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LINKS AND CUBIC 3-POLYTOPES

WEILING YANG AND FUJI ZHANG

Abstract. It is well known that a prime link diagram corresponds to a signed
plane graph without cut vertices (Kauffman, 1989). In this paper, we present
a new relation between prime links and cubic 3-polytopes. Let S be the set of
links such that each L ∈ S has a diagram whose corresponding signed plane
graph is the graph of a cubic 3-polytope. We show that all nontrivial prime
links, except (2, n)-torus links and (p, q, r)-pretzel links, can be obtained from S
by using some operation of untwining. Furthermore, we define the generalized
cubic 3-polytope chains and then show that any nontrivial link can be obtained
from S by some untwining operations, where S is the set of links corresponding
to generalized cubic 3-polytope chains. These results are used to simplify the

computation of the Kauffman brackets of links so that the computing can be
done in a unified way for many infinite families of links.

1. Introduction

It is well known that a link diagram corresponds to a signed plane graph. In [5],
Kauffman showed that the Kauffman bracket polynomial of a link can be obtained
by computing the generalized Tutte polynomial of its corresponding signed plane
graph. In [7], Read and Whitehead showed the relation between a chain polynomial
and a chromatic polynomial. Recently it was shown [10] that the Kauffman bracket
polynomial of a signed plane graph can be obtained from its chain polynomial. Fur-
thermore, an equivalent relation was defined on the set of link diagrams according
to the homeomorphic types of their corresponding signed plane graphs, so that we
can compute the Kauffman brackets for all the members of each equivalent class
in a unified way. For prime links we only need to consider the signed plane graphs
without cut vertices. If we neglect the signs, we can choose a graph without cut ver-
tices or the vertices of degree two as the representatives for each equivalent class.
Then the Kauffman bracket polynomial of members in each equivalent class can
be easily obtained from the chain polynomial of their representative by a special
parametrization. In [8], we call all these representatives universal graphs. In [10],
the universal graphs (signs neglected) with cyclomatic number less than 5 were
listed. The numbers of universal graphs with cyclomatic numbers 1, 2, 3 and 4 are
1, 2, 4 and 16, respectively. Examples were provided to compute the chain polyno-
mials and their corresponding Kauffman bracket polynomials of the set of links in
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equivalent classes. It was also shown that there are 111 plane graphs without cut
vertices or the vertices of degree two which are universal graphs (signs neglected)
with cyclomatic number 5. The 111 graphs were found in [4] by a computer search
and proved in [9]. Clearly it is a tedious task to compute the chain polynomials
of these 111 graphs and use them to compute the Kauffman bracket polynomials
of links. So, in [8], we reduced the universal graphs to be the 3-edge-connected
plane graphs without cut vertices, so that the numbers of universal graphs with
cyclomatic numbers 1, 2, 3, 4 and 5 are 1, 1, 3, 10 and 56, respectively (see [8],
Figure 7.) We observed that some universal graphs can be obtained from others by
contracting some edges, and so we further reduced the number of universal graphs
with cyclomatic numbers 3, 4 and 5 to 1, 1 and 2, respectively.

In this paper we study the universal graphs more thoroughly. Let S be the set
of links such that each L ∈ S has a diagram whose representative is the graph of a
cubic 3-polytope. We will show that all nontrivial prime links, except (2, n)-torus
links and (p, q, r)-pretzel links, can be obtained from S by using an operation of
untwining. Thus we can reduce the universal graphs to be the graphs of cubic 3-
polytopes. Then the Kauffman bracket of a prime link except (2, n)-torus links and
(p, q, r)-pretzel links can be easily computed by the chain polynomial of a signed
plane graph in the reduced universal graph set by a special parametrization. In
order to study general links, we define the generalized cubic 3-polytope chains and
then show that any nontrivial link can be obtained from S by some untwining
operations, where S is defined to be the set of links such that each L ∈ S has a
diagram whose representative is a generalized cubic 3-polytope chain. These results
are used to simplify the computation of the Kauffman brackets of links so that the
computing can be done in a unified way for many infinite families of links. Moreover,
we found the relation between the crossing number of a link and the cyclomatic
number of its corresponding graph. With this relation we can find the Kauffman
brackets of all links with small crossing numbers.

2. Preliminaries

A graph G is an ordered triple (V (G), E(G), ψG) consisting of a nonempty set
V (G) of vertices, a set E(G), disjoint from V (G), of edges, and an incidence func-
tion ψG that associates each edge of G with an unordered pair of (not necessar-
ily distinct) vertices of G (see [2] for the details). Throughout this paper, we
use d(u) to denote the degree of a vertex u, and use χ′(G) to denote the edge-
connectivity of G. The cyclomatic number of a graph G, denoted by n(G), equals
|E(G)| − |V (G)|+ k(G), where k(G) is the number of connected components of G.

