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EQUAL MOMENTS DIVISION OF A SET

SHAHAR GOLAN

Abstract. Let N∗
q (m) be the minimal positive integer N , for which there

exists a splitting of the set [0, N − 1] into q subsets, S0, S1, . . . , Sq−1, whose
first m moments are equal. Similarly, let m∗

q(N) be the maximal positive

integer m, such that there exists a splitting of [0, N − 1] into q subsets whose
first m moments are equal. For q = 2, these functions were investigated by
several authors, and the values of N∗

2 (m) and m∗
2(N) have been found for

m ≤ 8 and N ≤ 167, respectively. In this paper, we deal with the problem for
any prime q. We demonstrate our methods by finding m∗

3(N) for any N < 90
and N∗

3 (m) for m ≤ 6.

1. Introduction

For k ∈ N, let ζk be a primitive root of unity of order k. Let Pq(N) denote the
set of polynomials of degree N − 1 with all coefficients in {1, ζq, . . . , ζ

q−1
q }. (It will

become clear later that N is a more natural parameter than deg P .) Let Pq(N, m)
denote the subset of Pq(N), consisting of polynomials divisible by (x − 1)m (or by
some higher power of x − 1).

The set Pq(N, m) has been extensively studied for q = 2. It comes up in the
design of antenna arrays and notch filters [6], in coding theory in connection with
so-called spectral-null codes, [12], and is also related to the Prouhet-Thue-Morse
sequence [1]. In [13] and [8], asymptotics are obtained for its size. An algorithm for
enumerating P2(N, 3) is described in [7]. A method of encoding data by words in
P2(N, 3) is defined in [11].

It turns out that the polynomials in P2(N, m) have the following property. Given
P ∈ P2(N, m), let S0 be the subset of {0, 1, . . . , N − 1}, consisting of those k’s for
which xk appears in P with a “+” sign, and S1 the set of those for which it appears
with a “-” sign. Then the first m moments of S0 are equal to those of S1, i.e.,

(1.1)
∑
j∈S0

jk =
∑
j∈S1

jk, k = 0, . . . , m − 1.

In fact, if S0 ∪ S1 = {0, 1, . . . , N − 1} and S0 ∩ S1 = ∅, then the equalities in (1.1)
imply that

P =
∑
j∈S0

xk −
∑
j∈S1

xk ∈ P2(N, m).

We shall show (see Proposition 2.1 infra) that a similar equivalence exists for any
prime q. This means that the problem of finding a polynomial in Pq(N, m) is
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equivalent to the problem of splitting the set {0, 1, . . . , N − 1} into q subsets, S0,
S1, . . . , Sq−1, whose first m moments are equal, i.e.,∑

j∈Si

jk =
∑

j∈Si′

jk, k = 0, . . . , m − 1, 0 ≤ i < i′ ≤ q − 1.

For a fixed m, let N∗
q (m) be the smallest N for which Pq(N, m) is non-empty,

and for a fixed N let m∗
q(N) be the largest m such that Pq(N, m) is non-empty.

This paper examines the question of finding m∗
q(N) and N∗

q (m) for several values
of N and m.

For q = 2, the problem has been investigated by Boyd [3], [4]. On the theoretical
side, Boyd proved that N∗

2 (m) ≥ e
√

m(1+o(1)). Moreover, for m∗
2(N) to be large, N

has to be divisible by a large power of 2. Boyd was able to calculate m∗
2(N) for

all N < 88. In particular, he proved that N∗(6) = 48, thus disproving a conjecture
of Byrnes [5], whereby N∗

2 (m) = 2m for every m. Additionally, he showed that
N∗

2 (7) = 96, but was unable to determine whether m∗(96) is 7 or 8. Boyd’s approach
is based on an ingenious exploitation of the fact that, if P (x) ∈ P2(N, m), then,
in particular, for any algebraic integer ζ, the algebraic integer P (ζ) is divisible
by (ζ − 1)m. In general, this would be of little help, as P (ζ) may take any of 2N

possible values. However, if ζ = ζp is a root of unity of low prime order p, then P (ζp)
is limited to one of a relatively small number of values.

In [2] Berend and the author improved Boyd’s approach both theoretically and
computationally, which helped in strengthening his results. On the theoretical side,
we were able to exploit the full power provided by the information arising from the
divisibility of P (ζp) by (ζp − 1)m to get better constraints on the values of the
polynomial’s coefficients. On the computational side, we combined the information
obtained from different primes to further shorten the search. Using these improve-
ments, we were able extend the range of N ’s with known m∗(N) from N < 88 to
N < 168. In particular, we were able show that m∗(96) = 7 and m∗(144) = 8 (so
that N∗(8) = 144).

As mentioned above, in this paper we deal with the problem for any prime q,
and generalize the results achieved in [3], [4] and [2]. We demonstrate our methods
by finding m∗

3(N) for any N < 90 and N∗
3 (m) for m ≤ 6. We also determine m∗

3(N)
for any N with m∗

3(N) < 5.
In Section 2 we present the main results. Section 3 contains a few auxiliary

results on equal moments divisions of a set. In Section 4 we derive some simple
results on cyclotomic fields, on which we base our methods. The proofs of the main
results are given in Section 5. In Section 6 we describe the methods and heuristics
that were used for scanning the search range.

To prove that m∗
3(N) is bounded below by some value, we usually have to find

a polynomial of degree N − 1 divisible by an appropriate power of x − 1. Such
polynomials, accompanying all the results of the paper, may be found in [9].

Acknowledgments. I would like to express my deep gratitude to Daniel Berend,
for his careful reading and for his (many) helpful comments. I would also like to
thank the anonymous reviewer of this paper for his detailed and helpful comments.
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2. The main results

We start with the equivalence of the two problems discussed in the previous
section.

Proposition 2.1. Let q be a prime, and m a positive integer. Let Si, 0 ≤ i ≤ q−1,
be finite multisets of non-negative integers. Then

(2.1)
∑
j∈Si

jk =
∑

j∈Si′

jk, k = 0, . . . , m − 1, 0 ≤ i < i′ ≤ q − 1,

if and only if

(2.2) (x − 1)m |
q−1∑
i=0

ζi
q

∑
j∈Si

xj .

Remark. The implication (2.1) ⇒ (2.2) holds for every q, prime or not. In fact,
going over the proof of Proposition 2.1, we can see that, in this direction, the
primality of q is not used. However, the implication (2.2) ⇒ (2.1) is false for every
composite q. Indeed, if q = dl, let Sdi = {i}, 0 ≤ i < l, andSj = ∅, for 0 ≤ j < dl
with d � j. Then the right-hand side of (2.2) is

(2.3)
l−1∑
i=0

ζi
l x

i =
xl − 1
ζlx − 1

,

which is divisible by x − 1, yet the 0-th moment of S0 (i.e., its size, which is 1)
differs from that of S1 (which is 0).

The following results, from Theorem 2.2 up to Corollary 2.6 are simple general-
izations of their analogues in the case q = 2, proved by Boyd [3], but due to their
importance we state them explicitly (with proofs, except for Theorem 2.4).

