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WEAK COUPLING OF SOLUTIONS
OF FIRST-ORDER LEAST-SQUARES METHOD

JAEUN KU

Abstract. A theoretical analysis of a first-order least-squares finite element
method for second-order self-adjoint elliptic problems is presented. We in-
vestigate the coupling effect of the approximate solutions uh for the primary
function u and σh for the flux σ = −A∇u. We prove that the accuracy of the
approximate solution uh for the primary function u is weakly affected by the
flux σ = −A∇u. That is, the bound for ‖u − uh‖1 is dependent on σ, but
only through the best approximation for σ multiplied by a factor of meshsize
h. Similarly, we provide that the bound for ‖σ − σh‖H(div) is dependent on
u, but only through the best approximation for u multiplied by a factor of the
meshsize h. This weak coupling is not true for the non-selfadjoint case. We
provide the numerical experiment supporting the theorems in this paper.

1. Introduction

The purpose of this paper is to analyze the least-squares finite element method
for second order self-adjoint elliptic partial differential equations proposed by Cai
et al. [7] and Pehlivanov et al. [11]. They introduced a new variable σ that
transforms the corresponding second-order problem into a system of first-order.
Mixed Galerkin methods applied to the system lead to a saddle-point problem
and finite element spaces should satisfy the inf-sup condition of Ladyzhenskaya-
Babuska-Brezzi [1, 5]. Although there has been substantial progress, it may still
be difficult and expensive to solve saddle-point problems. It is well known that
least-squares type methods applied to the system lead to a minimization problem
solving symmetric and positive definite system. The approximation spaces do not
require the inf-sup condition and any conforming finite element spaces including
piecewise continuous polynomial spaces can be used as approximation spaces.

The main theoretical result in this paper shows the dependence of ‖u−uh‖1 and
‖σ − σh‖H(div). Our interest stems from the the following observation. For the
problem −divA∇u+u = f , let (u1

h, σ1
h) be the approximate solution for (u,−A∇u)

obtained by the least-squares method and let uG
h be the approximate solution for

u obtained by the standard Galerkin method. Then, u1
h = uG

h . We will provide a
proof in Section 4. Hence, the bound for ‖u − uh‖1 is independent of σ and σh.
This is not true in general. However, for selfadjoint elliptic problems, we are able to
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show that the effect of σ and its approximate space is weak in the following sense,

(1.1) ‖u − uh‖1 ≤ C

(
inf

χ∈Vh

‖u − χ‖1 + h inf
qh∈Wh

‖σ − qh‖H(div)

)
,

where h is the meshsize. That is, the bound for ‖u−uh‖1 is dependent on the best
approximation for σ multiplied by a factor of the meshsize h. Similarly, the effect
of u and its approximate space is weak on ‖σ − σh‖H(div) in the following sense,

(1.2) ‖σ − σh‖H(div) ≤ C

(
inf

qh∈Wh

‖σ − qh‖H(div) + h inf
χ∈Vh

‖u − χ‖1

)
.

As a consequence of (1.1) and (1.2), we obtain improved error estimates for the
primary function u and flux σ. In the non-selfadjoint case, i.e. in the presence of
first-order term in the differential equations, (1.1) and (1.2) are no longer true and
we provide the numerical experiment confirming this.

Various error estimates are obtained for least-squares methods similar to the one
we discuss in this paper; see, e.g. Manteuffel et al. [10], and Pehlivanov et al. [12].
Their error estimate ‖u − uh‖1 for the primary function u is O(h) for u ∈ H3(Ω).
Our estimate provides O(h2) for u ∈ H3(Ω). Brandts et al. [4] recently obtained an
error estimate for a least-squares method by comparing the least-squares solution
with the standard Galerkin solution and mixed Galerkin solution. They showed
that those solutions are superclose. Here, we use the duality argument to show the
relationship between the least-squares solution in (1.1). Moreover, any conforming
finite element spaces including the standard piecewise continuous polynomial spaces
can be used as approximate spaces for our analysis. This is not the case for [4].
For other least-squares type methods, we refer to [2, 7, 10, 12] and the references
therein.

