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PERIODICITY OF THE PARITY
OF A PARTITION FUNCTION

RELATED TO MAKING CHANGE

PATRICK COSTELLO AND MICHAEL OSBORNE

Abstract. The solutions to a change problem form restricted partitions. For
one particular change problem, we look at the sequence representing the parity
of these restricted partition values. It appears that the period of this sequence
has not been studied. Through recurrences involving binomial coefficients, we
find that the sequence has a period of 200.

1. Introduction

How many ways are there to give someone a certain amount of money M in
change using pennies, nickels, dimes, and quarters? This would mean that M =
p∗1+n∗5+d∗10+q∗25 where p represents the number of pennies, n represents the
number of nickels, d represents the number of dimes, and q represents the number of
quarters. In 1956, Polya [7] popularized a version of this problem where he included
half-dollars. Since half-dollars seem to have gone away, we will look at the problem
without half-dollars allowed.

The unrestricted partition function, usually denoted p(n), represents the number
of ways to write n as a sum of positive integers. Let pc(n) represent the number
of ways to make change for n cents using pennies, nickels, dimes, and quarters.
This is a restricted partition function where the only integers allowed in the sum
are 1, 5, 10, 25. The question of determining the parity of the partition function
was originally raised by S. Ramanujan [6, pp. 1087, 1098] but has not been settled
(see [3]). Investigations into the parity of certain restricted partition functions have
been undertaken by Blecksmith [1], Hirschhorn [4], and Lahiri [5]. These works have
dealt with the situation where the summands are from specific residue classes of a
given modulus. In this paper, we show that the parity of the sequence {pc(n)} is
periodic, and that the period length is 200.

2. Basics

One quick observation about the function pc(n) is that each way to make change
for n = 5k gives precisely one way to make change for 5k + 1, 5k + 2, 5k + 3, and
5k + 4. You simply add on the appropriate number of pennies. Hence pc(5k) =
pc(5k + 1) = pc(5k + 2) = pc(5k + 3) = pc(5k + 4).
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If you have a function f(n) defined on the nonnegative integers, we call the
power series

∑∞
n=0 f (n) zn the generating function of f . Looking at the generating

function often turns out to be a useful way to find a closed or recursive formula for
f . Graham, Knuth, and Patashnik [2] show the method for finding a solution to
Polya’s problem by writing the generating function as a product of known closed
formulas for other power series, and doing some simplifying.

3. Closed formula for values

Following the method of Graham, Knuth, and Patashnik, we can find a formula
for pc(n) by starting with the power series

P = 1 + z + z2 + z3 + z4 + · · · corresponding to pennies,

N = 1 + z5 + z10 + z15 + z20 + · · · corresponding to nickels,

D = 1 + z10 + z20 + z30 + z40 + · · · corresponding to dimes,

Q = 1 + z25 + z50 + z75 + z100 + · · · corresponding to quarters.

Forming the product of these gives the generating function

(1)
∞∑

n=0

pc (n) zn = P ∗ N ∗ D ∗ Q =
1

1 − z
· 1
1 − z5

· 1
1 − z10

· 1
1 − z25

.

Using that 1
1−z =

(
1 + z + z2 + z3 + z4

)
/

(
1 − z5

)
, we can simplify the previous

equation to
∞∑

n=0

pc (n) zn =
1 + z + z2 + z3 + z4

1 − z5

1
1 − z5

1
1 − z10

1
1 − z25

=
(
1 + z + z2 + z3 + z4

)
C

(
z5

)
where

C (z) =
1

1 − z

1
1 − z

1
1 − z2

1
1 − z5

.

Since each denominator is a divisor of 1 − z10, we can write

C (z) =
A (z)

(1 − z10)4

where the polynomial A (z) turns out to be exactly the same polynomial of degree 31
appearing on page 331 in Graham, et. al. [2]. Using that 1

(1−z)4
=

∑∞
n=0

(
n+3

3

)
zn,

we have that

C (z) =
A (z)

(1 − z10)4

= A (z)
∞∑

n=0

(
n + 3

3

)
z10n.

This means that the coefficient of z10q+r with 0 ≤ r < 10 in the power series C (z)
will be

Ar

(
q + 3

3

)
+ A10+r

(
q + 2

3

)
+ A20+r

(
q + 1

3

)
+ A30+r

(
q

3

)
.
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Finally,

pc (50q + 5r + s) = Ar

(
q + 3

3

)
+ A10+r

(
q + 2

3

)
+ A20+r

(
q + 1

3

)
+ A30+r

(
q

3

)
for any nonnegative q and 0 ≤ r < 10 and 0 ≤ s < 5. For example, M = 1039 =
50 ∗ 20 + 5 ∗ 7 + 4 and so

pc (1039) = A7

(
23
3

)
+ A17

(
22
3

)
+ A27

(
21
3

)
+ A37

(
20
3

)
= 24 ∗ 1771 + 67 ∗ 1540 + 9 ∗ 1330
= 157654.