The convex hull of a finite set of points V in the Euclidean 3-space is called the
(convex) 3-polytope generated by V . The pair consisting of the set of vertices and
the set of edges (1-faces) of a 3-polytope is called the graph of the 3-polytope.

Theorem 2.1 (Steinitz [3]). A simple graph is the graph of a 3-polytope if and only
if it is planar and 3-connected.

A link L with n components is a subset of R
3 ⊂ R

3∪{∞}, consisting of n disjoint
piecewise linear simple closed curves. A knot is a link of one component. Although
links live in R

3, we usually represent them by link diagrams: the regular projections
of links into R

2 with overpassing curves specified (see [6] for the details).
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Example 2.2. The diagrams of the (right-handed) trefoil knot and the Hopf link
are shown in Figure 1.

Trefoil knot Hopf link

Figure 1. Link diagrams

A signed graph is a graph whose edges are each labeled with a sign (+1 or
−1). There is a correspondence between link diagrams and signed plane graphs via
medial construction. Now we give a brief account of it (for details, see [5]).

Given a link diagram D, we first shade its faces checkerboardly. Then associate
it with an edge-signed multigraph G[D] as follows: for each shaded face F , take a
vertex υF in F , and for each crossing at which two shaded faces Fi and Fj meet,
take an edge υFi

υFj
. Furthermore, give each edge υFi

υFj
a sign according to the

type of the crossing as shown in Figure 2. We call the obtained graph a signed plane
graph. Note that every link diagram has precisely two distinct shadings: one with
the unbounded face shaded; the other with the unbounded face unshaded. So each
link diagram corresponds to two signed plane graphs which are dual (see Figure 3.)

Conversely, for each signed plane graph G, we can construct the corresponding
link diagram D. Firstly, we construct the medial graph M(G) of the plane graph
G (without the signs). If G is a connected nontrivial plane graph, M(G) is a 4-
regular plane graph defined as follows: its vertex set is obtained by taking a point
on each edge of G; and two vertices are joined by an edge lying in a face of G if
they are on adjacent edges of the face so that each face f of G determines r edges
of M(G) if the face f has r edges. If G is trivial (that is, it is a single vertex), then
M(G) is a simple closed curve surrounding the vertex (strictly speaking, it is not
a genuine graph). If G is not connected, then M(G) is the disjoint union of the
medial graphs of its connected components. Secondly, we turn M(G) into a link
diagram D = D(G) by converting each vertex of M(G) into a crossing according
to the sign of the edge where the vertex is located, as indicated in Figure 2.

e

sign 1=+sign 1=-

e

Figure 2. Signs of edges corresponding to two kinds of crossings



1844 WEILING YANG AND FUJI ZHANG

Example 2.3. The diagram of knot 944 and its two corresponding signed plane
graphs are shown in Figure 3.
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Figure 3. A link diagram (thick line) with two corresponding
signed plane graphs (thin line)

Definition 2.4 ([5]). The Kauffman bracket polynomial 〈D〉 ∈ Z[A, A−1] of a link
diagram D is defined by the following two properties:

(1) The Kauffman bracket polynomial of a diagram consisting of k disjoint
simple closed curves in the plane is dk−1, where d = −A2 − A−2.

(2) 〈D〉 = A〈D1〉 + A−1〈D2〉, where D, D1 and D2 are identical diagrams
except that a crossing of D is nullified in two different ways to form D1 and
D2 respectively (see Figure 4).

D D1 D2

Figure 4

Let G = (V (G), E(G), ψG) be a graph,
−→
G = (V (G),

−−−→
E(G),

−→
ψG) be an orientation

of G. A q-flow is a map f :
−→
E −→ Zq such that Kirchhoff’s current law is satisfied,

namely, for each vertex v the total flow out of v is equal to the total flow into v.
A q-flow is said to be nowhere-zero if it has a nonzero value on each edge. One
can easily see that the number of nowhere-zero q-flows does not depend on the
orientation of G. So we write F [G](q) for the number of nowhere-zero q-flows in G.
It is not difficult to see that F [G](q) is a polynomial in q (see [1] for the details).

