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A RANDOM SPACE-TIME BIRTH PARTICLE METHOD
FOR 2D VORTEX EQUATIONS WITH EXTERNAL FIELD

J. FONTBONA AND S. MELEARD

ABSTRACT. We consider incompressible 2d Navier-Stokes equations in the
whole plane with external nonconservative forces fields. The initial data and
external field are functions assumed to satisfy only slight integrability proper-
ties. We develop a probabilistic interpretation of these equations based on the
associated vortex equation, in order to construct a numerical particle method
to approximate the solutions. More precisely, we relate the vortex equation
with additional term to a nonlinear process with random space-time birth,
which provides a probabilistic description of the creation of vorticity. We
then introduce interacting particle systems defined for a regularized interac-
tion kernel, whose births are chosen randomly in time and space. By a coupling
method, we show that these systems are approximations of the nonlinear pro-
cess and obtain precise convergence estimates. From this result, we deduce
a stochastic numerical particle method to obtain the vorticity and also to
recover the velocity field. The results are either pathwise or of weak conver-
gence, depending on the integrability of the data. We illustrate our results
with simulations.

1. INTRODUCTION

The aim of this paper is to obtain an approximation particle method based on
the creation of vorticity to simulate solutions of Navier-Stokes equations with non-
conservative external forces. The Navier-Stokes equation for a homogeneous and
incompressible fluid in the whole plane subject to an external force field f is given
by

%—‘t‘—l—(u-V)u:yAu—Vp—l—f;

(1)

divu(t,z) =0; u(t,x) — 0 as |z| — oo.

Here, u denotes the velocity field, p is the pressure function and v > 0 is the
viscosity (constant) coefficient.

In absence of the external force field (or more generally, when f = V¥ is a con-
servative field), a probabilistic interpretation of (Il) has been known since the work
of Marchioro and Pulvirenti [16]. The probabilistic approach to () is based on the
associated vortex equation, i.e. the equation satisfied by the (scalar) vorticity field
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w := curlu, which is interpreted as a generalized McKean-Vlasov equation associ-
ated with a nonlinear diffusion process. This process can also be obtained as the
limit of interacting particle systems in mean field interaction, and this fact provides
stochastic approximations of the vortex equation associated with (Il). Convergence
on the path space of these particles (or equivalently, propagation of chaos for the
system) has been proved in more recent works of Méléard [17] and [18].

In this work, we extend that approach to the case of the Navier-Stokes equation
with an external force field ([[). The nonconservative external force introduces an
additive term in the vortex equation. More precisely, the vorticity field w = curl u
satisfies the scalar equation

% 4 (u-V)w =vAw +g;
(2)

wo(x) = curl u(0, x).

The external field g = curlf can be physically interpreted as the creation of vorticity.
In order to provide a probabilistic description of this phenomenon, we relate this
equation to a nonlinear process with random birth in space and time, according to
a law related to the initial vorticity wy and the external field g.

We will first consider a mollified setting, working with regularized versions of
the Biot-Savart kernel and adapting classic McKean-Vlasov techniques to prove
the pathwise existence and uniqueness of a mollified nonlinear process. The family
of its time-marginal laws weighted by some function of the “space-time initial data”
gives a solution of the mollified vortex equation. We then construct a stochastic
interacting particle system whose births are chosen randomly in time and space and
prove propagation of chaos and its convergence to the mollified nonlinear process.

Then, we remove the regularization parameter, first under the assumption that
the data wg and g are L' N LP functions (for p > %), in order to deal with the
singularity of the kernel K (this choice is suggested by the continuity properties
of the Biot and Savart operator). We take advantage of the volume preserving
property of the stochastic flow associated with the mollified nonlinear process to
obtain uniform L? estimates. We deduce the existence of a global mild solution of
the vortex equation, and by analytic techniques we prove uniqueness and regularity
of this solution. Such regularity is essential to get pathwise existence and uniqueness
of the nonlinear process.

Moreover, we obtain pathwise convergence for the particle system in a strong
norm, improving previous results on the stochastic vortex method. Some conver-
gence estimates are given. We deduce an approximation result for the velocity field
u at an explicit rate, which also enlightens the case where f = 0.

We then extend these results to the L!-only initial condition and external field,
which are the natural probabilistic assumptions. The analytical part generalizes
to the case g # 0 some arguments of Ben-Artzi [I] and Brezis [5] when g = 0.
We obtain as before existence, uniqueness and regularity of the mild solution of
the vortex equation, existence and uniqueness in law for the nonlinear process,
together with convergence in law of the particle approximations. The explosion of
the solution at time O prevents us in this case from obtaining pathwise results and
stronger convergence.

In the last section, we develop a numerical example, simulating vortices created
randomly in space and time. The law of these random births is computed from the



RANDOM SPACE-TIME BIRTH PARTICLE METHOD 1527

initial condition and the additive term curlf, as described in the theoretical setup.
Some numerical experiments are presented.

Let us point out that deterministic vortex creation methods have been developed
for bounded domains [9], but such creations are related to the boundary condition
(see also [14] for a probabilistic point of view). From a numerical point of view, an
interesting feature of our method is that it does not necessitate the use of a grid. It
is also worth noting that to our knowledge, no numerical method, either stochastic
or deterministic, has so far been developed in the context of the whole plane and
for general external force fields. We expect that the particle method we propose
will be of interest for numerical applications.

Throughout the paper we shall need the following notation and the version of
Gronwall’s lemma quoted below (and proved e.g. in [I0]):

- C1? is the set of real valued functions on [0, T] x R? with continuous deriva-
tives up to the first order in ¢ € [0,7] and up to the second order in z € R.
C; 2 is the subspace of bounded functions in C'*? with bounded derivatives.

- D is the space of of infinitely differentiable functions on R? having compact

support.
- Forall 1 < p < oo we denote by L the space LP(R?) of real valued functions
on R2. By || - ||, we denote the corresponding norm and p* stands for the

Hélder conjugate of p. We write WP = W¥P(R?) for the Sobolev space of
functions in LP with partial derivatives up to the i-th order in LP.
- C and C(T) are finite positive constants that may change from line to line.

Lemma 1.1. Let k : [0,T] — Ry be a bounded measurable function and C; A > 0
and 6 > 0 constants such that

t
k(t) < A+ 0/ (t — )" k(s)ds
0
forallt <T. Then, sup,r k(t) < C(T)A for some C(T) > 0 not depending on A.

2. THE VORTEX EQUATION WITH EXTERNAL FORCE
AND ITS PROBABILISTIC INTERPRETATION

Is is well known that given u a regular solution of the Navier-Stokes equation
with external force ([l), the vorticity function w = curl u satisfies equation (2)),
where g = curl f. By the divergence free property of u and the so-called Biot and
Savart law, we can write u = K * w where

1 (—z9,21)

, e RA\{0},

is the so-called Biot-Savart kernel in R2. For these facts and further background
on vorticity, we refer for instance to Chorin and Marsden [8], Ch. 1, or Bertozzi
and Majda [2].

We will fix for all the sequels an arbitrary finite time interval [0, T').

In view of our probabilistic interpretation of equation (), it will be natural to
assume that the functions wg : R? — R and g : R, x R? — R satisfy the minimal
integrability hypothesis:

o wy € L1(R?).
e g L([0,T] x R?).
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We denote by ||g||1.7 the L'-norm of g on [0,7] x R? :

T
lgll1,z :/ / lg(s, x)|dx ds.
0o Jre

We are interested in weak solutions of () defined as follows.

Definition 2.1. A measurable function w : [0,T] x R? — R is a weak solution of
the vortex equation () with initial condition wqy and external field g on the interval
[0,T7, if

(3) / VK % w(a)|[wy () dadt < oo,
[0,T]xR2

and for every function ¢ € C%([0,T] x R?) and t < T,

(4) o(t, x)wi(z)dr = (0, z)wo(x)dz + /0 . #(s,x)gs(x)dz ds

R2 R2

i /ot /Rz [% +vAY(s, 2) + (K xws)(2)Ve(s, w)] wy(z)d.

For some analytic purposes we shall also need to deal with a mild form of equation
[@). We denote by
G{(z) := (47wt)_1e_‘m|2/4"t
the heat kernel in R2. The following are well known estimates, that are obtained

using Young’s inequality and the Gaussian bound for the space derivatives of the
heat kernel (see e.g. [11]).

Lemma 2.2. Let m € [1,00] and | > m. There exist constants c¢(m,l),c (m,1) >0
such that for all f € L™

IGY * flli < e(m, )tT =7 || fllm and |VGY * fll; < & (m, 1)t~

Flim-

Definition 2.3. A measurable function w : [0, 7] x R? — R is called a mild solution
of the vortex equation with external field ¢ if condition (B]) holds and

(5) wi(z) = GY *wo(x) —|—/O GY_,xgs(z) ds —l—/o VGY_, x [(K *ws)ws] (x) ds
for all ¢t € [0, 7).

Remark 2.4. By taking for each fixed ¢ > 0 and ¥ € D in equation (d)) the function
bi(s,z) = GY_, x 9(z) (which solves on [0,¢[xR? the heat equation with final
condition ), and using Fubini’s theorem (thanks to (B])), we see that weak solutions
are always mild ones.

