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UNIMODULAR INTEGER CIRCULANTS

J. E. CREMONA

Dedicated to the memory of R. W. K. Odoni, 1947–2002

Abstract. We study families of integer circulant matrices and methods for de-
termining which are unimodular. This problem arises in the study of cyclically
presented groups, and leads to the following problem concerning polynomials
with integer coefficients: given a polynomial f(x) ∈ Z[x], determine all those
n ∈ N such that Res(f(x), xn − 1) = ±1. In this paper we describe methods
for resolving this problem, including a method based on the use of Strassman’s
Theorem on p-adic power series, which are effective in many cases. The meth-
ods are illustrated with examples arising in the study of cyclically presented
groups and further examples which illustrate the strengths and weaknesses of
the methods for polynomials of higher degree.

1. Statement of the problem and preliminary results

In the study of cyclically presented groups (see [8], [6], [7], [17], and [10, Chapter
16]), the following problem arises. Let f =

∑d
i=0 aix

i be a polynomial of degree d
with integer coefficients. Set ai = 0 for i > d. For each n > d we may form the
circulant matrix Mn(f) of size n whose first row is (a0, a1, . . . , an−1).

Problem A. Given f ∈ Z[x], determine all n > deg(f) such that detMn(f) = ±1.

We see below that this is essentially equivalent to the following problem about
integer polynomials.

Problem B. Given f ∈ Z[x], determine all n ∈ N such that Res(f(x), xn−1) = ±1.

In this section we give some elementary preliminary results, most of which may
be found in [10, Chapter 16] and [14], starting with the reduction of Problem A
to Problem B in Lemma 1. In the subsequent sections we describe two methods
for solving the problem: the first only requires the use of approximations to the
complex roots of f and is guaranteed to work provided that none of these roots
lies on the unit circle; the second uses Strassman’s Theorem on p-adic power series.
The latter has been found to work in practice, at least for polynomials whose degree
is small; further remarks on its general effectiveness will be made later. We also
discuss the question of how to determine for a given integer polynomial whether or
not any of its complex roots do lie on the unit circle, and we give a simple method
for this.
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Clearly, for there to exist any solutions to either problem, a necessary condition is
that the ai are coprime, i.e., that f is primitive; we will therefore often assume this.
We also fix the following notation for the rest of the paper: f(x) =

∑d
i=0 aix

i ∈ Z[x]
has degree d ≥ 1 and leading coefficient ad, with roots βi for 1 ≤ i ≤ d (counted
with multiplicity). Thus f(x) = ad

∏d
i=1(x − βi). The βi will be taken to lie in C

in Section 2, and in Qp for a suitable prime p in Section 3; for now we do not need
to be specific and can regard them as lying in some abstract splitting field for f .

The first result appears in Theorem 2 and in equations (10) and (13) of [10,
Chapter 16], and also in [14, Lemma 2.1].

Lemma 1. Let f(x) ∈ Z[x] have degree d and leading coefficient ad, with roots βi

for 1 ≤ i ≤ d (counted with multiplicity). Then

detMn(f) = Res(f, xn − 1) = (−1)ndan
d

d∏
i=1

(βn
i − 1).

Proof. Well-known properties of circulants and resultants give that

detMn(f) =
∏

ζ:ζn=1

f(ζ) = Res(f, xn − 1) = (−1)ndan
d

d∏
i=1

(βn
i − 1).

�
We now define1

B(f, n) = an
d

d∏
i=1

(βn
i − 1).

Then for n > deg(f) we have B(f, n) = ± detMn(f), but B(f, n) is defined for all
integers n, positive or negative (provided that f(0) �= 0); Problem B is to determine
all positive integers n such that B(f, n) = ±1, and a complete solution to Problem B
for a given polynomial will also give a complete solution to Problem A. It will be
necessary to consider negative n below when we apply p-adic methods.

Corollary. If f has no cyclotomic factors, then B(f, n) �= 0 for all n.

Corollary. Let m, n ∈ N. If m | n, then B(f, m) | B(f, n). Hence, if n is a solution
to Problem B, then so is every positive divisor of n. In particular, if f(1) �= ±1,
then there are no solutions, since B(f, 1) = ±Res(f(x), x − 1) = ±f(1), and if
f(−1) �= ±1, then there are no even solutions, since B(f, 2) = ±Res(f(x), x2−1) =
±f(1)f(−1).

For m ≥ 1 let Φm(x) denote the mth cyclotomic polynomial, which is a monic
irreducible polynomial of degree ϕ(m). For convenience, we will say that f is
cyclotomic if f = ±Φm for some m ≥ 1. Clearly, if f is cyclotomic, then B(f, n) is
periodic (of period dividing ϕ(m)). Algorithms exist (see [1]) to check whether an
irreducible f is cyclotomic; a recursive test is given (for monic irreducible f) by

f is cyclotomic ⇐⇒ either f(x) = g(x2) with g cyclotomic,

or f(x)|f(x2)f(−x2).

Alternatively, if f is monic and irreducible, then it is cyclotomic if and only if all
its roots lie on the unit circle, which may be tested using the methods of Section 2.