Definition 2.5 ([7]). Let M be a graph whose edges have been labeled with ele-
ments of a commutative ring with identity 1. The chain polynomial Ch[M ] of M
is defined as

(2.1) Ch[M ] =
∑

Y

F [E(M − Y )](1 − w)ε(Y ) =
∑

Y

F [Y ](1 − w)ε(E(M) − Y ),
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where the summation is over all subsets of E(M); F [Y ] (respectively F [E(M)−Y ])
is the flow polynomial of 〈Y 〉 (respectively 〈E(M)−Y 〉) , the subgraph of M induced
by the edges in Y (respectively E(M) − Y ) ; ε(Y ) (respectively ε(E(M) − Y )) is
the product of labels of the edges (we usually identify an edge with its label) in Y
(respectively E(M) − Y ).

A path P in a graph M is called a chain in M if every inner vertex of P has
degree 2 in the graph M but the end vertices (not necessary distinct) of P have
degree not equal to 2 in M .

The following proposition is implicit in [7] and is presented in the current form
in [10].

Proposition 2.6 ([10]). Let a be a chain of M , and let M − a and M/a be the
graphs obtained from M by deleting and contracting the chain a respectively. Then
if a is a loop, Ch[M ] = (a−w)Ch[M −a], and otherwise, Ch[M ] = (a−1)Ch[M −
a] + Ch[M/a].

Definition 2.7 ([10]). A signed graph G is special if it satisfies the property: for
any chain of G, all edges of this chain have the same sign.

As pointed out in [10], every prime link has a corresponding special signed plane
graph. To a special signed graph G, we define the length of a chain a to be the
sum of the signs of the edges in the chain, and denote it by na. It is not difficult
to see that a special signed plane graph can be reduced by suppressing the vertices
of degree 2 until suppression is no longer possible. We call this reduced graph the
reduction of the signed plane graph, and denote it by R(G). Obviously there is a
one-to-one correspondence between the chains of G and the edges of R(G).

Theorem 2.8 ([10]). Let D be a link diagram, G be a special signed plane graph
of D, and R be the reduction of G. In Ch[R], if we replace ω by −A4 − 1 − A−4,
and replace a by (−A−4)na for every chain a, then

(2.2) 〈D〉 =
Am

(−A2 − A−2)q−p+1
Ch[R],

where m is the sum of all signs of G, and p and q are the numbers of vertices and
edges of graph R, respectively.

3. Main result

In this section, we will show that, by using an operation, all nontrivial prime
links, except (2, n)-torus links and (p, q, r)-pretzel links, can be obtained from S,
and all nontrivial links can be obtained from S, where S is the set of links such that
each L ∈ S has a diagram whose corresponding signed plane graph is the graph
of a cubic 3-polytope, and S is the set of links corresponding to generalized cubic
3-polytope chains (cf. Definition 3.5 below). Some examples are given to illustrate
our approach.

Lemma 3.1. Let M be a 3-edge-connected plane graph without cut vertices. If M
is not a cubic graph, then M can be obtained from a 3-edge-connected cubic plane
graph with the same cyclomatic number and without cut vertices by contracting
some edges.
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Proof. Let M0 = M . We will proceed inductively to construct a finite sequence
(M0, M1, ..., Mr) of 3-edge-connected graphs without cut vertices such that the
number of vertices with degree more than 3 in Mi is strictly decreasing when i
increases and the last graph Mr in the sequence is cubic. Suppose M0, M1, . . . , Mi

have been constructed where Mi is not yet cubic. Arbitrarily take a vertex u ∈
V (Mi) with d(u) � 4. Then choose edges e1, e2 incident with u, so that there is
no 3-edge cut containing both e1 and e2. Then split the vertex u d(u)− 3 times as
illustrated in Figure 5, so that u becomes a vertex of degree 3.

e1

e2

e

e1

e2

u

u

e

e1

e2

u

Figure 5. Splitting vertex u

Denote the resultant graph by Mi+1. Clearly, Mi+1 has the same cyclomatic
number as Mi, and its number of vertices with degree more than 3 is less than that
of Mi. Repeating this procedure we will finally get Mr as a cubic graph.

To ensure that we can perform the operations of splitting and execute the induc-
tive procedure to produce the sequence of 3-edge connected graphs M0, M1, ..., Mr

as desired, we only need to show the following two statements:
(S1) In Mi, if d(u) � 4, there exist two edges e′ and e′′ incident with u such that

for any edge e ∈ E(Mi), {e′, e′′, e} is not an edge cut.
(S2) Mi+1 is a 3-edge-connected graph without cut vertices.
Proof of (S1): It’s trivial if the edge-connectivity χ′(Mi) ≥ 4. So we only

consider the case χ′(Mi) = 3. Assume that edges e1, e2, e3, e4 are incident with
u. If for any edge e ∈ E(Mi), {e1, e2, e} is not an edge cut, there is nothing to
prove. So we assume that there exists an edge e such that {e1, e2, e} is an edge
cut. Clearly, at least one of e3 and e4 is not e, say e3 	= e. We claim that {e2, e3}
cannot be contained in any 3-edge cut. Suppose, to the contrary, that there exists
an edge a such that {e2, e3, a} is an edge cut. In the following we will show that a
contradiction will occur. Noting that Mi−{e1, e2} has a cut edge e, and χ′(Mi) = 3,
Mi can be depicted as in Figure 6:

