2

)
∂2vQ

∂t2i
.
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Proof. Using Green’s theorem, we have

(3.1)
∫

τ

∇(uC − IQuC) · ∇vQ = −
∫

τ

(uC − IQuC)∆vQ +
3∑

k=1

∫
ek

(uC − IQuC)
∂vQ

∂nk
.

The first term on the right hand of (3.1) equals the first term on the right hand side
in Lemma 2.3. To complete the proof, let us consider the integrals on the edges
of the element. Note that ψ0 and ψi, i 	= k vanish on ek. Using Lemma 2.3 and
integration by parts, we obtain

Jk =
∫

ek

(uC − IQuC)
∂vQ

∂nk
=

∫
ek

�3k
12

∂3uC

∂t3k
ψk

∂vQ

∂nk

=
�4k
24

∫
ek

∂3uC

∂t3
k

∂

∂tk
[φ2

k+1φ
2
k+2]

∂vQ

∂nk

= − �4k
24

∫
ek

∂3uC

∂t3
k

φ2
k+1φ

2
k+2

∂2vQ

∂nk∂tk
= − �4k

720

∫
ek

∂3uC

∂t3k

∂2vQ

∂nk∂tk
.

Using (2.9), we have

Jk =
�4k

2880|τ |

(∫
ek

(�2k+1 − �2k+2)
∂3uC

∂t3
k

∂2vQ

∂t2k

−
∫

ek

�2k+1

∂3uC

∂t3
k

∂2vQ

∂t2
k+1

+
∫

ek

�2k+2

∂3uC

∂t3k

∂2vQ

∂t2k+2

)

=
�4k

2880|τ |

(∫
ek

(�2k+1 − �2k+2)
∂3uC

∂t3
k

∂2vQ

∂t2k

−
∫

ek+1

�k�k+1
∂3uC

∂t3k

∂2vQ

∂t2k+1

+
∫

ek+2

�k+2�k
∂3uC

∂t3
k

∂2vQ

∂t2
k+2

)
.

Taking the summation over k and reorganizing the terms complete the proof. �

Using identities (2.1)-(2.12), we can further transform the above identities into
a form that is useful to our forthcoming analysis. The results are summarized in
the following lemma.

Lemma 3.2.

(3.2)
∫

τ

∇(uC − IQuC) · ∇vQ =
3∑

k=1

3∑
s=0

(
as

k(τ )
∫

τ

−bs
k(τ )

∫
ek

)
∂3uC

∂ns
k∂t3−s

k

∂2vQ

∂t2k

where, with Mk = sin 2θk/(sin 2θ1 + sin 2θ2 + sin 2θ3),

a0
k(τ ) = Mk

(
l2k−1lk

180
cos2 θk+1+

l1l2l3
120

cos θk−1 cos θk+1(3.3)

− l2klk+1

180
cos θk−1 −

l2k+1lk−1

180
cos2 θk−1 cos θk+1

)
,
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a1
k(τ ) = Mk

(
−

l2k−1lk

90
sin θk+1 cos θk+1 −

l1l2l3
120

cos θk−1 sin θk+1(3.4)

−
l2k+1lk−1

90
cos θk−1 sin θk−1 cos θk+1 +

l1l2l3
120

cos θk+1 sin θk−1

− l2klk+1

180
sin θk−1 +

l2k+1lk−1

180
cos2 θk−1 sin θk+1

)
,

a2
k(τ ) = Mk

(
l2k−1lk

180
sin2 θk+1 −

l1l2l3
120

sin θk−1 sin θk+1(3.5)

+
l2k+1lk−1

90
cos θk−1 sin θk−1 sin θk+1 −

l2k+1lk−1

180
sin2 θk−1 cos θk+1

)
,

a3
k(τ ) = Mk

l2k+1lk−1

180
sin2 θk−1 sin θk+1(3.6)

and

b0
k(τ ) =

1
1440

(
�4k(�2k+1 − �2k−1)

2|τ | +
�4k−1 cos3 θk+1

sin θk+1
−

�4k+1 cos3 θk−1

sin θk−1

)
,(3.7)

b1
k(τ ) =

1
1440

(−3�4k−1 cos2 θk+1 − 3�4k+1 cos2 θk−1),(3.8)

b2
k(τ ) =

1
1440

(3�4k−1 cos θk+1 sin θk+1 − 3�4k+1 cos θk−1 sin θk−1),(3.9)

b3
k(τ ) =

1
1440

(−�4k+1 sin2 θk−1 − �4k−1 sin2 θk+1).(3.10)

The superconvergence results that we will obtain depend on the magnitudes of
as

k(τ ) and bs
k(τ ) and how they vary from one element to its neighbor.

