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ON THE DISTINCTNESS OF MODULAR REDUCTIONS
OF MAXIMAL LENGTH SEQUENCES

MODULO ODD PRIME POWERS

XUAN-YONG ZHU AND WEN-FENG QI

Abstract. We discuss the distinctness problem of the reductions modulo M
of maximal length sequences modulo powers of an odd prime p, where the
integer M has a prime factor different from p. For any two different maxi-
mal length sequences generated by the same polynomial, we prove that their
reductions modulo M are distinct. In other words, the reduction modulo M
of a maximal length sequence is proved to contain all the information of the
original sequence.

1. Introduction

Pseudo-random sequences are important in many areas of communications and
computing, such as cryptography, spread spectrum communications, error correct-
ing codes, and Monte Carlo Integration. Linear recurring sequences and their vari-
eties are important subjects in the research of pseudo-random sequences.

For an integer N ≥ 2, let Z/(N) be the integer residue ring modulo N , which
can also be represented as {0, 1, · · · , N − 1}. In this paper, given a positive integer
m ≥ 2, we always consider a(modm) to be an element in {0, 1, · · · , m − 1}.

A sequence a = (a(t))t≥0 over Z/(N) satisfying the recursion

a(i + n) = −[c0a(i) + c1a(i + 1) + · · · + cn−1a(i + n − 1)](modN), i = 0, 1, 2, · · · ,

is called a linear recurring sequence of degree n over Z/(N), generated by f(x) =
xn +cn−1x

n−1 + · · ·+c0 ∈ Z/(N)[x]. For convenience, denote G(f(x), N) as the set
of all linear recurring sequences over Z/(N) generated by f(x). Linear recurring
sequences have been studied for a hundred years, and their behavior is closely linked
to the properties of the polynomial f(x), although in the case that N is not a prime
the elements of the sequence come from a finite ring, rather than a finite field (as
is the usual case). For more considerations on linear recurring sequences over a
finite field, please see [11]. Reference [9] is a good introduction on linear recurring
sequences over an integer residue ring.

Let M be an integer with 2 ≤ M < N . By reducing each element in the
sequence a ∈ G(f(x), N) modulo M , we can naturally obtain a pseudo-random
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sequence over Z/(M) of which the successive terms are quite difficult to predict,
since the operation of mod M destroys the linear structure of the original sequence
a ∈ G(f(x), N). Sequences of this kind have applications in a variety of situations,
such as cryptography and parallel calculations. Typically one needs to have a large
class of distinct sequences to work with. Since M < N there is an obvious risk
that the reductions modulo M of several different sequences might be the same. If
this were to happen, then any application involving several such sequences would
need to have a built-in test to verify that duplicate sequences were not being used.
Moreover, there would be a risk that some simple predictive algorithm might be
used to discover the parameters that were used to define the sequence.

The distinctness problem of reductions modulo M of the sequences in G(f(x), N)
gradually become an important topic. In this paper, we discuss this problem for
the case of N = pe, powers of an odd prime p. We obtain the following result.
Let M be a positive integer which has a prime factor other than p. If f(x) is a
polynomial with maximal period over Z/(pe), then the reductions modulo M of
any two different sequences in G(f(x), pe) are also different. That is, a = b if and
only if a ≡ b(mod M) for a, b ∈ G(f(x), pe). Furthermore, we also prove that the
period of the reduction sequence is equal to that of the original sequence. (Note
that, during the reviewing process of this paper, we have obtained similar results
for the case of N = 2e.)

In a large literature, such modular reduction of sequences is considered as a kind
of compression map. If the reductions of any two different sequences are distinct,
then the compression map is said to be injective. An injective compression map
implies that the compression sequence contains all the information of its original
sequence, which means, once the compression sequence is known, we can uniquely
determine its original sequence. That is to say, the original sequence can be recov-
ered from its compression sequence in theory.

During the last ten years there have been a number of people discussing other
forms of reductions of maximal length sequences modulo powers of a prime p. In [5],
Huang and Dai have proven that the significant p-adic level sequences of any two
different maximal length sequences are different. (Please see Theorem 3.1 in this
paper.) Many other general injective compression maps are extensively studied.
(See [5], [7], [10], [14], [15], [16], [21] and [22].)

Feedback with carry shift register sequences (FCSR sequences), especially l-
sequences (or maximal length FCSR sequences), are attracting more and more
attention in the area of pseudorandom sequences. They are thought to be a source
of ideal pseudorandom sequences (see [3], [4], [8], [17] and [18]). Through the
exponential representation of FCSR sequences (see [8]), it can be found that, in
fact, an FCSR sequence is the reduction modulo 2 of a linear recurring sequence
of degree 1 over Z/(m) with odd positive integer m ≥ 3. From this point of view,
an l-sequence is simply the reduction modulo 2 of a maximal length sequence of
degree 1 over Z/(pe), where p is an odd prime and 2 is a primitive root modulo pe.
Suppose a is a maximal length sequence of degree n over Z/(pe). Then a can be
considered as a natural extension of l-sequences. In this paper, for any two different
maximal length sequences over Z/(pe), generated by the same polynomial, we show
that their reductions modulo 2 are distinct (just the case of q = 2 in Theorem 4.1).

The rest of this paper is arranged as follows. In Section 2, some results are
presented on the sequences and polynomials modulo prime powers. In Section 3,
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we discuss the uniqueness of the distribution of zeroes of the level sequence, which is
the basis of dealing with our main problem. In Section 4, we discuss the distinctness
of modular reductions of sequences modulo odd prime powers and obtain the main
result of this paper.