Theorem 2.2. If Pq(N, m) is non-empty and qk ‖ N , then m ≤ qk − 1.

Corollary 2.3. If Pq(N, m) is non-empty and m ≥ qk, then qk+1 | N .

Theorem 2.4. If Pq(N, m) is non-empty, then N ≥ exp(
√

m(1 + o(1))).

The proof of this theorem is very similar to the one given in [3] (based on Theorem
3.6 infra), and will be omitted.

In the next proposition we provide lower bounds for m∗
q(2N), m∗

q(N1 + N2)
and m∗

q(N1N2) in terms of m∗
q(N), m∗

q(N1) and m∗
q(N2). Note that the proof is

constructive. Namely, given polynomials P1 ∈ Pq(N, m), P2 ∈ Pq(N1, m1), and
P3 ∈ Pq(N2, m2), we explicitly construct polynomials in Pq(2N), Pq(N1 + N2) and
Pq(N1N2) with zeros of the prescribed order at 1.

Proposition 2.5. For any N, N1, N2 we have:
1. If m∗

q(N) is odd, then m∗
q(2N) ≥ m∗

q(N) + 1.
2. m∗

q(N1 + N2) ≥ min(m∗
q(N1), m∗

q(N2)).
3. m∗

q(N1N2) ≥ m∗
q(N1) + m∗

q(N2).

Corollary 2.6.

N∗
q (m) ≤

{
(2q)m/2, m ≡ 0 (mod 2),
2(m−1)/2q(m+1)/2, m ≡ 1 (mod 2).



1698 SHAHAR GOLAN

The rest of the section deals with the case q = 3. The next result provides the
value of m∗

3(N) for every N with m∗(N) < 5.

Theorem 2.7.
1. m∗

3(N) = 0 if and only if 3 � N .
2. m∗

3(N) = 1 if and only if N = 3.
3. m∗

3(N) = 2 if and only if either N = 9 or both 3 ‖ N and N ≥ 6.
4. m∗

3(N) = 3 if and only if N ∈ {18, 27}.
5. m∗

3(N) = 4 if and only if N ∈ {36, 45, 54, 63}.
6. m∗

3(N) ≥ 5 if and only if 32 | N and N ≥ 72.

In the next theorem we provide the value of m∗
3(N) for several N ’s which are

not covered by Theorem 2.7, and lower bounds for several others.

Theorem 2.8.
1. For N ∈ {72, 81, 99, 117} we have m∗

3(N) = 5.
2. For N ∈ {90, 108, 126} we have m∗

3(N) ≥ 6.

From Theorems 2.7 and 2.8 we immediately obtain

Theorem 2.9. Table 1 gives the values of N∗
3 (m) for m ≤ 6.

m 1 2 3 4 5 6

N∗
3 (m) 3 6 18 36 72 90

Table 1. Values of N∗
3 (m) for 1 ≤ m ≤ 6

3. Auxiliary results on equal moments divisions

Lemma 3.1. Let q be a prime, and Si, 0 ≤ i ≤ q−1, be finite multi-sets of integers.
Then, for any non-negative integer m,

(3.1) (x − 1)m |
q−1∑
i=0

ζi
q

∑
j∈Si

xj

if and only if

(3.2)
q−1∑
i=0

ζi
q

∑
j∈Si

jk = 0, k = 0, 1, . . . , m − 1.

Note that, if Si contains negative elements, the polynomials on the right hand-
side of (3.1) belong to Z[x, 1

x ].

Proof. We use induction on m. For m = 0, the lemma is trivial. Suppose the
lemma holds for some m, and assume that

(x − 1)m+1 | P (x) =
q−1∑
i=0

ζi
q

∑
j∈Si

xj
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and

(x − 1)m+2 �

q−1∑
i=0

ζi
q

∑
j∈Si

xj .

By the induction hypothesis
q−1∑
i=0

ζi
q

∑
j∈Si

jk = 0, k = 0, 1, . . . , m − 1.

Now

(3.3) P (m)(x) =
q−1∑
i=0

ζi
q

∑
j∈Si

j(j − 1) · . . . · (j − m + 1)xj−m.

Since (x − 1)m+1 | P (x), we have (x − 1) | P (m)(x), so that P (m)(1) = 0, and by
(3.3)

(3.4)
q−1∑
i=0

ζi
q

∑
j∈Si

j(j − 1) · . . . · (j − m + 1) = 0.

For fixed m, the expression j(j − 1) · . . . · (j − m + 1), considered as a polynomial
in j, is a linear combination of the polynomials jk, k = 1, . . . , m. By the induction
hypothesis we get

(3.5)
q−1∑
i=0

ζi
q

∑
j∈Si

jk = 0, k = 0, . . . , m − 1.

Subtracting from the left-hand side of (3.4) appropriate multiples of the left-hand
side of (3.5) for k = 1, . . . , m − 1, we obtain:

q−1∑
i=0

ζi
q

∑
j∈Si

jm = 0.

Similarly
q−1∑
i=0

ζi
q

∑
j∈Si

jm+1 �= 0.

�

Corollary 3.2. Let Si, 0 ≤ i ≤ q − 1, be finite multi-sets of integers, where q ≥ 2.
Given any non-negative integer m, and any integer c, the system of equalities

q−1∑
i=0

ζi
q

∑
j∈Si

jk = 0, k = 0, 1, . . . , m − 1,

and
q−1∑
i=0

ζi
q

∑
j∈Si

(j + c)k = 0, k = 0, 1, . . . , m − 1, c ∈ Z,

are equivalent.
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Proof. Let P (x) =
∑q−1

i=0 ζi
q

∑
j∈Si

xj . By Lemma 3.1 we have,
∑q−1

i=0 ζi
q

∑
j∈Si

jk =
0 for k = 0, 1, . . . , m− 1, if and only if (x− 1)m | P (x). Now (x− 1)m | P (x) if and
only if (x − 1)m | xcP (x) =

∑q−1
i=0 ζi

q

∑
j∈Si

xj+c. Using Lemma 3.1 again we get
that this is equivalent to

∑q−1
i=0 ζi

q

∑
j∈Si

(j + c)k = 0 for k = 0, 1, . . . , m − 1. �

A polynomial P of degree N − 1 is symmetric if P (x) = xN−1P ( 1
x ). (Such

polynomials are sometimes called reciprocal or palindromic.)

Corollary 3.3. If P (x) ∈ Pq(N, m), with m odd, is a symmetric polynomial, then
P (x) ∈ Pq(N, m + 1).

