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SHORT EFFECTIVE INTERVALS CONTAINING
PRIMES IN ARITHMETIC PROGRESSIONS

AND THE SEVEN CUBES PROBLEM

H. KADIRI

Abstract. For any ε > 0 and any non-exceptional modulus q ≥ 3, we prove
that, for x large enough (x ≥ αε log2 q), the interval

[
ex, ex+ε

]
contains a

prime p in any of the arithmetic progressions modulo q. We apply this result
to establish that every integer n larger than exp(71 000) is a sum of seven
cubes.

1. Introduction

Let q ≥ 3 be a non-exceptional modulus, a a positive integer, x > 0 and ε > 0
some real numbers. One way to establish that the interval [ex, ex+ε] contains a
prime p ≡ a (mod q) would be to determine a condition on x such that

(1.1) θ
(
ex+ε; q, a

)
− θ (ex; q, a) =

∑
ex<p≤ex+ε

p≡a[q]

log p

is positive. It will be convenient to work with Von Mangoldt’s function

Λ(n) =

{
log p if n = pk, p prime,
0 otherwise.

Showing that (1.1) is positive follows from showing that

ψ
(
ex+ε; q, a

)
− ψ (ex; q, a) =

∑
ex<n≤ex+ε

n≡a[q]

Λ(n)

is larger than a positive constant times the error term between ψ and θ. In [8],
following Rosser’s method for ψ(x) in [12], McCurley approximated ψ (ex; q, a) via
succesive integral averaging. In fact, their methods amount to weighting the primes
with a smooth function. Our approach will be to introduce directly a smooth
positive weight into the difference ψ (ex+ε; q, a) − ψ (ex; q, a):

(1.2)
∑

ex<n≤ex+ε

n≡a[q]

Λ(n)
n

f(log n).
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We choose the function f so that it has compact support contained in [x, x + ε] and
so that the peak of the function is near the prime we want to locate. We have an
explicit formula for the sum (1.2):

(1.3) (1 + o(1))
F (0)
φ(q)

− 1
φ(q)

∑
χ mod q

χ(a)
∑

�∈Z(χ)

F (1 − �),

where F is the Laplace transform of f , and Z(χ) is the set of non-trivial zeros of
L(s, χ). Note that this formula generalizes the classical formula for ψ (see pp.121–
122 of [1]):

ψ(x; q, a) =
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ(a)
∑
|γ|<T

x�

�
+ O

(
x log2(qx)

φ(q)T
+

xe−c1
√

log x

φ(q)

)
.

The second argument relies on finding the largest real part for the zeros of the
L-functions modulo q, in particular in the case of the low lying zeros. The key
result is due to Liu and Wang [6]. It asserts that the zeros � = β + iγ with |γ| ≤ H,
except for at most four of them, satisfy:

β ≤ 1 − 1
R1 log(qH)

, where R1 = 3.82.

For the zeros of larger imaginary part, we use the latest effective result on the
classical zero-free region (see [4]):

β ≤ 1 − 1
R log(q|γ|) , where R = 6.50.

We shall study the expression in (1.3) with x = α log2 q. We deduce a lower bound
for non-exceptional moduli q:∑

ex<n≤ex+ε

n≡a[q]

Λ(n)
n

f(log n)
‖f‖1

≥ 1
q
− (1 + o(1))

(log H) log(q2H)
2πε

q−
α

R1
log q

log(qH) ,

where H depends essentially on ε, i.e. H �q ε−1. From this we shall deduce that
the sum on the primes is positive when:

α ≥ R1
log(qH)
log2 q

log
(

q(log H) log(q2H)
2πε

)
(1 + o(1)),

which gives values for α approaching R1 as ε decreases. Our main result is the
following:

Theorem 1.1. Let q ≥ 3 be a non-exceptional modulus and let (a, q) = 1. For any
ε > 0, there exists an α > 0 such that, if x ≥ α log2 q, then the interval [ex, ex+ε]
contains a prime p ≡ a (mod q). Table 1 gives the values of α for various choices
of ε and q ≥ q0.

In section 4, we describe the general algorithm to compute α as a function of q
and ε. In comparison, for q ≥ 1030 and ε = ln 3, McCurley’s bounds on ψ(x; q, a)
would give α = 10.690 (see Theorem 1.2 of [7]). With our new smoothing function,
this result may first be improved to α = 10.562, and with the new zero-free region
(R = 6.50 instead of R = 9.65) to α = 7.281. Using the region with a finite number
of zeros (R1 = 3.82), we finally obtain α = 4.401.
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Table 1