2. Sequences and polynomials modulo prime powers

Let p be a prime number, integer e ≥ 1, and f(x) = xn + cn−1x
n−1 + · · · + c0

be a monic polynomial of degree n over Z/(pe). If f(0) �≡ 0(mod p), then there
always exists a positive integer P such that f(x) divides xP − 1 over Z/(pe). The
least such P is called the period of f(x) over Z/(pe) and denoted by per(f(x), pe).
Denote T = per(f(x), p), and we have xT ≡ 1 + ph1(x)(mod f(x)) and

(2.1) xpi−1T ≡ 1 + pihi(x)(mod f(x)), i = 1, 2, . . . , e − 1,

where hi(x) is a polynomial over Z/(pe) of degree less than n. Thus per(f(x), pe) ≤
pe−1T . On the other hand, T = per(f(x), p) ≤ pn − 1, where n = deg f(x), so that
we have per(f(x), pe) ≤ pe−1(pn − 1).

Definition 2.1. Let f(x) be a monic polynomial of degree n over Z/(pe) with
prime p and positive integer e. Then f(x) is called a primitive polynomial over
Z/(pe) if

per(f(x), pe) = pe−1(pn − 1).

In some literature, e.g. [1], [14] and [19], a primitive polynomial is also called
a maximal period polynomial. Ward in [19] proved that f(x) is a primitive
polynomial over Z/(pe) if and only if f(x)(mod p) is a primitive polynomial over
Z/(p) and he−1(x) �≡ 0(mod p), where he−1(x) is defined by (2.1). Furthermore,
Huang and Dai in [2] and [6] presented the coefficient criteria to judge whether a
polynomial over Z/(pe) is primitive or not. For more considerations on primitive
polynomials over Z/(pe), please see [2], [6], [10], [13] and [19].

Let f(x) be a primitive polynomial of degree n over Z/(pe). Then it is clear that
f(x)(mod pi) is also a primitive polynomial over Z/(pi), whose period is

per(f(x), pi) = pi−1(pn − 1)

for i = 1, 2, . . . , e− 1. In particular, f(x)(mod p) is a primitive polynomial over the
prime field GF(p); see [11]. Thus, we have

xpi−1T ≡ 1 + pihi(x)(mod f(x)), i = 1, 2, . . . , e − 1,

where T = per(f(x), p) = pn − 1 and hi(x) is a polynomial over Z/(pe) of degree
less than n satisfying hi(x) �≡ 0(mod p). Clearly, hi(x) is coprime with f(x)(mod p)
over Z/(p). Furthermore, we have (see [1, 7])

(1) if p = 2, then h2(x) ≡ h3(x) ≡ · · · ≡ he−1(x) �≡ 0(mod 2) and h2(x) =
h1(x)2 + h1(x)(mod f(x)).

(2) if p ≥ 3, then h1(x) ≡ h2(x) ≡ · · · ≡ he−1(x) �≡ 0(mod p).
From the above results, we can easily deduce the following proposition.

Proposition 1. Let f(x) be a primitive polynomial of degree n over Z/(pe) with
odd prime p and positive integer e. Then there exists a unique polynomial h(x) over
{0, 1, . . . , p − 1} with deg h(x) < n, such that

(2.2) xpi−1·T ≡ 1 + pi · h(x)(mod f(x), pi+1), i = 1, 2, . . . , e − 1,

where T = pn − 1.
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Any element a in Z/(pe) has a unique p-adic expansion as

a = a0 + a1 · p + · · · + ae−1 · pe−1,

where ai ∈ {0, 1, . . . , p − 1} for 0 ≤ i ≤ e − 1. Similarly, a sequence a over Z/(pe)
also has a unique p-adic expansion as

a = a0 + a1 · p + · · · + ae−1 · pe−1,

where each ai is a sequence over {0, 1, . . . , p − 1}, and is called the i-th level com-
ponent (or sequence) of a, for 0 ≤ i ≤ e − 1. ae−1 is also called the highest-level
component (or sequence) of a. They can be naturally considered as the sequences
over the finite field GF(p).

Let a = (a(t))t≥0 and b = (b(t))t≥0 be sequences over Z/(pe) and c ∈ Z/(pe).
Define a + b = (a(t) + b(t)(mod pe))t≥0, ca = (c · a(t)(mod pe))t≥0 and the shift
operator xk as xka = (a(t + k))t≥0 for k = 0, 1, 2, . . .. Then we have

G(f(x), pe) = {a ∈ (Z/(pe))∞ | f(x)a = 0}
and we set

G′(f(x), pe) = {a ∈ G(f(x), pe) | a �≡ 0(mod p)}.

Definition 2.2. Let f(x) be a primitive polynomial of degree n over Z/(pe) with
prime p and positive integer e. Any sequence a in G′(f(x), pe) is called a primitive
sequence over Z/(pe), generated by f(x).

In some literature, e.g. [1], [14] and [19], primitive sequences are also called
maximal length sequences. Primitive sequences over Z/(p) are so-called m-
sequences; see [11]. For more discussions on primitive sequences over Z/(pe) and
their highest-level sequences, see [1], [5], [9], [10], [13], [15] and [19].

We can easily deduce that the number of primitive sequences in G′(f(x), pe) is
pen−p(e−1)n, and the number of distinct cycles of primitive sequences in G′(f(x), pe)
is p(e−1)(n−1). These two numbers grow rapidly as e and n increase, so that primitive
sequences over Z/(pe) are very abundant.

For a periodic sequence α = (α(t))t≥0, let per(α) denote the period of α, which
is the least positive integer P such that α(t + P ) = α(t) for all t = 0, 1, . . .. As in
[1], we have

Proposition 2. Let f(x) be a primitive polynomial of degree n over Z/(pe) with
prime p and integer e ≥ 2, a ∈ G(f(x), pe) and T = pn − 1. Then

(1) per(ae−1) = per(a), that is to say, sequences a and ae−1 have the same
period;

(2) if a0 = a1 = · · · = ai−1 = 0 and ai �= 0 with 1 ≤ i ≤ e − 1, then

per(a) = p−i · per(f(x), pe) = pe−1−i · T ;

(3) if a0 �= 0, then per(a) = per(f(x), pe) = pe−1·T and per(amod pi) = pi−1·T
for i = 1, 2, . . . , e.