Lemma 3.3. The coefficients as
k(τ ) given in (3.3)-(3.6) and bs

k(τ ) (3.7)-(3.10) have
the following properties:

(1)

(3.11) as
k(τ ) = O(h3), bs

k(τ ) = O(h4).

(2) Assume that τ and τ ′ are two adjacent elements that share a common edge
e = ek. If τ and τ ′ form an exact parallelogram, then

(3.12) as
e(τ ) = as

e(τ
′), bs

e(τ ) = bs
e(τ

′), (s = 0, 1, 2, 3).

(3) If τ and τ ′ form an O(h2) approximate parallelogram (namely the lengths
of any two opposite edges differ only by O(h2)), then

(3.13) as
e(τ ) − as

e(τ
′) = O(h4), bs

e(τ ) − bs
e(τ

′) = O(h5), (s = 0, 1, 2, 3).

Proof. Note that Mk = O(1), so the first result is obvious and the second result is
also fairly clear. The third result can be obtained by a chain difference, for example,

�2k−1�k sin2 θk+1 − �′2k−1�
′
k sin2 θ′k+1

= (�2k−1 − �′2k−1)�k sin2 θk+1 + �′2k−1(�k − �′k) sin2 θk+1

+ �′2k−1�
′
k(sin2 θk+1 − sin2 θ′k+1) = O(h4). �

From Lemma 3.1, using a standard scaling argument, an application of the
Bramble-Hilbert Lemma in the reference element gives the following.
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Lemma 3.4. Let u ∈ W 4,p(τ ), then it holds that∫
τ

∇(u − ΠQu) · ∇vQ =
3∑

k=1

3∑
s=0

(
as

k(τ )
∫

τ

+bs
k(τ )

∫
ek

)
∂3ΠCu

∂ns
k∂t3−s

k

∂2vQ

∂t2k

=
3∑

k=1

3∑
s=0

(
as

k(τ )
∫

τ

+bs
k(τ )

∫
ek

)
∂3u

∂ns
k∂t3−s

k

∂2vQ

∂t2k

+ O(h4−α)|u|4,p,τ |vQ|2−α,q,τ , α = 0, 1.

Proof. We first note, by definition of ΠCu, that∫
τ

∇(u − ΠCu) · ∇vQ =
∫

∂τ

(u − ΠCu)
∂vQ

∂n
−

∫
τ

(u − ΠCu)∆vQ = 0.

Hence, by Lemmas 2.1 and 3.2, we have∫
τ

∇(u − ΠQu) · ∇vQ =
∫

τ

∇(ΠCu − IQΠCu) · ∇vQ +
∫

τ

∇(u − ΠCu) · ∇vQ

=
∫

τ

∇(ΠCu − IQΠCu) · ∇vQ

=
3∑

k=1

3∑
s=0

(
as

k(τ )
∫

τ

+bs
k(τ )

∫
ek

)
∂3ΠCu

∂ns
k∂t3−s

k

∂2vQ

∂t2k

=
3∑

k=1

3∑
s=0

(
as

k(τ )
∫

τ

+bs
k(τ )

∫
ek

)
∂3u

∂ns
k∂t3−s

k

∂2vQ

∂t2k
+ R

where

R=
3∑

k=1

3∑
s=0

(
as

k(τ )
∫

τ

+bs
k(τ )

∫
ek

)
∂3(u − ΠCu)
∂ns

k∂t3−s
k

∂2vQ

∂t2k
=O(h4−α)|u|4,p,τ |vQ|2−α,q,τ .

In the above estimate, we have used the following inequality:

(3.14)
∣∣∣∣
∫

e

f

∣∣∣∣ � h−1

∫
τ

|f | +
∫

τ

|∇f |. �

For a given triangulation Th and the corresponding quadratic finite element space
Vh ⊂ H1

0 (Ω), we can obtain an error expansion as stated in the following lemma.