����q0

ε
0.0001 0.001 0.01 0.1 1 10

5 · 104 19.228 15.550 12.245 9.4357 6.9684 4.8430

1010 9.8356 8.5912 7.4255 6.3398 5.3418 4.4761

1015 7.6121 6.8799 6.1816 5.5174 4.8905 4.3256

1020 6.5919 6.0799 5.5864 5.1114 4.6565 4.2373

1025 6.0079 5.6164 5.2364 4.8678 4.5116 4.1783

1030 5.6298 5.3137 5.0053 4.7047 4.4123 4.1357

1035 5.3649 5.0102 4.8411 4.5875 4.3396 4.1032

1040 5.1688 4.9414 4.7181 4.4989 4.2839 4.0776

1045 5.0178 4.8185 4.6225 4.4295 4.2398 4.0567

1050 4.8979 4.7205 4.5459 4.3737 4.2039 4.0394

1055 4.8003 4.6407 4.4832 4.3276 4.1740 4.0247

1060 4.7192 4.5742 4.4308 4.2890 4.1488 4.0121

1065 4.6509 4.5179 4.3864 4.2562 4.1272 4.0011

1070 4.5924 4.4697 4.3482 4.2278 4.1084 3.9915

1075 4.5418 4.4280 4.3151 4.2031 4.0920 3.9829

1080 4.4976 4.3914 4.2860 4.1814 4.0774 3.9753

1085 4.4587 4.3591 4.2603 4.1621 4.0645 3.9684

1090 4.4240 4.3304 4.2373 4.1448 4.0528 3.9622

1095 4.3931 4.3046 4.2168 4.1293 4.0423 3.9565

10100 4.3652 4.2815 4.1982 4.1153 4.0328 3.9513

Note that an explicit bound for the size of the least prime p ≡ a (mod q), namely
P (a, q), follows immediately:

(1.4) P (a, q) ≤ eα log2 q.

In [14], Wagstaff computes the size of P (a, q) for all possible arithmetic progressions
up to modulus 5 · 104. For this reason, the data presented in Table 1 begins with
moduli q0 greater than 5 · 104. There exists a stronger result than (1.4), and we
refer the reader to the work of Heath-Brown on the subject. In [2], he proved:

P (a, q) � q5.5.

Unfortunately, this is only valid for asymptotically large q. Moreover, if the proof
is made effective, it is likely that this result would be weaker than (1.4) in the range
we are considering. Also it can be applied to solve some effective problems. We
give an example in the second part of the article for which we will apply Theorem
1.1 for q ≥ 1032.

It concerns Waring’s problem for sums of seven cubes. Landau proved in 1909
that every sufficiently large integer may be represented as a sum of eight non-
negative cubes. His proof used results on the representation of integers as a sum of
three squares. In 1943, Linnik used a theorem on the representation of integers by
ternary quadratic forms and proved in [5] that it was also true with seven cubes. In
1939, Dickson completed Landau’s statement by showing that all integers, except
23 and 239, are a sum of 8 cubes. It is widely expected that every integer ≥ 455 is
a sum of seven cubes.

In 1951, Watson simplified Linnik’s proof in [15] by using a lemma establishing
some conditions on n to be represented as a sum of seven cubes. This lemma has
recently been improved by Ramaré in [11]. The main condition consists of finding
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prime integers in an arithmetic progression as small as possible. For example, Mc-
Curley found n ≥ exp(1 077 334) in [8] and Ramaré n ≥ exp(205 000) in [11]. These
authors use Chebyshev’s estimates for θ(x; q, a) that McCurley previously estab-
lished in [7]. We replace this argument with our result concerning small intervals
containing a prime mod q. Since this assertion is only proven for non-exceptional
moduli, we give an explicit description of the scarcity of exceptional moduli. We
prove the following in section 5:

Theorem 1.2. Every integer n larger than N0 = exp(71 000) is a sum of seven
cubes.

2. Preliminary lemmas

2.1. Zeros of the Dirichlet L-functions. The proof depends essentially on the
distribution of the zeros of Dirichlet L-functions. The first theorem states an explicit
zero free region for all moduli q, even for those of not too large a size.

Theorem 2.1 (Theorem 1.1 of [4]). Let q be an integer, q ≥ 3, and let Lq(s) be
the product of Dirichlet L-functions modulo q. Then Lq(s) has at most one zero in
the region

σ ≥ 1 − 1
R log (q max(1, |t|)) , where R = 6.50.

Such a zero, if it exists, is real, simple and corresponds to a real non-principal char-
acter modulo q. We shall refer to it as an exceptional zero and q as an exceptional
modulus.

The next theorem illustrates the fact that the zeros do not cluster near the
one-line. In fact, there are few of them:

Theorem 2.2 (Theorem 1 of [6]). Suppose q is an integer satisfying 1 ≤ q ≤ x,
and x is a real number, x ≥ 8 · 109. Then the function Lq(s) has at most four zeros
in the region

|�s| ≤ x/q, σ ≥ 1 − 1
R1 log x

, where R1 = 3.82.

We will apply this theorem for the case x = q and x = qH. We describe explicitly
the following phenomenon: the exceptional zero tends to repel the zeros of close
conductor.

Theorem 2.3 (Theorem 1.3 of [4]). If χ1 and χ2 are two distinct real primitive
characters modulo q1 and q2 respectively and if β1 and β2 are real zeros of L(s, χ1)
and L(s, χ2) respectively, then:

min (β1, β2) ≤ 1 − 1
R2 log(q1q2)

, where R2 = 2.05.

When q1 < q2, then both q1 and q2 cannot be exceptional, unless q2 ≥ q2.12
1 .

The next theorems gives explicit density for the zeros associated to each character
χ modulo q (see p. 267 of [7]).

Lemma 2.4. Let T ≥ 1. We denote by N(T, χ) the number of zeros of the Dirichlet
L-function L(s, χ) in the rectangle {s ∈ C : 0 ≤ 	s ≤ 1, |�s| ≤ T}.
Then N(T, χ) = P (T ) + r(T ), with

P (T ) :=
T

π
log

qT

2πe
, |r(T )| ≤ R(T ) := a1 log(qT ) + a2, a1 = 0.92, a2 = 5.37.
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The next lemma establishes a bound for

S(H, χ) :=
∑

1<|γ|<H
L(β+iγ,χ)=0

1
|γ| .