This paper is organized as follows: Section 2 formulates the problem. For a
detailed presentation, we refer to [7, 11]. The finite element approximation is
presented with a known error estimate for the method in Section 3. Section 4
deals with the case when the solutions for the least-squares method are decoupled.
In Section 5, we provide a proof for (1.1) and (1.2) and state the resulting error
estimates. We present the confirming numerical experiment in Section 6.

2. Problem formulation

Let Ω be a convex bounded domain in R
n, n = 2, 3, with Lipschitz boundary

Γ = ∂Ω. We consider the Dirichlet boundary value problem

(2.1) −divA∇u + c u = f in Ω,
u = 0 on Γ,

for f ∈ L2(Ω) and A = (aij(x))n
i,j=1, x ∈ Ω. The coefficients aij and c are smooth

and the matrix A is symmetric and uniformly positive definite, i.e., there exist
positive constants α0 and α1 such that

(2.2) α0ζ
T ζ ≤ ζTAζ ≤ α1ζ

T ζ,

for all ζ ∈ R
n and all x ∈ Ω.

We assume that there exists a unique solution to (2.1). Also, we assume the
following a priori estimate for u satisfying (2.1): there exists a positive constant C
independent of f satisfying

(2.3) ‖u‖2 ≤ C ‖f‖0.
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By introducing a new variable σ = −A∇u, we transform the original problem
into a system of first-order:

σ + A∇u = 0 in Ω,

divσ + c u = f in Ω,(2.4)
u = 0 on Γ.

Let Hs(Ω) denote the Sobolev space of order s defined on Ω. The norm in Hs(Ω)
will be denoted by ‖ · ‖s. For s = 0, Hs(Ω) coincides with L2(Ω). We shall use the
spaces

V = {u ∈ H1(Ω) : u = 0 on Γ},
W = H(div) ≡ {σ ∈ (L2(Ω))n : divσ ∈ L2(Ω)},

with norms

‖u‖2
1 = (u, u) + (∇u , ∇u),

‖σ‖2
H(div) = (divσ , divσ) + (σ , σ).

Also, we introduce a new norm

‖σ‖2
H(div,A) = (divσ , divσ) +

(
A−1σ , σ

)
,

for σ ∈ W. Since A is uniformly positive definite, we have

(2.5) c‖σ‖H(div) ≤ ‖σ‖H(div,A) ≤ C‖σ‖H(div) for all σ ∈ W.

The space H−1(Ω) is defined by duality and consists of the functional v for which
the norm

(2.6) ‖v‖−1 = sup
φ∈V

(v, φ)
‖φ‖1

is finite, where (v, φ) is the value of the functional at φ.
Then, the least-squares method for the first-order system (2.4) is: Find u ∈

V, σ ∈ W such that

b(u, σ; v,q) ≡ (div σ + c u, div q + c v) +
(
A−1(σ + A∇u),q + A∇v

)
(2.7)

= (f, div q + c v),

for all v ∈ V,q ∈ W.

3. Finite element approximation

Let τh be a regular triangulation of Ω (see [8]) with triangular/tetrahedra ele-
ments of size h = max{diam(K); K ∈ τh}. Let Pk(K) be the space of polynomials
of degree k on triangle K and denote the local Raviart-Thomas space of order k on
K:

RTk(K) = Pk(K)n + xPk(K)

with x = (x1, . . . , xn). Then the standard (conforming) continuous piecewise poly-
nomials of degree k and the standard H(div) conforming Raviart-Thomas space of
index r [13] are defined, respectively, by

Vh = {v ∈ V : v|K ∈ Pk(K) for all K ∈ τh},
Wh = {τ ∈ W : τ |K ∈ RTr(K) for all K ∈ τh}.
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It is well known (see [8]) that Vh has the following approximation property: let
k ≥ 1 be an integer and let l ∈ [1, k + 1],

(3.1) inf
vh∈Vh

‖v − vh‖1 ≤ Chl‖v‖l+1,

for u ∈ H l+1(Ω). It is also well-known (see [13]) that Wh has the following ap-
proximate property: let r ≥ 0 be an integer and let l ∈ [1, r + 1],

(3.2) inf
qh∈Wh

‖q− qh‖H(div) ≤ Chl(‖q‖l + ‖div q‖l)

for q ∈ H l(Ω)n with div q ∈ H l(Ω).