Lemma 3.5. Let u ∈ W 4,p(Ω). Then for any vh ∈ Vh,

(∇(u − ΠQu),∇vh)

=
∑

e=τ∩τ ′∈Eh

3∑
s=0

(
as

e(τ )
∫

τ

−as
e(τ

′)
∫

τ ′
+[bs

e(τ ) − bs
e(τ

′)]
∫

e

)
∂3u

∂ns
e∂t3−s

e

∂2vh

∂t2e

+O(h4−α)|u|4,p,Ω|vh|′2−α,q,Ω.

Here |vh|′2−α,q,Ω = (
∑

τ |vh|q2−α,q,τ )
1
q and the first sum

∑
e=τ∩τ ′∈Eh

is taken over
each interior edge e which is the intersection of two adjacent triangles τ and τ ′,
and ne and te are the normal and tangential directions of e respectively. as

e(τ ) and
bs
e(τ ) are as given in (3.3)-(3.6) and (3.7)-(3.10).
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The proof of this basic result can be obtained directly by summing up the local
error expansion given in Lemma 3.4 together with the following simple observations:

(1) ∂2vh

∂t2
e

assumes the same value on the two adjacent elements, τ and τ ′, that
share e as an edge and it is zero when e is on the boundary of Ω, namely
e ⊂ ∂Ω.

(2) For each s = 0, 1, 2, 3, ∂3u

∂ns
e∂t3−s

e

has the opposite sign on τ and τ ′, namely

∂3u

∂ns
τ,e∂t3−s

τ,e

= − ∂3u

∂ns
τ ′,e∂t3−s

τ ′,e

where nτ,e is the external normal direction of e of τ and tτ,e is the counter-
clockwise tangential direction of e of τ .

4. Superconvergence results

With the preliminary results obtained in previous sections, we are now ready
to present various superconvergence results for quadratic finite elements. We will
first recover various known results and finally will present our new result on mildly
unstructured grids.

4.1. Globally uniform grid. Let us first take a look at a simple case where the
triangulation Th is uniform, namely every two adjacent triangles τ and τ ′ form a
perfect parallelogram.

Lemma 4.1. If the triangulation Th is uniform, then

(∇(u − ΠQu),∇vh) =
∑

e=τ∩τ ′∈Eh

3∑
s=0

as
e

(∫
τ

−
∫

τ ′

)
∂3u

∂ns
e∂t3−s

e

∂2vh

∂t2e

+ O(h4−s)|u|4,p,Ω|vh|′2−s,q,Ω.(4.1)

In the above lemma, as
e = as

e(τ ) is independent of τ .

Theorem 4.2. If the triangulation Th is uniform, then, for p, q ≥ 1 with 1/p +
1/q = 1, we have

(4.2) |(∇(u − ΠQu),∇vh)| � h4−α|u|4,p,Ω|vh|′2−α,q,Ω, vh ∈ Vh

and

|uh − ΠQu|1,Ω � h3|u|4,Ω,(4.3)

|uh − ΠQu|0,∞,Ω � h4| log h||u|4,∞,Ω.(4.4)

Proof. By Lemma 4.1, it suffices to prove that(∫
τ

−
∫

τ ′

)
∂3u

∂ns
e∂t3−s

e

= O(h3−2/p)|u|4,p,τ∪τ ′

which can be obtained by a standard scaling argument using the Bramble-Hilbert
Lemma.

The superconvergence estimate (4.3) can be obtained by taking vh = uh − ΠQu
and α = 1 in (4.2) and the estimate (4.4) can be obtained by taking vh = Gz

h
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(the finite element approximation of the Green’s function), α = 0 and p = ∞ in
(4.5) and using the following bound (see Zhu and Lin [17]):

|Gz
h|′2,1 � | log h|. �

4.2. Strongly regular grid. Classic superconvergence results are often obtained
for the so-called strongly regular grids. A strongly regular grid is such that any two
adjacent triangles form an O(h2) approximate parallelogram. With our basic error
expansion in Lemma 3.5, the derivation of such results is rather straightforward.

Simply speaking, results for globally strongly regular grids are totally analogous
to those for globally uniform grid presented in the previous section.