Lemma 2.5. Let q be the conductor of χ and H ≥ 1. Then S(H, χ) ≤ Ẽ(H),
where

Ẽ(H) :=
1
π

(log q)(log H) +
1
2π

log2 H +
(

1
π

+ a1

)
log q − log(2π)

π
log H

− 1
π

log(2πe) + a2 + a1 −
a1

H
.

Proof. We have:

S(H, χ) =
N(H, χ)

H
− N(1, χ) +

∫ H

1

N(t, χ)
t2

d t.

We use Lemma 2.4 to bound N(t, χ) in the integral and we integrate by parts to
obtain:

S(H, χ) ≤ P (1) + R(1) +
∫ H

1

P ′(t) + R′(t)
t

d t.

We conclude by computing the last integral:∫ H

1

P ′(t) + R′(t)
t

d t =
1
π

(log q)(log H) +
1
2π

log2 H − log(2π)
π

log H + a1 −
a1

H
.

�
2.2. Bounds for Γ′/Γ(s).

Lemma 2.6. If T ≥ 0, then∣∣∣∣	Γ′

Γ

(
2 − χ(−1)

4
+ i

T

2

)∣∣∣∣ ≤ U(T ) := log (6(T + 12)) .

Proof. See [4]. �
2.3. Properties of the weight function. Let m be a positive integer, L and ε
some positive constants. Our choice for f is inspired by the function Ramaré and
Saouter used on p. 17 of [10]. They call f m-admissible when it satisfies:

• f is an m-times differentiable function,
• f (k)(0) = f (k)(1) = 0 if 0 ≤ k ≤ m − 1,
• f ≥ 0,
• f is non-identically zero.

The specific function we use is

(2.1) f(t) = (t − L)m (L + ε − t)m, if L ≤ t ≤ L + ε,

and f(t) = 0 otherwise. Furthermore, we notice that f and its derivative are
symmetric with respect to L + ε/2.

Lemma 2.7.
‖f (m)‖2

‖f‖1
=

µm

εm+1/2
, with µm =

(2m + 1)!
m!

√
2m + 1

.(2.2)

‖f‖∞
‖f‖1

=
νm

ε
, with νm =

(2m + 1)!
4m(m!)2

.(2.3)
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Proof. This is an exercise, or else, see p. 17 of [10] for the derivation. �

Let F be the Laplace transform of the function f as defined in (2.1):

F (s) =
∫ L+ε

L

f(t)e−std t.

Lemma 2.8. If σ ≥ 0, then

F (σ) ≥ e−σ(L+ε)‖f‖1,(2.4)

|F (s)| ≤ e−σL‖f‖1,(2.5)

|F (s)| ≤ e−σL

|s|
2(2m + 1)

εm
‖f‖1,(2.6)

|F (s)| ≤
√

ε e−σL ‖f (m)‖2

|s|m .(2.7)

Proof. The proof makes use of the symmetry of f and f (m) and, in the last case,
the Cauchy-Schwarz inequality. �

2.4. An explicit formula. Let q be an integer, q ≥ 3. For each character χ
modulo q, we denote by χ1 the primitive character associated with χ.

Lemma 2.9. Let f be the function given by (2.1). Then∑
χ mod q

χ(a)
∑
n≥1

Λ(n)χ1(n)
n

f(log n) =F (0) + c(a, q)F (1)

−
∑

χ mod q

χ(a)
∑

�∈Z(χ1)

F (1 − �) + I(a, q),

where c(a, q) ≥ 1
2 , Z(χ1) is the set of non-trivial zeros of L(s, χ1) and

I(a, q) =
1
2π

∫ +∞

−∞

∑
χ mod q

χ(a)	Γ′

Γ

(
2 − χ1(−1)

4
+ i

T

2

)
F (1/2 − iT ) d T.

Proof. This is a special case of the explicit formula of Theorem 3.1, p. 314 of [3],
applied to the smooth function φ(x) = f(x)e−x if x ≥ 0 and φ(x) = 0 otherwise.
The constant c(a, q) is given by

1
4

∑
χ mod q

χ(a) +
1
4

∑
χ mod q

χ(a)χ1(−1) +
1
2
≥ 1

2

(see p. 414 of [9] for the details). �

3. Main lemma

We place our study in the case of modulus q not studied by Wagstaff, that is to
say, for those q larger than 5 · 104. Let ε > 0, H ≥ 1 and α be positive reals such
that

(3.1) α < R

(
log(qH)

log q

)2

.

We define L as a parameter depending only on q:

L := α log2 q.
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Throughout the paper, � = β + iγ always stands for a non-trivial zero of a Dirichlet
L-function. We prove in this section that

Lemma 3.1. If m ≥ 3, ε > 0 and if α satisfies the condition (3.1), then the sum

over the primes Σ(a, q) :=
∑

p≡a mod q

log p

p
f(log p) satisfies

Σ(a, q)
‖f‖1

≥ 1
q
− r(α, ε, H, m, q),

where r :=
5∑

i=1

ri and the ri’s are given by (3.4) , (3.7) , (3.9) , (3.16) and (3.18).