Remark 3.1. The analysis in this paper can be generalized to any conforming finite
element spaces. We choose the conforming Raviert-Thomas family of elements as
an approximate space for W since it does not require q ∈ H l+1(Ω)n but only
requires div q ∈ H l(Ω) to have the approximate property of (3.2). If the standard
conforming piecewise continuous polynomial spaces are used for W, then higher
regularity, i.e. H3, is required for the solution of the adjoint problem to obtain
(1.1) and (1.2).

The finite element approximation to (2.7) is: Find uh ∈ Vh and σh ∈ Wh such
that

(3.3) b(uh, σh; vh,qh) = (f, div qh + c vh),

for all vh ∈ Vh,qh ∈ Wh. It is well-known that (3.3) has a unique solution. More-
over, the error has the orthogonal property

(3.4) b(u − uh, σ − σh; vh,qh) = 0, for all vh ∈ Vh,qh ∈ Wh.

The following theorem is proved in [7].

Theorem 3.1. Let (u, σ) and (uh, σh) satisfy the equations in (2.4) and (3.3)
respectively. Then,

‖u − uh‖1 + ‖σ − σh‖H(div) ≤ C inf
χ∈Vh,qh∈Wh

(‖u − χ‖1 + ‖σ − qh‖H(div))

where the constant C is independent of h, u, or σ.

Also, we need to have the following L2-norm error estimate for ‖u−uh‖0 proved
in [6].

Theorem 3.2. Let (u, σ) and (uh, σh) satisfy the equations in (2.4) and (3.3)
respectively. Then,

‖u − uh‖0 ≤ C h inf
χ∈Vh,qh∈Wh

(‖u − χ‖1 + ‖σ − qh‖H(div))

where the constant C is independent of h, u, or σ.

4. Decoupling of the least-squares solution when c = 1

In this section, we provide a proof that the least-squares approximate solution
uh for the primary function u and σh for the dual function σ is independent when
c = 1. We denote (u1

h, σ1
h) for the least-squares approximate solution when c = 1.

Then, u1
h is the standard Galerkin solution (see Lemma 4.1) and σ1

h is the H(div,A)
projection; see Lemma 4.2.
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Lemma 4.1. Let c u = u in (2.1). Let (u, σ) and (u1
h, σ1

h) satisfy the equations
in (2.4) and (3.3) respectively. Let uG

h be the approximate solution obtained by the
standard Galerkin method. Then u1

h = uG
h .

Proof. By the orthogonal property of the least-squares solution (3.4), the definition
in (2.7), and the integration by parts, we have

0 = b(u − u1
h, σ − σ1

h , vh, 0)
= (σ − σ1

h + A∇(u − u1
h) ,∇vh) + (div (σ − σ1

h) + u − u1
h , vh)

= (A∇(u − u1
h) , ∇vh) + (u − u1

h, vh)

for all vh ∈ Vh. Now, the last equation implies that u1
h is the solution of the standard

Galerkin method, i.e, u1
h = uG

h by the uniqueness of the approximate solution. This
completes the proof. �

Lemma 4.2. Let c u = u in (2.1). Let (u, σ) and (u1
h, σ1

h) satisfy the equations in
(2.4) and (3.3) respectively. Then,

‖σ − σ1
h‖H(div) ≤ C inf

q∈Wh

‖σ − q‖H(div).

Proof. Due to (2.5), it suffices to prove that

‖σ − σ1
h‖H(div,A) = inf

q∈Wh

‖σ − q‖H(div,A).

In order to prove the above equality, it suffices to show that

(div (σ − σ1
h), div qh) +

(
A−1(σ − σ1

h),qh

)
= 0,

for all qh ∈ Wh.
By the orthogonal property (3.4), the definition in (2.7), and the integration by

parts, we have

0 = b(u − u1
h, σ − σ1

h ; 0,qh)

=
(
A−1(σ − σ1

h) + ∇(u − u1
h) ,qh

)
+ (div (σ − σ1

h) + u − u1
h , div qh)

=
(
A−1(σ − σ1

h),qh

)
+ (div (σ − σ1

h), div qh)(4.1)

for all qh ∈ Wh. This completes the proof. �

Remark 4.1. Since (u1
h, σ1

h) satisfies (4.1) the following equality holds:

(div (σ − σh) + (u − uh) , div qh) + (A−1(σ − σh) + ∇ (u − uh) , qh)

= (div (σ1
h − σh) + (u1

h − uh), div qh) + (A−1(σ1
h − σh) + ∇ (u1

h − uh),qh)(4.2)

for all qh ∈ Wh.