Proposition 3. Let f(x) be a primitive polynomial of degree n over Z/(pe) with
odd prime p and integer e ≥ 2. For a ∈ G′(f(x), pe), set α = h(x)a0(mod p), where
h(x) is defined by (2.2). Then

a(t + pe−1T/2) ≡ −a(t)(mod pe), t ≥ 0,(2.3)
ae−1(t + j · pe−2T ) ≡ ae−1(t) + j · α(t)(mod p), t ≥ 0,(2.4)
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for j = 0, 1, . . . , p − 1, where T = pn − 1. Furthermore, if α(t) �= 0, then

(2.5) {ae−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}.

Proof. Since f(x) is a primitive polynomial over Z/(pe), which implies that

per(f(x), pe) = pe−1 · T,

we have that f(x) divides xpe−1T − 1, but not xpe−1T/2 − 1, over Z/(pe). However,
since

xpe−1T − 1 = (xpe−1T/2 − 1) · (xpe−1T/2 + 1)
and

gcd(xpe−1T/2 − 1(mod p), xpe−1T/2 + 1(mod p)) = 1,

we know that f(x) divides xpe−1T/2 +1 over Z/(pe) by the Hensel Lemma [12], that
is, xpe−1T/2 = −1(mod f(x), pe). Thus, (2.3) follows.

Let j be an integer with 1 ≤ j ≤ p − 1. On one hand, by (2.2), we can get

(2.6) (xj·pi−1T − 1)a ≡ j · pih(x)a ≡ j · pih(x)a0(mod pi+1),

for i = 1, 2, . . . , e − 1. On the other hand, we have

(2.7) (xj·pi−1T −1)a ≡ (xj·pi−1T −1)(
∑

k≥i ak ·pk) ≡ pi ·(xj·pi−1T −1)ai(mod pi+1)

since per(amod pi) = per(f(x), pi) = pi−1T , for i = 1, 2, . . . , e − 1. It follows from
(2.6) and (2.7) that

(xj·pi−1T − 1)ai ≡ j · h(x)a0(mod p), j = 1, 2, ..., p − 1,

for i = 1, 2, . . . , e−1, implying that equation (2.4) holds. Finally, (2.5) follows from
(2.4). �

3. Uniqueness of the distribution of zeroes

in the highest-level sequences

Huang and Dai in [5] and Kuzmin and Nechaev in [10] independently proposed
the following theorem which has important cryptographic significance.

Theorem 3.1. Let f(x) be a primitive polynomial over Z/(pe) with prime p and
positive integer e. Then a = b if and only if ae−1 = be−1 for a, b ∈ G(f(x), pe).

Theorem 3.1 implies that ae−1 contains all the information of the original se-
quence a, which also means ae−1 uniquely determines the original sequence a in
theory.

In this section, we discuss the uniqueness of the distribution of zeroes in the
highest-level sequence ae−1.

Definition 3.2. Let α = (α(t))t≥0, β = (β(t))t≥0 and γ = (γ(t))t≥0 be sequences
over a ring R. If α(t) = 0 if and only if β(t) = 0 for all t ≥ 0, we say that α and
β have the distribution uniformity of element 0, or α and β are of 0-uniformity for
short. If α(t) = 0 if and only if β(t) = 0 for all t with γ(t) �= 0, we say that α and
β are of 0-uniformity with γ(t) �= 0.

Lemma 3.3. Let f(x) be a primitive polynomial of degree n over the finite field
GF(p) and α, β ∈ G′(f(x), p). Then

(1) for a polynomial g(x) over GF(p) coprime with f(x), g(x)α and g(x)β are
of 0-uniformity if and only if α and β are of 0-uniformity;
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(2) sequences α and β are of 0-uniformity if and only if there exists a nonzero
λ in GF(p) such that α = λβ.

Proof. The results are trivial for the case of n = 1. In the following we suppose
n ≥ 2.

Because f(x) is a primitive polynomial over GF(p) and coprime with g(x), there
exists an integer k such that xk ≡ g(x)(mod f(x)). It follows that α and β are of
0-uniformity if and only if xkα and xkβ are of 0-uniformity. The first statement is
proved.

It is straightforward to see that α = λβ implies α and β are of 0-uniformity.
Note that both α and β are m-sequences generated by f(x) over GF(p). If α and
β are of 0-uniformity, then there exists an integer k with 0 ≤ k < pn − 1 such that
xkα = (0, . . . , 0︸ ︷︷ ︸

n−1

, δ1, . . .) and xkβ = (0, . . . , 0︸ ︷︷ ︸
n−1

, δ2, . . .), where δ1 and δ2 are nonzero

elements in GF(p). Let λ = δ1 · δ−1
2 . That is δ1 = λ · δ2. Since any sequence in

G(f(x), p) is uniquely determined by its initial state (the first n elements of the
sequence), it follows that xkα = λ · xkβ. Thus, α = λ · β, the necessary condition
of the second statement is proved. �

Lemma 3.4. Let f(x) be a primitive polynomial of degree n over Z/(pe) with odd
prime p and integer e ≥ 2. For b ∈ G′(f(x), pe), set β = h(x)b0(mod p), where
h(x) is defined by (2.2). Then there exists an integer s with 0 ≤ s < pe−1(pn − 1)
such that be−1(s) = 0, β(s) �= 0, and b(s) �≡ 0(mod pe−1).

Proof. Let T = pn − 1. Both β = h(x)b0(mod p) and b0 are m-sequences in
G(f(x), p), so there is an integer s0 with 0 ≤ s0 < T such that β(s0) �= 0 and
b0(s0) �= 0. It shows b(s0)(mod pe−1) is also nonzero.