1In [14] the notation was Rn(f).
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This follows from Kronecker’s Theorem that the only algebraic integers all of whose
conjugates have modulus 1 are the roots of unity.

Lemma 2. B(fg, n) = B(f, n)B(g, n).

Proof. The proof is clear from the definition. �
Corollary. For n ≥ 1, B(f, n) = ±1 if and only if B(g, n) = ±1 for all irreducible
g dividing f .

Proof. This is clear from Lemma 2 and the fact that B(f, n) ∈ Z for n ≥ 1. �
The factorization xn − 1 =

∏
d|n Φd(x) implies the following.

Lemma 3. For n ≥ 1, B(f, n) =
∏

d|n Res(f, Φd).

Corollary. For f(x) ∈ Z[x] and n ≥ 1, the following are equivalent:
(1) B(f, n) = ±1;
(2) Res(f, Φd) = ±1 for all d | n;
(3) f(ζd) is a unit in the ring Z[ζd] for all d | n, where ζd denotes a primitive

dth root of unity;
(4) Res(f, xn − 1) = ±1;
(5) f (mod xn − 1) is a unit in the ring Z[x]/(xn − 1).

Proof. (1) ⇐⇒ (2) follows from Lemma 3, and (1) ⇐⇒ (4) from Lemma 1.
(2) ⇐⇒ (3) follows since Res(f, Φd) = NQ(ζd)/Q(f(ζd)). (4) =⇒ (5) since there
exist polynomials g, h ∈ Z[x] such that Res(f, xn − 1) = fg + (xn − 1)h, while
(5) =⇒ (3) is clear. �

The characterization (5) above was attributed in [10] to Dunwoody. Note that it
is not quite obvious that (3) and (5) are equivalent, since the rings Z[x]/(xn−1) and⊕

d|n Z[x]/(Φd(x)) are not isomorphic in general (though they certainly become so
after inverting n).

The preceding corollary and the proposition below are also contained in [14,
Theorem 1], as we now explain. Assume that deg(f) ≥ 1 and f is irreducible.
Let ζ be the image of x in Z[x]/(xn − 1). Then Theorem 1(i) (op. cit.) states that
f(ζ) is a zero-divisor if and only if f = ±Φm for some divisor m of n, and Theorem
1(ii) states that the number of n ≥ 1 such that f(ζ) is a unit (and hence such that
B(f, n) = ±1) is finite unless f(x) = ±x or f(x) = ±Φm(x) where m > 1 is not a
prime power. We will return to the case of cyclotomic f in the last section of this
paper.

From now on suppose that f is primitive and irreducible, and that f �= ±x. We
wish to determine the set of n ∈ Z such that B(f, n) = ±1. For any individual
value of n the value of B(f, n) may be easily computed; as for n ≥ 1 we have
B(f, n) = Res(f, xn − 1), and B(f,−n) = ±(aa0)−nB(f, n). So in practice, when
f is not cyclotomic, we can find small solutions to B(f, n) = ±1 by computation,
and then try to prove that there are no more.

For each non-cyclotomic irreducible f �= ±x, the number of solutions to B(f, n) =
±1 is finite (and hence so is the number of solutions for any f with no cyclotomic
factors). This is the content of the next result, which is however non-constructive
and gives no bound on the number or size of solutions.

Proposition 1. Let f ∈ Z[x] be irreducible, not equal to ±x and not cyclotomic.
Then the set of integers n such that B(f, n) = ±1 is finite.
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Proof. Let β be a root of f and K = Q(β), which is a number field of degree deg(f).
Let S be the finite set of primes of K dividing a0ad (recall that ad is the leading
coefficient of f and a0 the constant coefficient). Then β is an S-unit; moreover the
equation B(f, n) = ±1 implies that NK/Q(βn − 1) = ±a−n

d , so that γ = βn − 1 is
also an S-unit. It is a classical result of Siegel that the equation x+ y = 1 has only
finitely many S-unit solutions, so there are only finitely many values in K that βn

may take. Since β is not a root of unity, this implies that there are only finitely
many possible values of n. �

Remark. Algorithms exist to find all solutions to S-unit equations; see, for ex-
ample, [15]. In the case S = ∅ this is implemented in Magma [2], so when f is
monic with f(0) = ±1 we may find all solutions this way. Note, however, that the
algorithm requires us to find the unit group of the number field K, which can be
time-consuming when K has large degree or discriminant. No implementations are
known to the author for general S.

It should be possible, at least in principle, to use effective bounds on the number
and height of solutions to S-unit equations to bound the solutions of our problem.
We expect that these would not be practical except in small cases, and hence
we have developed alternative methods. To illustrate this approach, however, we
present one example solved in this way. Let f = x6+x5−x4−x3−x2+x+1, which
is irreducible and not cyclotomic. Let K = Q(β) where β is a root of f ; the unit
group of K has rank 3. Using Magma’s command UnitEquation, we find that the
equation x+y = 1 has 126 solutions with x, y both units, and 8 of these have x = βn

for some n. Specifically, for n = ±1,±3,±13 we have B(f, n) = NK/Q(βn−1) = +1
and for n = ±2 we have B(f, n) = NK/Q(βn − 1) = −1.