Note that Σ(a, q) is actually close to the sum appearing in Lemma 2.9:

Σ = Σ11 + Σ12 − Σ2

with

Σ11(a, q) :=
1

φ(q)

∑
χ mod q

χ(a)
∑
n≥1

Λ(n)χ1(n)
n

f(log n),

Σ12(a, q) :=
1

φ(q)

∑
χ mod q

χ(a)
∑
n≥1

Λ(n)(χ(n)− χ1(n))
n

f(log n),

where χ1 is the primitive character associated to χ, and

Σ2(a, q) :=
∑
k≥2

pk≡a mod q

log p

pk
f(k log p).

We will prove in sections 3.5 and 3.6 that the last two sums are small in comparison
to Σ11. We use Lemma 2.9 to bound Σ11:

Σ(a, q) ≥ A1(q) − A−
2 (q) − A+

2 (q) − A3(q) − |Σ12(a, q)| − |Σ2(a, q)| ,
with

A1(q) :=
1

φ(q)
(F (0) + c(a, q)F (1)) ,

A−
2 (q) :=

1
φ(q)

∑
χ mod q

∑′

�∈Z(χ)
|γ|≤H

|F (1 − �) + F (�)| ,

A+
2 (q) :=

1
φ(q)

∑
χ mod q

∑′

�∈Z(χ)
|γ|>H

|F (1 − �) + F (�)| ,

A3(q) :=
1

φ(q)
|I(a, q)|,

where ∑′

β

=
∑

1/2<β<1

+
1
2

∑
β=1/2

(we use the symmetry property of the zeros). We extend the sum over the zeros of
L(s, χ1) to the zeros of L(s, χ) to simplify our argument.

The sections 3.1 to 3.4 study these Ai’s.



1740 H. KADIRI

3.1. Study of A1. It is immediate that

(3.2)
A1(q)
‖f‖1

≥ 1
q
.

3.2. Study of A−
2 . Since we are in the case where q is non-exceptional, we do not

worry about the existence of a Siegel zero. Thanks to Theorems 2.1 and 2.2 we can
split the sum A−

2 as follows:

A−
2 (q) =

1
φ(q)

8∑
k=1

|F (1 − �k) + F (�k)| + 1
φ(q)

∑
χ mod q

∑′

|γ|≤1
β≤1− 1

R1 log q

|F (1 − �) + F (�)|

+
1

φ(q)

∑
χ mod q

∑′

1<|γ|≤H
β≤1− 1

R1 log(qH)

|F (1 − �) + F (�)| ,

where the zeros �k = βk + iγk satisfy:

|γk| ≤ 1 and 1 − 1
R1 log q

≤ βk ≤ 1 − 1
R log q

, for k = 1, 2, 3, 4,

|γk| ≤ H and 1 − 1
R1 log(qH)

≤ βk ≤ 1 − 1
R log(qH)

, for k = 5, 6, 7, 8.

We use the inequalities (2.5) and (2.6) for the first and second lines respectively:

|F (1 − �) + F (�)| ≤
(
e−βL + e−(1−β)L

)
‖f‖1

and

|F (1 − �) + F (�)| ≤ 1
|γ|

(
e−βL + e−(1−β)L

) 2(2m + 1)
εm

‖f‖1.

Then

A−
2 (q) ≤ 4

φ(q)
b2(α, R, q)

(
q−

α
R + q−

α
R

log q
log(qH)

)
‖f‖1

+
1
2

b2(α, R1, q)q
− α

R1 ‖f‖1 max
χ mod q

N(1, χ)

+ b2(α, R1, q)
2m + 1

εm
‖f‖1 q−

α
R1

log q
log(qH) max

χ mod q

⎛
⎝ ∑′

1<|γ|≤H

1
|γ|

⎞
⎠ ,

where b2(α, r, q) := 1 + q−α log q+ 2α
r . We conclude by bounding the sum over the

zeros as in Lemma 2.5, N(1, χ) as in Lemma 2.4 and φ(q) as on page 72 of [13]:
q

φ(q)
< eC log log q +

2.51
log log q

for q ≥ 3,

where C stands for the Euler constant. Then
A−

2 (q)
‖f‖1

≤ 4b2(α, R, q)
(
q−1− α

R + q−1− α
R

log q
log(qH)

) (
eC log log q +

2.51
log log q

)

+
(1 + a1π

2π
log q − log(2πe) + a2π

2π

)
b2(α, R1, q)q

− α
R1

+
(2m + 1)Ẽ(H)

2εm
b2(α, R1, q)q

− α
R1

log q
log(qH) .
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We obtain

A−
2 (q)
‖f‖1

≤ r1(α, ε, H, m, q),(3.3)

r1(α, ε, H, m, q) := b2(α, R1, q)
(2m + 1)

2εm

(
(log H)(log(q2H))

2π

+
( 1

π
+ a1

)
log q − log(2π)

π
log H − log(2πe)

π
+ a2 + a1 −

a1

H

)
q−

α
R1

log q
log(qH)(3.4)

+ b2(α, R1, q)
(1 + a1π

2π
log q − log(2πe) + a2π

2π

)
q−

α
R1

+ 4b2(α, R, q)
(

eC log log q +
2.51

log log q

) (
q−1− α

R + q−1− α
R

log q
log(qH)

)
.