Since β(s0) �= 0, it follows from (2.5) in Proposition 3 that

{be−1(s0 + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1},
which implies that there exists an integer j0 with 0 ≤ j0 ≤ p − 1 such that

be−1(s0 + j0 · pe−2T ) = 0.

Let s = s0 + j0 · pe−2T . Then we have β(s) = β(s0) �= 0 and b(s)(mod pe−1)
= b(s0)(mod pe−1) �= 0 since pe−2T is divisible by the periods of both β and
b(mod pe−1). Thus s is the integer we need. �

Theorem 3.5. Let f(x) be a primitive polynomial of degree n over Z/(pe) with odd
prime p and integer e ≥ 2. Let a, b ∈ G′(f(x), pe) and α = h(x)a0(mod p), where
h(x) is defined by (2.2). If ae−1 and be−1 are of 0-uniformity with α(t) �= 0, then
a = b.

Proof. We first prove a0 and b0 are of 0-uniformity. If a0 and b0 are not of 0-
uniformity, then since h(x) is coprime with f (x) (mod p), α = h(x)a0(mod p) and
β = h(x)b0(mod p) are also not of 0-uniformity by Lemma 3.3. It implies that
m-sequences α and β are linearly independent, so there exists an integer t0 such
that α(t0) = δ �= 0 and β(t0) = 0.

Let T = pn − 1. By (2.4) in Proposition 3, we have

ae−1(t0 + jpe−2T ) ≡ ae−1(t0) + j · α(t0) ≡ ae−1(t0) + jδ(mod p),
be−1(t0 + jpe−2T ) ≡ be−1(t0) + j · β(t0) ≡ be−1(t0)(mod p)
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for j = 0, 1, . . . , p − 1. Since α(t0) = δ �= 0 and β(t0) = 0, there exists j0 with
0 ≤ j0 ≤ p − 1 such that one of the two numbers ae−1(t0 + j0 · pe−2T ) and
be−1(t0+j0 ·pe−2T ) is zero while the other one is nonzero. Since α(t0+j0 ·pe−2T ) =
α(t0) �= 0, this contradicts the fact that ae−1 and be−1 are of 0 -uniformity with
α(t) �= 0. Thus a0 and b0 are of 0-uniformity.

Next we prove a0 = b0. Since a0 and b0 are m-sequences over GF(p) and
of 0-uniformity, we have, by Lemma 3.3, a0 ≡ λ · b0(mod p) and h(x)a0 ≡ λ ·
h(x)b0(mod p), where λ ∈ {1, 2, . . . , p − 1}. That is, α ≡ λ · β(mod p).

For any index t, we claim that

(3.1) α(t) �= 0 =⇒ ae−1(t) ≡ λ · be−1(t)(mod p).

If α(t) �= 0, then, by (2.5) in Proposition 3, we have

{ae−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}.
It implies that there exists j with 0 ≤ j ≤ p−1 such that ae−1(t+jpe−2T ) = 0. Since
ae−1 and be−1 are of 0-uniformity with α(t) �= 0, it follows that be−1(t+jpe−2T ) = 0.
Thus, by (2.4) in Proposition 3, we have ae−1(t) = −j · α(t)(mod p) and be−1(t) =
−j · β(t)(mod p), which implies that ae−1(t) ≡ λ · be−1(t)(mod p). The claim is
proved.

By Lemma 3.4, there exists an integer s0 with 0 ≤ s0 < pe−1T such that

β(s0) �= 0, be−1(s0) = 0, and b(s0) �≡ 0(mod pe−1).

Since α ≡ λ · β(mod p), we have α(s0) ≡ λ · β(s0) �≡ 0(mod p). Thus we have
ae−1(s0) = λ · be−1(s0) = 0 by (3.1).

Since b(s0 + pe−1T/2) = pe − b(s0)(mod pe) by (2.3) in Proposition 3, b(s0) �≡
0(mod pe−1) and be−1(s0) = 0, we get

(3.2) be−1(s0 + pe−1T/2) = p − 1 − be−1(s0) = p − 1.

By the same argument, if a(s0) �≡ 0(mod pe−1), then ae−1(s0 +pe−1T/2) = p−1.
It shows that

ae−1(s0 + pe−1T/2) = be−1(s0 + pe−1T/2) �= 0.

Since ae−1(t) = λ · be−1(t)(mod p) for t = s0 + pe−1T/2, we have λ = 1.
If a(s0) = 0(mod pe−1), then a(s0) = 0 follows from a(s0) = a(s0)(mod pe−1) +

ae−1(s0) and ae−1(s0) = 0. By (2.3) in Proposition 3, we have a(s0 + pe−1T/2) =
−a(s0) = 0(mod pe), implying that ae−1(s0 + pe−1T/2) = 0. On the other hand,
be−1(s0 + pe−1T/2) = p − 1 by (3.2). Note that α(s0 + pe−1T/2) = −α(s0) �=
0(mod p), so that we get a contradiction to the fact that ae−1 and be−1 are of
0-uniformity with α(t) �= 0.

Finally we prove a = b. Since we have already shown that λ = 1 in (3.1), it
follows from (3.1) that ae−1(t) = be−1(t) for any t with α(t) �= 0.

Let c = a− b(mod pe). Then c ∈ G(f(x), pe) and ce−1 = ae−1 − be−1 + δ(mod p),
where δ = (δ(t))t≥0 is defined by

δ(t) =
{

0, if a(t)(mod pe−1) ≥ b(t)(mod pe−1),
−1, if a(t)(mod pe−1) < b(t)(mod pe−1).

Thus, it can be shown that ce−1(t) ∈ {0, p − 1} for any integer t with α(t) �= 0.
If a �= b, then c �= 0. Let c = pr · u, where 0 ≤ r ≤ e − 1 and u ∈ G′(f(x), pe−r).