Now we shall relate the term involving the external field g with the creation of
vorticity in the whole space, and interpret equation (2) as a generalized McKean-
Vlasov equation, by introducing a nonlinear process with random space-time birth.

In Jourdain and Méléard [14], creation of vorticity on the boundary of a bounded
domain is shown to be related to a vortex equation with Neumann’s condition on the
boundary, and an analogous probabilistic setup is developed in the bounded domain.
Here, working in the whole space prevents us from using similar techniques.



RANDOM SPACE-TIME BIRTH PARTICLE METHOD 1529

Let us define the probability measure Py(dt,dx) on [0,7] x R? by
el

(6) = Oo(dt)wo(x)dx + ge(z)da dt,

P()(dt,dl') = (50(dt)

together with the scalar weight function

w,

(1) hit2) = Loy o (o

ge(x)
)+ g ¢

with the convention % = 0" and 1 denoting the indicator function. We note that
|h(t,2)| = [lwollx + gl or O.

) 1{t>0}

“

Remark 2.5. For any measurable bounded function ¢ on [0, T] x R,

(0, x)wo(x)dx Jr/ o(t, x)ge(x)dx dt.

[0,T] xR2

/ o(t, x)h(t, x)Py(dx,dt) =
[0,T] xR2 R2

In the sequel, (7, (X¢)e[0,7]) denotes the canonical process on the space Cr :=
[0,T] x C([0,T7, R2) With each probability measure @@ on Cr we associate a flow
of signed measures (Qt)te[o 71 on R?, defined for bounded measurable functions
f:R?2 =R by

8) Qi(f) = B2 (f(Xo)h(r, Xo)1i>-).
o(X;)~! has

a density, say p;, then so does Qt. 5
We then denote the density of @ by p(x), and, when they exist, take versions
of pi(z) and p;(x) that are measurable in (¢, z) .

Definition 2.6. A probability measure P on Cr is a solution to the nonlinear
martingale problem (MP) if

e Po(1,Xg) ! =Py and P, has bi-measurable densities pe(x)
for (t,z) € [0,T] x R?

o f(t,X:) — f(r,X0)
_fo [3}” 8, Xs) +vAf (s, Xs) + K * ps(Xs)VF(8, Xs)| Ls>-ds,

0 <t <T, is a continuous P-martingale for all f € Cé’Q w.r.t. the filtration
Fi=o0(r,(Xs),s < t).

The link between this problem and equation (2)) is the following.

Lemma 2.7. Assume that the problem (MP) has a solution P which satisfies
/ VK % ()| e (2) | dadt < oo.
[0,T]xR2

Then w := p is a weak solution of the vortex equation ([2)) with external field g.
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Proof. Since the variable h(7, Xo)1;<4} is measurable with respect to Fo, by defi-
nition of (MP) the processes

f(tv Xt)h(Ta XO)]-{TSt} - f(7—7 Xo)h(Ta XO)]-{TSt}

t

0

_ / {a—i(& Xo) +vAf(s, Xs)ds + K * ps(Xs)V f (5, Xs) | h(T, Xo)1{s>1ds
0

are seen to have vanishing expectation for all f € C; 2 We take that expectation

and use Fubini’s theorem, and we conclude by Remark and the definition of

P O

Remark 2.8. By a standard argument using the semi-martingale decomposition
of the coordinate processes X* and their products X?X7, we obtain that for f €
C’;72, the martingale part of f(t,X;) in (MP) is given by the stochastic integral
Vv fot V (s, Xs)1{s>-3dB;, with respect to a Brownian motion B defined on some
extension of the canonical space.

Consequently, on the random interval [0, 7], the martingales in (MP) are null
and X; = Xj.

It follows that the second condition in (MP) is equivalent to the fact that

O sex) =100 - [ Fexs

t
= [ A X K (X5 X Loy
0
is a continuous P-martingale with respect to (F;) for all f € C;’Q.

3. THE PARTICLE SYSTEM

In a first stage we deal with a regularized version of the kernel K. Let ¢ : R> — R
be a bounded and smooth function with bounded derivatives with ||¢||; = 1. For
€ > 0 define

K. =K * ¢,
where ¢ (z) = ¢(£). The function |K. is bounded and smooth, and has bounded
derivatives. We denote by M, its sup-norm on R? and by L. a Lipschitz constant,
that respectively behave like E% and E% when ¢ << 1. Notice that div K. =
(div K) % p. = 0.
In this section we fix £ > 0, and consider a “mollified” version of equation (2):

(10) %0+ (K.+v-V)v=vAv+g.

We will adapt the usual McKean-Vlasov approach to give a probabilistic inter-
pretation to (I0) and construct an approximating stochastic particle system.

3.1. The nonlinear mollified process. Consider on some given probability space
a 2-dimensional Brownian motion B and a R x R? valued random variable (7, X)
independent of B with law Fj.

Theorem 3.1. There is existence and uniqueness, trajectorial and in law, for the
following nonlinear stochastic differential equation in the sense of McKean:

t t
(11)  Xf=Xo+ \/2V/ 1,>,dB, +/ K. % PS(X%)1ys,ds, t>0,
0 0
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under the conditions law(t, Xo) = Py and law(r, X¢) = P°.

Proof. The proof is easily adapted from Theorem 1.1 in [2I]. Denote by dr the
Kantorovich-Wasserstein distance on Cr

dr(Q', Q%) := inf { /(C . { sup (Jz(t) —y(@®)| A1) + |a— ﬂ]H(da,dm,dﬁ,dy) :

te[0,T)

II has marginal laws Q' and Q2},

and by CY. the closed subspace C$ = {Q € P(Cr) : Qo(r, Xo)" ' = Py}. Define a
mapping O : C% — C% associating with @ the law ©(Q) of the unique solution of

t t
X2 = Xo+ \/21// 14>,dB; +/ K. * Qs(X )Lz ds.
0 0

By trajectorial considerations, one can show that for each ¢t < T,

0,(0(QY), (@) < C(T) /0 0(Q1Q%)ds

(with d¢(Q', Q?) the distance between the projections of Q' and Q? to C;). We
deduce the existence of a unique fixed point for © and hence a unique solution in
law. The trajectorial statement then follows from the Lipschitz property of K. (see
[21] for details). O

We shall need in the sequel the stochastic flow associated with the nonlinear

process (1)
t ~
(12) & 4(x) = 2+ V2u(B; — By) +/ K. x P& (x))dr, zeR*0<s<t.

The regularity properties of K. % PZ(z) imply the existence of a continuous
version (s,t, ) = & () such that x +— &5 () is continuously differentiable for all
(s,t) (cf. Kunita [I5]). Since X§ = X for all t < 7, we have that

Xta = gi,t(XO)]-{tZT} + Xol{t<.,.}.

Denote by
G*(s,z;t,y),  (s,x,t,y) € (Ry x R?)? s < t,

the density of £ ,(z) (which is a continuous function of (s,x,t,y); see [11]). Con-
ditioning with respect to (7, Xg), we obtain for bounded functions f that

E(f(X7) =E [f(& /(X)) + B [f(Xo)1irary]

z/ot /(R2)2 f(y)GE(&x;y,t)dyPo(d&dfﬁ)+/tT . f(z)Po(ds, dx)
- [i@awis [ [ [ sG] gwi s

[ rwawnas

where the notation wy and gs have been introduced in (@J).
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We deduce that for each ¢ €]0,T], X5 has a bi-measurable density p§(y). Simi-
larly, we have

(@) P ) =E{F(€5(Xo)(r, Xo) L] + E[F(X0)h(r, X)L (o)
~ [t [ [ ] 6 st o
T
+/t . f(z)gs(x)dzds

and then Pf(dy) has a bi-measurable density 55 (y).
Remark 3.2. By construction,

(13) sup sup |[|p;ll1 < flwollr + [[gll1,7-
e>0t€[0,T]

Corollary 3.3. The function p° is the unique weak solution of equation ([IQ) in
L>([0,T],LY).

Proof. Write Itd’s formula for ¢(¢, X7) and proceed as in Lemma 27 (the bound-
edness of K. provides the required integrability condition). We obtain that i €
L (]0,T], L") solves

1) [ otta)m@dr= [ 60, 2)wo(x)dz + / o(s, 2)gs(z)de ds
R2 0

R2 R2

” / / [% +vAP(s,x) + Ko x 1 (2) Vs, x)} 52 (2)dads

for all ¢ € C*([0,T] x R?). Using the boundedness of K. to proceed as in Remark
24 we check next that 5° is a solution in L*°([0,7],L') of the mollified mild
equation

(15)

wy (z) = GY xwo(x /Gt *gs( ds+/ VGY_ x[(Ke*xwi)ws] (x) ds, e>0.

If v is another solution of ([IH), from Lemma 22 with [ = co,m = 1 we get

t
16 = vl < (@) [ (= 5) 472~ vulhds
0

and conclude uniqueness using Lemma, [[.11
(Il

3.2. Stochastic particle approximations. We now define an interacting particle
system which is naturally associated with the nonlinear process studied above. The
system takes into account the random space-time births. Its pathwise existence and
uniqueness can be proved by adapting standard arguments.