5. Weak coupling of the least-squares solution

In this section, we provide a weak coupling of u− uh and σ −σh with arbitrary
smooth function c. The bound ‖u − uh‖1 is dependent on σ via an approximate
term ‖σ − σh‖H(div) multiplied by the meshsize h. The bound ‖σ − σh‖H(div) is
dependent on σ via an approximate term ‖u − uh‖1 multiplied by the meshsize h.

Throughout Section 5, we have

a(u, v) = (A∇u,∇v) + (c u, v).

Also, as mentioned before (u1
h, σ1

h) denote the least-squares solution with c = 1.
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Theorem 5.1. Let (u, σ) and (uh, σh) satisfy the equations in 2.4 and (3.3) re-
spectively. Then,

‖u − uh‖1 ≤ C

(
inf

χ∈Vh

‖u − χ‖1 + h inf
qh∈Wh

‖σ − qh‖H(div))
)

.

Proof. By Bramble et al. [3, Lemma 2.2], C∞
0 (Ω) is dense in V , for ψ ∈ V ,

C‖ψ‖1 ≤ sup
v∈C∞

0 (Ω)

a(ψ, v)
‖v‖1

, where C is independent of ψ.

By taking ψ = u − uh, we obtain

(5.1) C‖u − uh‖1 ≤ sup
v∈C∞

0 (Ω)

a(u − uh, v)
‖v‖1

.

By the definition of a(·, ·) and integration by parts, we have

a(u − uh, v) = (A∇(u − uh),∇v) + (c (u − uh), v)

= (div(σ − σh) + c (u − uh), v) + (σ − σh + A∇(u − uh),∇v).(5.2)

For recovering the bilinear form b(·, · ; ·, ·), let w be such that

(5.3) −divA∇w + c w = −divA∇v + v in Ω,
w = 0 on Γ.

Since Ω is a convex polygonal domain and v ∈ C∞
0 (Ω), we have w ∈ H2(Ω). Also,

by a well-known a priori estimate and the definition of negative norm (2.6), we
have

(5.4) ‖w‖1 ≤ C‖ − divA∇v + v‖−1 ≤ C‖v‖1.

From (5.3) and v ∈ C∞
0 (Ω), i.e. v = 0 on Γ, we have

(5.5) divA∇(v − w) = v − c w in Ω and v − w = 0 on Γ.

Set d = A∇(v − w). Then, we have div d = v − c w. For example,

(5.6) v = div d + c w.

Also, it is clear from d = A∇(v − w) that

(5.7) A∇v = d + A∇w.

By using equalities (5.6), (5.7) in (5.2) and by the definition of b(·, · ; ·, ·) in (2.7),
we obtain

a(u − uh, v) = (div(σ − σh) + c(u − uh), div d + cw)(5.8)
+

(
A−1(σ − σh + A∇(u − uh)),d + A∇w

)
= b(u − uh, σ − σh ; w,d).

To approximate w, let Shw ∈ Vh be the Ritz projection of w, i.e.,

(5.9) (A∇(w − Shw),∇vh) = 0 for all vh ∈ V.

It is well known that

(5.10) ‖w − Shw‖0 ≤ Ch‖w‖1 and ‖w − Shw‖1 ≤ C‖w‖1.

To approximate d = ∇(v−w), first note that d ∈ (H1)n and divd = v−c w ∈ H1(Ω)
since v ∈ C∞

0 (Ω) and w ∈ H2(Ω) . Using a priori estimate (2.3) and (5.4), we have

‖d‖1 ≤ C‖v − w‖2 ≤ C‖v − c w‖1 ≤ C‖w‖1 + ‖v‖1 ≤ C‖v‖1.
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Also, by triangle inequality and (5.4), we have

‖divd‖1 = ‖v − c w‖1 ≤ C‖w‖1 + ‖v‖1 ≤ C‖v‖1.