If r = e− 1, then there exists an integer t such that α(t) �= 0 and ce−1(t) = 1 since
both ce−1 and α are m-sequences in G(f(x), p). Note that p is an odd prime, so
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that it is a contradiction to ce−1(t) ∈ {0, p−1}. If 0 ≤ r < e−1, then e−r ≥ 2. We
have that α, u0 and γ = h(x)u0(mod p) are m-sequences in G(f(x), p). Then there
exists an integer t, such that α(t) �= 0 and γ(t) �= 0. From (2.5) in Proposition 3,
we know that

(3.3) {ue−1−r(t + j · pe−2−rT ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}.

Because p is an odd prime and ue−1−r = ce−1, (3.3) is a contradiction to the fact
that ce−1(t) ∈ {0, p − 1} for t with α(t) �= 0. Thus a = b. �

Remark 3.6. Partial result of Theorem 3.5 can be found in [20].

4. The distinctness of modular reductions of primitive sequences

This section are mainly devoted to the proof of Theorem 4.1.

Theorem 4.1. Let f(x) be a primitive polynomial of degree n over Z/(pe) with
odd prime p and positive integer e. For any prime q different from p, a = b if and
only if a ≡ b(mod q) for a, b ∈ G(f(x), pe). Furthermore, per(amod q) = per(a)
for a ∈ G(f(x), pe).

Corollary 1. Let f(x) be a primitive polynomial of degree n over Z/(pe) with odd
prime p and positive integer e. For any prime q different from p and positive integer
k, a = b if and only if a ≡ b(mod qk) for a, b ∈ G(f(x), pe).

Theorem 4.2 immediately follows from Corollary 1 and the Chinese Reminder
Theorem, which is the main result of the paper.

Theorem 4.2. Let f(x) be a primitive polynomial of degree n over Z/(pe) with
odd prime p and positive integer e. For any positive integer M which has a prime
factor different from p, a = b if and only if a ≡ b(mod M) for a, b ∈ G(f(x), pe).
Furthermore, per(amod M) = per(a) for a ∈ G(f(x), pe).

Before proceeding to prove Theorem 4.1, we first present several lemmas.

Lemma 4.3. Let p and q be two different primes and p ≥ 3. Let λ, δ, α, β ∈
{1, 2, . . . , p − 1} with δ ≡ 0(mod q) and α ≡ λβ(mod p). If 1 ≤ λ < p − 1, then
there exists an integer j with 1 ≤ j ≤ p − 1 such that j · α(mod p)(mod q) �=
j · β + δ(mod p)(mod q).

Proof. It suffices to consider the case of 2 ≤ q < p. Since α ≡ λβ(mod p), we have

{(j · α(mod p), j · β + δ(mod p)) | j = 0, 1, . . . , p − 1}
= {(j · λ(mod p), j + δ(mod p)) | j = 0, 1, . . . , p − 1}.

Without loss of generality, we assume that α = λ and β = 1. In the following, we
prove that there exists an integer j with 1 ≤ j ≤ p − 1 such that

(4.1) j · λ(mod p)(mod q) �= j + δ(mod p)(mod q).

(1) λ = 1.
Here (p−δ)+δ(mod p)(mod q) = 0. Since gcd(p, q) = 1 and δ ≡ 0(mod q),

we have (p − δ) · λ(mod p)(mod q) = (p − δ)(mod q) �= 0. Thus (4.1) holds
for j = p − δ.
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(2) 2 ≤ λ ≤ p − 2 and 2 ≤ δ < p − 1.
If λ(mod q) = 0, then 1 ·λ(mod p)(mod q) = 0. On the other hand, since

2 ≤ δ < p − 1 and δ ≡ 0(mod q), we have 1 + δ(mod p)(mod q) = 1. Thus
(4.1) holds for j = 1.

If λ(mod q) �= 0, let k1 be the integer such that (k1 − 1)λ < p < k1λ. It
is clear that k1 ≥ 2.
(a) Suppose k1 > p − δ.

Here (p−δ)λ < p, and we can get (p−δ)λ(mod q) �= 0 from λ(mod q) �=
0 and gcd(p, q) = 1. On the other hand, (p− δ) + δ(mod p) = 0. Thus
(4.1) holds for j = p − δ.

(b) Suppose k1 < p − δ and λ(mod q) �= 1.
Here λ(mod p)(mod q) �= 1 and 1 + δ(mod p)(mod q) = 1. Thus (4.1)
holds for j = 1.

(c) Suppose k1 < p − δ and λ(mod q) = 1.
Here we have k1λ(mod p)(mod q) = (k1λ− p)(mod q) = k1 − p(mod q).
On the other hand, since k1 < p − δ and δ ≡ 0(mod q), we have
k1 + δ(mod p)(mod q) = k1 + δ(mod q) = k1(mod q). Since gcd(p, q) =
1, we have k1 − p(mod q) �= k1(mod q). Thus (4.1) holds for j = k1.

(d) Suppose k1 = p − δ and λ = 2.
Here λ(mod p)(mod q) = 2 and 1 + δ(mod p)(mod q) = 1. Thus (4.1)
holds for j = 1.

(e) Suppose k1 = p − δ and 3 ≤ λ ≤ p − 2.
Case 1. λ(mod q) �= 1.
Clearly (p− δ)+ δ(modp) = 0. On the other hand, from the definition
of k1 and k1 = p− δ, we can get (p− δ)λ(mod p)(mod q) = (p− δ)λ−
p(mod q) = p(λ− 1)(mod q). Because gcd(p, q) = 1 and λ(mod q) �= 1,
we have p(λ − 1)(mod q) �= 0. Thus (4.1) holds for j = p − δ.
Case 2. λ(mod q) = 1.
Since 3 ≤ λ ≤ p − 2, we have p ≥ 5 and (p − 1)λ > 2p. Let k2 be the
integer such that (k2 −1)λ < 2p < k2λ. Then p− δ = k1 < k2 ≤ p−1,
so that k2λ(mod p)(mod q) = k2λ − 2p(mod q) ≡ k2 − 2p(mod q). On
the other hand, because p − δ = k1 < k2 ≤ p − 1, we have k2 +
δ(mod p)(mod q) = k2 + δ − p(mod q) ≡ k2 − p(mod q). Furthermore,
since gcd(p, q) = 1, we have k2 − 2p(mod q) �≡ k2 − p(mod q). Thus
(4.1) holds for j = k2.