Definition 3.4. Consider a sequence (B");cy of independent Brownian motions on
R? and a sequence of independent variables (7, X¢);en with values in [0, T] x R?
distributed according to Py, and independent of the Brownian motions. For a fixed
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€ > 0, for each n € N*, let us consider the interacting processes defined for 1 <i <mn
by

t
(16) )(m‘S XO+V2V/ 1{S>T7‘}dB —|—/ 1{S>Tz}K *an(ing)d

where
n

e = Z 77, X571 0y me

is the weighted empirical measure of the system at time s and

K. % i Zh 1, XD (500 Ko (2 — XI™9).
] 1
Hence, particles either have birth at time 0 or at a random time, and evolve
thereafter as diffusive particles that interact following a mean field depending on
the parameter e. We introduce a coupling between these interacting processes and
some independent copies of the limiting process defined in ([ITI):

Definition 3.5. For i > 1, we define X% by
(17) XZ’E = Xé + Vv 21// 1{327.1'}de; —|—/ 1{327.1'}K€ * ﬁi(X;’E)dS
0 0

By an adaptation of the proof of Proposition 2.2 in [I3], we can show the following
proposition.

Proposition 3.6. There exist positive constants C1,Cy such that for all n € N,
1<i<nande€0,1],
in,e i€ Cfl8 )
(18) B(sup | X" — X;°|) < —= exp(Ca([|woll + llgl1,7)(e)T).

t<T NG
Remark 3.7. The function h being bounded, is is not hard to deduce from the
previous theorem that for all continuous bounded f : R2 — R and € > 0,

st oo

3.3. Density estimates. Due to the bad behavior of K in the space L', it is
necessary to obtain additional LP estimates for some p > 1 in order to study
the convergence of our scheme when ¢ — 0. We present an argument based on
the properties of the stochastic flow, and on a “stochastic version” of Liouville’s
theorem. In [6], Busnello also relied on the stochastic flow to obtain uniform in
time estimates for some solutions to the vortex equation, but for the case without
external field and under regularity of the initial condition.

Lemma 3.8. Let JE5, = det(V,£5,) be the Jacobian of the function &5, : R* — R?.
Then

— 0  when n — oo.

t
I (o) = 1t [ div [ PEE ()] IE5
S
Since div K. * P2( sr(7)) =0 we have that JE ,(x) =1 for all (s,t,z).

The proof is similar as the classic version (e.g. [8] Ch. 1), since the diffusion
coefficient in ([I2]) is constant.
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Lemma 3.9. Let p® and p° be, respectively, the family of densities of X under P¢
and the family of weighted densities associated with P* through ([8). Let p € [1, o0]
and assume that wy € LP and g € L*([0,T], LP). Then, for all >0 and t € [0,T],
we have

t
D) 15, < lwoll, + / lgallp ds,

T
[wollp + fo llgsllp ds
- .
Jwollr + [y llgsll ds

Proof. Consider a fixed function 9 € D and ¢ > 0. By the Feynman-Kac formula,
the function ¢*(s, ) := E(¢ (&5 4(x))) is the unique solution of the Cauchy problem

% +vA¢(s,z) + Ke * ps(2)Veo(s,z) =0 for all (s,z) € [0,¢[xR?,
p(t,x) =1

Replacing ¢! in the weak equation (4] and using Fubini’s theorem, we obtain

i) pilly <

/ Y(x)pi (x)dx = #"(0, v)wo(x)dx + /t @' (s, 7)gs(z)dx ds
R2 0

=F ( /R (V& o(@)wo ()] df)
- /0 E ( /R [P @) gs ()] da:) ds

and so

| [, wle)iite)ds] < B (10656 D] ol + [ 2 G D] sl

Thanks to Lemma [3.8] we conclude that
t
o (ool + [ Lol

| [ st

which proves 4). To prove ), define a sub-probability density 5§ by [, ¢(z)pf (z)dx
= BE((X{)1y>ry). Writing 1t6’s formula for f(£, X7), multiplying by 1>y and
taking expectations, we check that

| o@ii@ar= [ somm@ar+ [ [ oo i

" /o /R {%Eas; 2 vAg(s,3) + K. x 5(@) V(s x)] 52 ()dads.

We deduce as previously that

) |91l '
(z)p; (x)dr| < —————— | ||w —|—/ gsllpds | .
‘/]1{{2 (=)hi () ‘ lwollx + llgll1,7 fwolly 0 losll»

The desired estimate for p; follows from here, since

€ gs
E(%/}(Xt)l{mr}) = E(¢(Xo) 1{t<7’} / /]11{2 ||w0||1 n H);Hl de ds.
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d

4. L' N L? DATA: EXISTENCE, UNIQUENESS AND PATHWISE APPROXIMATION

The main goal of this section is to construct the pathwise unique nonlinear
process related to the true Biot-Savart kernel, as a limit of the mollified nonlinear
processes, when ¢ — 0. We shall need fundamental continuity properties of the
operator f — K x f and regularity estimates on the solution of the vortex equation.
Lemma 4.1. Letp € (1,2) and % = 1—1)—%. For each f € LP and x € R? the integral

K x f(x) is absolutely convergent. Furthermore, there is a constant Cp, 4 > 0 such
that

i)
(19) 1K * fllg < CogllFllo forall € feLP.
ii)
(20) 1K * fllwra < Cpgll fllwr for all € fe W',

Proof. The absolute convergence of K * f(x) and statement i) follow from the
analogous results for the Riesz transform

(21) ferLl— /Rz |j(_y?y|dy € Li(dx)

(cf. Theorem 1, Ch. 5, in Stein [20]). To prove ii), using i) we need only to check

that K* commutes with derivatives on D. This is easy by dominated convergence.
O

Remark 4.2. Lemma []] with the same constants applies to each mollified kernel
K..

We now introduce the adequate spaces to work in. For measurable w : [0,7] x
R? — R and real numbers p € [1,00] and r > p we introduce the norms

o |wllopr = sup [wlly,
0<t<T

1_1
o Nwlonap = sup {57 |wl,},
0<t<T
and we denote the associated Banach spaces, respectively, by
Fopr and  For (rp)-

We write Ky = K, and for each € > 0, we define the bilinear operator B° on
measurable functions v, w : [0,7] x R? — R, by

@) Bt = [ [ V6= K nmumd d

Accordingly, we also write B = BY.
We denote by Wy the function

¢
Wo(t,x) = GY *wo(x) +/ Gy_, * gs(z)ds.
0

Lemma 4.3. i) Let p € [1,00] and assume wo € LP and g € Fyp . Then,
we have
Wo € Foripy  for allr > p.
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ii) For eachr > 2%, v,w € Forr, and each t < T, we have

3
(23) sup [ Ke + v(t)w(®)l 2= < Cllo@llr @)l

iii) If% <p<2,p<r<2and % <7 < &, then B° : (FO,T,(T;p))Z —

2—r’

Fo 1 (1) 8 well defined for each € > 0, and for all v,w € Fy . (1),

_1
51;18 MBE(an)mO,r’,(T;p) < crt pm“mom(T;p) "leO,T,(T;p)'
€2

iv) If $ <p <2, wo € LP and g € Fyp.r, we have for all r € [p, 22_—pp}

sup [|5%lo,r,(7:p) < 00
e>0

Proof. Part i) follows from Lemma [2:2] and the estimate

t
/ Gy_,*xgs ds
0

for some constant C(p,r) > 0 since 1/p < 1/r + 1.

i) Notice that 1 < 42fr. Equation (23] is immediately obtained from Lemma
1 Remark and Holder’s inequality.

iii) By (23), noticing that 1 < ;" < r’ and by Lemma 2] and Lemma 1] we

have

1

(24) ‘ <Cpr)t ( sup ”gt”P>

r t€[0,T]

1
7

t
HBE(vaw)tHr’ SC/ (t—8)7
0

2
vsllrlJws |- ds

(25)

S

ds

kSN

t
1_2
Om(T;p)/(t_S)T' TS
0

|0J’,(T;p) H\W||Io,r,<T;p)

<Clwllo,r,crpllw

=0t ¥ ol

with constants that do not depend on € > 0. In the last step we have used the fact
that 1 — % > —1 because r <2 < 22_—”p. The statement follows.
iv) By Lemma B9 we have

sup [| 5|
e>0

|O,p,T < 0.

Observe that 2% > 2. We define p; := 24Tpp € (p,2) and apply iii) to r = p and
r’" = p1 which yields sup g [I6°llo,p,,(7:p) < 00, considering equation (I5) and i).

We now apply iii) to r = p; and some r’ € [4271’;1, 5) = [p, ;Tpp) and conclude in

a similar way.
To get the conclusion for the limiting value 227—”1) we observe that for € > 0 small
enough, we can now apply the previous arguments, first to r = p + ¢ € [p,2) and

4 2
r'=py = 23{’;2 € (p,2), and then to r = py and 1’ = prp €lp+e, 2_(’(’;2)) O

In the sequel we shall make the following type of assumption on the data:
(Hp):
wy € LP(R?) and g € Fy 1.
In view of the continuity property of the Biot-Savart operator, and of part iii) of
the previous lemma, we will always consider

4
p:lorpe[g,Q).
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4.1. Convergence of the mollified solutions for L' N L? data. For technical
reasons, we will make a particular choice of approximating kernels K. (x) = K x
e (). We take ¢ as the cutoff function with radial symmetry given by Raviart [19]
in a general context of approximations, and proposed by Bossy [3] for a numerical
study of the vortex algorithm:

r=|z|.