We summarize this section in the following.

Theorem 1. Let f ∈ Z[x] be non-constant, with no cyclotomic factors, and with
f(0) �= 0. Then the set of integers n such that B(f, n) = ±1 is finite, and hence
the set of n > deg(f) for which detMn(f) = ±1 is also finite.

The next two sections of the paper concern methods which may be applied, and
have been found to be effective in most cases, to determine these finite sets for any
given polynomial f . We also give examples and will discuss the weaknesses of the
methods.

We would like to thank Martin Edjvet for introducing the problem to us, and
Sandro Mattarei and the anonymous referee for several helpful comments.

2. Method one: Using complex roots

An elementary constructive method is possible when none of the complex roots
of f lies on the unit circle, so we deal with this case first. Here our method is
guaranteed to give the complete solution and hence may be termed an algorithm
for the complete solution to the original problems.

We will assume that f ∈ Z[x] has no cyclotomic factors and that f(0) �= 0. Below
we will assume that f has no repeated roots, which is no loss since in practice we
apply it to the irreducible non-cyclotomic factors of a given polynomial.

We first describe the method, and then discuss the question of how to decide
whether a given polynomial satisfies this condition on its complex roots.
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Proposition 2. Let f ∈ Z[x] have leading coefficient a = ad > 0, no repeated roots
and no roots on the unit circle. Assume that a0 = f(0) �= 0. Set

S = {β ∈ C | f(β) = 0, |β| < 1}, s = #S,

R = {β ∈ C | f(β) = 0, |β| > 1}, r = #R.

Let n0 be an integer such that

n0 ≥

⎧⎪⎪⎨
⎪⎪⎩

max
(

s log 2
log a

, max
β∈S

{
log 2

− log |β|

})
if r = 0,

max
(

max
β∈S

{
log 2

− log |β|

}
, max

β∈R

{
log c

log |β|

})
if r > 0,

where c = 2s/r + 1. Then B(f, n) = ±1 =⇒ n ≤ n0.

Proof. First note that if r = 0, then all roots have modulus less than one, so

a > a
∏

|β| = |f(0)| ≥ 1,

making the definition of n0 valid since then log a �= 0.
Suppose that r = 0. Then for n > n0 we have

n > s log 2/ log a =⇒ an > 2s;

also, for all roots β,

n ≥ − log 2/ log |β| =⇒ |βn| ≤ 1
2

=⇒ |βn − 1| ≥ 1
2
.

Hence for n > n0 we have
∏

|βn−1| ≥ 2−s > a−n, so that |B(f, n)| > 1 as required.
Next suppose that r > 0 and let n > n0. As before, we have

∏
β∈S |βn−1| ≥ 2−s.

Now for β ∈ R we have

|βn| > |β|n0 ≥ c ≥ 2s/r + 1 =⇒ |βn − 1| > 2s/r,

so that
∏

β∈R |βn − 1| > 2s. Hence
∏

β∈R∪S |βn − 1| > 1 ≥ a−n, so again we have
|B(f, n)| > 1. �

Thus, for polynomials with no roots on the unit circle, we first compute n0 as in
the proposition, using approximations to the roots of f , and then check the values
of B(f, n) for 0 < n ≤ n0 to find all solutions n ∈ N to B(f, n) = ±1.

Detecting roots on the unit circle. In order to apply the preceding method, we
need to have a reliable way, which does not rely on approximations, to determine
whether or not any of the complex roots of f lie on the unit circle. Clearly, numerical
computation of approximations to the roots can establish that their moduli are not
equal to 1, but cannot by itself prove that any root has modulus exactly 1.

We assume that f is primitive, irreducible, and that deg(f) ≥ 2; hence neither
±1 is a root of f and also f(0) �= 0. To any such polynomial f , we associate the
“reverse” polynomial f∗ defined by

f∗(x) = xdeg(f)f(1/x)

whose coefficients are the same as those of f but in reverse order, and whose roots
are the reciprocals of those of f . Our assumptions are satisfied by f∗ if and only if
they are satisfied by f . A polynomial satisfying f = f∗ is called reciprocal.

It has been observed elsewhere, for example in the study of Salem numbers (see
[3, p. 316]) that if an irreducible integer polynomial has a root on the unit circle,
then it must be reciprocal. For completeness we include one proof of this here.
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Proposition 3. Let f ∈ Z[x] be primitive, irreducible and of degree at least 2. If
f has a root on the unit circle, then deg(f) is even and f is reciprocal.