Proof. Let P (x) =
∑q−1

i=0 ζi
q

∑
j∈Si

xj for appropriate sets Si, 0 ≤ i ≤ q − 1. By
Lemma 3.1 we have

∑q−1
i=0 ζi

q

∑
j∈Si

jk = 0 for k = 0, 1, . . . , m − 1. Since P is
symmetric, Si contains a number t if and only if it contains N − 1 − t. This
implies that, if k is a positive odd integer, then

∑
j∈Si

(2j − N + 1)k = 0 for
each i. In particular, this holds for k = m. Thus, for the sets S′

i = {2j − N +
1 : j ∈ Si} we obtain

∑q−1
i=0 ζi

q

∑
j∈S′

i
jm = 0. Hence from Corollary 3.2 we get∑q−1

i=0 ζi
q

∑
j∈Si

(2j)m = 2m
∑q−1

i=0 ζi
q

∑
j∈Si

jm = 0. Using Lemma 3.1 again we
obtain P (x) ∈ Pq(N, m + 1). �

Lemma 3.4. If P ∈ Pq(N) and Q ∈ Pq(M), where Q | P , then M | N .

Put Ad(x) = 1 + x + . . . + xd−1 = (xd − 1)/(x− 1). Clearly, if P ∈ Pq(N), then
P ≡ AN (mod ζq − 1). We agree that A0(x) = 0.

Proof. Suppose N = kM + r, with 0 ≤ r < M . One easily verifies that

(3.6) AN (x) = xrAk(xM )AM (x) + Ar(x).

Since P (x) ≡ AN (x) (mod ζq − 1) and Q(x) ≡ AM (x) (mod ζq − 1), this implies

(3.7) AN (x) ≡ Q0(x)AM (x) (mod ζq − 1)

for some polynomial Q0 over Z[ζq]. This means that AM | Ar (mod ζq − 1). This
can be true only if r = 0. Thus M | N . �

Corollary 3.5. Let P ∈ Pq(N). If P (ζp) = 0 for some prime p �= q, then p | N .

Proof. The minimal polynomial of ζp over Z[ζq] is Ap(x), which is in Pq(p). The
condition P (ζp) = 0 is therefore equivalent to Ap(x) | P (x), which by Lemma 3.4
requires that p | N . �

Theorem 3.6. If Pq(N, m) is non-empty and p �= q is a prime not dividing N ,
then N ≥ (p1/(p−1))m.

Proof. If P ∈ Pq(N, m), then P (x) = (x − 1)mQ(x) for some Q ∈ Z[ζq][x]. By
Corollary 3.5, we have P (ζp) �= 0. Computing the norm of P (ζp) over Z[ζq], and
using the equality

∏p−1
j=1(1 − ζj

p) = Ap(1) = p, we obtain

0 �=
p−1∏
j=1

P (ζj
p) = ±pm

p−1∏
j=1

Q(ζj
p) = ±pmQ1(ζq)
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for some Q1 ∈ Z[x]. Computing the norm of pmQ1(ζq) over Z we get:

q−1∏
k=1

pmQ1(ζj
q ) = p(q−1)m

q−1∏
k=1

Q1(ζj
q ).

The estimates |P (ζj
p)| ≤ N and |

∏
Q1(ζj

q )| ≥ 1 give

N (p−1)(q−1) = NormZ[ζpq ]/Z(N) ≥ |NormZ[ζpq ]/Z(P (ζp))|

= |p(q−1)m

q−1∏
k=1

Q1(ζj
q )| ≥ p(q−1)m,

(3.8)

which completes the proof. �

4. Auxiliary results on cyclotomic extensions

As mentioned earlier, Boyd’s method is based on the fact that, if (x−1)m | P (x),
then in particular (ζp − 1)m | P (ζp), where p is a prime. Throughout this section,
we shall always assume that p �= q. For any n, denote On = Z[ζn]. In [2], we
developed an exact criterion for divisibility by high powers of (ζp − 1) in the ring
Op (and, more generally, for divisibility by high powers of (ζpk −1) in the ring Opk).
This allowed us to reduce, substantially in most cases, the search space. Here we
expand this criterion to a criterion for divisibility in Opkq. In Proposition 4.2 we
accomplish it for (ζpk −1). Proposition 4.5 strengthens Proposition 4.2 for the case
where k = 1. These two propositions, and the lemmas used in their proofs, are
completely analogous to their counterparts in the case q = 2 [2], except that the
numbers Aj appearing there are now algebraic integers, and not rational integers.
To make the paper self-contained we include the proofs.

Recall that (ζpk − 1)ϕ(pk)/p is a unit in Opkq (cf. [14]), i.e., a number in Opkq is
divisible by (ζpk − 1)ϕ(pk) if and only if it is divisible by p.

Lemma 4.1. A number in Oq is divisible by ζpk − 1 if and only if it is divisible
by p. In other words (ζpk − 1)Opkq ∩ Oq = pOq.

For simplicity of notation we will prove the lemma for the case k = 1. The proof
for k > 1 is very similar.

Proof. The inclusion (ζp − 1)Opq ∩ Oq ⊇ pOq is trivial. Since p �= q, the prime p
does not ramify in Oq. That is, pOq = p1p2 . . . pk for some distinct prime ideals
p1, p2, . . . , pk ⊆ Oq. The inertia degree f(pi/p) is (q − 1)/k for every i. In Op we
have (p) = (1 − ζp)p−1. Next consider the factorization (1 − ζp) = P1P2 . . .Pl in
the ring Opq into a product of (not necessarily distinct) prime ideals Pi ⊆ Opq.
Hence in Opq we have (p) = (P1P2 . . . Pl)p−1. As gcd(pi, pj) = (1) for i �= j,
the number l of ideals in the factorization of (1 − ζp) in Opq is at least k; in fact,
otherwise we would have distinct ideals pi divisible by the same ideal Pj . Without
loss of generality, assume Pi | pi, 1 ≤ i ≤ k. Then

ϕ(pq)/(p − 1) = q − 1 =
l∑

i=1

f(Pi/p) ≥
k∑

i=1

f(Pi/p) ≥
k∑

i=1

f(pi/p) = q − 1.
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In particular, l = k. Now

(ζp − 1)Opq ∩ Oq = P1P2 . . .Pk ∩ Oq =
k⋂

i=1

Pi ∩ Oq =
k⋂

i=1

pi = pOq. �

Throughout this section, β will denote an element of Opkq with a (non-unique)
representation of the form

β = A0 + A1ζpk + A2ζ
2
pk + . . . + Apk−1ζ

pk−1
pk , Aj ∈ Z[ζq], 0 ≤ j < pk.

Proposition 4.2. A number β ∈ Opkq is divisible by (ζpk − 1)lϕ(pk)+r, where l ≥ 0
and 1 ≤ r < ϕ(pk), if and only if both of the following conditions are satisfied:

1. For each j ∈ {0, 1, . . . , pk−1}, the numbers Aj , Aj+pk−1 , . . . , Aj+(p−1)pk−1 are
congruent modulo pl.

2. β/pl is an algebraic integer. Moreover, writing β/pl = A′
0 + A′

1ζpk + A′
2ζ

2
pk +

. . . + A′
pk−1ζ

pk−1
pk for appropriate integers A′

0, A
′
1, . . . , A

′
pk−1, we have:

(
j

j

)
A′

j +
(

j + 1
j

)
A′

j+1 + . . . +
(

pk − 1
j

)
A′

pk−1 ≡ 0 (mod p), 0 ≤ j < r.