Theorem 4.3. If the triangulation Th is strongly regular, then

(4.5) |(∇(u − ΠQu),∇vh)| � h4−α|u|4,p,Ω|vh|′2−α,q,Ω, vh ∈ Vh

and

|uh − ΠQu|1,Ω � h3|u|4,p,Ω,(4.6)

|uh − ΠQu|0,∞,Ω � h4| log h||u|4,∞,Ω.(4.7)

Proof. Thanks to Lemma 3.5, we only need to verify the following two estimates:∣∣∣∣
(

as
e(τ )

∫
τ

−as
e(τ

′)
∫

τ ′

)
∂3u

∂ns
e∂t3−s

e

∂2vh

∂t2e

∣∣∣∣(4.8)

� h4−α|u|4,p,τ∪τ ′ (|vh|2−α,q,τ + |vh|2−α,q,τ ′)

and ∣∣∣∣[bs
e(τ ) − bs

e(τ
′)]

∫
e

∂3u

∂ns
e∂t3−s

e

∂2vh

∂t2
e

∣∣∣∣(4.9)

� h4−α‖u‖4,p,τ∪τ ′ (|vh|2−α,q,τ + |vh|2−α,q,τ ′).

Both of these estimates can be obtained by standard arguments and by using
Lemma 3.3. �

4.3. Mildly structured grids. The main result in this paper is on superconver-
gence for mildly structured grids. In practical computations, triangulations ob-
tained by most grid generators cannot be completely unstructured. In most prac-
tical grids, most pairs of triangles form an approximate parallelogram although
the entire grid is not strongly regular. We will show that a similar (but weaker)
superconvergence result also holds on this type of grid.

Theorem 4.4. Assume that the triangulation Th = T1,h∪T2,h satisfies the following
properties: T1,h is strongly regular and, for T2,h,

|Ω2,h| = O(hσ), Ω̄2,h ≡
⋃

τ∈T2,h

τ̄ .

Then

(4.10) (∇(u − ΠQu),∇vh) = O(h2+min(σ/p,1/2)) (|u|4,p,Ω + |u|3,∞,Ω) |vh|1,q,Ω.
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Proof. By Lemma 3.5, we can write

(4.11) (∇(u − ΠQu),∇vh) = I1 + I2 + I3

where

I1 =
∑
e∈E1

3∑
s=0

(
as

e(τ )
∫

τ

−as
e(τ

′)
∫

τ ′
+[bs

e(τ ) − bs
e(τ

′)]
∫

e

)
∂3u

∂ns
e∂t3−s

e

∂2vh

∂t2e
,

I2 =
∑
e∈E2

3∑
s=0

(
as

e(τ )
∫

τ

−as
e(τ

′)
∫

τ ′
+[bs

e(τ ) − bs
e(τ

′)]
∫

e

)
∂3u

∂ns
e∂t3−s

e

∂2vh

∂t2e
,

I3 = O(h3)|u|4,p,Ω|vh|1,q,Ω.

Here E1 is the set of all edges e = τ ∩ τ ′ such that both τ and τ ′ belong to T1,h and
are E2 the rest of the edges.

Obviously I1 can be estimated in the same way as in the proof of Theorem 4.3.
To estimate I2, we use the Hölder inequality. �

5. Numerical experiments

In this section, we will report some numerical experiments that support our
theoretical estimates. We consider the Dirichlet problem for the Poisson equation
posed on a unique square and a pentagon domain with the exact solution chosen
to be ex+y. We consider three different meshes as shown in Figure 2.

Table 1 records results for a uniform grid for the unit square domain. The results
clearly indicate that |uh − ΠQu|1,Ω = O(h3) and and |uh − ΠQu|0,∞,Ω = O(h4).
Table 2 and Table 3 record results for a pentagon domain discretized with two
sequences of grids that are obtained by a commercial mesh generator; the first is
a sequence of piecewise uniform grids, and the other is a sequence of unstructured
grids. In both cases, there are no superconvergence phenomenon observed for |uh−
ΠQu|0,∞,Ω, which is expected; but we do observe superconvergence phenomenon for
|uh − ΠQu|1,Ω. Such a superconvergence is rather weak for the unstructured grids,
but its presence is clear and significant.

Figure 2. Three different triangulations
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Table 1. Results for square domain, uniform refinement.