(3) 2 ≤ λ ≤ p − 2 and δ = p − 1.
If λ(mod q) �= 0, then λ(mod p)(mod q) �= 0 and 1+δ(mod p)(mod q) = 0.

Thus (4.1) holds for j = 1.
If λ(mod q) = 0, we can get 2 ≤ λ ≤ p − 1 − q from 2 ≤ λ ≤ p − 2 and

δ = p − 1 ≡ 0(mod q). So p − λ ≥ q + 1. Assume k to be the least positive
integer such that kλ(mod p) < p − λ. Clearly 1 ≤ k ≤ p − q. Thus

kλ(mod p)(mod q) = (k + 1)λ(mod p)(mod q),
k + (p − 1)(mod p)(mod q) �= (k + 1) + (p − 1)(mod p)(mod q)

which implies that (k+1)λ(mod p)(mod q) �= (k+1)+(p−1)(modp)(mod q)
or kλ(mod p)(mod q) �= k + (p − 1)(mod p)(mod q). Thus (4.1) holds for
j = k or k + 1. �
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Lemma 4.4. Let p and q be two different primes and p ≥ 3. Let f(x) be a
primitive polynomial over Z/(pe) with integer e ≥ 2. For a, b ∈ G′(f(x), pe), set
α = h(x)a0(mod p) and β = h(x)b0(mod p), where h(x) is defined by (2.2). If
a �≡ −b(mod pe) and α ≡ (p − 1)β(mod p), then there exists an integer t0 ≥ 0 such
that α(t0) �= 0 and ae−1(t0) �≡ be−1(t0)(mod q).

Proof. It suffices to consider the case of 2 ≤ q < p. Let ζ be the least positive
integer such that p − ζ ≡ 0(mod q). Thus p − ζ + j(mod q) �= 0 for 1 ≤ j ≤ ζ − 1.

Assume that ae−1(t) ≡ be−1(t)(mod q) for any integer t with α(t) �= 0. Then we
claim that

(4.2) α(t) �= 0 =⇒ ae−1(t) + be−1(t) = p − ζ, t ≥ 0.

Let t be an integer such that α(t) �= 0. Suppose ae−1(t) + be−1(t)(mod p) = τ
with 0 ≤ τ < p. By (2.4), we have

(4.3)
ae−1(t + j · pe−2T ) ≡ ae−1(t) + j · α(t)(mod p), j = 0, 1, . . . , p − 1;

be−1(t + j · pe−2T ) ≡ be−1(t) + j · β(t)(mod p), j = 0, 1, . . . , p − 1,

where n = deg f(x) and T = pn − 1. Since α ≡ (p − 1)β(mod p), (4.3) shows that

ae−1(t + j · pe−2T ) + be−1(t + j · pe−2T ) ≡ ae−1(t) + be−1(t) ≡ τ (mod p).

Since α(t) �= 0(mod p), we have

{ae−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}

by (4.3). If τ (mod q) �= 0, let j0 be the integer such that ae−1(t + j0 · pe−2T ) = 0.
Thus be−1(t+j0 ·pe−2T ) = τ and ae−1(t+j0 ·pe−2T ) �≡ be−1(t+j0 ·pe−2T )(mod q). If
τ (mod q) = 0 and τ < p−ζ, let j0 be the integer such that ae−1(t+j0·pe−2T ) = p−ζ.
Thus be−1(t+j0·pe−2T ) = τ+ζ and ae−1(t+j0·pe−2T ) �≡ be−1(t+j0·pe−2T )(mod q).
Two cases are in contradiction with the assumption, so we get τ (mod q) = 0 and
τ ≥ p−ζ. It follows from the definition of ζ that τ = p−ζ, that is, ae−1(t)+be−1(t) =
p − ζ. Thus the claim is proved.

Now, we can proceed to prove Lemma 4.4. Let c = a + b(mod pe). Then c ∈
G(f(x), pe) and ce−1 = ae−1 + be−1 + δ, where δ = (δ(t))t≥0 is defined by

δ(t) =
{

0, if a(t)(mod pe−1) + b(t)(mod pe−1) < pe−1,
1, if a(t)(mod pe−1) + b(t)(mod pe−1) ≥ pe−1.

For the integer t with α(t) �= 0, by (4.2), we have ae−1(t) + be−1(t) = p − ζ, which
implies that ce−1(t) ∈ {p − ζ, p − ζ + 1(mod p)}.

Since a �≡ −b(mod pe), we know that c �= 0. Assume c = pr ·u, where 0 ≤ r ≤ e−1
and u ∈ G′(f(x), pe−r).

If r = e − 1, then ce−1 is an m-sequence in G(f(x), p). Note that α is also an
m-sequence in G(f(x), p). If p = 3, then q = 2, ζ = 1 and ce−1(t) ∈ {0, 2}. We can
choose an integer t such that α(t) �= 0 and ce−1(t) = 1. If p ≥ 5, we can choose
an integer t such that α(t) �= 0 and ce−1(t) = ω with ω ∈ {1, 2, . . . , p − 1} but
ω /∈ {p − ζ, p − ζ + 1(mod p)}. Hence, for any odd prime p, we find an integer t
with α(t) �= 0 and ce−1(t) /∈ {p − ζ, p − ζ + 1(mod p)}, a contradiction to the fact
that ce−1(t) ∈ {p − ζ, p − ζ + 1(mod p)}. Thus, r �= e − 1.