G1 G2

u
e1

e2
e 3

e

Figure 6. Mi



LINKS AND CUBIC 3-POLYTOPES 1847

Clearly, G1 and G2 are both connected.
Case 1. G1 and G2 are not both 2-edge-connected. That is, for some i ∈ {1, 2},

Gi has a cut edge b. Then Gi − b has exactly two components, say H1, H2. Let

(Hj) denote the set of edges joining the vertices of Hj to the vertices in V (G) −
V (Hj), j ∈ {1, 2}. Because 
H1∪
H2 = {b, e1, e2, e} and 
H1∩
H2 = {b}, one
of 
H1 and 
H2 is a 1- or 2-edge cut of Mi, which contradicts that χ′(Mi) = 3.

Case 2. G1 and G2 are both 2-edge-connected. Now we will see the expected
contradiction by considering the edge a.

• If a = e, then G1 − {e3} and G2 are both connected. So Mi − {e2, e3, a} is
connected, a contradiction.

• If a = e1, then G1 − {e3} and G2 are both connected. So Mi − {e2, e3, a}
is connected, a contradiction.

• If a ∈ E(G2), then G2 − {a} and G1 − {e3} are both connected. So Mi −
{e2, e3, a} is connected, a contradiction.

• If a ∈ E(G1), we consider the following two cases:
subcase 1: {e3, a} is not an edge cut of G1. Then G1 − {e3, a} is con-

nected. So Mi − {e2, e3, a} is connected, a contradiction.
subcase 2: {e3, a} is an edge cut of G1. The graph can be illustrated as

in Figure 7, where H1 and H2 are connected since G1 is 2-edge-connected.

H1

H2

G2

e1

e2

e3

e

a

Figure 7. Mi

Note that one end of e must be in H2 (otherwise {a, e3} is a 2-edge cut of Mi,
contradicting that χ′(Mi) = 3). Thus Mi−{e2, e3, a} is connected, a contradiction.

Proof of (S2): By contradiction. Suppose, to the contrary, that {a, b} is an edge
cut of Mi+1. Then one of {a, b}, say a, is the new edge resulting from a splitting
(otherwise it contradicts that χ′(Mi) = 3). From the process of splitting, we know
that one end of a, say u, has degree 3. Suppose all the edges e1, e2, and a are
incident with u. Then {e1, e2, b} is a 3-edge cut of Mi. This contradicts the choice
of e1, e2 (see Figure 8).

Clearly Mi+1 has no cut vertices since any vertex in Mi is not a cut vertex. This
completes the proof of (S2).

Thus we can inductively construct a desired finite sequence (M0, M1, ..., Mr) of
3-edge-connected graphs without cut vertices such that the number of vertices with
degree more than 3 in Mi is strictly decreasing when i increases and the sequence
ends at a cubic graph Mr. When we reverse the process, we can get M from Mr

by contracting some edges.
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a

b

e 1

e
2

u

Figure 8. Mi+1

�

Lemma 3.2. Let G be a 3-edge-connected cubic plane graph without cut vertices.
Then G is the graph of a cubic 3-polytope or the graph of two vertices joined by
three multi-edges.

Proof. If G is simple, then by an exercise in [2, P44, 3.1.6], G is 3-connected. By
Theorem 2.1, G is the graph of a cubic 3-polytope. If G is not simple, it is clear
that G has no loops. There are only two cases to consider:

Case 1: G has the local configuration shown in Figure 9.

e1
e2

Figure 9. G

Then {e1, e2} is a 2-edge cut, a contradiction.
Case 2: G has two vertices joined by three multi-edges. Then, since G is cubic,

it has no more vertices or edges. So G is the graph of two vertices joined by three
multi-edges. The lemma is thus proved. �

The untwining of links is the local transformation of some half twists to parallel
strands as showing in Figure 10.