Let dI ∈ Wh satisfy

(5.11) ‖d − dI‖H(div) ≤ Ch(‖d‖1 + ‖div d‖1) ≤ C h‖v‖1.

Using the orthogonal property (3.4) in (5.8) and the definition of b(·, · ; ·, ·) in
(2.7), we have

a(u − uh, v) = b(u − uh, σ − σh ; w − Shw,d − dI)

= (div(σ − σh) + c (u − uh), div(d − dI) + c(w − Shw))

+
(
A−1(σ − σh + A∇(u − uh)) ,d− dI + A∇(w − Shw)

)
= (div(σ − σh) + c (u − uh) , div(d − dI) + c (w − Shw))

+ (A−1(σ − σh + A∇(u − uh)),d− dI)

+ (A−1(σ − σh),A∇(w − Shw)) + (∇(u − uh),A∇(w − Shw))

= I1 + I2 + I3 + I4.(5.12)

By Cauchy-Schwartz inequality, (5.11), (5.10) and (5.4), it can be easily shown that

I1 + I2 ≤ C h (‖u − uh‖1 + ‖σ − σh‖H(div)) ‖v‖1.

By integration by parts, Cauchy-Schwartz inequality, (5.10) and (5.4), we have

I3 = (A−1(σ − σh),A∇(w − Shw)) = (−div(σ − σh), w − Shw)
≤ ‖σ − σh‖H(div) · ‖w − Shw‖0 ≤ Ch ‖σ − σh‖H(div)‖w‖1

≤ Ch‖σ − σh‖H(div)‖v‖1 ≤ C h (‖u − uh‖1 + ‖σ − σh‖H(div)) ‖v‖1.

By (5.9), the second inequality in (5.10) and (5.4), for all χ ∈ Vh,

I4 = (∇(u − uh),A∇(w − Shw)) = (∇(u − χ) , A∇(w − Shw))
≤ C inf

χ∈Vh

‖u − χ‖1 ‖w‖1 ≤ C inf
χ∈Vh

‖u − χ‖1 ‖v‖1.

By combining the above inequalities in (5.12) and then (5.1), we obtain

‖u − uh‖1 ≤ C inf
χ∈Vh

‖u − χ‖1 + C h (‖u − uh‖1 + ‖σ − σh‖H(div)).

Applying Theorem 3.1, we obtain the desired inequality. �

Remark 5.1. Suppose that u ∈ H2+ε(Ω) for some ε ∈ [0, 1]. Let k ≥ 1 + ε , r ≥ 1.
Then, the following is the immediate consequence of Theorem 5.1:

‖u − uh‖1 ≤ Ch1+ε‖u‖2+ε

where C is independent of h and u.

Theorem 5.2. Let (u, σ) and (uh, σh) satisfy the equations in (2.4) and (3.3)
respectively. Then,

‖σ − σh‖H(div) ≤ C

(
inf

qh∈Wh

‖σ − qh‖H(div) + h inf
χ∈Vh

‖u − χ‖1

)
.
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Proof. Clearly, we have

(5.13) ‖σ − σh‖H(div) ≤ ‖σ − σ1
h‖H(div) + ‖σ1

h − σh‖H(div).

Using the orthogonal property (3.4), the definition of b(·, · ; ·, ·) in (2.7) and (4.1),
for all qh ∈ Wh, we have

0 = b(u − uh, σ − σh; 0,qh)
= (div (σ − σh) + c (u − uh) , div qh) +

(
A−1(σ − σh) + ∇ (u − uh), qh

)
= (div (σ − σh) + (u − uh) , div qh) +

(
A−1(σ − σh) + ∇ (u − uh), qh

)
+((c − 1) (u − uh) , div qh)

= (div (σ1
h − σh) + (u1

h − uh) , div qh) +
(
A−1(σ1

h − σh) + ∇ (u1
h − uh), qh

)
+((c − 1) (u − uh) , div qh).