The proposition immediately follows from the following two lemmas.

Lemma 4.3. A number β ∈ Opkq is divisible by (ζpk − 1)r, where r < ϕ(pk), if
and only if(

j

j

)
Aj +

(
j + 1

j

)
Aj+1 + . . . +

(
pk − 1

j

)
Apk−1 ≡ 0 (mod p), 0 ≤ j < r.

Proof. Write:

(4.1)
β = A0 + A1((ζpk − 1) + 1) + . . . + Apk−1((ζpk − 1) + 1)pk−1

=
∑pk−1

j=0

((
j
j

)
Aj +

(
j+1

j

)
Aj+1 + . . . +

(
pk−1

j

)
Apk−1

)
(ζpk − 1)j .

We prove the lemma by induction on r. For r = 1, since (ζpk −1) | β, by (4.1) we

have (ζpk − 1) |
(
0
0

)
A0 +

(
1
0

)
A1 + . . . +

(
pk−1

0

)
Apk−1, and therefore p |

∑pk−1
j=0

(
j
0

)
Aj

by Lemma 4.1.
Suppose the lemma holds for r − 1 instead of r, and let (ζpk − 1)r | β. By the

induction hypothesis:(
j

j

)
Aj +

(
j + 1

j

)
Aj+1 + . . . +

(
pk − 1

j

)
Apk−1 ≡ 0 (mod p), j < r − 1.

The sum on the left-hand side is the coefficient of (ζpk −1)j , 0 ≤ j < r−1, in (4.1).

The coefficient of (ζpk − 1)r−1 is
(
r−1
r−1

)
Ar−1 +

(
r

r−1

)
Ar + . . . +

(
pk−1
−1

)
Apk−1 and it

must be divisible by (ζpk − 1), which means it must be divisible by p by Lemma
4.1. �

Lemma 4.4. A number β ∈ Opkq is divisible by (ζpk − 1)lϕ(pk) if and only if,
for each 0 ≤ j < pk−1, the numbers Aj ,Aj+pk−1 , Aj+2pk−1 , . . . , Aj+(p−1)pk−1 are
congruent modulo pl.
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Proof. Use the equality ζ
ϕ(pk)

pk = −1 − ζpk−1

pk − . . . − ζ
(p−2)pk−1

pk to express β as a

linear combination of the ζj
pk ’s, 0 ≤ j ≤ ϕ(pk) − 1:

β =
pk−1−1∑

i=0

p−2∑
j=0

ζjpk−1+i
pk

(
Ajpk−1+i − Aϕ(pk)+i

)
.

Since (ζpk − 1)lϕ(pk) | β and (ζpk − 1)ϕ(pk)/p is a unit in Opkq, we have pl | β. A
number in Opkq is divisible by pl if and only if all coefficients in its representation

according to the basis {ζj
pk}ϕ(pk)−1

j=0 are divisible by pl. Hence for each i and j

we have Ajpk−1+i ≡ Aϕ(pk)+i mod pl, and therefore Ai ≡ Ai+pk−1 mod pl for
0 ≤ i < ϕ(pk). �

For the next proposition we assume that k = 1. From Lemma 4.3 we easily get
that, if β ∈ (ζp − 1)Opq, then β has a unique representation of the form

(4.2) β = A0 + A1ζp + A2ζ
2
p + . . . + Ap−1ζ

p−1
p ,

p−1∑
j=0

Aj = 0.

Proposition 4.5. Let β ∈ (ζp − 1)Opq, Then β is divisible by (ζp − 1)l(p−1)+r,
where l ≥ 0 and 1 ≤ r < p − 1 or both r = 1 and p = 2, if and only if in the
representation (4.2) both of the following conditions are satisfied:

1. Each Aj is divisible by pl.
2. Denoting A′

j = Aj/pl for each j, we have the system of congruences:(
j

j

)
A′

j +
(

j + 1
j

)
A′

j+1 + . . . +
(

p − 1
j

)
A′

p−1 ≡ 0 (mod p), 0 ≤ j < r.

Proof. We know that β is divisible by pl. Put β′ = β/pl. Write β = B′
0 + B′

1ζp +
B′

2ζ
2
p + . . . + B′

p−1ζ
p−1
p , where

∑p−1
j=0 B′

j = 0. Now β′ is divisible by (ζp − 1)r. In
case p �= 2, Lemma 4.3 gives(

j

j

)
B′

j +
(

j + 1
j

)
B′

j+1 + . . . +
(

p − 1
j

)
B′

p−1 ≡ 0 (mod p), 0 ≤ j < r.

If p = 2 and r = 1, since β′ is divisible by 2 we get B′
0 + B′

1 ≡ 0 (mod 2). Hence
in either case β = plβ′ = plB′

0 + plB′
1ζp + plB′

2ζ
2
p + . . . + plB′

p−1ζ
p−1
p , which is the

unique representation of β satisfying
∑p−1

j=0 plB′
j = 0. This means that Aj = plB′

j

and therefore A′
j = B′

j for 0 ≤ j ≤ p − 1. �

5. Proofs of the main results

Proof of Proposition 2.1. From Lemma 3.1 we get that

(x − 1)m |
q−1∑
i=0

ζi
q

∑
j∈Si

xj

if and only if

(5.1)
q−1∑
i=0

⎛
⎝∑

j∈Si

jk

⎞
⎠ ζi

q = 0, k = 0, 1, . . . , m − 1.
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Since the minimal polynomial of ζq is 1+x+ . . .+xq−1, this happens if and only if

�(5.2)
∑
j∈Si

jk =
∑

j∈Si′

jk, k = 0, . . . , m − 1.

Proof of Theorem 2.2. Write N = qkM with q � M . Suppose P ∈ Pq(N, m). Then,
writing t = x − 1, the Taylor expansion of P at 1 is of the form

(5.3) P (1 + t) = cmtm + cm+1t
m+1 + . . . .

On the other hand, modulo ζq − 1 we have

P (1 + t) ≡ AN (1 + t) = t−1((1 + t)N − 1)

= t−1((1 + t)qkM − 1) ≡ t−1((1 + tq
k

)M − 1)

≡ Mtq
k−1 +

(
M

2

)
t2qk−1 +

(
M

3

)
t3qk−1 + . . . .

(5.4)

Comparing (5.3) and (5.4), we see that m ≤ qk − 1. �

Proof of Proposition 2.5. In each part we present a polynomial divisible by the
required power of (x − 1). Let P (x) ∈ Pq(N, m) with m odd, P1(x) ∈ Pq(N1, m1),
and P2(x) ∈ Pq(N2, m2).

1. The polynomial P (x)+x2N−1P (1/x) is clearly symmetric, and it is easily
seen to belong to Pq(2N, m). By Corollary 3.3, it belongs to Pq(2N, m+1).