Figure 10. The operation of untwining

Theorem 3.3. Any nontrivial prime link, except (2, n)-torus links and (p, q, r)-
pretzel links, can be obtained from a link in S by some untwining operations, where
S is the set of links such that each L ∈ S has a diagram whose corresponding signed
plane graph is the graph of a cubic 3-polytope. Conversely, any graph G of a cubic
3-polytope corresponds to some link diagrams with the minimal number of crossings.
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Proof. Given any nontrivial prime link L that is neither a (2, n)-torus link nor a
(p, q, r)-pretzel link, if it has a diagram whose corresponding reduced signed plane
graph (signs neglected) is the graph of a cubic 3-polytope, then nothing needs to
be proved. So, letting D be a diagram of L, and M be its corresponding reduced
signed plane graph, we assume that M is not the graph of a cubic 3-polytope. Since
M has no cut vertices, M is 2-edge-connected. If M is not 3-edge-connected and L
is not a (2, n)-torus link, then for each 2-edge cut of M , we writhe D nb times to
eliminate it as shown in Figure 11. Then we get a diagram D

′
of the same link L,

and the reduced signed plane graph of D
′

is 3-edge-connected (for details, see [8],
theorem 2).

Without loss of generality we may assume that M is a 3-edge-connected plane
graph. By Lemma 3.1, M can be obtained from a 3-edge-connected cubic plane
graph R by contracting some edges. Since L is neither a (2, n)-torus link nor a
(p, q, r)-pretzel link, by Lemma 3.2, R is the graph of a cubic 3-polytope. One can
see that the effect of the untwining operation to the link corresponds to that of
the contraction operation to its corresponding graph (see Figure 12). So L can be
obtained from a link in S by some untwining operations.

na
n b

n a
n b

M D

n na b+n na b+

D ' M '

Figure 11. Get M
′
from M , where D

′
is another diagram of L

Figure 12. The effect of the untwining operation

For any graph of a cubic 3-polytope, if we give every edge a sign +1, then we get
an alternative link diagram L. Clearly there are no nugatory crossings in L. Note
that a crossing is said to be a nugatory crossing if some two of the local regions
appearing at the crossing are parts of the same region in the whole diagram. A
nugatory crossing appears as a loop or a cut edge in the signed plane graph, which
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cannot exist in any graph of a cubic 3-polytope. By Theorem 22 in [1, p. 371] and
the remark after it, we know that the alternative link diagram L has the minimal
number of crossings. The theorem is thus proved. �

Remark 3.4. Theorem 3.3 claims that any nontrivial prime link L, except (2, n)-
torus links and (p, q, r)-pretzel links, can be produced from a link in S, and so the
signed plane graph of L can be obtained from the graph M of a cubic 3-polytope.
However, we need to point out that M is not unique. An example is shown in
Figure 13.

Figure 13. Perko pair knots (thick line) and their signed plane
graphs (thin line)

It is well known that the Perko pair knots are the same knot. However, we
can see that one of the Perko pair knots can have its reduced signed plane graph
obtained from R5

1 (see Figure 17) by contracting the edges e, d, g, h, and the other
of the Perko pair knots can have its reduced signed plane graph obtained from R4

1

(see Figure 17) by contracting c, d.

Now we give three examples in Figure 14 to illustrate how to construct an al-
ternative link diagram with the minimum number of crossings from the graph of
a cubic 3-polytope. From the diagrams, we know that these three links are all
periodic links with periods 3, 4 and 5, respectively.

As for the other links corresponding to platonic solids, octahedron and icosahe-
dron are mirror images of the cube and the dodecahedron, respectively. Now we
consider the general nontrivial links that do not need to be prime.

Definition 3.5. A generalized cubic 3-polytope chain is the graph which can be
depicted as a “path” of graphs (see Figure 15), where Gi is the graph of a cubic 3-
polytope, or a single vertex with a loop, or two vertices joined by three multi-edges,
and each Gi has only a single vertex in common with the next.

Theorem 3.6. Any nontrivial link can be obtained from a link in S by some un-
twining operations, where S is the set of links such that each L ∈ S has a diagram
whose corresponding signed plane graph is the graph of a generalized cubic 3-polytope
chain.