N ‖∇u −∇uh‖0 ‖∇ΠQu −∇uh‖0 ‖ΠQu − uh‖0,∞
Error Order Error Order Error Order

8 1.93E − 01 1.98 1.08E − 02 2.82 2.57E − 03 3.71
32 4.91E − 02 1.99 1.52E − 03 2.91 1.96E − 04 3.85
128 1.23E − 02 2.00 2.01E − 04 2.95 1.36E − 05 3.93
512 3.08E − 03 2.00 2.58E − 05 2.98 8.97E − 07 3.99
2048 7.71E − 04 2.00 3.27E − 06 2.97 5.64E − 08 3.92
8192 1.93E − 04 4.17E − 07 3.72E − 09

Table 2. Results for structured mesh on polygon.

N ‖∇u −∇uh‖0 ‖∇ΠQu −∇uh‖0 ‖ΠQu − uh‖0,∞
Error Order Error Order Error Order

20 6.65E − 02 2.00 7.01E − 03 3.00 1.77E − 03 3.09
80 1.67E − 02 2.00 1.18E − 03 2.83 2.07E − 04 2.92
320 4.17E − 03 2.00 1.99E − 04 2.92 2.73E − 05 2.92
1280 1.04E − 03 2.00 3.42E − 05 2.96 3.61E − 06 2.96
5120 2.61E − 04 2.00 5.96E − 06 2.97 4.65E − 07 2.97
20480 6.52E − 05 1.05E − 06 5.95E − 08

Table 3. Results for mildly structured mesh on polygon.

N ‖∇u −∇uh‖0 ‖∇ΠQu −∇uh‖0 ‖ΠQu − uh‖0,∞
Error Order Error Order Error Order

16 1.01E − 01 2.19 1.37E − 02 2.67 3.79E − 03 3.44
64 2.22E − 02 2.07 2.14E − 03 2.25 3.49E − 04 2.20
264 5.29E − 03 2.34 4.50E − 04 2.50 7.62E − 05 3.62
962 1.47E − 03 2.22 1.14E − 04 2.30 1.04E − 05 2.69
4537 3.16E − 04 2.08 2.32E − 05 2.34 1.62E − 06 2.79
9372 1.54E − 04 2.32 1.03E − 05 2.59 6.16E − 07 2.92
20779 6.89E − 05 4.19E − 06 2.24E − 07

6. Concluding remarks

The main result we obtain in this paper is that superconvergence estimates are
still valid on a large class of practical grids in which most pair of triangles form
approximate parallelograms. We expect this result to be useful for a posterior error
estimation and adaptive finite element methods. We will report these applications
in a future work.

We would like to make some further remarks on the techniques developed in this
paper to establish our result. Classic techniques for analyzing higher order elements
are complicated and difficult to make rigorous. Our new technique, based on the
identity (1.1) is simple and transparent. In the identity (1.1) and its derivation,
we have used the moment-based interpolants ΠQ and ΠC. We expect our new
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techniques to also apply to general higher order elements, which is a topic of future
works.

Acknowledgment

The authors wish to thank Dr. Pengtao Sun for his help with numerical experi-
ments.

References

[1] A. Andreev and R. Lazarov. Error estimate of type superconvergence of the gradient for
quadratic triangular elements. C.R. Acad. Bulgare Sci., 36:1179–1182, 1984. MR779566
(86f:65186)

[2] A. Andreev and R. Lazarov. Superconvergence of the gradient for quadratic triangular fi-
nite elements. Numer. Methods Partial Differential Equations, 4:15–32, 1988. MR1012472
(90m:65190)

[3] I. Babuska and W. Rheinboldt. A posteriori error estimates for the finite element method.
Internat. J. Numer. Methods Engrg., 12, 1978.

[4] I. Babuska and T. Strouboulis. The finite element method and its reliability. Numerical
Mathematics and Scientific Computation, 2001. MR1857191 (2002k:65001)

[5] R. Bank. A software package for solving elliptic partial differential equations. Software, En-
vironments and Tools, 5, 1998.