The following is proved in [18].

Lemma 4.4. For eachl € [1,2) and a positive constant C' depending only on 1, we
have

IK. — K| < CeT .

Proposition 4.5. Assume that (Hp) holds, with p € [%, 2). There exists a solution
w € Fyp 1, the mild vortex equation [)). Moreover, for any 1 € [1,2) and € > 0 it
holds that

2—1

(26) sup (175 — will, < CieT".
t<T

Proof. By Lemma @4l for 1 > 1 < 2 and € > ¢’ > 0 we have ||K, — K ||; < Cce’T.
In view of (I3]), Lemma 2:2] and Lemma 3] we have, for t < T,

t
177 = W = [ IVGH L (0 5052 = (o 2y s
t
_1 ~E\ ~, ~E\ ~
< O [ =) B0 = 505 — (K e 507 s
0 P

+||(Ks’ * ﬁi)ﬁi - (Ks’ * ﬁi )ﬁi”%
HI (B 55 ) (05 = 55) 22) ds

t
. . _111
< ClFloprll Ko KelllF o [ (6= 5)7F 52 Hds
0
t
~ ~c! 1 _ !
(27) 40 (1 o 415 Nopr) [ (=) 15 = 72, ds.
. 2p . : 1 _ 1 _ 1 1_ i i
with r € (p, —2_p] given by the relation - — 3 = 7 + 7 — 1. The last inequality

follows from Young’s inequality for the first term and from (23]) for the last two
terms. Since % — % + 1 > 0, Lemmas iv) and Lemma (4] imply that
(28)

|

t
[ - 2-1 - CLlae gt
157 — % llp < Csup|lp Io,p,T<€ T sup Hlpsllo,r,(T;p)JrC/O (t—s)"7p5 — 75 llp dS)
1= 1=

which together with Lemma [[1] yields sup,<r [|p; — 5, < Ce*T. The result
follows.
O

Bringing together previous statements, we have the following result:

Theorem 4.6. Under (Hy) and (Hy) with p € [%,2) the mild vortex equation with
external force field (Bl) has a unique solution w in the space Fy, v N Fo 11, which
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moreover satisfies

t
(29) [w@®llp < llwoll, +/0 19sllpds-

Proof. Thanks to Propositiond.5land Lemma[3.9, we only need to check uniqueness
and the fact that w € Fy 1 7. The latter is proved by iteratively using Lemma H3]
iii); see Lemma 2.4 in [I0] for details. By arguments used in Lemma [£.3] ii) with
p=r=r', we also get ||lw, —wi|, < Cfot(t - 8)7% lws — wl||pds for two solutions
w,w’, and Lemma [[1] yields uniqueness. O

Remark 4.7. The statement of Theorem also holds for equation (I5)). Hence,
the unique solution w® € Fy, 7 N Fy17 (p € [2,2)) of ({F) is given by w® = f° if
e >0, or by w? = w.

4.2. Regularity estimates. To show strong existence and uniqueness for the lim-
iting process, and pathwise convergence of the mollified processes when £ — 0, we
need to prove some uniform (in ¢) regularity properties for functions p¢.

For T'> 0 and r > p we introduce additional norms

1_1 l,01_1
o lolhnr = sup {5 F ol + 5560w, .

1
o lWhipr = Wollipcra = sup {llerl, + 5190l },
0<t<T

and the associated Banach spaces
Fyrp)y and  Fipr.
Lemma 4.8. i) Assume (Hp) with 3 < p < 2. Then we have

2p
WO € Fl,T,(T;p) fOT’ all r € [p, m)

ii) If% <p<2,p<r<2and % <7’ < g5, then B° (Flm(;,«;p))2 —
Fy o (1) 8 well defined for each € > 0 and

1—1
Sup [ B° (v, W)l i) < CT 2ol full i)
€2

Proof. 1) For p € [1,2) the function t — 277 is integrable in 0 if and only if
r < 22_—pp. Taking the gradient of G}_, * g; under the time integral and using Lemma
we obtain

¢
\Y (/ Gy_,*¢s ds)
0

for some constant C’(p,r) > 0, which implies that Wy € F ;. (1;p)-
i) It is enough to check the properties for B. If v,u € Fy ;. (), then (K *v,)uy €

1,1_ 1
(30) < C'(p,r)t2 T ( sup ||gtllp>

t€[0,T)

T

I/Vl’fTTT7 and integrating by parts yields

B(v,u)(t, z) = / Gy (x — y)(K * v2)(y) - Vus(y)dy ds.

R2
By adapting arguments of Proposition 3.1 in [I0], we can take the derivatives in x
on both sides of the previous equation. Then, using the fact that % — % — % > —1,

it is not hard to adapt the arguments of Lemma[4.3iii) to get the required estimate
for the derivatives. We just notice that the “t—2-worst behavior at t = 07 of the
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derivative of u is exactly compensated by the higher power of ¢ required in the
derivative’s part of the norm || - [l ;. (7;p)- O

Remark 4.9. By the previous lemma, and since prp <p< ﬁ, equation (I3 in
the space Fy , 7, with % < p < 2, is equivalent to the abstract equation

(31) w® = Wy + B (w®, w).

Proposition 4.10. Let p € [%,2). Then, there is a constant A, > 0 independent
of € > 0 such that for all @ > 0 and wy € LP, g € Fy p o satisfying

_1
677 (lwoll, + Gllg]

l0.p,0) < Ap,

Equation ([I3)) with ¢ > 0, has a unique solution in Fy ¢ such that |w
2[|Wao|

|

|17p79 <

|17p,9-

Proof. From Lemma E8ii) (with r = 7' = p/ = p), the operators B¢ : (F} )% —
Fy p,¢ are continuous with norm bounded by 6'~% times a constant C(p) > 0 not

depending on 6 or € > 0. Furthermore, from the proofs of Lemma and Lemmas
i) and [8]1) there is C(p) > 0 such that

IWoll1p6 < C(p) (lwoll, + Ollgl

Hence, by a standard fixed point argument for bilinear operators in Banach spaces
(see Cannone [7], Ch. 1), the asserted solution w® € Fi , ¢ to the abstract equation
(1) exists as soon as

4C(P)0" > ([[wolly + Ollgllo.pe) C(p) < 1.

|0,p79> :

O

Theorem 4.11. Assume (Hy) and (Hp) withp € [%, 2) and let w® € Fy, 7NFy 11,
e >0, be the solution of (5.

i) We have
sup [|[w®||l1,p,7 < oo.
e>0
ii) For each r € [p, ;Tpp)
sup [[w®||1,r. (7;p) < 00
e>0

Proof. 1) We follow the lines of Lemma 4.4 in [I0] to deal with w® at time 0. By
the semigroup property of G} and the estimates of Lemma 22 it is checked that

t
(32) Wiy (€) = Wiy (t, @) +/O VG # [(Kexwiy Jwiy] () ds,

for all t € (0,7 — r], where W§,(t,2) := G{ * wi(z) + fot GY_, * gs+r(x) ds. Then,
as in the proof of Proposition and with the same constant C'(p), we have
(33)  IWeylhpe < CW) (lwillp + 0llg-+rllope) < C®) (lwolly + 2T llgllopr)

for all § € [0,T — 7], the last inequality owing to Lemma 3.9
Now, thanks to Proposition FLI0] we can find some small enough 6y € [0, T] such
that equation ([B2)) has a solution, say U(ET), in the space F1 p0,. By uniqueness in
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the space Fy p, 9,1(7—r) holding for ([32)) and each r, we have that w;, (-) = v(sr) €
Fl,p,ao/\(T—r)a with

(34) lwr . (llp.00 < 200G ll1.p.00-
This of course implies that w§ € WP for strictly positive t.
Now choose 14 := k% so that wy, 1y = wikiﬁ%ﬂ for t € [0,%] and k €

{1,..., [%]} For such t and k, we have by ([B84) and (33) that
1 e -3 3 b1 €
(e +8)2[[Vwr, llp < 0 (re + )2 (E+ 57) 2 |V [

(ro—1)+t+%0
T\ 2 T\ 2
<0(5) MWeroline (g ) (huolly + 2Thollo,).

This and (B4) with » = 0 yield assertion i). The proof of ii) is done in a similar
way as in Lemma [£3]iv), using Lemma 4.8 O

Corollary 4.12. Under the assumptions of Theorem EI1l, we have
i)

sup sup } {t% (||K5 * Wy || oo + || Ke * wf||cg_%)} < oo

e>0¢€[0,T
it) for allr € (2, ;Tpp],
1-142 c c
sup sup {t2 " (||VK5 * Wi || oo + || VK * wy|| 1_;)} < 00.
€20 t€[0,T] ¢
Here, || - ||co is the Hélder norm of index o € (0,1).

Proof. We obtain part i) using the equi-continuity of the family of operators { K. :

Wh? — Wi} oo for p e (1,2) and g = ;Tpp, the uniform boundedness of the w®’s

in Fy 7, and the fact that W14(R?) is continuously embedded into L>°(R?) nct—i
since ¢ > 2 (see e.g. []).