Proof. Let α ∈ C be a root of f with |α| = 1. Then α−1 = α is also a root of f , so
f and f∗ are not coprime. Since f is irreducible, it follows that f∗ = cf for some
constant c, and primitivity implies c = ±1. Now the roots of f come in reciprocal
pairs (recall that ±1 are not roots of f), so deg(f) is even, and consideration of
the product of the roots shows that the leading and constant coefficients of f are
equal, so c = 1 and f is reciprocal. �

Now let f be primitive, irreducible and reciprocal of even degree 2n and leading
coefficient a. We may form2 the so-called “trace polynomial” R0

f (t) ∈ Z[t] of f ,
whose roots are of the form α +α−1 for each pair of reciprocal roots {α, α−1} of f .
To compute R0

f (t), first form the resultant

Rf (t) = Resx(f, x2 − tx + 1) ∈ Z[t],

which is a2 times the product of 2n linear factors t− (α+α−1), one for each root α
of f ; hence Rf (t) = R0

f (t)2 where the trace polynomial R0
f ∈ Z[t] has degree n and

is a times the product of factors t− (α + α−1), one for each reciprocal pair of roots
{α, α−1} of f . Each pair of roots of f which are both conjugate and reciprocal,
and hence which lie on the unit circle, corresponds to a unique real value of t in the
open interval (−2, 2) which is a root of Rf . The number of these can be obtained
by the method of Sturm sequences.

Examples in low degree.

• n = 1, f = a(x2 + 1) + bx: R0
f = at + b. This case is of course elementary,

and the condition for the roots to be complex and hence both of modulus 1
is simply b2 < 4a2.

• n = 2, f = a(x4 + 1) + b(x3 + x) + cx2: R0
f = at2 + bt + c − 2a.

• n = 3, f = a(x6 + 1) + b(x5 + x) + c(x4 + x2) + dx3:

R0
f = at3 + bt2 + ct + d − (3at + 2b).

Implementation.

(1) In pari/gp [18], if f is an integer reciprocal polynomial in the variable x,
then the command3

polsturm(factor(polresultant(f, x2 − t ∗ x + 1))[1, 1],−2, 2)

returns the number of pairs of roots on the unit circle.
(2) In MapleTM [13] the syntax is

sturm(sturmseq(factors(resultant(f, x2 − t ∗ x + 1, x))[2][1][1], t), t,−2, 2).

Example. Let f = 2x6 − 3x3 + 2. Then R0
f (t) = 2t3 − 6t− 3, which has three real

roots, all in the interval (−2, 2); so the roots of f all have modulus 1.

2This terminology was introduced in [9], as was pointed out to us by the referee, but we have
not seen the resultant formula for the trace polynomial elsewhere.

3It is more efficient to recover R0(t) from R(t) = R0(t)2 by computing gcd(R(t), R′(t)), but
this cannot be done in one line!
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Further numerical examples. These examples come from [17]. In each case
an irreducible reciprocal polynomial is given, followed by the number of conjugate
pairs of roots on the unit circle.

f # f #
4x2 − 7x + 4 1 3x4 − 5x2 + 3 2

3x4 − x3 − 3x2 − x + 3 2 3x4 − 2x3 − x2 − 2x + 3 2
3x2 − 5x + 3 1 2x4 + x3 − 5x2 + x + 2 1

2x6 − 3x3 + 2 3 2x6 − x4 − x3 − x2 + 2 3
2x4 − 3x2 + 2 2 2x6 − x5 − x3 − x + 2 3

2x4 − x3 − x2 − x + 2 2 2x4 − x3 − 3x2 − x + 2 1
2x4 − 2x3 + x2 − 2x + 2 2 2x4 − 2x3 − x2 − 2x + 2 1

2x2 − 3x + 2 1 2x4 − 3x3 + x2 − 3x + 2 1
x4 + 2x3 − 5x2 + 2x + 1 1 x6 + x5 − 3x3 + x + 1 1

x6 + x5 − x4 − x3 − x2 + x + 1 2 x4 + x3 − 3x2 + x + 1 1
x6 + x4 − 3x3 + x2 + 1 1 x6 − x4 + x3 − x2 + 1 2
x6 − x4 − x3 − x2 + 1 2 x6 − 2x4 + x3 − 2x2 + 1 1
x6 − x5 − x3 − x + 1 2 x6 − x5 − x4 + x3 − x2 − x + 1 2
x4 − x3 − x2 − x + 1 1 x4 − 2x3 + x2 − 2x + 1 1

x6 − 2x5 + x3 − 2x + 1 2 x4 − 3x3 + 3x2 − 3x + 1 1

3. Method two: Using p-adic roots

We now describe a method which is applicable and works well in practice for
any f �= ±x with no cyclotomic factors, using p-adic analysis and p-adic approx-
imations to the roots of f , instead of the complex roots. This method may be
applied regardless of the size of the complex roots. The use of Strassman’s Theo-
rem (see [4, Theorem 4.1] or [15, Theorem II.5]) in this context was first suggested
to us by Samir Siksek, though we later learned that it had been proposed earlier
as a general method by Odoni in [14]. In that paper, Odoni gives complete results
for f of the form xn − x + 1, but also proves finiteness results for the general case;
he uses an alternative method from transcendence theory, but states clearly that
for general f the so-called p-adic Skolem method is advantageous since Strassman’s
Theorem may be used to bound the solutions n. Here we follow this approach.