2. Set m = min(m1, m2). Then the polynomial P1(x)+xN1P2(x) is of degree
N1 +N2 − 1, all its coefficients are from {1, ζq, . . . , ζ

q−1
q }, and it is divisible

by (x − 1)m. Thus P1(x) + xN1P2(x) ∈ Pq(N1 + N2, m).
3. The polynomial P2(xN1) is divisible by (xN1 − 1)m2 , and hence the poly-

nomial P1(x)P2(xN1) is of degree N1N2 − 1, all its coefficients are from
{1, ζq, . . . , ζ

q−1
q }, and it is divisible by (x− 1)m1(xN1 − 1)m2 , and therefore

by (x − 1)m1+m2 . Thus P1(x)P2(xN1) ∈ Pq(N1N2, m1 + m2). �

Now we turn to the proofs of Theorems 2.7 and 2.8, which determine the value of
m∗

3(N) for various N ’s. In the course of the proofs, we use the results of Section 4
in the following way: Let P ∈ Pq(N, m) for a certain m > 0. Let S0 be the set of
indices of the ζ0

q = 1 coefficients in the polynomial, S1 the corresponding set for
the ζ1

q ’s, and so on. For a prime power pk, 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ pk − 1,
denote by di,pk,j the number of elements of Si, congruent to j modulo pk, namely
di,pk,j = |Si ∩ (pkZ + j)|. Put

dpk,j = (d0,pk,j , d1,pk,j , . . . , dq−1,pk,j).

It is easy to see that

(5.5) P (ζpk) = Apk,0 + Apk,1ζpk + Apk,2ζ
2
pk + . . . + Apk,pk−1ζ

pk−1
pk

with

(5.6) Apk,j = d0,pk,j + d1,pk,jζq + . . . + dq−1,pk,jζ
q−1
q .

Since m > 0, we have
∑pk−1

j=0 Apk,j = 0. The results of Section 4 give strict
conditions on the Apk,j ’s, and thus restrictions on the dpk,j ’s.

For the next proofs we will denote the members of P3(N) by writing the Si’s
explicitly. For example, the polynomial 1+ζ3x+ζ2

3x2 will be denoted by {0}{1}{2}.
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Proof of Theorem 2.7. In each of parts 1-6 of the theorem, it will suffice to prove
only that m∗

3(N) assumes the required value for the N ’s in those parts. The fact
that these are the only N ’s with this value of m∗

3 will then follow once we are done
with the other parts of the theorem.

1. Since N is not divisible by 3, neither is P (1), which means that (x − 1)
does not divide P .

2. The polynomial 1+ζ3x+ζ2
3x2 is divisible by x−1. Obviously, no quadratic

polynomial with ζj
3 coefficients is divisible by (x − 1)2.

3. By Proposition 2.5 we have m∗
3(6) ≥ 2, m∗

3(9) ≥ 2, and therefore Propo-
sition 2.5 implies m∗

3(N) ≥ 2 for every N ≥ 6 with 3 | N . A short search
shows that m∗

3(9) = 2. By Theorem 2.2, if 9 � N , then P3(N, 3) is empty.
4. By Proposition 2.5 we have m∗

3(18) ≥ 3, m∗
3(27) ≥ 3. A short search

shows that m∗
3(18) = m∗

3(27) = 3.
5. We treat each of the numbers separately:

a. N = 36.
By Proposition 2.5, we have m∗

3(36) ≥ 4. Using Proposition 4.5 with
p = 5, we see that no polynomial P ∈ P3(36) satisfies (ζ5−1)5 | P (ζ5).
Indeed, such a polynomial would have A5,1 divisible by 5, meaning
that all di,5,0’s are congruent modulo 5. Since d0,5,1 + d1,5,1 + d2,5,1 =
|(5Z + 1)∩ [0, 35]| = 7, there is no possible value for A5,1. This means
that m∗

3(36) = 4.
b. N = 45.

Suppose we have a polynomial yielding m = 4. By Proposition 4.5 with
p = 2, we get that the A2,j ’s must be divisible by 8. This means that
(d0,2,0 − d2,2,0), (d1,2,0 − d2,2,0), (d0,2,1 − d2,2,1), and (d1,2,1 − d2,2,1)
are all divisible by 8. Additionally, from the definition of di,pk,j we
obtain d0,2,0 +d1,2,0 +d2,2,0 = 23 and d0,2,1 +d1,2,1 +d2,2,1 = 22 (since
there are 23 even elements in [0, 44] and 22 odd elements in this range).
The only option for the d2,j ’s is (d2,0,d2,1) = ((13, 5, 5), (2, 10, 10)).
After scanning the range of possible polynomials for a few seconds, we
already get more than 10 members of P3(45, 4), for example:
{4, 5, 6, 7, 8, 18, 22, 24, 26, 28, 30, 32, 36, 40, 44},
{0, 3, 10, 11, 13, 17, 19, 20, 21, 29, 31, 37, 38, 39, 42},
{1, 2, 9, 12, 14, 15, 16, 23, 25, 27, 33, 34, 35, 41, 43}.
Since the only option for A2,0, dictated by the value of d2,0, is not
divisible by 16, we have m∗

3(45) = 4.
c. N = 54.

By Proposition 2.5, we have m∗
3(54) ≥ 4. Suppose we have a poly-

nomial yielding m = 5. Using Proposition 4.5 with p = 5, we obtain
9 options, up to symmetry, for the d5,j ’s. After searching ≈ 5 · 109

options, we find no polynomial divisible by (x− 1)5. This means that
m∗

3(54) = 4.
d. N = 63.

Suppose we have a polynomial yielding m = 4. By Proposition 4.5, we
get that up to symmetry, the d2,j ’s are equal to ((0, 16, 16), (21, 5, 5))
or ((8, 8, 16), (13, 13, 5)). Using the first option we get that S0 does not
contain any even elements. We continue by using Proposition 4.5 with
p = 5. One of the options for the d5,j ’s is ((3, 5, 5), (3, 5, 5), (3, 5, 5),
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(6, 3, 3), (6, 3, 3)). After scanning the range of possible polynomials for
a few seconds, we already get a few members of P3(63, 4), for example:
{3, 5, 7, 9, 11, 13, 19, 23, 27, 29, 31, 33, 35, 39, 43, 49, 51, 53, 55, 57, 59},
{2, 4, 8, 10, 12, 14, 18, 24, 25, 26, 28, 36, 41, 42, 45, 46, 47, 50, 52, 60, 61},
{0, 1, 6, 15, 16, 17, 20, 21, 22, 30, 32, 34, 37, 38, 40, 44, 48, 54, 56, 58, 62}.
Suppose we have a polynomial yielding m = 5. Using Proposition 4.5
with p = 5, we get that the only option for the d2,j ’s is (d2,0,d2,1) =
((0, 16, 16), (21, 5, 5)). After searching

(
32
0

)(
31
21

)
≈ 4 · 107 options, we

find that there is no polynomial divisible by (x−1)5. This means that
m∗

3(63) = 4.
6. If N = 72, 81, 90, 99, 108, 117, 126, then by Theorem 2.8 we have m∗

3(N) ≥
5. Proposition 2.5 gives m∗

3(135) = m∗
3(45 · 3) ≥ m∗

3(45) + m∗
3(3) = 5.