To prove ii) we use the fact that each distributional derivative of the velocity
field K #w is obtained by applying some singular integral operator on w (see e.g.
Bertozzi and Majda [2], p. 76). We can therefore adapt the arguments in Lemma 2.2
in [I0] to check that the operators %Kj* : WhT — WLT are continuous. Moreover,
using the fact that the Fourier transform of %(K <); is pointwise bounded by that

of %K 4, we can follow the lines of Lemma 5.1 in [I0] to prove that the family of
operators %(Kg)j* :WHr — Wb e > 0 is equi-continuous.

We conclude ii) using the latter, the uniform estimate for w® in F ;. (p,,) when
r € (2,52 ) and the embedding of W7 (R2) into L>°(R2) N C'~7 for r > 2. O

»2—p

4.3. Pathwise convergence of the mollified processes. Throughout this sec-
tion, it is assumed that (Hy) and (Hp) hold with p € [3,2). Let us state the
existence and pathwise uniqueness of the nonlinear process related to the vortex
equation. The existence is obtained by approximation of the mollified nonlinear

processes, when € — 0.

Definition 4.13. We denote by P, r the space of probability measures on Cr =
[0,T] x C([0,T],R?) such that for each t € [0,T], the signed measure P; has a
density p; with respect to the Lebesgue measure and p € Fo 7 N Fo 1,7
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Theorem 4.14. Consider a R%-Brownian motion B and a random variable (7, Xo)
in [0,T] x R? with law Py and independent of the Brownian motion.

a) There exists in Py a unique solution P to the nonlinear martingale prob-
lem (MP). The corresponding function p is the unique solution of the mild
equation ([Bl) in the space Fy 1 N Fo1 7.

b) There is a unique pathwise solution ((7,X), P) of the nonlinear s.d.e. (E):

i) The law P of (1,X) belongs to P, and Py(dz) = pi(x)dz.
t t

(35) ZZ) Xt = XO + Vv 21// 1{527-}st +/ 1{527-}[( * ﬁS(XS>dS .
0 0

¢) For each € > 0, let X be the mollified nonlinear processes constructed in
the same probability space as B and (1, Xg). Then, for each r € (p, ;_—pp),

E(Sup X7~ th) < Clp.r)er).
t<T

Proof. The existence part of a) easily follows from b) by writing It6’s formula for
f(t, X;) and using Remark 2.8 On the other hand, by Lemma 27 for any solution
P € P, r the associated p is a solution of the weak equation. The fact that it also
is a mild solution then follows from Remark 2.4l observing that

T
(36) / / K« pul@)llpa(@)lde ds < o0

by Holder’s inequality since p € F07§7T (by interpolation) and K % p € Foar
by Lemma [£Il Theorem then implies that p is uniquely determined, and so
P indeed solves a linear martingale problem. By Remark 2.8 it is also a weak
solution to a (linear) stochastic differential equation. Its pathwise uniqueness is
proved below, and this implies the uniqueness of P.

The rest of the proof consists of several steps:

Pathwise uniqueness for (E). Let (1,2!) and (7, Z%) be two pathwise so-
lutions of (E), with laws respectively denoted by P!, P? € P,r. As in the pre-
vious step we obtain that p! = p? = w is the unique solution of (&) in the space
Fopr N Foar. Therefore, (1,Z1) and (7, Z2) are both solutions of an s.d.e. (E")
defined like (E), but with the known drift coefficient K x wy instead of K * p! or
K * p? in (35).

By Corollary AI21ii), we get for all r € (2, ;Tpp) and ¢t < T that

E(sup |z - Z2|) = E(sup / (K xws(Z)) — K xwy(Z%))ds >
u<t u<t 0
t
(37) < / s* v 2 E(sup|Z: — Z2|)ds.
0 u<s

By Lemma [T} we conclude that E(sup,«q |2} — Z}|) = 0.

Pathwise convergence. Let g be defined by % = %— 1. We choose r € (p, ;Tpp)
and ! € (1,2) such that %— 1= % = 142 —1. We first prove the following estimate:
for each ¢ > ¢’ > 0,

(38) E</OT

2—1

K.« po(X:) — Ko = [)Z/(Xg) ds) <Cer.
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Write q% =1- % and observe that ¢* € [1,p] so that by Lemma [39]
sup [|p%[lo,q+,7 < oo
e>0

Since p§ is the density of X7, we get for the left hand side of (B8] that

T T
/ E|K.  55(X5) — Ko % 57 (X2)|ds < / 1Ko 5 75— Ko % 5 195 s
0 0

T
< 0/ 1K+ 55 — Koo % 5l
0

+ [|Ker % pf — Ker % pf || qds.
By Young’s inequality, Lemma 4] and Lemma [£3]iv) the first term in the last
integral is bounded by
. 2-1, 2-1,1 1
[1Ke = Kol |l < Ce T [|pgllr < CeTtm 7.

By Lemma 1] and Proposition the second term is bounded by Ce*T . Since
% — 1—1) + 1> 0, B8) follows. Next, for u < T, we have

E(sup | XS — X5'|> < E(/ |K. o p5(X5) — Koo x ﬁg’(Xg’)ds>
0

v<u
= / (EKE % p2(XE) — Ko % 55 (X2)| + B|Ko # 55 (X5) — Koo 5 <X:/>|)d5
0

(39)

that

(40) E(sup | X5 — Xf’) <CeT.
t<T

The sequence (X°) is hence Cauchy in the space Ly := {Y : E(supyco,n |Yi]) <

+oo} and converges therein at speed C(p, 7")82(%_%) to some process X™.

We remark that, although Proposition also allows us to obtain an estimate
B8)) for I = 1, the last argument yielding estimate [@0) does not hold anymore for
r= 22—”.

-p
The final step is:
Identification of the limit as a solution of (E). Taking ¢/ = 0 in the

previous estimate we easily get that (7, X™) solves the s.d.e.

t t
(41) X;w =Xo+V 21// 1{527.}st —I—/ 1{527}[( * wS(X;”)ds
0 0

Denote by P™ the law of X™. We just need to verify that X" is a solution of the
nonlinear s.d.e. (E). This amounts to checking that each of the signed measures
P} has a density which is equal to w. We have, for each f € D and t € [0, T], that
. F(@)5 (x)dz — P (f)|=|E(f(XD)h(T, Xo)Lgr<ay) — E(F(X{)h(T, Xo)1ir<iy)|

<C|VfllE|X; — X{’| — 0 when £ — 0.
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This concludes the proof, since [, f(x)pf(z)dr — [g. f(z)w:(x)dx by Proposition
O

4.4. The stochastic vortex method. From the results in the previous sections
we readily deduce

Corollary 4.15. Let T > 0 and assume that (Hy) and (Hp) hold with p € [3,2).
Consider a sequence €, — 0 in such a way that
Clé‘n
vn
when n — oo, where C1 and Cy are the positive constants given in Proposition 3.6l

With the notation [B4), we define for alln € N and i = 1,...,n the system of
particles

exp(Ca(||wollr + llgll.r)(e5*)T) — 0

Zin = Xin,an
and consider on the same probability space the sequence of i.i.d. processes (Xien,
with X" the unique strong solution of

i) the law P of (1, X") belongs to Py and Pi(dx) = pi(z)dz,
¢ ¢
(42) H) XZ = Xé + VQV/O 1{527’"}de +/O l{SZTq}K*ﬁS(X;)dS .

Then, for all k € N and any r € (p, i—pp), we have

k
- = 2(1-1) Cien —2
E Zm — X! <kCep,? 7 k C! T
(tes[%%]i | Z{ t|> < kCe + n exp(Ca([lwoll1 + llgll1,7)(e;,7)T)

i=1
(the constant C depending on p,r and T).
The following corollary shows the consistency of our method, to approximate

the solution of a Navier-Stokes equation with external force. We exhibit a rate of
convergence, which had not been proved even in the classic case.

Corollary 4.16. Consider o €]0, %[ and the sequence (e,,) given by

_ <C2||h||ooT)2
ep = | ——— ,
alnn

with a constant Cy > 0 as in Corollary 15 Consider moreover the weighted
empirical process

~n,e 1 En j j
" = ﬁ h(TJ,X(]))]_{SZTj}(sZgn
=1
and the approximate velocity field

~n 1 S j ] in
Ksn * NJS e (Z) = ﬁ Z h’(TJ’ Xé)l{SZTQ}KEn (Z - Zg )'
j=1

Then, under the assumptions of Theorem EI4, for alll € (1,2) we have

1 1
sup E( sup t7|K. e (z) —u(t,x)) <C(,a,T) < nil + 5 L) .

zeR?  \t€0,T) (alnn)=r
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Proof. First we prove that for all [ € (1,2), for some constant C(T") depending on
[ and T, it holds that for p € [4/3,2),

2—1

(43) sup 2 ||ws — wy||ywis < C(T)eT .
t<T

From Lemma .8 ii), for € > 0 the function Vw® satisfies

ows

0
81‘1():8{13 *U}() /Gt s*gS

/ - 6; (z — y) (K wi)(y) - Vwi (y)dy ds,

(44)

since divK, * ws = 0. Proceeding as in Proposition 5] we deduce for r € (p, ;Tpp)
glvenby—————+ — 1 that

t

Vo = Vil < € [ (t=9)7H (1w Vg - (6 x w) V]
0 —-p
| (K # w§) Ve, = (% ;) Ve | 2o
I ) (Vaof — V| 22 ) ds

t
< mwwmﬂKf&mwwmmm/@f@ﬁﬁﬁ%@
, 0
4w g [ (6 9)7Fs g~ i, ds
: 1
(45) +owwmnT[;@stGHVwawaAud&

Notice that % — % + % > 0. With the help of Lemma [£.4] and Proposition
(since p° = w®), we deduce for all § < T and ¢t < 6 that

t%||Vw§—th||p <Ce Tt TrH L Ce T TR T C {supsé||Vw§ — sz||p} ,
s<6
where all powers of ¢ are nonnegative. It follows that

{sup 52 IVws — sz|p} < C(T)f;‘z%l L0 {sup 52 IVws — sz|p} ,
s<6 <0

from where sup,.q, 52 || Vs — V|, < C(T)Ez%l for 8y > 0 small enough.