The strategy is as follows. Write F±(n) = B(f, n) ± 1. We deal with each sign
separately. Suppose we have a small (finite) set of solutions ni to F+(n) = 0 and
we wish to show that there are no more. We choose a prime number p satisfying a
number of technical conditions (given below) and such that the ni are in different
residue classes modulo p − 1. We then try to use p-adic analysis to show first that
for each i, the number of n ∈ Zp satisfying F+(n) = 0 and n ≡ ni (mod p − 1)
is exactly 1; and then, for all n0 such that n0 �≡ ni (mod p − 1) for all i, that the
number of n ∈ Zp satisfying n ≡ n0 (mod p − 1) is 0 and similarly for F−(n).

Let f ∈ Z[x] be as above, with degree d, leading coefficient a = ad and constant
coefficient a0. As usual we assume that a0 �= 0. Let p ≥ 5 be a prime number not
dividing aa0, such that f splits into d linear factors modulo p. The existence of
such a prime (and in fact infinitely many of them) is guaranteed by the Chebotarev
Density Theorem. Let βi for 1 ≤ i ≤ d be the roots of f in Qp (which exist by
Hensel’s Lemma); in fact each βi ∈ Z∗

p, since p � aa0. We will only need the values
of βi to a finite p-adic precision.
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We now have F±(n) = an
∏

(βn
i −1)±1. Let e be the least positive integer such

that ae ≡ βe
i ≡ 1 (mod p) for all i; by Fermat’s Little Theorem, e | p − 1. There

are advantages in taking the smallest exponent rather than p − 1 (see Example 2
below). The residues modulo p of an and each βn

i , and hence of F±(n), only depend
on n (mod e); we will consider each residue class n ≡ r (mod e) separately.

If F±(r) �≡ 0 (mod p), then certainly F±(n) �= 0 for all n ≡ r (mod e). So
we may restrict our attention to one of the classes r modulo e (if any) for which
F±(r) ≡ 0 (mod p). Fix such an r, and write n = se + r with s ∈ Z. The value
of G(s) = F±(n) = ase+r

∏
(βse+r

i − 1) ± 1 is given by a convergent p-adic power
series in Zp[[s]]. Strassman’s Theorem says that provided that this power series is
not identically zero, G(s) has only finitely many p-adic roots, with a simple bound
for their number in terms of the p-adic valuations of the coefficients of the series.
This often suffices in practice to show that the solutions we have are the only ones;
but we emphasize that its efficacy relies both on first finding all the solutions, and
also on finding a suitable prime; the latter is not trivial when f has large degree,
as we will illustrate in Example 5 below.

For convenience we state Strassman’s Theorem here in the form in which we will
use it. We denote by vp the additive valuation on Qp, normalised so that vp(p) = 1,
and put vp(0) = ∞.

Theorem 2 (Strassman’s Theorem). Let cn for n ≥ 0 be a sequence in Qp, not all
zero, such that cn → 0 as n → ∞. Then the power series g(s) =

∑∞
i=0 cis

i, which
converges for all s ∈ Zp, has at most N zeros in Zp, where

vp(cN ) = min
i

vp(ci) and vp(ci) > vp(cN ) (∀i > N).

Note that since f has no cyclotomic factors, we have βr
i �= 1 for all r and

G(0) �= ±1. We set

(1) c(r) = (ae − 1) +
d∑

i=1

βr
i (βe

i − 1)
(βr

i − 1)
.

Proposition 4. With notation as above, let c = c(r). Then G(s) = F±(n) =∑∞
i=0 cis

i ∈ Zp[[s]], where

c0 = G(0) = F±(r);

c1 ≡ (c0 ∓ 1)c (mod p2);

ci ≡ 0 (mod p2) for i ≥ 2.

Proof. Since F±(r) ≡ 0 (mod p) we have c0 ≡ 0 (mod p).
By choice of e, we have ae = 1 + pb with b ∈ Zp, so

an = ar(1 + pb)s = ar
∞∑

j=0

(
s

j

)
pjbj ,

where
(
s
j

)
= s(s−1) . . . (s−j+1)/j!. Now for i ≥ 2 and p ≥ 5 we have i−vp(i!) ≥ 2;

hence
an ≡ ar(1 + pbs) (mod p2).
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Similarly,

βn
i ≡ βr

i (1 + pδis) (mod p2),

where βe
i = 1 + pδi. It follows that, modulo p2,

G(s) ≡ an
∏

i

(βn
i − 1) ± 1 ≡ ar(1 + pbs)

∏
i

(βr
i (1 + pδis) − 1) ± 1

≡ ar(1 + pbs)
∏

i

((βr
i − 1) + pδiβ

r
i s)) ± 1

≡ ±1 + ar
∏

i

(βr
i − 1) + arps

⎡
⎣b

∏
i

(βr
i − 1) +

∑
i

βr
i δi

∏
j �=i

(βr
j − 1)

⎤
⎦

≡ c0 + (c0 ∓ 1)p

[
b +

∑
i

βr
i δi/(βr

i − 1)

]
s

≡ c0 + (c0 ∓ 1)

[
(ae − 1) +

∑
i

βr
i (βe

i − 1)/(βr
i − 1)

]
s ≡ c0 + (c0 ∓ 1)cs.