3.3. Study of A+
2 . Theorem 2.1 allows us to restrict

∑′
to the zeros in the region:

|γ| > H, 1/2 ≤ β ≤ 1 − 1
R log(q|γ|) .

We use (2.7) to bound |F (1 − �)| and|F (�)|,

|F (1 − �) + F (�)|

≤
√

ε‖f (m)‖2

[
exp

( −L

R log(q|γ|)

)
+ exp

(
− L

(
1 − 1

R log(qH)

))] 1
|γ|m .

We follow Lemma 4.1.3 and Lemma 4.2.1 of [9] and obtain that if L ≤ R log2(qH),
then:

∑′

�∈Z(χ1)
|γ|>H

exp
(

−L
R log(q|γ|)

)
|γ|m ≤ Ã + B̃

2
and

∑′

�∈Z(χ1)
|γ|>H

1
|γ|m ≤ C̃ + D̃

2
,

with

Ã :=
1

π(m − 2)Hm−1
exp

(
− L

R log(qH)

) (
log

qH

2π
+

1
m − 2

+
a1

(m − 1)H

)
,

B̃ :=
2(a1 log(qH) + a2)

Hm
exp

(
− L

R log(qH)

)
,

C̃ :=
1

π(m − 1)Hm−1

(
log

qH

2π
+

1
m − 1

)
,

D̃ :=
2a1 log(qH) + 2a2 + a1

m

Hm
.

We deduce the bound:

(3.5)
A+

2 (q)√
ε‖f (m)‖2

≤ Ã + B̃

2
+

C̃ + D̃

2
exp

(
− L

(
1 − 1

R log(qH)

))
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and together with (2.2):

A+
2 (q)
‖f‖1

≤ r2(α, ε, H, m, q),(3.6)

r2(α, ε, H, m, q) := q−
α
R

log q
log(qH)

µm

(Hε)m

[ H log qH
2π

2π(m − 2)
+

H

2π(m − 2)2

+
a1

2π(m − 2)(m − 1)
+ a1 log(qH) + a2

]
+ q−α log q+ α

R
log q

log(qH)
µm

(Hε)m
(3.7)

×
[ H

2π(m − 1)

(
log

qH

2π
+

1
m − 1

)
+ a1 log(qH) + a2 +

a1

2m

]
.

3.4. Study of A3.

A3(q) ≤
1
2π

∫ +∞

−∞

∣∣∣∣	Γ′

Γ

(
2 − χ1(−1)

4
+ i

T

2

)∣∣∣∣ |F (1/2 − iT )| d T.

We use Lemma 2.6 to bound Γ′/Γ, (2.5) to bound F when T ≤ 1 and (2.7) otherwise:

A3(q)
‖f‖1

≤ r3(α, ε, m, q),(3.8)

r3(α, ε, m, q) :=
1
2π

(
J0 +

µmJ(m)
εm

)
q−

α
2 log q(3.9)

with J0 :=
∫
|T |≤1

log(6(|T | + 12))d T and J(m) :=
∫
|T |>1

log(6(|T | + 12))
|T |m d T .

3.5. Study of Σ12(a, q). For n fixed, we denote by Qn the largest divisor of q
coprime with n. Then

1
φ(q)

∑
χ mod q

χ1(n)χ(a) =

{
φ(Qn)
φ(q) if n ≡ a (mod Qn),

0 else.

For a proof, see p. 414 of [9]. It implies that

Σ12(a, q) =
∑

n≡a mod Qn
Qn<q

φ(Qn)
φ(q)

Λ(n)f(log n)
n

.

In this sum, we have
φ(Qn)
φ(q)

=
1

pνp(q)−1(p − 1)
since n is a prime power, n = pk, coprime with Qn but not with q. Therefore

(3.10) Σ12(a, q) ≤ ‖f‖∞
∑

pνp(q)|q

log p

pνp(q)−1(p − 1)

∑
eL<pk<eL+ε

1
pk

.

We compute the geometric sum

(3.11)
∑

eL<pk<eL+ε

1
pk

≤
∑

k≥[ L
log p ]+1

1
pk

=
e−L

p − 1
.

We reinsert the last bound in the summand and split the obtained sum:

(3.12)
∑

pνp(q)|q

log p

pνp(q)−1(p − 1)2
≤

∑
p|q

log p

(p − 1)2
+

∑
pj |q,j≥2

log p

pj−1(p − 1)2
,
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where

(3.13)
∑

pj |q,j≥2

log p

pj−1(p − 1)2
≤

∑
p|q

log p

(p − 1)2
∑
j≥2

1
pj−1

=
∑
p|q

log p

(p − 1)3

and

(3.14)
∑
p≥2

log p

(
1

(p − 1)2
+

1
(p − 1)3

)
≤ 2.10.

Together with (2.3) and (3.10) to (3.14), we conclude that

|Σ12(a, q)|
‖f‖1

≤ 2.10
‖f‖∞
‖f‖1

e−L ≤ r4(α, ε, m, q),(3.15)

r4(α, ε, m, q) := 2.10
νm

ε
q−α log q.(3.16)

3.6. Study of Σ2(a, q). We have

|Σ2(a, q)| =
∑
k≥2

pk≡a mod q

log p

pk
f(k log p) ≤ ‖f‖∞

∑
2≤p≤e

L+ε
2

log p
∑

eL<pk<eL+ε

1
pk

.