By similar steps as before, starting from the equations satisfied by w? , and
w.1g,, and noting that these functions and their gradients are bounded in Fy , 7—g,
and Fy . (7;p) uniformly in € > 0, we now obtain

t
VW, se — Vwgyrelly, < Ce'T +Ca¥/(t—s)—;s?—;ds
0
t 1
40 [ (=) s = gl s

t
(46) +C [ (=9 F Vi = Tl ds
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Proposition and Lemma [LLT] imply that sup,<p_g, [Vwg, 1, — Vwe,1llp <
C (T) 7' From the previous estimates and Proposition @5 we get flwe —wllipr <

Ce’T', from where @3)) follows. Next, we have

K, * i (x) — u(t, o)

~n,E 1 . 1,En i A
g’KEn*ut’" —ﬁz e (X7 — )T, X0) L5501y

ZKEn (X7 = 2) (1!, X0)Ls 0y — Ko, + wi ()

+ |KE *wf( ) — K xwg(x)].

Let L., and M, , respectively, be a Lipschitz constant for KE and an upper bound
for its sup norm, and C' > 0 a constant such that M., < & =) and L. g + for n

large enough. By the choice of (g,), and Proposition B.0] the expectatlon of the
first term is bounded by

[e%

n alnn
= exp(Ca|hlo(e,2)T) < C

L. C < ,
"Vn N T e

f

where ||A|loc = |Jwoll1 + [|g]l1,7- On the other hand, independence of the processes
(7%, X*¢) implies that the expectation of the second term on the r.h.s. is bounded
above by

alnn

L oM b < c
NG 2]

For the last term in ([#7), notice that by similar arguments as in the proof Corollary

f12
[Ke, v wp™ (2) = K xwy(2)] SOJK, xwp” — Ko, xwgll 2
-P
+ O K., xwy — K xwy|| 20
whz-
<Cllwi* —wellwrr + | Kz, — Klullwellw.r

2-1 1 2-1
<Cen” t7% +Cepl 77 2wy r(1ip),

where [ and r are chosen as before. Since % — % —-5= %, we conclude that

1 ne Inn 2-L
sup E | sup t7|K,, * ;" (z) —u(t,z)| | <C — ten

z€R? t€[0,T nz

<Clamr (B, 1 )
ni—o (alnn)™=r
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5. EXTENSION TO L' INITIAL CONDITION AND FORCE FIELD

In this section, we will remove the L?, p > 1, assumption on the data, and present
the extension of the previous results to this setting.

5.1. Analytical results. The analytical part can be done to a large extent by
adapting some arguments developed by Ben-Artzi [I] and Brezis [5] (in the absence
of external fields). Thus, we shall only present in detail arguments that are different
from those works or from previous sections.
A key point for following [I] and [5] is the continuity in time of mild solutions.
This is why we will need the following hypothesis, assumed throughout the sequel:
(Hy):
e wy € L'(R?) and
® ge C([OvT]le(Rz))‘

For p € [1, 0] and a measurable functions v : R? x [0,7] — R define
1—1
o Polly,r = sup {£'F o, }.
0<t<T

# 11 3_1
o Pollipr = swp {#' Pl + 62 Vel }

and let ngp,T and Ff,pj be the associated Banach spaces.

Remark 5.1. i) By Lemmal[2Z2 we have G} xwo € Fy 1,1 me,p,T for all p, and
(t,x) — fg GY_4+g(s, x)ds belongs to F071,TﬂF1u’p,T for p < 2. Furthermore,
from (HY}) for all r € [1,p] we get that Wy € C([0,T7], L").

ii) It is not hard to check that for % <p<2and 42fp <p < 2%}),

B : (C([0,T), L?))* — (C([0,T], L¥"))

is well defined and continuous.
iii) Moreover, proceeding as in Lemma 3] one can check that

sup |B° (v, u) I} < Clol ol
€2

for all v,u € F&p’T and some constant C' > 0.
As a consequence, we have
Lemma 5.2. Assume (H}) and (Hp) with p € [£,2). Then, for each ¢ > 0
the unique solution w® € Fo11 N Fypr of the mild equation () belongs to
C([0,T],LP N L").

Proof. Using the continuity estimate of part iii) in Lemma 3] with p = r = ¢/,
we can proceed as in Proposition L0l to prove a local existence statement for ([IH)
in the space C([0,77], LP). From uniqueness in Fy , 7 for the equation satisfied by
we (0 + -) we conclude that w® € C(]0,T],L?). By repeatedly using part ii) in
Remark [5.1] (and therein choosing adequate values of “p ”and “p’”) one can deduce
from here that w® € C([0,T], L'). O
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The following lemma is the extension to our setting of a key observation in [1].

Lemma 5.3. LetI' C Ll(Rz) be a pre-compact set and I'r C Fy 1,7 a bounded set.
For each p € (1,2) there is an increasing function 0 — 6(0,p,T',T'r), going to 0
with 0 such that

sup 67w+ [ G o(s)dsllh o < 8(6.p.T. )
pel,pel'r 0
Lemma 5.4. For € > 0 and each initial condition 1 € L' N LP and external field
¢ € Foir NFypr let wS¥?® denote the unique solution in Fo,r N Fop1 of the
associated mollified mild equation ([I3).

Let T' C L' and I'r C Fy1.r, respectively, be a pre-compact set and a bounded
set, such that moreover I' C LP(R?) and I'r C Fy, 1 for some p € [3,2). Then,
for some Ty > 0

sup sup  [wS |
e>0 el pelr

Proof. As in Lemma [3]iii), with » = ' = p one checks that for ¢t <0 < T,
(48) 1B° (w2, w ¥ 9) |, < Gt~ (P2, )

With this and Lemma B3 we deduce that the function fa(s) = Cps® — s +
5(8,p,T,T'r) satisfies fo([lws¥?[lope) > 0 for § < T. A careful study of fp(s)
along the lines of [I], pages 350-351, using the continuity of 6’ — |||w5>’l’>¢|||g,p79, and
its convergence to 0 when ¢’ — 0 yields the desired result. O

|g,p79 <26(0,p,T,T'r) for all 6 < Tp.

We next state the main analytical results needed in the current setting:

Theorem 5.5. Let p € [%, 2) be fized and wy and g be functions satisfying (HY).

a) For eache > 0, there exists a unique solution w® to the mild vortex equation
(@) in the space

c(jo,T), LYYy nC(]o,T], LP).
Moreover, we have

sup [l , 5 — 0 when 6 — 0.
e>0

b) We denote w = w®. We have w§ — wy in LP for all t €]0,T], and

sup (4 uf —will,) < Cp, 7).
t€[0,T]
Proof. a) We split the proof in several parts.

Uniqueness: We can follow without difficulty the argument of Brezis [5]. In
our case, we remark that for w € C([0,7],L'), the set I := {wr}re[o,g] C L'is
pre-compact and the set I'z/o := {g,4.() : [0,7/2] xR* — R},.¢[o,1/2] is bounded in
FO,I,%' Lemmal[5.4] provides an increasing function 6(6) not depending on r € [0,/
2], going to 0 with 6, such that

_1
77wl < 6(9)

for small enough 6 and all ¢ € (0,6]. From here on the argument is exactly as in
[5].
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Existence: Let wj € L'NLP and g™ € C([0,T], L' N LP) be such that wjj — wy
in L' and g" — ¢ in C([0,T], L') when n — co. We write w®™ for the associated
solutions. Then,

I'= {w(?}{neN} and I'r = {gn}{nEN}
are sets satisfying the hypothesis of Lemma B4l By standard LP estimates for
GY = wj and GY_, % g7, and proceeding as in ([48)), we have

1_ 1
™ = wi™ |, < Ct7 7 wg = wgt |y + Ot g™ = g llor
+ Ctr (ot =, )
for all ¢ € [0,0]. Thanks to Lemma [5.4], for § small enough and all n,m € N,
=™ = w™[§ 5 < Cllwg —wi s + CTlhg™ = g™ lo,1,r

+C60,p,T,Tr)||w™™ — w™™|

|ﬁ
0,p,0°

and w®™ is thus Cauchy in ngT if 8 is small enough. Then, from the mild
equation satisfied by the function wy" () we get that {wy" }nen is Cauchy in the
space Fy,r—g. Thus, {w®"},en converges in Fg’p’T to some limit w®. Continuity

of B® in Fg’p’T (cf. Remark B7)) implies that w® solves equation (IH).