Again, by Proposition 2.5, this implies m∗
3(N) ≥ 5 for any N satisfying the

condition of this part. On the other hand, if 9 � N , then m∗
3(N) ≤ 2 by

Theorem 2.2, while if 9 | N and N < 72, then m∗
3(N) ≤ 5 by the preceding

parts. �

Given a division of [0, N − 1] into subsets S0,. . . , Sq−1, the reflection of Si,
denoted by r(Si), is the set {j : N − j − 1 ∈ Si}. A subset Si is symmetric if
Si = r(Si). A subset-couple (Si1 , Si2) is anti-symmetric if Si2 = r(Si1). Note
that a polynomial in Pq(N, m) is symmetric if and only if all the subsets Si are
symmetric. A polynomial in P2(N, m) is anti-symmetric if the pair (S0, S1) is
anti-symmetric. For odd q, a polynomial in Pq(N, m) is anti-symmetric if S0 is
symmetric and (S2i−1, S2i) is anti-symmetric for 1 ≤ i ≤ q−1

2 .

Proof of Theorem 2.8. 1.a) N = 72.
Suppose we have a polynomial yielding m = 5.We shall examine only anti-

symmetric polynomials. By Proposition 4.5, all A5,j ’s are divisible by 5. Now
the classes |(5Z + j) ∩ [0, 71]| have 15 members for j = 0, 1 and 14 members for
j = 2, 3, 4. This means that, up to symmetry, the d5,j ’s have for j = 0, 1 three
possible values: (5, 5, 5), (10, 5, 0) or (15, 0, 0). For j = 2, 3, 4 we get, up to
symmetry, d5,j = (8, 3, 3). We checked the option (d5,0,d5,1,d5,2,d5,3,d5,4) =
((5, 5, 5), (5, 5, 5), (3, 3, 8), (8, 3, 3), (3, 8, 3)). (It can be shown that the other op-
tions do not lead to any anti-symmetric polynomial with m = 5, but this is of no
consequence.) We scanned all

(
15
5

)(
14
3

)(
7
4

)
≈ 4 · 107 options for determining S0 (in

a symmetric manner). We found only one option for S0 whose first five moments
match the corresponding target values. For this option we try to determine S1.
After going over about 3 · 105 possibilities, we found 4 polynomials. For example,
the following polynomial is a member of P3(72, 5):
{3, 4, 5, 8, 13, 18, 19, 20, 26, 30, 34, 35, 36, 37, 41, 45, 51, 52, 53, 58, 63, 66, 67, 68},
{0, 7, 9, 10, 11, 14, 16, 21, 27, 28, 29, 38, 39, 40, 46, 47, 48, 49, 54, 56, 59, 65, 69, 70},
{1, 2, 6, 12, 15, 17, 22, 23, 24, 25, 31, 32, 33, 42, 43, 44, 50, 55, 57, 60, 61, 62, 64, 71}.

Suppose we have a polynomial yielding m = 6. The only option for the d5,j ’s
is (d5,0,d5,1,d5,2,d5,3,d5,4) = ((0, 5, 10), (10, 5, 0), (8, 3, 3), (3, 8, 3), (3, 3, 8)). Com-
bining this information with that obtained with p = 2 we are left with ≈ 1011

possibilities, none of which belongs to P3(72, 6). Thus m∗
3(72) = 5.

1.b) N = 81.
Suppose we have a polynomial yielding m = 5. By Proposition 4.5, all A2,j ’s

are divisible by 16. As |2Z ∩ [0, 80]| = 41 and |(2Z + 1) ∩ [0, 80]| = 40, the only
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possibility (up to symmetry) is (d2,0,d2,1) = ((3, 19, 19), (24, 8, 8)). We take all(
41
3

)
options for choosing 3 members of S0 from 2Z ∩ [0, 80]. In order to divide

(2Z +1)∩ [0, 80], we will use p = 5. Employing Proposition 4.5 we find 264 options
for (d5,0,d5,1,d5,2,d5,3,d5,4). For each splitting of 2Z ∩ [0, 80], we go over all
possibilities of choosing the rest of the elements of S0 according to the various
possibilities obtained using p = 5. For every such division we check if the first 5
moments have the target values for S0. For every division satisfying the constraint,
we go over the possibilities of choosing the elements of S1. We take all

(
16
8

)
options

for a splitting of the remaining elements of 2Z∩ [0, 80]. For each such splitting, we
go over all possibilities of dividing the rest of the elements according to the various
possibilities obtained with p = 5. After checking about 3 ·1012 possibilities, we find
all polynomials in P3(81, 5). For example, the following polynomial is a member of
P3(81, 5):

{3, 5, 7, 9, 11, 15, 16, 23, 24, 29, 31, 33, 41, 43, 45,

48, 49, 51, 53, 55, 59, 61, 69, 71, 73, 77, 79},
{1, 2, 4, 14, 17, 18, 21, 22, 25, 26, 28, 30, 37, 38, 42, 46,

50, 56, 57, 58, 62, 63, 66, 68, 75, 76, 78},
{0, 6, 8, 10, 12, 13, 19, 20, 27, 32, 34, 35, 36, 39, 40, 44, 47,

52, 54, 60, 64, 65, 67, 70, 72, 74, 80}.
Using Proposition 4.5 with p = 2, we see that there is no polynomial yielding m = 6.
(Alternatively, as we found all members of P3(81, 5), we could check if any of them
satisfies the additional condition.) Thus m∗

3(81) = 5.
1.c) N = 99.
Suppose we have a polynomial yielding m = 5. We shall examine only the anti-

symmetric polynomials. By Proposition 4.5, all A2,j ’s are divisible by 16. The
only possibility (up to symmetry) is (d2,0,d2,1) = ((6, 22, 22), (27, 11, 11)). We use
Proposition 4.5 with p = 5 and get 46 options, corresponding to anti-symmetric
polynomials, for the d5,j ’s. We checked the option (d5,0,d5,1,d5,2,d5,3,d5,4) =
((5, 10, 5), (5, 5, 10), (5, 10, 5), (5, 5, 10), (13, 3, 3)). After checking about 1011 possi-
bilities, we find 55158 polynomials. For example, the following polynomial is a
member of P3(99, 5):

{1, 5, 6, 10, 15, 17, 18, 19, 23, 25, 33, 35, 41, 43, 45, 47, 49,

51, 53, 55, 57, 63, 65, 73, 75, 79, 80, 81, 83, 88, 92, 93, 97},
{2, 4, 8, 9, 12, 16, 20, 22, 24, 28, 30, 32, 36, 38, 42, 50, 52,

54, 58, 59, 61, 64, 67, 69, 71, 72, 77, 84, 85, 87, 91, 95, 98},
{0, 3, 7, 11, 13, 14, 21, 26, 27, 29, 31, 34, 37, 39, 40, 44, 46,