�

The following two special cases are of interest. In each case, we only need to
know the roots of f modulo p2 in order to determine the valuation of c(r).

Firstly, suppose that we have a solution n = r and wish to show that there are
no more in its residue class modulo e.

Proposition 5. Suppose that F±(r) = 0 for some integer r. Let p be a prime
satisfying the above hypotheses, let βi ∈ Z∗

p for 1 ≤ i ≤ d be the roots of f and let
c = c(r). If vp(c) = 1, then F±(n) �= 0 for all n such that n ≡ r (mod e), n �= r.

Proof. Now c0 = 0, so G(s) = c1s +
∑∞

j=2 cjs
j , where vp(cj) ≥ 2 for j ≥ 2 and

c1 ≡ ∓c (mod p2), so vp(c1) = 1. Strassman’s Theorem implies that s = 0 is the
only zero of G(s) in Zp. �

Secondly, suppose that we wish to show that there are no solutions at all in some
residue class r modulo e. This is clear when F±(r) �≡ 0 (mod p), so we may assume
that vp(F±(r)) ≥ 1; the following result applies when vp(F±(r)) = 1.

Proposition 6. Suppose that for some integer r we have vp(F±(r)) = 1; that is,
F±(r) ≡ 0 (mod p), but F±(r) �≡ 0 (mod p2). Let p be a prime satisfying the above
hypotheses, βi ∈ Z∗

p for 1 ≤ i ≤ d the roots of f , and let c = c(r). If vp(c) ≥ 2,
then F±(n) �= 0 for all n such that n ≡ r (mod e).

Proof. Now we have G(s) ≡ c0 + c1s (mod p2) in Zp[[s]], where c0 = G(0) = F±(r)
has valuation 1 and c1 ≡ (c0 ∓ 1)c (mod p2) with c as in the statement. Hence if
vp(c) ≥ 2, then Strassman’s Theorem implies that G(s) has no zeroes in Zp. �

Example 1. Let f = x4 −2x3 +x2 −2x+1. Checking all n with 0 < |n| ≤ 100 we
find that B(f, n) = −1 only for n = ±1,±7 and B(f, n) �= 1 for all n. (Note that
B(f, n) is an even function since f is reciprocal and monic.)
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Take p = 23; f has roots 5, 13, 14, 16 (mod 23). The sequence B(f, n) (mod 23)
is periodic with period 22, never equals +1 and equals −1 for n ≡ ±1,±7 (mod 22)
only. This already shows that B(f, n) = +1 has no solutions. We need to show that
the only solutions with n ≡ ±1 (mod 22) are n = ±1, and that the only solutions
with n ≡ ±7 (mod 22) are n = ±7.

By symmetry it suffices to consider r = 1 and r = 7; in each case we apply
Strassman’s Theorem to reach the desired conclusion. The roots of f (mod 232)
are 97, 36, 60 and 338. When r = 1 we find that c0 = 0 and c1 ≡ 23 (mod 232), so
v23(c1) = 1 as required. When r = 7 we again have c0 = 0 and now c1 ≡ 207 ≡ 9·23
(mod 232), so again v23(c1) = 1.

Hence the only positive solutions are n = 1 and n = 7.

Example 2. Let f = x4 + x3 − 3x2 + x + 1. Checking all n with 0 < |n| ≤ 100
we find that B(f, n) = +1 only for n = ±1 and B(f, n) �= −1 for all n. Working
modulo p = 67, we may take e = 33 rather than 66, and our method shows that
B(f, n) �= −1 for all n, and B(f, n) = +1 only for n ≡ ±1 (mod 33). For n ≡ ±1
(mod 33) there is a unique p-adic solution, so n = ±1 are the only solutions in these
residue classes, and it follows that n = 1 is the only positive solution to B(f, n) = 1.

Note that if we instead take e = p − 1 = 66, then we cannot show (using
p = 67) that there are no solutions n ≡ ±32 (mod 66). Moreover, this particular
polynomial f has the property that for every prime p such that f splits modulo p,
its roots are always quadratic residues4 and our method with e = p − 1 would not
eliminate the residue classes n ≡ ±1 + (p − 1)/2 (mod p − 1), hence the need to
use the minimal exponent e as described above.

Example 3. Let f = 2x4 − x3 − x2 − x + 2. Checking all n with 0 < |n| ≤ 100
we find that B(f, n) = +1 for n = 1 only and B(f, n) �= −1. We wish to show that
n = 1 is the only (positive) solution to B(f, n) = +1, and that B(f, n) = −1 has
no solutions. Note that B(f, n) is no longer an even function since f is not monic.

Using p = 59 we can show that B(f, n) �= −1 for all n, but cannot exclude
the possibility of solutions to B(f, n) = 1 with n ≡ 24, 36, 52 (mod 58). Using
p = 139 instead, we find that n ≡ 1 (mod 138) is the only solution to B(f, n) ≡ 1
(mod 139), and there is a unique solution in this residue class.