From (3.11) and∑
2≤p≤e

L+ε
2

log p

p − 1
≤ 2 log

(
e

L+ε
2

)
= L + ε (see equation (3.24) of [13]),

it follows that
|Σ2(a, q)|
‖f‖1

≤ ‖f‖∞
‖f‖1

(L + ε)e−L ≤ r5(α, ε, m, q),(3.17)

r5(α, ε, m, q) :=
νm

ε
(α log2 q + ε)q−α log q.(3.18)

4. Proof of Theorem 1.1

We gather the inequalities (3.2), (3.3), (3.6), (3.8), (3.15) and (3.17) and obtain:

Σ(a, q)
‖f‖1

≥ q−1 − r(α, ε, H, m, q) ≥ q−1 (1 − q0r(α, ε, H, m, q0)) .

Let u ∈ [0.001, 0.2], q ≥ q0 with q0 = 5 ·104, 1010, ..., 10100 and ε = 10−3, 10−2, ..., 10
be fixed. We will choose H and m such that α is as small as possible and satisfies

(4.1) 1 − q0r(α, ε, H, m, q0) = 10−6

and r1 and r2 are of comparable size:

(4.2) r2(α, ε, H, m, q0) = ur1(α, ε, H, m, q0).

We approximate r1, r2 and r with r̃1, r̃2 and r̃1 + r̃2 = (1+u)r̃1 respectively, where

r̃1(α, H, m) :=
(2m + 1)(log H)(log(q2

0H))
4πεm

q
− α

R1
log q0

log(q0H)
0 ,

r̃2(α, H, m) :=
H log(q0H)

π
√

m
q
− α

R
log q0

log(q0H)
0

(
4m

eHε

)m

.

We approximate (4.1) by the equation

1 − q0(1 + u)r̃1(α, H, m) = 10−6.
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Its solution is close to

(4.3) α̃(H, m) := R1
log(q0H)
log2 q0

log
(

q0(log H)(log(q2
0H))

2πε

)
.

It remains to find appropriate values of H which will satisfy (4.2). The solution of
the equation

r̃2(α̃(H, m), H, m) = ur̃1(α̃(H, m), H, m)

is close to

(4.4) H̃(m) =
1
ε

(
4

u
√

m

(
4m

e

)m (
q0 log q0

4πε

)1−R1
R

) 1
m−1

.

We minimize the value of α̃(H̃(m), m) and find that m is close to

m̃ :=
1
2

+ log

(
16
u

(
q0 log q0

4πε

)1−R1
R

)
.

We now describe the algorithm to compute α. For u and m fixed (the value of m
is chosen close to m̃):

• We compute H̃(m) and α̃(H̃(m), m) as given in (4.4) and (4.3) respectively.
• We choose for H the value of the solution of the following approximation

of equation (4.2):

r2(α̃(H̃(m), m), H, m) = ur1(α̃(H̃(m), m), H, m).

With this value for H, we solve (4.1) with respect to α. It is not difficult to
see that the function r(α, ε, H, m, q) decreases when α increases. Therefore
we are insured of the uniqueness of the solution of the equation.

• We choose u and m so that the value of α is as small as possible.

Table 2 records the values of the parameters m, H and u. They have been rounded
up in the last decimal place.

For the next section, we will use the following result: when q ≥ 1032, ε = 1.9,
then u = 0.022, H = 80.8, m = 38 and α = 4.3060.

5. A seven cubes problem

Watson’s proof in [15] relies on the fact that, for X > exp(q1/100), the existence
of a prime p ≡ a(mod q) in the interval [X, 1.01 X] makes it possible to write a
sufficiently large integer n as a sum of seven cubes, and the size of the smallest
of these n’s depends on the size of X. We will follow the latest version of this
algorithm, due to Ramaré ([11]).

5.1. A modified form of Watson’s lemma (Lemma 5 of [8]). The next lemma
provides conditions for an integer to be a sum of seven cubes.
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Lemma 5.1 (Lemma 2.1 of [11]). Let n, a, u, v and w be positive integers and t
a non-negative integer. We assume that

1 ≤ u ≤ v ≤ w ≤ (3/4)1/3uv/24,(5.1)
gcd(uvw, 6n) = 1 and a is odd,(5.2)
u, v, w and a are pairwise co-prime,(5.3)
n − t3 ≡ 1 [2],(5.4)
n − t3 ≡ 0 [3a],(5.5) ⎧⎨
⎩

4(n − t3) ≡ v6w6a3 [u2],
4(n − t3) ≡ u6w6a3 [v2],
4(n − t3) ≡ u6v6a3 [w2].

(5.6)

Set δ =
(
1 + (w/u)6 + (w/v)6

)
/4. If

(5.7) 0 ≤ uv

6w

(
n

u6v6a3
− δ − 3

4

)1/3

≤ t

6uvwa
≤ uv

6w

( n

u6v6a3
− δ

)1/3

,

then n is a sum of seven non-negative cubes.