Proof. For any nontrivial link K, there exist nontrivial prime links K1, K2, ..., Kj

(j � 1) such that K = K1#K2#...#Kj . Precisely, any link can be factored into a
finite number of prime links, and these prime factors are uniquely determined up
to order. Based on the relation between the operation of untwining to link and
the operation of contraction to its corresponding signed plane graph, we will show
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Tetrahedron

Cube

Dodecahedron

Figure 14. Three graphs of cubic 3-polytopes and their corre-
sponding link diagrams

G1 G2 Gn 1- Gn

Figure 15. A generalized cubic 3-polytope chain

that there exists a reduced signed plane graph of K which can be obtained from
a generalized cubic 3-polytope chain by contracting some edges. Now we identify
the link with its diagram. Suppose Gi (1 � i � j) is the reduced signed plane
graph corresponding to Ki. If j = 1, by Theorem 3.3, G1 can be obtained from the
graph of a cubic 3-polytope by contracting some edges, provided K = K1 is neither
a (2, n)-torus link nor a (p, q, r)-pretzel link. Note that the reduced signed plane
graphs of (2, n)-torus links and (p, q, r)-pretzel links are a single vertex with a loop,
and two vertices joined by three multi-edges, respectively. So the reduced signed
plane graph G1 of K can be obtained from a generalized cubic 3-polytope chain by
contracting some edges. If j = 2 we make K1#K2 as follows: one of the shaded
regions γ1 in K1 is joined to one of the shaded regions γ2 in K2. Suppose that
u1 ∈ K1 and u2 ∈ K2 correspond to γ1, γ2 in the signed plane graphs of K1 and
K2, respectively. Then the graph obtained by identifying u1 and u2 is the signed
plane graph of K1#K2. Note that in K1#K2, K1(K2) can slide along the strand
of K2 (K1). So the resultant K1#K2 does not depend on the choice of the regions
γ1, γ2. Thus we can choose the regions such that d(u1), d(u2) � 3, provided neither
G1 nor G2 is a single vertex with a loop. Now we can conclude that H = G1 ∪ G2
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with G1 and G2 sharing one vertex (see Figure 16) is the reduced signed plane
graph of K1#K2.

G1 G2

H

Figure 16. H

By Theorem 3.3, Gi (i = 1, 2) can be obtained from the graph of a cubic 3-
polytope by contracting some edges, or Gi is a single vertex with a loop, or two
vertices joined by three multi-edges. So the reduced signed plane graph H of
K1#K2 can be obtained from a generalized cubic 3-polytope chain by contracting
some edges. By induction on j, we have proved the corollary. �

From Theorem 3.3, we know that the graphs of cubic 3-polytopes are the core
of link diagrams. It is known that the numbers of graphs of cubic 3-polytopes with
cyclomatic numbers 3, 4, 5 and 6 are 1, 1, 2 and 5, respectively (see Figure 17).
Usually we list the links according to their crossing numbers. On the other hand,
we can list the cubic 3-polytopes according to their cyclomatic numbers. A natural
problem is to consider the relation between the crossing number of a link and the
cyclomatic number of its corresponding signed plane graphs. Clearly the results
can be used to exhaust the links with small crossing numbers.

In section 2, we have pointed out that a link diagram corresponds to a pair of
dual signed plane graphs. Furthermore, we will have following:

Theorem 3.7. For any link diagram D, at least one of its dual signed plane graphs
has cyclomatic number at most �n

2 
, where n is the crossing number of D.

Proof. We may view the link diagram D as a 4-regular plane graph H whose vertices
are the crossings of D. So |V (H)| = n, |E(H)| = 2n. By Euler’s formula, |V (H)| −
|E(H)|+ |φ(H)| = 2, where |φ(H)| is the number of faces of H. So |φ(H)| = n+ 2.

Let G1, G2 be the dual signed plane graphs corresponding to D. Then |E(G1)| =
|E(G2)| = n, |V (G1)| + |V (G2)| = |φ(H)| = n + 2. Suppose |V (G1)| � |V (G2)|.
Then G1 has the cyclomatic number n(G1) = |E(G1)|− |V (G1)|+1 � n−�n+2

2 �+
1 = �n

2 
. �

By Theorem 3.7, if we know the chain polynomials of the graphs of cubic 3-
polytopes with cyclomatic numbers no more than n, we can compute the Kauffman
bracket polynomials of prime links with crossing numbers no more than 2n + 1.

4. Computing of chain polynomial and Kauffman bracket polynomial

By Theorem 3.3, we know that any nontrivial prime link diagram D, except
the diagrams of (2, n)-torus links and (p, q, r)-pretzel links, can be obtained by
contracting some edges of the corresponding graph M of a cubic 3-polytope. In
other words, we proved that the set of universal graphs for prime links consists
of the graphs of cubic 3-polytopes, besides two special cases which are a loop and
two vertices with three multi-edges. For general links, the corresponding universal
graphs are the generalized cubic 3-polytope chains. By the properties of a chain
polynomial, it can be seen that when we use 1 to replace each contracted edge a
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that appears in Ch[M ], we get Ch[D]. Then by Theorem 2.8, we can compute the
Kauffman bracket polynomial of D. So the Kauffman bracket polynomial of any
nontrivial link, except (2, n)-torus links and (p, q, r)-pretzel links, can be computed
from the chain polynomial of the signed plane graph of a cubic 3-polytope by a
special parametrization. On the other hand, the chain polynomials of the signed
plane graphs of (2, n)-torus links and (p, q, r)-pretzel links have been found in [8],
and so their Kauffman bracket polynomials can be obtained easily.