48, 56, 60, 62, 66, 68, 70, 74, 76, 78, 82, 86, 89, 90, 94, 96}.
Using Proposition 4.5 with p = 2, we see that there is no polynomial yielding m = 6.
Thus m∗

3(99) = 5.
1.d) N = 117.
Suppose we have a polynomial yielding m = 5. We shall examine only anti-

symmetric polynomials. By Proposition 4.5, all A2,j ’s are divisible by 16. The
only possibility (up to symmetry) is (d2,0,d2,1) = ((9, 25, 25), (30, 14, 14)). We use
Proposition 4.5 with p = 5 and get 46 options corresponding to anti-symmetric
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polynomials, for the d5,j ’s. We checked the option (d5,0,d5,1,d5,2,d5,3,d5,4) =
((8, 8, 8), (8, 8, 8), (6, 6, 11), (11, 11, 1), (6, 6, 11)). Going over about 106 possibilities,
we find the following member of P3(117, 5):

{0, 3, 5, 13, 15, 19, 20, 23, 25, 27, 29, 30, 35, 40, 43, 47, 49, 53, 57, 58,

59, 63, 67, 69, 73, 76, 81, 86, 87, 89, 91, 93, 96, 97, 101, 103, 111, 113, 116},
{1, 4, 7, 9, 14, 16, 17, 21, 24, 32, 34, 36, 37, 39, 42, 44, 50, 52, 54, 56, 61,

65, 68, 70, 71, 75, 78, 83, 85, 88, 90, 94, 98, 104, 105, 106, 108, 110, 114},
{2, 6, 8, 10, 11, 12, 18, 22, 26, 28, 31, 33, 38, 41, 45, 46, 48, 51, 55, 60,

62, 64, 66, 72, 74, 77, 79, 80, 82, 84, 92, 95, 99, 100, 102, 107, 109, 112, 115}.
Using Proposition 4.5 with p = 2,we see that there is no polynomial yielding

m = 6. Thus m∗
3(117) = 5.

2.a) N = 90.
Suppose we have a polynomial yielding m = 6. We shall examine only symmetric

polynomials. Using Proposition 4.5 with p = 7 we get 7 options, corresponding to
symmetric polynomials, for the d7,j ’s. We checked the option (d7,0, . . . ,d7,6) =
((7, 4, 2), (0, 4, 9), (7, 4, 2), (7, 4, 2), (0, 4, 9), (7, 4, 2), (2, 6, 4)). Going over about 4 ·
107 possibilities, we find 57 polynomials. For example, the following polynomial is
a member of P3(90, 6):

{3, 5, 7, 9, 12, 14, 16, 17, 28, 31, 35, 38, 40, 41, 44,

45, 48, 49, 51, 54, 58, 61, 72, 73, 75, 77, 80, 82, 84, 86},
{2, 4, 6, 8, 13, 19, 20, 21, 24, 29, 30, 33, 37, 42, 43,

46, 47, 52, 56, 59, 60, 65, 68, 69, 70, 76, 81, 83, 85, 87},
{0, 1, 10, 11, 15, 18, 22, 23, 25, 26, 27, 32, 34, 36, 39,

50, 53, 55, 57, 62, 63, 64, 66, 67, 71, 74, 78, 79, 88, 89}.
2.b) N = 108.
Suppose we have a polynomial yielding m = 6. We shall examine only symmetric

polynomials. Since 108 is divisible by 4, it is possible that all di,4,j ’s are 9, i.e.,
all A4,j ’s are 0. Using Proposition 4.5 with p = 5 we get 3 options, corresponding
to symmetric polynomials, for the d5,j ’s. Going over about 5 · 108 possibilities, we
find the following member of P3(108, 6):

{1, 2, 3, 13, 16, 20, 21, 23, 26, 31, 32, 33, 34, 36, 39, 40, 41, 53,

54, 66, 67, 68, 71, 73, 74, 75, 76, 81, 84, 86, 87, 91, 94, 104, 105, 106},
{0, 4, 5, 11, 17, 18, 19, 24, 25, 27, 28, 29, 37, 38, 45, 50, 51, 52,

55, 56, 57, 62, 69, 70, 78, 79, 80, 82, 83, 88, 89, 90, 96, 102, 103, 107},
{6, 7, 8, 9, 10, 12, 14, 15, 22, 30, 35, 42, 43, 44, 46, 47, 48, 49,

58, 59, 60, 61, 63, 64, 65, 72, 77, 85, 92, 93, 95, 97, 98, 99, 100, 101}.
2.c) N = 126.
Suppose we have a polynomial yielding m=6. We shall examine only symmetric

polynomials. Using Proposition 4.5 with p = 4 we get 6 options (up to symme-
try) corresponding to symmetric polynomials, for the d4,j ’s. Using Proposition 4.5
again with p=5 we get 81 options, corresponding to symmetric polynomials, for the
d5,j ’s. We checked the option (d5,0, . . . ,d5,4) = ((2, 12, 12), (10, 10, 5), (10, 5, 10),
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(10, 5, 10), (10, 10, 5)) and (d4,0, . . . ,d4,3)=((4, 12, 16), (4, 12, 16), (17, 9, 5), (17, 9, 5)).
After checking about 6·107 possibilities, we find the following member of P3(126, 6):

{4, 6, 8, 9, 11, 12, 14, 22, 23, 31, 34, 35, 38, 42, 43, 46, 47, 54, 58, 59, 62, 63,

66, 67, 71, 78, 79, 82, 83, 87, 90, 91, 94, 102, 103, 111, 113, 114, 116, 117, 119, 121},
{1, 2, 7, 13, 15, 17, 19, 21, 24, 25, 27, 36, 39, 41, 44, 45, 50, 51, 55, 60, 61, 64,

65, 70, 74, 75, 80, 81, 84, 86, 89, 98, 100, 101, 104, 106, 108, 110, 112, 118, 123, 124},
{0, 3, 5, 10, 16, 18, 20, 26, 28, 29, 30, 32, 33, 37, 40, 48, 49, 52, 53, 56, 57, 68,

69, 72, 73, 76, 77, 85, 88, 92, 93, 95, 96, 97, 99, 105, 107, 109, 115, 120, 122, 125}.

�

6. Methods and heuristics

In this section we describe the methods employed to find the possible values of
P (ζpk) and the di,pk,j ’s, and to search for polynomials in Pq(N, m) (of course, here
we actually ran the programs only for q = 3). The algorithms were implemented
in C++.

6.1. Finding possible divisions of residue classes modulo pk. Here we have
4 types of constraints:

1. Divisibility: Apk,j is divisible by some power of p, denoted by pl.
This means that di,pk,j − dq−1,pk,j is divisible by pl, 0 ≤ i ≤ q − 1. In order to

scan the possible values of Apk,j efficiently, we first determine dq−1,pk,j . If

|(pkZ + j) ∩ [0, N − 1]| − qdq−1,pk,j

is not divisible by pl, we increase dq−1,pk,j . Otherwise, we need to add multiples
of pl to the di,pk,j ’s. This problem is equivalent to finding all q-part compositions
of (|(pkZ + j) ∩ [0, N − 1]| − qdq−1,pk,j)/pl. In [10, Ch. 5, p. 190] the problem of
finding all k-part compositions of n is reduced to that of finding all (k − 1)-subsets
of a set of size n + k − 1.