This agrees with the coefficient of z1039 when Mathematica expands the product(
1040∑
n=0

zn

) ⎛
⎝1040/5∑

n=0

z5n

⎞
⎠

⎛
⎝1040/10∑

n=0

z10n

⎞
⎠

⎛
⎝1040/25∑

n=0

z25n

⎞
⎠ .

4. Recurrence formula for values

Going back to equation (1), we can clear denominators and we get( ∞∑
n=0

pc (n) zn

)
(1 − z)

(
1 − z5

) (
1 − z10

) (
1 − z25

)
= 1.

Expanding the product (1 − z)
(
1 − z5

) (
1 − z10

) (
1 − z25

)
gives( ∞∑

n=0

pc (n) zn

) (
1 − z − z5 + z6 − z10 + z11 + z15 − z16 − z25 + z26

+z30 − z31 + z35 − z36 − z40 + z41
)

= 1.

For any n > 40, we can equate the coefficients of zn,

pc (n) − pc (n − 1) − pc (n − 5) + pc (n − 6) − pc (n − 10) + pc (n − 11)

+ pc (n − 15) − pc (n − 16) − pc (n − 25) + pc (n − 26) + pc (n − 30)

− pc (n − 31) + pc (n − 35) − pc (n − 36) − pc (n − 40) + pc (n − 41) = 0,

which gives the recurrence

pc (n) = pc (n − 1) + pc (n − 5) − pc (n − 6) + pc (n − 10) − pc (n − 11)

− pc (n − 15) + pc (n − 16) + pc (n − 25) − pc (n − 26) − pc (n − 30)

+ pc (n − 31) − pc (n − 35) + pc (n − 36) + pc (n − 40) − pc (n − 41)

with initial values
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
pc(n) 1 1 1 1 1 2 2 2 2 2 4 4 4 4

n 14 15 16 17 18 19 20 21 22 23 24 25 26
pc(n) 4 6 6 6 6 6 9 9 9 9 9 13 13

n 27 28 29 30 31 32 33 34 35 36 37 38 39 40
pc(n) 13 13 13 18 18 18 18 18 24 24 24 24 24 31
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5. Simpler recurrence

In order to determine the period of the sequence {pc(n)(mod 2)}, we could use
this recurrence and sequentially compute lots of values mod 2 and hope to observe
the pattern. A more effective approach takes advantage of the fact that pc(5k) =
pc(5k + 1) = pc(5k + 2) = pc(5k + 3) = pc(5k + 4).

We want to look at just 5k as input to the function. Then the recurrence says

pc(5k) = pc(5k − 1) + pc(5k − 5) − pc(5k − 6) + pc(5k − 10) − pc(5k − 11)

− pc(5k − 15) + pc(5k − 16) + pc(5k − 25) − pc(5k − 26) − pc(5k − 30)

+ pc(5k − 31) − pc(5k − 35) + pc(5k − 36) + pc(5k − 40) − pc(5k − 41).

Using the fact that for any k the 5 consecutive values pc(5k), pc(5k+1), pc(5k+2),
pc(5k + 3), pc(5k + 4) are identical, we can simplify the above recurrence to the
much shorter one below:

pc(5k) = 2pc(5k − 5) − 2pc(5k − 15) + pc(5k − 16) + pc(5k − 25)

− 2pc(5k − 30) + 2pc(5k − 40) − pc(5k − 41).

We can also get all inputs to be multiples of 5 using the fact that

pc(5k − 16) = pc(5k − 20) and pc(5k − 41) = pc(5k − 45).

We now have a recurrence for inputs which are multiples of five involving just
previous multiples of five:

pc(5k) = 2pc(5k − 5) − 2pc(5k − 15) + pc(5k − 20) + pc(5k − 25)

− 2pc(5k − 30) + 2pc(5k − 40) − pc(5k − 45)

or

pc(5k) = 2pc(5(k − 1)) − 2pc(5(k − 3)) + pc(5(k − 4)) + pc(5(k − 5))

− 2pc(5(k − 6)) + 2pc(5(k − 8)) − pc(5(k − 9)).

If we sequentially compute a table of values for inputs which are consecutive
multiples of five, we can use this formula to find the value of the function at any
input. For example,

pc(48) = pc(5 ∗ 9 + 3) = pc(5 ∗ 9)

=2pc(5(8))−2pc(5(6))+pc(5(5))+pc(5(4))−2pc(5(3))+2pc(5(1))−pc(5(0))
= 2 ∗ 31 − 2 ∗ 18 + 13 + 9 − 2 ∗ 6 + 2 ∗ 2 − 1
= 39.