Examples 4 and 5. Let f = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1. This is
irreducible, not cyclotomic, and has four conjugate pairs of roots on the unit circle.
Checking all n with 0 < |n| ≤ 200 we find that B(f, n) �= +1 and B(f, n) = −1
for ±n = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 17, 18, 21, 23, 27, 29, 34, 37, 47, 63, 65, 74. (This
polynomial, famous for having the minimal known Mahler measure greater than 1,
was found by D.H. Lehmer [11]; see [16] for more on this.)

The smallest prime modulo which f splits is p = 11093; using this, we can show
that the above list is indeed the complete set of solutions. This computation took
about 7 minutes with our pari/gp implementation of the p-adic method; of this, a

4One can show that each root β of f is a square in the splitting field of f (though not in Q(β)),
which explains this phenomenon.
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few seconds was spent finding a suitable prime p, a few more on showing that the
residue classes modulo p− 1 containing known solutions contain no more solutions,
and the remaining time showing that the other classes modulo p−1 do not contain
any solutions.

At the referee’s suggestion we also applied our method to the polynomial with
second smallest known Mahler measure, namely f(x) = x18+x17+x16+x15−x12−
x11−x10−x9−x8−x7−x6+x3+x2+x+1. Checking |n| < 1000 reveals the follow-
ing solutions: B(f, n) = +1 for ±n = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 29, 37, 39, 45,
65, 91, and B(f, n) = −1 for ±n = 2, 4, 6, 10, 14, 26, 28, 30, 34, 74.

The smallest prime p modulo which f splits is p = 230186347. Finding this
prime took about six hours. We used a fairly naive search, testing all primes, to
check that xp ≡ x (mod f, p) taking O(log(p)) time for each prime p.

Working modulo p we find that B(f, n) ≡ 1 (mod p) if and only if n is in one
of the 34 residue classes modulo p − 1 which contain known solutions, and using
Proposition 5 we can then show quickly that there are no further solutions in these
classes, thus solving the problem for sign +1. For sign −1, however, in addition to
the 20 known residue classes of n (mod p − 1) such that B(f, n) ≡ −1 (mod p),
for which again we can prove that they contain no more solutions, there are four
more residue classes giving solutions modulo p, namely n ≡ ±11579318,±57105438
(mod p− 1); these cannot be excluded by Proposition 6 since (in the notation used
above) vp(c1) = 1. Hence Strassman’s Theorem with this prime cannot exclude the
possibility of there being more solutions to B(f, n) = −1, with n in these residue
classes. This phenomenon is not rare, and occurred in many of our other examples,
where we simply used another suitable prime for which this problem did not arise.

In this example, finding a second candidate prime is quite time-consuming.
However, we were able to find a second prime modulo which f splits, namely
p = 1912762183, and using this we were able to verify that the lists of solutions to
B(f, n) = ±1 are both complete with no further problems.

Note that the primes modulo which p splits are sparsely distributed: they have
density 1/92897280, or approximately 10−8; see the next paragraph.

In order to handle polynomials of larger degree it would be desirable to extend
the method in order to be able to make use of primes other than those modulo
which f(x) splits, since although the Chebotarev Density Theorem guarantees that
there are infinitely many such, their density is small, namely 1/D where D is the
degree of the splitting field of f (assuming f irreducible) which may therefore be
as small as 1/d! where d = deg(f). In the degree 18 example of the previous
paragraph, the Galois group of f has order D = 92897280 which is considerably
smaller than 18! = 6402373705728000. The 92897280th prime is 1886112211 which
is about 8 times larger than the first prime found.

Further numerical examples. In each case an irreducible reciprocal polynomial
is given, followed by the complete list of solutions to B(f, n) = +1 and B(f, n) =
−1. In each case, we give a prime such that the p-adic method is able to prove that
the list of solutions given is complete.
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f B(f, n) = +1 p B(f, n) = −1 p

4x2 − 7x + 4 1 17 − 19

3x4 − x3 − 3x2 − x + 3 1 31 − 31
3x2 − 5x + 3 1 23 − 5

2x6 − 3x3 + 2 1, 3 67 − 487
2x4 − 3x2 + 2 1, 2 11 − 11

2x4 − x3 − x2 − x + 2 1 139 − 59
2x4 − 2x3 + x2 − 2x + 2 1, 3 37 − 29

2x2 − 3x + 2 1 11 − 113
x4 + 2x3 − 5x2 + 2x + 1 ±1 23 − 23

x6 + x5 − x4 − x3 − x2 + x + 1 ±1,±3,±13 821 ±2 1087
x6 + x4 − 3x3 + x2 + 1 ±1 547 − 547
x6 − x4 − x3 − x2 + 1 − 193 ±1,±2,±4,±7,±11,±37 1303
x6 − x5 − x3 − x + 1 − 941 ±1,±5,±13 971
x4 − x3 − x2 − x + 1 − 43 ±1,±3,±11 43

x6 − 2x5 + x3 − 2x + 1 − 239 ±1,±5,±7 811
3x4 − 5x2 + 3 1, 2 31 − 31

3x4 − 2x3 − x2 − 2x + 3 1 59 − 59
2x4 + x3 − 5x2 + x + 2 −3, 1 283 − 67
2x6 − x4 − x3 − x2 + 2 1, 7 1861 − 643
2x6 − x5 − x3 − x + 2 1, 5 107 − 107