Continuity of ¢ — w§ € L' N L? on ]0,T]: By Lemma 5.2 t — wy, € L? is
continuous for all n, which clearly implies that w® € C(]0,T],LP). On the other
hand, is is not hard to establish that B° : (Fng N C(0,7],L"))? — Fg}r,’T N

C’(]O,T],L’"l) is continuous when % <r <p, ffr <1’ < 3%, and that Wy €
C(]0,T],L") for all r € [1,p]. By an iterative argument we can deduce that w® €
C(}O,T],Ll).

Behavior at § = 0 of |||w5|\|g)p79: From Remark [B.1] iii) we deduce for each

4 2
3<r<p 7~ <7 <z, and 6 <T that

o300 0 < IWollg 1o + Crrr (1< 6%,

for a constant C,.,» not depending on € > 0. By Lemma [5.3 if furthermore ' # 1,
we obtain for small enough 6 > 0 that

(49) w1}, 5 < 38,7, T,T0) + oo (<[l )

Taking » = r’ = p and proceeding as in Lemma [5.4] we conclude for small enough
0 that

(50) sup Jlwfllf, » < 20(0,p,T, 7).
e>0

Continuity of ¢t — w®(t) € L' in t = 0: a) By @9), if |||w5\|\g77,9 — 0 when

6 — 0, then also H|w5|||g’r,’9 — 0. An iterative argument using [#9)), starting from

#

— 0.
0,20

(B0) and suitably choosing consequent values of » and 1/, shows that ||we||

Taking p’ = 1 in Remark [5.1]1i) and the value % in place of p yields

[w(#) — wolly < |G} * wo — wolly + tllgllo..r + O(|\|w5|||§;,%,t>2 — 0 when ¢ — 0.

b) Thanks to Remark [5.liii), we have that sup, |||w8|||g,2,:r < oo. Consequently,

. . . . . : 1_1_1
taking [ = p in Lemma [£4] and using Young’s inequality we obtain, for 179 o
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that
(51) 1w — K xwflly < 1Ko = K gl < O35,
By standard estimates, the previous considerations and (B0), we deduce that for
t<4d
t 1
l[wi = wellp SC/O (t = )77 [lwg — wsllp ([wSllp + [lwsllp) ds

t
+ C/O (t =) 7 || Ke*x ws — K *wsllq ([[willp + [lwslp) ds
<C6(0,p,T,Tr)t™% sup (S%ng —ws||,,) £ C8(0,p,T,Tp)e 7 3.
s€10,0]

Therefore,

sup (¢ |lwj —wil,) < C5(0,p,T.Tr) [ sup (¢ [lwf —wil, )+
te[0,6] t€[0,6]

)

and so for some small enough 6 > 0 we have

sup (4 ]wf —will,) < Co0)="".
t€0,0]

From this estimate and the mild equations satisfied by wg, = and wg., and arguing

2
as in Proposition A3 we get [wg, . —woylopr—0 < Ce v . The last two estimates
prove b). O

The following result states additional regularity properties of the solutions of the
mollified equations, needed to study the martingale problem. We omit the proof,
which is similar as in the case of L' N LP data, with the help of the same local
existence result. Some additional technical difficulties arising can be treated as
previously in the current section.

Theorem 5.6. For cach p € [3,2) we have sup. |||w8|\|§)p7T < 0.
By similar arguments as in Corollary [£12]i), we deduce that

Corollary 5.7. For the same values of p, we have

sup sup {t%_% (||K5 * W || oo + || K2+ wi|| 2,2)} < 0.

£>0 t€[0,T] cr
5.2. The nonlinear process and particle approximations. Let us now gen-
eralize the previous probabilistic interpretation to the L!'-setting and show weak
convergence of the mollified particle system. The explosion of the solution at time
0 will prevent us from obtaining pathwise results.

Definition 5.8. Forp € [%, 2), we denote by P, 1 the space of probability measures
on Cr = [0,T] x C([0,T],R?) such that for each t € [0,T], the signed measure P,
has a density p; with respect to the Lebesgue measure and p € C([0,T],L') N
C(10,7],LP) N F} 1.
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Theorem 5.9. Assume (H}).

a) For each p € [%,2), there exists in the class P, a unique solution P to

the nonlinear martingale problem (MP). The corresponding function p is
equal to the unique solution w € C([0,T), L) N C(]0,T],LP) N Fg,pj of the
mild equation (0.

b) The solution P € P, 1 is the limit in law when € — 0 of the laws P. of the
mollified processes (X®).

Proof. We proceed in several steps.
Uniqueness. Let P € P, be a solution of (MP). By the interpolation

4
inequality || f||3 < ||fllx + [If]|% applied to f = tp; (and multiplying then by ¢~1),
3
we see that p € Fg 4 p- Therefore, as for (3), we obtain
53

/ K % po ()| e ()| dadt < oo,
[0,T] xR2

By standard arguments we deduce that 5 is a solution of (@) in the space

C([OvT]le) n CGO;TLL%) N F(f 4 7

Consequently, for any two solutions P! and P? of (MP) the associated functions

p* and p? coincide by Theorem 5.5, and we write w = 5% = p'. Now define a family
(P})tejo,r) of sub-probability measures P/ on R? by

(52) [ J@Fir) = B (f(X)1020)

with (7, X) the canonical process. It is not immediate whether each P has a
density. Denote by D,, n € N\{0}, the shift operator in the canonical space
[0, 7] x C([0,T],R?),

1
Do X)) = (7= 10Xy )
Under Q¢ := P'o D, !, i =1,2, the canonical variable (7, Xo) has law P! given by
. i 1
Lo ) Pidndn =6 (£ - 1)1 X0))
R2x[0,T— ] " "

n
T 1 -~
:/ ft—=,2)Py(dt,dz) + [ f(0,z)P5(dz).
% R2 n R2 n
Thus, the canonical process (7, X) solves under Q¢ the martingale problem

e Qo(r,Xo) t=Pt,

o f(t, X))~ f(r.Xo0) — [y [g_g;(s,xs) +uAf(s, X,)

(53) +K * ws+l(XS)Vf(37XS) 1s>-ds,
0<t<T— %, is a continuous Q-martingale for all f € C;’2
w.r.t. the filtration G; = F;, 1.

Notice that if we prove that the “initial condition” Q% o (7, Xo)~! is uniquely

determined, we deduce that (MP) has a unique solution, remarking first that the
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drift coefficient K w1 is bounded (Corollary [5.7). Then, we can adapt standard
results on martingale problems to deduce that Pl o Dt = P20 D! for all n € N,
and this implies that P! = P2.

We therefore proceed to check that P = P%, or equivalently (by (52))), that
Pl = P2, Observe that for ¢ > 0 the 1nd1cator functlon in the definition (52]) can

be replaced by that of the event {7 < t}. Thus, it is not hard to check that for
¢t > L it holds that

(54) [ H@Pitdn) = B9 (P 1 1),

On the other hand, since K * w,, 1 is bounded, by a standard argument based on
Girsanov’s theorem we can check that Q! is absolutely continuous (on [0,7 — 1] x
C([0,T — 1],R?)) w.r.t. the law of the process (7, Xg —|—f0t 1,>,dBs), where (1, Xo)
has distribution P} and B is an independent Brownian motion. From this and (54)

it follows that Pj(dz) has a density (independent of whether Pi does or not), and

so P} has a density for all ¢.
We denote the density of P} by pi. We just have to prove that p; = p?.
Following similar arguments as in the proof of Lemma B9 ii), and using the fact
that

T
/ |K o« wy ()| pl(2)de dt < / | K * wy | sodt < 00
[0,T]xR2 0

by Corollary 5.7 we deduce that
pi(x) = Gy * wo(x /G s % gs(T ds+/ VGY_, * [(K *ws)pl] (z) ds

N [wo ()| G lgs(@)]
for all t € [O,T], where ’UJO(Q}) m and gs( ) Twolli +iglrr We take

L3 norm and use the estimate || K. * w(s)pi|y < Cs~% (following from Corollary
BE.7) to get that

t
Ipills < Ct™3 +O+C/ (t—s) Fs ids=Ct 5 +C+Ct 3.
0

From here, sup,c(, 1 (t% ||ﬁ§||%) < 00, and by similar steps as in Theorem b),
we obtain

sup (45} — 72l ) < Co(0) sup (¢} — a2l )

t€[0,6] t€[0,6]
for small enough 6, and §(#) a function associated to w as in Theorem a),
satisfying d(6) — 0 when 6 — 0. This yields p; = p? for small enough ¢, and then
for all ¢ by standard arguments.