[6] R. Bank and J. Xu. Asymptotically exact a posteriori error estimators. I. grids with super-
convergence. SIAM J. Numerical Analysis, 41, No. 6, 2003. MR2034616 (2004k:65194)

[7] J. Brandts. Superconvergence for triangular order k = 1 Raviart-Thomas mixed finite ele-
ments and for triangular standard quadratic finite element methods. Appl. Numer. Anal.,
34:39–58, 2000. MR1755693 (2001c:65142)

[8] C. M. Chen and Y. Huang. High accuracy theory of finite element methods. Hunan, Science

Press, Hunan, China (in Chinese), 1995.
[9] G. Goodsell and J. Whiteman. Superconvergence of recovered gradients of piecewise quadratic

finite element approximations. Numer. Methods Partial Differential Equations, 7:61–8, 1991.
MR1088856 (92e:65151a)

[10] R. Hiptmair. Canonical construction of finite elements. Math. Comp., 68:1325–1346, 1999.
unreadable. MR1665954 (2000b:65214)

[11] B. Li. Superconvergence for higher-order triangular finite elements. Chinese J. Numer. Math.
Appl. (English), 12:75–79, 1990. MR1118707 (92d:65196)

[12] L. B. Wahlbin. Superconvergence in Galkerkin finite element methods. Springer-Verlag,
Berlin, 1995. MR1439050 (98j:65083)

[13] Jinchao Xu and Z. M. Zhang. Analysis of recovery type a posteriori error estimators for mildly
structured grids. Math. Comp., pages 781–801, 2003.

[14] J. Z. Zhu and O. C. Zienkiewicz. Superconvergence recovery technique and a posteriori er-
ror estimators. Internat. J. Numer. Methods Engrg., 30(7):1321–1339, 1990. MR1078744
(91i:65141)

[15] Q. Zhu. The derivative good points for the finite element method with 2-degree triangular
element (in chinese) Natural Science Journal of Xiangtan University, 4:36–45, 1981.

[16] Q. Zhu. Natural inner superconvergence for the finite element method (in chinese). Proc.
China-France Symposium on the FEM, Beijing, pages 935–960, 1982. MR754041 (85h:65253)

[17] Q. Zhu and Q. Lin. Finite element superconvergence theory. Hunan Science Press, 1989.

Institute for Computational and Applied Mathematics and Hunan Key Laboratory

for Computation & Simulation in Science & Engineering, Xiangtan University, People’s

Republic of China, 411105

E-mail address: huangyq@xtu.edu.cn

Institute for Computational and Applied Mathematics, Xiangtan University, Peo-

ple’s Republic of China and Center for Computational Mathematics and Applications,

Pennsylvania State University, USA

E-mail address: xu@math.psu.edu

http://www.ams.org/mathscinet-getitem?mr=779566
http://www.ams.org/mathscinet-getitem?mr=779566
http://www.ams.org/mathscinet-getitem?mr=1012472
http://www.ams.org/mathscinet-getitem?mr=1012472
http://www.ams.org/mathscinet-getitem?mr=1857191
http://www.ams.org/mathscinet-getitem?mr=1857191
http://www.ams.org/mathscinet-getitem?mr=2034616
http://www.ams.org/mathscinet-getitem?mr=2034616
http://www.ams.org/mathscinet-getitem?mr=1755693
http://www.ams.org/mathscinet-getitem?mr=1755693
http://www.ams.org/mathscinet-getitem?mr=1088856
http://www.ams.org/mathscinet-getitem?mr=1088856
http://www.ams.org/mathscinet-getitem?mr=1665954
http://www.ams.org/mathscinet-getitem?mr=1665954
http://www.ams.org/mathscinet-getitem?mr=1118707
http://www.ams.org/mathscinet-getitem?mr=1118707
http://www.ams.org/mathscinet-getitem?mr=1439050
http://www.ams.org/mathscinet-getitem?mr=1439050
http://www.ams.org/mathscinet-getitem?mr=1078744
http://www.ams.org/mathscinet-getitem?mr=1078744
http://www.ams.org/mathscinet-getitem?mr=754041
http://www.ams.org/mathscinet-getitem?mr=754041

	1. Introduction
	2. Preliminary Lemmas
	2.1. Elementary geometric identities
	2.2. Hierarchical representation of quadratic and cubic polynomials

	3. Basic variational error expansions
	4. Superconvergence results
	4.1. Globally uniform grid
	4.2. Strongly regular grid
	4.3. Mildly structured grids

	5. Numerical experiments
	6. Concluding remarks
	Acknowledgment
	References