5.2. Reducing to finding a prime in an arithmetic progession. Suppose the
integer n is given. We need to find u, v, w, a and t such that the conditions of
our lemma are fulfilled. Let u, v, w be prime numbers ≡ 5 [6] that satisfy (5.1) and
are coprime with n. Then (4n)/(v6w6) is a cube, modulo u2. We have the same
for (4n)/(u6w6) modulo v2 and (4n)/(u6v6) modulo w2. This is easy to prove,
knowing that, if p is a prime ≡ 5 [6], then every invertible residue class modulo p
is a cube modulo p2. Moreover u2, v2 and w2 are pairwise coprime and, by the
Chinese remainder theorem, there exists an integer a′ such that

(5.8)

⎧⎨
⎩

4n ≡ (a′v2w2)3 [u2],
4n ≡ (a′u2w2)3 [v2],
4n ≡ (a′u2v2)3 [w2].

We choose a to be a ≡ a′ [u2v2w2], so that we can replace a′ by a in the system
(5.8). Also we can choose a to be prime and a ≡ 5 [6], so that we are insured that
there exists an integer n cubic modulo 3a. We deduce that

Condition 1. There exists a prime a such that a ≡ � [6u2v2w2].

Since the integers u, v, w and 6a are coprime, there exist integers t satisfying:

t3 ≡ n [3a], t3 ≡ n − 1 [2], t ≡ 0 [uvw].

Up to now, the conditions (5.1) to (5.6) are satisfied. In order to find t
6auvw bounded

as in (5.7), we need to add some conditions on a, namely that

Condition 2.
Y

κ
≤ a ≤ Y ,

where Y :=
n1/3

u2v2(3/4 + δ)1/3
, κ3 :=

1
3/4 + δ

[(
uv

24w(ρ + 1)

)3/2

+ δ

]
, ρ :=

1
6uvwa

.

Somemore explanation is provided on pp. 377–378 of [11]. We will see that
Theorem 1.1 insures us of the existence of a prime a satisfying conditions 1 and 2.
However, this theorem is established for non-exceptional moduli. We explain how
to avoid the case of exceptional zeros in the next section.
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5.3. Creating a non-exceptional modulus.

Theorem 5.2 (Theorem 2 of [9]). For all q ≤ 72, and for all a prime to q, uniformly
for 1 ≤ x ≤ 1010,

max
1≤y≤x

∣∣∣∣θ(y; q, a) − y

φ(q)

∣∣∣∣ ≤ 2.072
√

x.

Lemma 5.3. There are more than 12 prime numbers coprime to n and congruent
to 5 modulo 6 lying in the interval [0.521 log n, 2.562 log n] if log n is larger than
68 509.

Proof. See the proof of Lemma 4.5 of [11]. The constants c1 and c2 are chosen
to optimize the lower bound of log n given in the equation (5.9) below under the
conditions that c2 − c1 > φ(6) and(

c2 − c1

2
− 1

)
log n − 2.072 (

√
c1 +

√
c2)

√
log n ≥ 12 log (c2 log n) . �

We note c3 =
(

c2
c1

) 1
2
. Then we deduce by the pigeon hole principle that there

exists an interval [A, c3A] with A in [c1 log n, c2/c3 log n] that contains more than
6 primes coprime to n and congruent to 5 modulo 6. We denote by u1 < v1 <
w1 < u2 < v2 < w2, 6 of these primes, k1 = 3(u1v1w1)2 and k2 = 3(u2v2w2)2. To
prove that one of the coprime integers k1 and k2 has to be non-exceptional, we use
Theorem 2.3 and the inequalities

k2.12
1 ≥

(
3 (c1 log n)6

)2.12

> 3 (c2 log n)6 ≥ k2

for n ≥ 150. We denote simply by k the non-exceptional modulus and by u, v,
w the associated integers in [A, c3A]. It remains to find for which n, the interval
[Y/κ, Y ] satisfies the hypotheses of Theorem 1.1.

5.4. Finding a prime in a progression with a large modulus.

Lemma 5.4. Assume log n ≥ 71 000. For any invertible residue class l modulo k,
there is a prime a, congruent to l modulo k contained in [Y/κ, Y ].

Proof. We use the bounds:

c1 log n ≤ A ≤ u, v, w ≤ c3A ≤ c2 log n,
1
4

+
1

2c6
3

≤ δ ≤ 1
4

+
c6
3

2
, ρ ≤ 1

6(c1 log n)3
.

We deduce that κ ≥ κ0(n) and Y ≥ Y0(n), with

κ0(n)3 :=
1

1 + c6
3
2

⎛
⎜⎝

⎛
⎝ c1 log n

24c3

(
1

6(c1 log n)3 + 1
)

⎞
⎠

3/2

+
1
4

+
1

2c6
3

⎞
⎟⎠ ,

Y0(n) :=
n1/3

(c2 log n)4
(
1 + c6

3
2

)1/3
.

For the values k ≥ 1032, α = 4.3060 and ε = 1.9, the inequality Y ≥ eα log2 k+ε is
satisfied when

(5.9)
log n

3
− 4 log(c2 log n) − 1

3
log

(
1 +

c6
3

2

)
≥ α log2

(
3(c2 log n)6

)
+ ε,

that is to say, for log n ≥ 70 341. This also warrants κ0(n) ≥ eε. �
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Table 2

q0 ε u m H α

5.104

0.0001 0.086 14 514 998 19.228
0.001 0.092 13 47 292 15.550
0.01 0.098 12 4 311 12.245
0.1 0.004 14 528 9.4357
1 0.01 15 57.8 6.9684
10 0.037 11 4.4219 4.8430