6. Recurrence mod 2

Since many of the coefficients in the recurrence for inputs which are multiples of
five happen to be two, we get a very short recurrence when we consider it mod 2.
The recurrence becomes

pc(5k) ≡ pc(5(k − 4)) + pc(5(k − 5)) + pc(5(k − 9)) (mod 2)

with initial values mod 2 being
k 0 1 2 3 4 5 6 7 8
pc(5k) (mod 2) 1 0 0 0 1 1 0 0 1
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Using these and sequentially computing values, we observe a repeating pattern of

1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,

0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.

So the period in the recurrence for multiples of five seems to be 40 which would
give a period of 200 in the original sequence {pc(n)(mod 2)}. What is interesting
to note from the repeating sequence is that the second twenty values are just the
first twenty with one added mod 2. This will be verified in the next section.

7. Conclusion

Define a new function ps(n) recursively by

ps(n) ≡ ps(n − 4) + ps(n − 5) + ps(n − 9) (mod 2)

with the initial values as given in the last table.
Let f(z) =

∑∞
n=0 ps (n) zn. Then the recurrence says that

∞∑
n=9

ps (n) zn ≡ z4
∞∑

n=9

ps (n − 4) zn−4 + z5
∞∑

n=9

ps (n − 5) zn−5

+ z9
∞∑

n=9

ps (n − 9) zn−9 (mod 2).

Using the initial values of ps(n), we have

f(z)−
(
1 + z4 + z5 + z8

)
≡ z4

(
f(z) −

(
1 + z4

))
+z5 (f(z) − (1))+z9f(z) (mod 2)

which gives

f(z)
(
1 + z4 + z5 + z9

)
≡

(
1 + z4 + z5 + z8

)
− z4

(
1 + z4

)
− z5(1) ≡ 1 (mod 2).

Factoring the polynomial
(
1 + z4 + z5 + z9

)
in Z2[z], we have(

1 + z4 + z5 + z9
)
≡ (1 + z)5

(
1 + z + z2 + z3 + z4

)
(mod 2).

Then

f(z) ≡ 1
(1 + z)5

1
1 + z + z2 + z3 + z4

≡ 1
(1 + z)5

1 − z

1 − z5
(mod 2).

Now we make use of the generating function identities

1
(1 − z)5

=
∞∑

n=0

(
n + 4

4

)
zn and

1
1 − z5

=
∞∑

n=0

z5n

and arrive at

f(z) ≡ (1 + z)

( ∞∑
n=0

(
n + 4

4

)
zn

)( ∞∑
n=0

z5n

)
(mod 2).

In the product (1+z)
(∑∞

n=0

(
n+4

4

)
zn

)
the coefficient of zn would be

(
n+4

4

)
+

(
n+3

4

)
.

When we multiply by the series
∑∞

n=0 z5n, the coefficient of zn would be(
n + 4

4

)
+

(
n + 3

4

)
+

(
n + 4 − 5

4

)
+

(
n + 3 − 5

4

)

+
(

n + 4 − 10
4

)
+

(
n + 3 − 10

4

)
+ · · · .
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Since the coefficient of zn in f(z) is the function ps(n), we get

(2) ps(n) ≡
(

n + 4
4

)
+

(
n + 3

4

)
+ ps(n − 5) (mod 2).

Now let b(n) =
(
n+4

4

)
+

(
n+3

4

)
. By induction, it can be shown that

(3) b(n) ≡
{

0 (mod 2) if n ≡ 1, 2, 3 (mod 4),
1 (mod 2) if n ≡ 0 (mod 4).

Substituting b(n) into the recurrence (2) and applying it 4 times, we get
ps(n) ≡ ps(n − 5) + b(n)

≡ ps(n − 10) + b(n − 5) + b(n)

≡ ps(n − 15) + b(n − 10) + b(n − 5) + b(n)

≡ ps(n − 20) + b(n − 15) + b(n − 10) + b(n − 5) + b(n).

Since 5 and 4 are relatively prime, exactly one of the four values n − 15, n − 10,
n − 5, n is divisible by 4. Hence (3) shows that

ps(n) ≡ ps(n − 20) + 1 (mod 2).

This shows what we observed before, that the next twenty values are just the
previous twenty values with one added mod 2. Applying this congruence twice we
get

ps(n) ≡ ps(n − 40) + 1 + 1 ≡ ps(n − 40) (mod 2),
which means this sequence has a period of 40 when considered mod 2.

So the period in the sequence {pc(5k)(mod 2)} has a period of 40 which would
imply a period of 200 in the original sequence {pc(n)(mod 2)}. That is to say, we
have proved the following theorem: the parity of the function pc(n) is periodic, and
the length of the period is 200.
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