By taking qh = σ1
h − σh and integration by parts, we obtain

(div (σ1
h − σh), div(σ1

h − σh)) + (A−1(σ1
h − σh) , σ1

h − σh)

= −
(
u1

h − uh , div (σ1
h − σh)

)
− (∇ (u1

h − uh), σ1
h − σh)

− ((c − 1) (u − uh) , div (σ1
h − σh))

= −((c − 1) (u − uh) , div (σ1
h − σh)).

Thus, by standard arithmetics-geometric inequality, we have

(5.14) (div(σ1
h − σh), div(σ1

h − σh)) + (A−1(σ1
h − σh), σ1

h − σh) ≤ C‖u − uh‖2
0.

Due to (2.5) and (5.14), we have

‖σ1
h − σh‖2

H(div) ≤ C (div (σ1
h − σh), div (σ1

h − σh)) + (A−1(σ1
h − σh) , σ1

h − σh)

≤ C ‖u − uh‖2
0.

Using the above inequality and Theorem 3.2, we have

‖σ1
h − σh‖H(div) ≤ C ‖u − uh‖0

≤ C

(
h inf

χ∈V
‖u − χ‖1 + h inf

qh∈Wh

‖σ − qh‖H(div)

)
.

Now, using the above inequality in (5.13) and Lemma 4.2, we have

‖σ − σh‖H(div) ≤ C

(
inf

qh∈Wh

‖σ − qh‖H(div) + h inf
χ∈Vh

‖u − χ‖1

)
. �

Remark 5.2. Suppose that u ∈ H3+ε(Ω), i.e. σ ∈ (H2+ε(Ω))n for some ε ∈ [0, 1].
Let k ≥ 1 , r ≥ 2+ε. Then, the following is the immediate consequence of Theorem
5.2:

‖σ − σh‖H(div) ≤ Ch1+ε‖σ‖2+ε

where C is independent of h and σ.



WEAK COUPLING FOR A LEAST-SQUARES METHOD 1331

6. Numerical results

As a test for the accuracy and the convergence rate of the method, we consider
the following boundary value problems in Ω = (0, 1) × (0, 1):

−�u + b · ∇u + 5u = f in Ω,

u = 0 on Γ,

with b = (0, 0) and b = (5, 2). The exact solution for our problem is u(x, y) =
(x−x2)(y−y2) and σ = −

(
(1 − 2x)(y − y2), (x − x2)(1 − 2y)

)
. For approximation,

we use uniform triangulation of Ω. A 13-point quadrature rule which integrates
exactly polynomials of up to degree 7 was used [14, p. 184]. For approximate
spaces for V and W, we choose the standard piecewise continuous polynomial
spaces of order k and r satisfying the following approximate properties:

inf
vh∈Vh

‖v − vh‖1 ≤ Chk‖v‖k+1,

inf
qh∈Wh

‖q − qh‖H(div) ≤ Chr‖q‖r+1,

where k, r > 0 are integers, v ∈ Hk+1(Ω), and q ∈ (Hr+1(Ω))n.
Our goal is to test the rates of convergence of ‖u−uh‖1 for the case k = 2, r = 1

and test the rate of convergence of ‖σ − σh‖H(div) for the case k = 1, r = 2. The
results are listed in Table 6.1 and Table 6.2. In the presence of the first order term,
i.e. b �= 0, our numerical experiment shows that Theorem 5.1 and Theorem 5.2 are
no longer true. For the selfadjoint case, i.e. b = 0, the experiments confirm our
theoretical estimate with ε = 1 in Remark 5.1 and Remark 5.2.

Table 6.1. Error in ‖u − uh‖1 with different b.

meshsize b = (0, 0) rate b = (5, 2) rate
1
8 0.0046 - 0.0200 -
1
16 0.0013 1.85 0.0118 0.75
1
32 0.00033 1.91 0.0065 0.86
1
64 0.000086 1.96 0.0034 0.92

Table 6.2. Error in ‖σ − σh‖H(div) with different b.

meshsize b = (0, 0) rate b = (5, 2) rate
1
8 0.0051 - 0.1021 -
1
16 0.0013 1.85 0.0512 0.99
1
32 0.00032 1.91 0.0256 1.00
1
64 0.000079 1.96 0.0128 1.00
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