By Theorem 3.7, if we know the chain polynomials of the graphs of all cubic 3-
polytopes with cyclomatic number no more than 6, we can compute the Kauffman
bracket polynomials of all prime links with crossing number no more than 13. The
chain polynomials of graphs of cubic 3-polytopes with cyclomatic number no more
than 5 have been listed in [8]. In Figure 17 we list all the graphs of cubic 3-polytopes
with cyclomatic number no more than 6. The chain polynomials of graphs of cubic
3-polytopes with cyclomatic number 6 have been obtained by using the computer
algebra system MAPLE and are presented in [12].
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Figure 17. The graphs of cubic 3-polytopes with cyclomatic num-
bers 3, 4, 5 and 6

By observation, we find that the chain polynomials of graphs of cubic 3-polytopes
can be obtained by the chain polynomials of some graphs of cubic 3-polytopes with
smaller cyclomatic numbers. For example, by Proposition 2.6 we can get the chain
polynomial of R6

2 as shown in Figure 18.
If we have known Ch[R5

1], by making a proper change of labels, we can get
Ch[G] and Ch[H]. Then we get Ch[R6

2]. Obviously this approach can allow us to
go further.

Remark 4.1. It has been pointed out in [7] that a list of 3-edge-connected cubic
graphs would be sufficient to give us the chain polynomials for all graphs with a
given value of |E(G)| − |V (G)|. But there is a gap in the proof. Every graph M1

can be obtained from a cubic graph M2, but M2 need not be 3-edge-connected. If
we do the operation in [7, Corollary of Theorem 4(b)] to get a 3-edge-connected
graph M3, M3 may not be a cubic graph (see Figure 19). But this gap can be fixed
by using Lemma 3.1.
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M1 M2 M3

Figure 19

Example 4.2 (see Figure 20). Compute the Kauffman bracket polynomial of the
knot 139221 by using the chain polynomial of R6

3 and a special parametrization.
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hij
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m

P q
r
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3

Figure 20. The corresponding signed plane graph of knot 139221,
where e = g = h = m = 1, nb = ni = 2, na = nc = nd = nf =
nj = nk = np = nq = nr = −1.

First, we let e = g = h = m = 1 in Ch[R6
3]. Second, we replace w by −A4 −

1−A−4, replace each of the chains a, c, d, f, j, k, p, q, r by −A4, and replace each of
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the chains b, i by (−A−4)2. Then we get the chain polynomial of the signed plane
graph of 139221. By Theorem 2.8, we have:

〈D〉 =
A−5

(−A2 − A−2)6
Ch[R6

3]

= A−25 − 5A−21 + 10A−17 − 15A−13 + 19A−9 − 20A−5 + 19A−1

−15A3 + 10A7 − 5A11.

Example 4.3 (see Figure 21). Compute the Kauffman bracket polynomial of the
knot 15203432 by using the chain polynomial of R6

5 and a special parametrization.
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Figure 21. The corresponding signed plane graph of knot
15203432, where a = b = c = e = f = g = 1, nr = nk = 2, nd =
nm = 3, nh = ni = nj = np = nq = −1.

First, we let a = b = c = e = f = g = 1 in Ch[R6
5]. Second, we replace w by

−A4 − 1 − A−4, replace each of the chains h, i, j, p, q by −A4, replace each of the
chains r, k by (−A−4)2, and replace each of the chains d, m by (−A−4)3. Then we
get the chain polynomial of the signed plane graph of 15203432. By Theorem 2.8,
we have:

〈D〉 =
A5

(−A2 − A−2)6
Ch[R6

5]

= A−35 − 4A−31 + 10A−27 − 20A−23 + 29A−19 − 36A−15 + 39A−11

−35A−7 + 30A−3 − 19A + 10A5 − 4A9 − A13 − A21.