If 0 ≤ r < e−1, then e−r ≥ 2. Since α and γ = h(x)u0(mod p) are m-sequences
in G(f(x), p), there exists an integer t such that α(t) �= 0 and γ(t) �= 0. Then it
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follows from (2.5) in Proposition 3 that

(4.4) {ue−1−r(t + j · pe−2−rT ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}.
Since per(α) = T , we have α(t + j · pe−2−rT ) = α(t) �= 0 for j = 0, 1, . . . , p − 1.
Note that p is odd and ue−1−r = ce−1. Hence, (4.4) is a contradiction to the fact
that ce−1(t) ∈ {p − ζ, p − ζ + 1(mod p)} for t with α(t) �= 0.

Thus the assumption of ae−1(t) ≡ be−1(t)(mod q) for all integers t with α(t) �= 0
does not hold, and the lemma is proved. �

Lemma 4.5. Let p and q be two different primes and p ≥ 3. Let f(x) be a primitive
polynomial over Z/(pe) with odd prime p and integer e ≥ 2. For a, b ∈ G′(f(x), pe),
set α = h(x)a0(mod p), where h(x) is defined by (2.2). If a �≡ ±b(mod pe), then
there exists an integer t0 ≥ 0 such that α(t0) �= 0 and ae−1(t0) �≡ be−1(t0)(mod q).

Proof. It suffices to consider the case of 2 ≤ q < p. Let β = h(x)b0(mod p). Because
a, b ∈ G

′
(f(x), pe) and h(x) is a polynomial coprime with f(x)(mod p) over Z/(p),

we know that both α and β are m-sequences in G(f(x), p).
If α and β are not of 0-uniformity, then there exists an integer t with 0 ≤ t <

pn − 1 such that α(t) �= 0 and β(t) = 0. It follows from (2.4) that

{ae−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1};
be−1(t + j · pe−2T ) = be−1(t), j = 0, 1, . . . , p − 1.

Thus there exists an integer j0 with 0 ≤ j0 < p such that

ae−1(t + j0 · pe−2T ) �≡ be−1(t + j0 · pe−2T )(mod q).

If α and β are of 0-uniformity, then there exists a λ ∈ Z/(p)\{0} such that
α ≡ λβ(mod p) by Lemma 3.3. Since a �= b ∈ G

′
(f(x), pe) and e ≥ 2, we know that

ae−1 and be−1 are not of 0-uniformity with α(t) �= 0 by Theorem 3.5. Hence, there
exists an integer t such that α(t) �= 0 and {ae−1(t), be−1(t)} = {0, δ �= 0}.

Since α ≡ λβ(mod p) and α(t), λ ∈ Z/(p)\{0}, we have α(t) �≡ 0(mod p) and
β(t) ≡ λ−1 · α(t) �≡ 0(mod p). By (2.5), we can get

{ae−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1},
{be−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}.

If ae−1(t) �= 0 and be−1(t) = 0, then there exists an integer j0 such that

ae−1(t + j0 · pe−2T ) = 0,

but be−1(t + j0 · pe−2T ) �= 0. Without loss of generality, we suppose ae−1(t) = 0
and be−1(t) = δ.

If δ(mod q) �= 0, then ae−1(t) �≡ be−1(t)(mod q) and α(t) �= 0. In the following,
we suppose δ(mod q) = 0.

By (2.4), we know that

ae−1(t + j · pe−2T ) ≡ ae−1(t) + j · α(t) ≡ j · α(t)(mod p),
be−1(t + j · pe−2T ) ≡ be−1(t) + j · β(t) ≡ δ + j · β(t)(mod p),

for j = 0, 1, . . . , p − 1. By Lemma 4.3, we know that if 1 ≤ λ < p − 1, then there
exists an integer j0, such that j0 ·α(t)(mod p)(mod q) �= δ + j0 ·β(t)(mod p)(mod q),
implying that ae−1(t + j0 · pe−2T ) �≡ be−1(t + j0 · pe−2T )(mod q). Since α(t0) =
α(t) �= 0, the integer t0 = t + j0 · pe−2T is what we need. Since a �≡ −b(mod pe), by
Lemma 4.4, we know that the statement also holds for λ = p − 1. �
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Lemma 4.6. Let f(x) be a primitive polynomial of degree n over Z/(p) with odd
prime p. For any prime q different from p, we have a = b if and only if a ≡ b(mod q)
for a, b ∈ G(f(x), p). Furthermore per(amod q) = per(a) for a ∈ G(f(x), p).

Proof. It suffices to consider the case of 2 ≤ q < p. Suppose a ≡ b(mod q) and we
are going to prove that a = b. If a �= 0, then there exists an integer t such that
a(t) = 1 since a is an m-sequence in G(f(x), p). Then it follows from a ≡ b(mod q)
that b(t) ≡ 1(mod q), so b �= 0. The argument shows that a �= 0 if and only if b �= 0.
In the following, we suppose that a �= 0 and b �= 0.

If a and b are linearly independent over Z/(p), then there exists an integer t such
that a(t) = 0 and b(t) = 1 since a and b are m-sequences in G(f(x), p). It implies
that a(t) �≡ b(t)(mod q), a contradiction to a ≡ b(mod q).

If a and b are linearly dependent over Z/(p), then there exists an integer λ ∈
{1, 2, . . . , p−1} such that b ≡ λ ·a(mod p). If λ(mod q) �= 1, let t be an integer such
that a(t) = 1. Then b(t)(mod p)(mod q) = λ(mod q), so that a(t) �≡ b(t)(mod q). If
λ(mod q) = 1 and 1 < λ ≤ p − 1, let k be the integer such that (k − 1)λ < p < kλ
and t be an integer such that a(t) = k. It follows that b(t) = kλ(mod p) = kλ − p,
so a(t) �≡ b(t)(mod q). Both of the cases are in contradiction with a ≡ b(mod q).
Thus λ = 1 and a = b.