1010

0.0001 0.056 20 741 876 9.8356
0.001 0.058 19 70 330 8.5912
0.01 0.060 18 6 632 7.4254
0.1 0.061 17 630 6.3398
1 0.057 16 62.5 5.3418
10 0.028 17 6.75 4.4761

1015

0.0001 0.043 25 948 594 7.6121
0.001 0.045 24 90 920 6.8799
0.01 0.046 23 8 713 6.1816
0.1 0.046 22 839 5.5174
1 0.043 21 83.6 4.8905
10 0.024 22 8.84 4.3256

1020

0.0001 0.035 30 1 152 223 6.5919
0.001 0.036 29 111 390 6.0799
0.01 0.037 28 10 762 5.5864
0.1 0.037 27 1 045 5.1114
1 0.035 26 105 4.6565
10 0.021 27 10.9 4.2373

1025

0.0001 0.030 35 1 353 117 6.0079
0.001 0.030 34 131 618 5.6164
0.01 0.031 33 12 786 5.2364
0.1 0.031 32 1 247 4.8678
1 0.029 31 125 4.5116
10 0.019 32 12.9 4.1783

1030

0.0001 0.026 40 1 553 007 5.6298
0.001 0.026 39 151 626 5.3137
0.01 0.026 38 14 802 5.0053
0.1 0.026 37 1 449 4.7046
1 0.025 36 145 4.4123
10 0.017 37 15 4.1357

1035

0.0001 0.023 45 1 751 630 5.3649
0.001 0.023 44 171 503 5.1002
0.01 0.023 43 16 791 4.8411
0.1 0.023 42 1 648 4.5875
1 0.022 41 165 4.3396
10 0.016 42 16.9 4.1032

1040

0.0001 0.020 50 1 950 568 5.1688
0.001 0.021 49 191 213 4.9414
0.01 0.021 48 18 763 4.7181
0.1 0.021 47 1 846 4.4989
1 0.020 46 185 4.2839
10 0.014 47 18.9 4.0776

1045

0.0001 0.018 55 2 114 784 5.0178
0.001 0.019 54 210 928 4.8185
0.01 0.019 53 20 736 4.6225
0.1 0.019 52 2 043 4.4295
1 0.018 51 204 4.2398
10 0.013 52 20.9 4.0567

1050

0.0001 0.017 60 2 342 931 4.8979
0.001 0.017 59 230 659 4.7206
0.01 0.017 58 22 710 4.5459
0.1 0.017 57 2 240 4.3737
1 0.016 56 224 4.2039
10 0.012 57 22.9 4.0394

q0 ε u m H α

1055

0.0001 0.016 64 2 538 632 4.8003
0.001 0.016 64 250 167 4.6407
0.01 0.016 63 24 661 4.4832
0.1 0.015 62 2 338 4.3276
1 0.015 61 244 4.1740
10 0.012 62 24.8 4.0247

1060

0.0001 0.015 69 2 731 576 4.7192
0.001 0.015 68 269 639 4.5742
0.01 0.014 68 26 639 4.4308
0.1 0.014 67 2 633 4.2890
1 0.014 66 263 4.1488
10 0.011 67 26.8 4.0121

1065

0.0001 0.014 74 2 927 544 4.6509
0.001 0.014 73 289 140 4.5179
0.01 0.014 72 28 660 4.3864
0.1 0.013 72 2 829 4.2562
1 0.013 71 283 4.1272
10 0.010 72 28.7 4.0011

1070

0.0001 0.013 79 3 122 581 4.5924
0.001 0.013 78 308 647 4.4697
0.01 0.013 77 30 511 4.3482
0.1 0.013 76 3 021 4.2278
1 0.012 76 302 4.1084
10 0.010 77 30.7 3.9915

1075

0.0001 0.012 84 3 317 736 4.5418
0.001 0.012 83 328 165 4.4280
0.01 0.012 82 32 465 4.3151
0.1 0.012 81 3 216 4.2031
1 0.011 81 322 4.0920
10 0.009 81 32.6 3.9829

1080

0.0001 0.011 89 3 513 060 4.4976
0.001 0.011 88 347 700 4.3914
0.01 0.011 87 34 417 4.2860
0.1 0.011 86 3 311 4.1814
1 0.011 86 341 4.0774
10 0.009 86 34.5 3.9753

1085

0.0001 0.011 94 3 704 920 4.4587
0.001 0.011 93 366 878 4.3591
0.01 0.011 92 36 335 4.2603
0.1 0.010 91 3 607 4.1621
1 0.010 90 361 4.0645
10 0.008 91 35.5 3.9684

1090

0.0001 0.010 98 3 900 103 4.4240
0.001 0.010 98 386 427 4.3331
0.01 0.010 97 38 290 4.2373
0.1 0.010 96 3 799 4.1448
1 0.010 95 380 4.0528
10 0.008 96 37.4 3.9623

1095

0.0001 0.010 103 4 091 636 4.3931
0.001 0.010 102 405 566 4.3046
0.01 0.010 101 40 204 4.2168
0.1 0.009 101 3 995 4.1293
1 0.009 100 399 4.0423
10 0.008 101 40.3 3.9565

10100

0.0001 0.009 108 4 287 331 4.3652
0.001 0.009 107 425 137 4.2815
0.01 0.009 106 41 161 4.1982
0.1 0.009 105 4 186 4.1153
1 0.009 105 419 4.0328
10 0.007 106 42.3 3.9513
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