Estimates for time-marginal laws of P°. Let p° be associated with the
mollified process X¢, and p° the density of f +— E(f(X{)1{;<s ). For an arbitrary
pE [%, 2), we take the LP norm in the mild equations satisfied by p°. From the fact
that sup,ejo 7 [|(Ke * p5)pi[l1 < C(e) < oo, and using Lemma together with
Young’s inequality, we deduce that

U
sup ' 7 [|75|, < oo.
te[0,T
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Similarly, starting from the mild equation satisfied by p°,

t t
(55) () = GY xwn(o) + | Gy wgu(o) dst [ VG (Ko % 59057 (@) ds,
0 0
and since sup,¢jo 1) [|(Ke * p7)pf|l1 < C'(g) < oo, we deduce that

_1.
sup 173165, < oo.
t€[0,7]
By standard arguments, the function p°(t 4 -) € Fp r—¢ solves the mollified mild
equation with data satisfying (H}) and (Hp). From Lemma we deduce that
p° € C([0,T], LYYNC(]0, T], LP) and therefore, by Theorem[5.5] 5° equals the unique
solution we® given therein. In particular, if we define
< 1.
6(0) :=sup sup ¢~ 7|5 l,,
>0 t€0,0]
then 0(0) converges to 0 when 6 tends to 0. Moreover, taking L? norm in (53) and
using Remark 5.1l we get

1715 5.0 < IPVolIG 5OV 15, .6

with Wy defined in the natural way in terms of wy anf g. It follows that

(56) 1515 .0, < 20W0ll5 .6,

for fp > 0 small enough. Since sup_> [I95,+.(-)llo,p. 7—0, < oo by Theorem (.3 by
looking at the mild equations satisfied by the functions pg .., € > 0, which have
initial conditions pj () that are bounded in L? uniformly in ¢ by (6]), we conclude
that

pT<oo.

116
(This estimate will be used below in the particular case p = é)
Tightness of the family (P.). From Corollary 57 if 0 < < 1 and S, R are
stopping times in the filtration of (7, X¢) such that S < R <T and R— S <1, we
have

1

R
/ K. % 55 (XE)|dt < s
S

for a constant C' > 0 independent of ¢ > 0. Tightness follows from the Aldous
criterion (p < 2).

Identification of accumulation points as solutions of (MP). Let P be
an accumulation point. By suitably approximating the function h by continuous
functions (cf. [12]), one can check that

/ P()E(@)da = E((XE)h(r, Xo)Lirsry)

converges to E¥ (¢(X;)h(t, Xo)1{;>,1) when ¢ tends to 0 for every ¢ € D. Conse-
quently, since p° = w®, we have by Theorem b) that

Py(dx) = wy(z)dz,
with w the unique solution of the mild vortex equation in C([0, 7], L*)NC(]0, T}, LP).
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Let us take f € %, 0< 5, <--- <5, <5<t <T,and \:[0,7] x R — R
a continuous bounded function. To show that P is a solution of (MP), it is enough
to prove that

(57) EPK/:{%(r,Xr)—H/Af(r,XT)—i—K*wT(XT)Vf(r,XT)} 1g>pydr

+ ft, Xy) — f(s,XS)> X )\(T,Xsl,...,Xsm):| =0,

with (7, X) being the canonical process. Define a function « : [0, 7]xC([0, T],R?) —
R by

(58)

0.6 = ([ {GH0: €00 + vAFR ) + K (€0NTI0. 60D 1050y

FHE0) = F5609)) XN E61). o )
Thanks to Corollary 5.7 & is continuous and bounded, and consequently,
E"(w(7, X)) = lim B(x(r, X))
for P¢’ the subsequence converging to P. We conclude by showing that this limit
: (;rom the martingale problem satisfied by P’ we deduce that

|B(x(r.x7)|

T
<CE / ‘KE/*ﬁil(XSE/)—K*ws(le)ll{szT}ds]
0

T

<
0 R2
T

<C [ (1o # = Koo+ Ko, = K ) 15 6) ] ds
0

Ko % 75 (2) — K s wy(x)| 55 (z)da ds

by Holder’s inequality. By Lemma (1] with p = % and ¢ = 4, Young’s inequality
and Lemma 4] with [ = 3, the latter is bounded above by

T
~! _1 ~e!
Cow 5o [ 57 (I = wally + 15 = Kol g e s
e>0 0
T . ,
<C [ [1 = wlly 1K~ Kol ] s,
0

the last inequality owing to (GIl) and to Theorem b). Thus, when &’ — 0, we
have

=

T
B(s(r.X*))| < C() /O s s hds = CTH ()} =0, 0
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Corollary 5.10. Consider a sequence e, — 0 and the system of particles
(Z"™)nen,iz1..n defined as in Corollary L5l Let p € [%,2) and P € P',, 1 be the
law of the nonlinear processes associated with the unique solution w € C([0,T], L*)N
C(]0,T], L?) of the vortex equation. Then, for each k € N,

law(Z', ..., Z") = P®F  when n — co.

Proposition 5.11. Assume that (H}) holds, and recall that u(t, ) = Kxws(x). Let

~n7€77/

the weighted empirical process fi°°™ and the sequence €, be defined as in Corollary
416l Then,

sup B(|K., + g *" () = u(t,z)]) — 0
z€R?

for all fized t €]0,T), as n tends to infinity, from which we deduce that

T
/ sup E(|K., """ (x) — u(t,z)|)dt — 0.
0 z€eR?

Proof. We follow the proof of Corollary Under the weaker assumption (H}),
our solution however only belongs to Flﬁ’p’T (see Theorem [B.6]), and we are not
able to extend the continuity properties of B used in Corollary to some space
analogous to F . (7;p)-

We thus consider the family of shifted solutions {w;, }.>o for r €]0,7]. By
similar computations as in (@3] we obtain that

—1

Jwe. = wep fhpr < Cr,T)ET +C'(r, T)r 3e 7",

where the second term on the r.h.s. is due to the difference of the initial conditions
in the shifted versions of (44]), controlled by Theorem .31 b). From this we deduce
that the third term on the r.h.s. of [@1) goes to 0 for each fixed ¢ €]0,T]. As in the
proof of Corollary [£.16], the expectations of the two other terms are bounded and
go to 0 uniformly in € R? and ¢ € [0, T]. This yields the first convergence result.
To apply dominated convergence, we use the fact that || K. * w§]|e < C|lws|[wre

and Theorem O

6. NUMERICAL RESULTS

We assume that wg and g satisfy the moment conditions [g. |2|*|wo(z)|dz < 400
and fOT Jgz [zP[g(s,2)|de ds < 4oo. Taking ¢(s,z) = 1 and ¢(s,z) = |z|* in
equation (@), and using the fact that div K x w(s,x) = 0, we can check that

/]R2 wi(x)dr = /}R2 wo(x)dm—i—/ot /R2 gs(2)dz ds

and

t t
/|a:|2wt(x)da::/ \:c|2w0(x)d:6—|—// |z|? gs () dz ds—|—4u//ws(a:)dxds.
R2 R2 0o Jr2 o Jr?
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These quantities are, respectively, called “total flux of vorticity” (TFV) and
“moment of fluid impulse” (MFI). Also from equation (), the “barycenter”
Jrz ziwy(x)dx is preserved.

For the simulations, we take wg to be the centered Gaussian density in R? with
variance mg = 2, and g(s,z) := ywo(x) with v # 0 to be fixed. We then have
lwollx + llgllir =1+ |4[T.

Consider an equi-spaced partition {t;}2_, of [0,T]. We obtain from (@) that

1 Iy T

= : P t_1,t =
TThT (T €lth—1,t]) N

Plr=0) A+ D)

and
P(X € dz|t =0) = P(Xy € da|r €]ty_1,tx]) = wo(z)dx.

Moreover, we have h(0,z) = 1+|y|T and h(t,z) = sign(y)(1+|v|T) for ¢ €]0,T].
We take as a parameter p = P(7 = 0). Then, we have |y| = 1;_Tp’ P(7 €ltg—_1,tx])

= (= h(0,z) = % and h(t,z) = sign('y)% for ¢t €]0,T]. We obtain the expression

N

/]Rz wi(x)de = 1+ sign(y) (lp;Tp) .

and
mt) = /R lofPun(@)dz = 2+ (ZSign(v) <%> + 4y> £+ 2usign(y) (%) £,

We empirically compute these two quantities at each time t; using the particle
vortex method. Choosing sign(y) = —1, we simulate the Euler scheme of the
trajectory of each particle X" = (X7, X’5') defined in (I8), and obtain

i,mn i,m
(th,lv th,2){1§i§n ;1<k<N}-

The empirical values of TFV and MFT are given by

1 n
o 2 Loy (Lrizoy — 1grizoy)
i=1

and
n

1 i,n i,n
M(ty) == on S UXENP 4+ X5 ) sy (Lgricoy — Lrizoy)-

=1

Since TFV depends only on the number of vortices “alive” at each time and
their “sign” (and not on their positions), the first graphic in Figure 1 illustrates the
law of large numbers for the random birth time 7. The second graphic in Figure 1
illustrates the preservation of the (null) barycenter.
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TFV and empirical TFV Empirical barycenter (1st coord)
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FIGURE 1. ¢ = 1074, v = 5 x 1077, n = 6000, T = 50, At =
0.8, p= %, sign(vy) = —1.

Figure 2 shows the theoretical and empirical MFI and the relative error, com-
puted as W The probabilistic vortex approach seems robust for very

small viscosities.

MFI & empirical MFI relative error
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FIGURE 2. ¢ = 1074, v = 5 x 1077, n = 6000,T = 50, At =
0.8,p= %,sign(q/) =—1.

In Figure 3 we show the evolution of the velocity field in a regular grid. At
time ¢ = 0 all vortices have positive sign, and then new vortices with negative
signs randomly appear. At each point the norm of the velocity field progressively
decreases, attains 0 and then increases, while its direction is progressively reversed.
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