Example 4.4 (see Figure 22). Compute the Kauffman bracket polynomial of the
knot 15203969 by using the chain polynomial of R6

5 and a special parametrization.
Firstly, we let a = b = c = e = f = g = 1 in Ch[R6

5]. Secondly, we replace w by
−A4−1−A−4, replace each of the chains i, j, k, m, q by −A4, replace each of r, p by
(−A−4)2 , and replace each of d, h by (−A−4)3. Then we get the chain polynomial
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Figure 22. The corresponding signed plane graph of knot
15203969, where a = b = c = e = f = g = 1, nr = np = 2, nd =
nh = 3, ni = nj = nk = nm = nq = −1.

of the signed plane graph of 15203969. By Theorem 2.8, we have:

〈D〉 =
A5

(−A2 − A−2)6
Ch[R6

5]

= A−35 − 4A−31 + 10A−27 − 20A−23 + 29A−19 − 36A−15 + 39A−11

−35A−7 + 30A−3 − 19A + 10A5 − 4A9 − A13 − A21.

Finally, we would like to give two remarks.

Remark 4.5. As pointed out in [10], for each universal graph, we can compute the
Kauffman brackets of an infinite family of links by special parametrization. From
the table of links, we observe that for most links, their corresponding signed plane
graphs have vertices of degree two. So our method can simplify the computing
procedure.

Remark 4.6. In [11], Read developed techniques by some graph operations to com-
pute the chain polynomials of graphs. His result can also be used to compute the
chain polynomials here. But with the aid of MAPLE, our method with parametriza-
tion is more straightforward.

Acknowledgement

We would like to thank professor Zhibo Chen and Dr. Xian’an Jin for their
helpful comments.

References

1. B. Bollobas, Modern Graph Theory, Springer-Verlag, New York, 1998. MR1633290
(99h:05001)

2. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam.
1981.

3. A. Brøndsted, An Introduction to Convex Polytopes, Springer-Verlag, New York, 1982.
MR683612 (84d:52009)

4. B.R. Heap, The enumeration of homeomorphically irreducible star graphs, Journal of Math-
ematical Physics, 7 (1966), 1852-1857. MR0202638 (34:2500)

http://www.ams.org/mathscinet-getitem?mr=1633290
http://www.ams.org/mathscinet-getitem?mr=1633290
http://www.ams.org/mathscinet-getitem?mr=683612
http://www.ams.org/mathscinet-getitem?mr=683612
http://www.ams.org/mathscinet-getitem?mr=0202638
http://www.ams.org/mathscinet-getitem?mr=0202638


LINKS AND CUBIC 3-POLYTOPES 1857

5. L.H. Kauffman, A Tutte polynomial for signed graphs, Discrete Appl. Math. 25 (1989), 105-
127. MR1031266 (91c:05082)

6. L.H. Kauffman, Knots and Physics, third edition, World Scientific Publishing Co., River Edge,
NJ, 2001. MR1858113 (2002h:57012)

7. R.C. Read and E.G. Whitehead, Chromatic polynomials of homeomorphism classes of graphs,
Discrete Math. 204 (1999), 337-356. MR1691877 (2000b:05059)

8. Weiling Yang and Fuji Zhang, The Kauffman bracket polynomial of links and universal signed

plane graph, Lecture Notes in Computer Science 4381, 228–244, Springer-Verlag, New York,
2007.

9. Weiling Yang and Xian’an Jin, The construction of 2-connected plane graph with cyclomatic
number 5, (in Chinese) Journal of Mathematical Study, 37 (2004), 83-95. MR2229412

10. Xian’an Jin and Fuji Zhang, The Kauffman brackets for equivalence classes of links, Advances
in Appl. Math. 34 (2005), 47-64. MR2102274 (2005j:57009)

11. R.C. Read, Chain polynomials of graphs, Discrete Math. 265 (2003), 213-235. MR1969375
(2004c:05074)

12. http://math.xmu.edu.cn/school/teacher/fzzhang/fuji zhang.html

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, Peo-

ple’s Republic of China

E-mail address: ywlxmu@163.com

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, Peo-

ple’s Republic of China

E-mail address: fjzhang@xmu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=1031266
http://www.ams.org/mathscinet-getitem?mr=1031266
http://www.ams.org/mathscinet-getitem?mr=1858113
http://www.ams.org/mathscinet-getitem?mr=1858113
http://www.ams.org/mathscinet-getitem?mr=1691877
http://www.ams.org/mathscinet-getitem?mr=1691877
http://www.ams.org/mathscinet-getitem?mr=2229412
http://www.ams.org/mathscinet-getitem?mr=2102274
http://www.ams.org/mathscinet-getitem?mr=2102274
http://www.ams.org/mathscinet-getitem?mr=1969375
http://www.ams.org/mathscinet-getitem?mr=1969375

	1. Introduction
	2. Preliminaries
	3. Main result
	4. Computing of chain polynomial and Kauffman bracket polynomial
	Acknowledgement
	References