Thus the sufficient condition is proved, while the necessary condition is straight-
forward to check.

In the following, we discuss the period of a(mod q). If a = 0, then it is clear that
per(amod q) = per(a). For a ∈ G

′
(f(x), p) and any integer t with 2 ≤ t < per(a),

we know xta ∈ G
′
(f(x), p) and xta �= a. Note that we have proved that a = b if

and only if a ≡ b(mod q) for a, b ∈ G(f(x), p), so xta(mod q) �= a(mod q). Thus
per(amod q) = per(a). �

Lemma 4.7. Let p and q be two positive integers such that p(mod q) �= 0 and
p ≥ 3. If {uj | j = 0, 1, . . . , p − 1} = {vj | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}
and u0 �≡ v0(mod q), then there exists an integer j with 1 ≤ j ≤ p − 1 such that
uj − vj �≡ u0 − v0(mod q).

Proof. First, it is observed that
∑p−1

j=0(uj − vj) = 0.

Suppose uj − vj(mod q) = δ �= 0 for all j = 0, 1, . . . , p − 1. Then
∑p−1

j=0(uj − vj) ≡ pδ �≡ 0(mod q),

a contradiction. The lemma is proved. �

The Proof of Theorem 4.1. It is straightforward to verify the necessary condition.
Suppose that a �= b and we are going to prove that a �≡ b(mod q). For e = 1, the
statement follows from Lemma 4.6. In the following, let e ≥ 2.

Suppose that a = pu · a′ and b = pv · b′, where 0 ≤ u, v ≤ e − 1, a′ �≡ 0(mod p)
and b′ �≡ 0(mod p). If u ≤ v, then it is clear that a ≡ b(mod q) if and only if
a′ ≡ pv−u · b′(mod q); otherwise, a ≡ b(mod q) if and only if pu−v · a′ ≡ b′(mod q).
Thus, without loss of generality, let us suppose that a �≡ 0(mod p), that is, a is a
primitive sequence over Z/(pe) generated by f(x).
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Let α = h(x)a0(mod p) and β = h(x)b0(mod p), where h(x) is defined by
(2.2). Since we have supposed that a �≡ 0(mod p), sequence α is an m-sequence
in G(f(x), p). If b0 �= 0, then β is also an m-sequence in G(f(x), p); otherwise,
β = 0.

If α and β are not of 0-uniformity, then there exists an integer t0 ≥ 0 such that
α(t0) �= 0 and β(t0) = 0. It follows from (2.4) that

(4.5) {ae−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1};
be−1(t + j · pe−2T ) = be−1(t), j = 0, 1, . . . , p − 1.

On the other hand, for a, b ∈ G(f(x), pe), by Proposition 2, we have pe−2 · T is
divisible by per(amod pe−1) and per(b mod pe−1), so that

(4.6) a(t + j · pe−2T )(mod pe−1) = a(t)(mod pe−1), j = 0, 1, . . . , p − 1;
b(t + j · pe−2T )(mod pe−1) = b(t)(mod pe−1), j = 0, 1, . . . , p − 1.

Combining it with (4.5), we know that there exists an j0 ∈ {0, 1, . . . , p − 1} such
that a(t + j0 · pe−2T ) �≡ b(t + j0 · pe−2T )(mod q), which implies that a �≡ b(mod q).

Suppose α and β are of 0-uniformity. Because a0 �= 0 and b0 �= 0, both α and
β are m-sequences in G(f(x), p). Then there exists a λ ∈ Z/(p)\{0} such that
α ≡ λβ(mod p) by Lemma 3.3. Since a, b ∈ G′(f(x), pe) and e ≥ 2, it follows
from Lemma 4.5 that if a �≡ ±b(mod pe), then there exists an integer t ≥ 0 such
that α(t) �= 0 and ae−1(t) �≡ be−1(t)(mod q). Since α ≡ λβ(mod p), we have
β(t) = λ−1α(t)(mod p) �= 0. By (2.5), we know that

{ae−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1},
{be−1(t + j · pe−2T ) | j = 0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}.

Since ae−1(t) �≡ be−1(t)(mod q) and p(mod q) �= 0, then there exists a positive
integer j with 1 ≤ j ≤ p − 1 such that ae−1(t + j · pe−2T ) − be−1(t + j · pe−2T ) �≡
ae−1(t) − be−1(t)(mod q) by Lemma 4.7. Combining it with (4.6), we can deduce
that either a(t) �≡ b(t)(mod q) or a(t + j · pe−2T ) �≡ b(t + j · pe−2T )(mod q). Thus
a �≡ b(mod q).

If a ≡ −b(mod pe), then a+b = 0(mod pe). Let d = pe(mod q). Since gcd(p, q) =
1, we have 1 ≤ d ≤ q − 1. It follows from a �≡ 0(mod p) that any element in
{1, 2, . . . , p− 1} appears in the sequence a, so that any element in {0, 1, . . . , q − 1}
appears in the sequence a(mod q). Then there exists an integer t with t ≥ 0 such
that a(t)(mod q) = 0. Since a + b = 0(mod pe), we have b(t)(mod q) = pe −
a(t)(mod q) = pe(mod q) = d �= 0. Thus a �≡ b(mod q).

In the following, we discuss the period of a(mod q). If a = 0, then it is clear
that per(amod q) = per(a). For a ∈ G(f(x), pe)\{0} and any integer t with 2 ≤
t < per(a), we know xta ∈ G(f(x), pe)\{0} and xta �= a. Since a = b if and only
if a ≡ b(mod q) for a, b ∈ G(f(x), pe), it follows that xta(mod q) �= a(mod q). Thus
per(amod q) = per(a). �
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