2x4 − x3 − 3x2 − x + 2 − 199 1, 5 43
2x4 − 2x3 − x2 − 2x + 2 − 113 1, 3 43
2x4 − 3x3 + x2 − 3x + 2 − 433 1 331

x6 + x5 − 3x3 + x + 1 ±1 607 − 607

x4 + x3 − 3x2 + x + 1 ±1 67 − 67
x6 − x4 + x3 − x2 + 1 ±1,±13,±17 193 ±2,±4 193

x6 − 2x4 + x3 − 2x2 + 1 − 277 ±1 523
x6 − x5 − x4 + x3 − x2 − x + 1 − 643 ±1,±2,±5,±11 643

x4 − 2x3 + x2 − 2x + 1 − 23 ±1,±7 23
x4 − 3x3 + 3x2 − 3x + 1 − 71 ±1 71

4. The cyclotomic case

We now determine the value of B(Φm, n) = Res(Φm(x), xn − 1). In [14], Odoni
has already determined precisely those n for which B(±Φm, n) = ±1; here we
determine all values of B(Φm, n). These can be determined using the known formula
for Res(Φm(x), Φn(x)) (see [12]): for m > n,

Res(Φm, Φn) =

{
1 if n � m or n | m and m/n is not a prime power;
pφ(n) if m/n is a power of the prime p.

Instead, we determine B(Φm, n) directly here. For fixed m, this is clearly periodic
in n of period m. Note that for m ≥ 3 it is clear that B(Φm, n) =

∏
(βn − 1) ≥ 0,

since the factors are in conjugate pairs, while B(Φ1, n) = B(x − 1, n) = 0 and
B(Φ2, n) = B(x + 1, n) = 1 − (−1)n for all n ≥ 0.

Theorem 3. Let m, n ≥ 1 and set m = dm1 where d = gcd(m, n). Then

B(Φm, n) =

⎧⎪⎨
⎪⎩

0 if m1 = 1, i.e., if m | n;
1 if m1 > 1 and is not a prime power;
pφ(m)/φ(m1) if m1 is a power of the prime p.

The last exponent may also be written as φ(d) (when p � d) or
pφ(d)
p − 1

(when p | d).
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Proof. Set b(m, n) = B(Φm, n). First we deal with the case n = 1:

b(m, 1) = Res(Φm(x), x − 1) = Φm(1) =

⎧⎪⎨
⎪⎩

0 if m = 1;
1 if m > 1 and is not a prime power;
p if m is a power of the prime p.

This is well known in the theory of cyclotomic fields and is a special case of the
more general formula for Res(Φm, Φn) given above. The identity

xm − 1
x − 1

=
∏

1�=d|m
Φd(x),

when evaluated at x = 1, gives m =
∏

1�=d|m b(d, 1), from which the result follows
by induction.

Next observe that b(m, n) = b(m, nn′) when gcd(m, n′) = 1, since then as β

runs through the primitive mth roots of unity, so does βn′
. This (together with

periodicity) implies that b(m, n) = b(m, d) where d = gcd(m, n).
Finally, if p is a prime dividing both m and n, we have

b(m, n) =

{
b(m/p, n/p)p if p2 | m;
b(m/p, n/p)p−1 if p2 � m.

This is because, as β runs over the primitive mth roots of unity, βp runs over the
primitive (m/p)th roots of unity either p or p − 1 times.

The given formula follows by repeated application of these. �

Corollary. For m ≥ 2 we have det Mn(Φm) = B(Φm, n) = +1 if and only if
m/ gcd(m, n) is neither 1 nor a prime power, and detMn(Φm) �= −1 for all n ≥ 1.

Example. Let m = 90. Then B(Φ90, n) is given by the following, in terms of
d = gcd(90, n):

B(Φ90, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d = 90;
1 if d = 1, 2, 3, 5, 6, 9, 15;
34 = 81 if d = 10;
56 = 15625 if d = 18;
312 = 531441 if d = 30;
224 = 16777216 if d = 45.

Hence for f = Φ90(x) = x24 +x21−x15−x12−x9+x3 +1, we have detMn(f) = +1
if and only if gcd(90, n) ∈ {1, 2, 3, 5, 6, 9, 15}.

5. Further work

In [5] the Lehmer polynomial f(x) of degree 10 used in Example 4 above was
also studied, and a list was given of all the positive integers m < 1000 for which
Res(f(x), Φm(x)) = ±1. The largest m listed is m = 360, and we have checked
that there are no more solutions with m < 10000. It is natural to ask the following:

Problem C. Given f(x) ∈ Z[x], find all m ∈ N such that Res(f(x), Φm(x)) = ±1.
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By Lemma 3 above it is clear that a solution to this problem would also provide
a solution to both Problems A and B, but it is not immediately clear how to extend
our methods to cover the problem. For example, applying the p-adic method would
require treating Φm(β), for fixed β ∈ Zp, as a function of m ∈ Zp, which is certainly
harder than the case βm − 1 treated here.
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