2. Congruence: Apk,j is congruent to Apk,s modulo pl.
Assume that Apk,s is pre-determined. The requirement is that di,pk,j−dq−1,pk,j−

di,pk,s + dq−1,pk,s is divisible by pl. Similar to the situation for the preceding type
of constraint, we determine dq−1,pk,j and continue by finding the minimal values of
the di,pk,j ’s and adding multiples of pl using q-part compositions.

3. Subset size: The size of each Si is N/q for 0 ≤ i ≤ q − 1.
The Apk,j ’s with j < pk −ϕ(pk) are totally determined by the other Apk,j ’s. For

k = 1 this simply means that di,p,0 = N/q −
∑p−1

j=1 di,p,j . For k > 1 we first need
to calculate the possible values for Apk−1,j by Apk−1,j =

∑p−1
i=0 Apk,j+ipk−1 .

4. Sum: The system of congruences defined by the second parts of Propositions
4.2 and 4.5, is satisfied.

This system is triangular. We use this constraint only for k = 1. The constraint
implies that, after determining Ap,j for all j ≥ r, the rest of the Ap,j ’s are deter-
mined modulo pl. In particular, if j < r and we set sumipj =

∑p−1
s=j+1

(
s
j

)
di,p,s, then

we require di,p,j − dq−1,p,j + sumipj − sumq−1,p,j to be divisible by pl.
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Let us now describe the procedure for finding the possible values of the Apk,j ’s.
The procedure is recursive. We begin by finding all possible values of Apk,pk−1. For
every such value, we find all possible values for Apk,pk−2, and so on:

Routine determineA(p, k, j)
if k = 1:

l =
⌊

m
p−1

⌋
, r = m (mod p − 1)

congruent = pl + 1
if j = 0, use Subset-size constraint
if 1 ≤ j < r, use Sum constraint
if r = 0 and j < p − 1, use Congruence constraint
else use Divisibility constraint

else

congruent = p

⌊
m

ϕ(pk)

⌋

if j < pk − ϕ(pk), use Subset-size constraint
if pk − ϕ(pk) ≤ j < ϕ(pk) use Congruence constraint
else there is no constraint on Aj

6.2. Scanning the reduced search range. After finding the constraints on the
divisions of residue classes modulo pk, we need to go over the set of polynomials
adhering to these constraints. We use an iterative approach that incrementally
builds S0; for every instance of S0 with the desired values of moments we construct
S1 in a similar manner, and so on. Note that, after S0, S1,. . . ,Sq−2 have been
constructed, Sq−1 = [0, N − 1] \ (

⋃q−2
i=0 Si) automatically has the desired moments.

In every iteration, we choose one of the constraints, namely one of the di,pk,j ’s, and
try to enlarge Si so that it will have exactly di,pk,j members which are congruent
to j modulo pk. This is done by checking the current number of members in Si,
congruent to j modulo pk, and the number of unassigned members (i.e., members
for which it has not yet been determined if they belong to Si). We go over all
possibilities of enlarging Si, using the “revolving door” algorithm (cf. [10]), which
allows a fast search, as each subset in the sequence is obtained from its predecessor
by a minimal change – removing a single element and joining another instead.

The following procedure describes the method we use in our search. The arrays
set, primePower and residue hold the plan for scanning the search range.

Routine main()
for i=0..1

inSet[i] ← ∅
notInSet[i] ← ∅

read arrays set, primePower, residue
find(0)
return

Routine find(location)
if location = planSize

if set[planSize− 1] has the required moments
print the Si’s

return
if set[location] �= set[location− 1]
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if set[location] is not complete
return

else
notInSet[1] ← S0

i ← set[location]
pk ← primePower[location]
j ← residue[location]
read di,pk,j from file
unassigned ← [0, N − 1] \ (inSet[i] ∪ notInSet[i])
curNum ← |Si ∩ (j + pkZ)|
if curNum > di,pk,j or di,pk,j − curNum > |unassigned|

return
for every choice of di,pk,j − curNum elements from unassigned do:

Add to inSet[i] the set of chosen elements
Add to notInSet[i] the set of rejected elements
find(location + 1)
Remove from inSet[i] the set of chosen elements
Remove from notInSet[i] the set of rejected elements

6.3. Scanning only symmetric/anti-symmetric polynomials. Given a posi-
tive integer N and an arbitrary fixed prime power pk, an integer j1 ∈ [0, N − 1] is
a reflection of an integer j2 in the range ifj1 ≡ N − j2 − 1 (mod pk). Throughout
this section, pk will denote an arbitrary fixed prime power, and we shall omit the
reference to it.

Scanning only symmetric/anti-symmetric polynomials, we obtain additional con-
straints on the Apk,j ’s:

If Si is symmetric and j1 is a reflection of j2, then di,pk,j1 = di,pk,j2 .
If Si is symmetric and j is a reflection of itself, then di,pk,j must be even, unless N

is odd and j ≡ N−1
2 (mod pk). In the latter case, if di,pk,j is odd, then N−1

2 ∈ Si.
(Hence, for a symmetric polynomial andj ≡ N−1

2 (mod pk), exactly one of the
di,pk,j ’s is odd.)

If (Si, Si+1) is anti-symmetric and j1 is a reflection of j2, then di,pk,j1 = di+1,pk,j2 .
When we scan only symmetric/anti-symmetric polynomials, we can reduce sub-

stantially the search range as follows:
If N is odd and j ≡ N−1

2 (mod pk), we should adjoin N−1
2 to the unique sym-

metric set Si with odd di,pk,j .
If Si is symmetric and j1 is a reflection of j2, where j1 �= j2, then we select

di,pk,j1 elements from ((j1 + pkZ) ∪ (j2 + pkZ)) ∩ [0, N/2 − 1] and obtain di,pk,j1

additional elements by reflection.
If Si is symmetric and j is a reflection of itself, then we select di,pk,j/2 elements

from (j + pkZ)∩ [0, N/2− 1] and obtain di,pk,j/2 additional elements by reflection.
When looking for anti-symmetric solutions, after choosing the elements of S0,

S1,. . . ,Sq−3, we choose those of Sq−2 and Sq−1 as follows. Suppose j1 is a reflection
of j2, where j1 �= j2. We select d1,pk,j1 elements from (j1 + pkZ) ∩ [0, N − 1] and
obtain d1,pk,j2 additional elements by an anti-symmetric reflection. In particular,
for q = 3 we operate this way right after choosing the elements of S0.
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Similarly, if j is a reflection of itself, then we choose the elements of Sq−2 ∩ (j +
pkZ) by going over all subsets of (j + pkZ)∩ [0, N/2− 1], and obtain the additional
elements by an anti-symmetric reflection.
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