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COMPUTING SINGULAR VALUES OF DIAGONALLY
DOMINANT MATRICES TO HIGH RELATIVE ACCURACY

QIANG YE

Abstract. For a (row) diagonally dominant matrix, if all of its off-diagonal
entries and its diagonally dominant parts (which are defined for each row as
the absolute value of the diagonal entry subtracted by the sum of the absolute
values of off-diagonal entries in that row) are accurately known, we develop
an algorithm that computes all the singular values, including zero ones if any,
with relative errors in the order of the machine precision. When the matrix
is also symmetric with positive diagonals (i.e. a symmetric positive semi-
definite diagonally dominant matrix), our algorithm computes all eigenvalues
to high relative accuracy. Rounding error analysis will be given and numerical
examples will be presented to demonstrate the high relative accuracy of the
algorithm.

1. Introduction

In this paper, we are concerned with high relative accuracy algorithms for com-
puting singular values of diagonally dominant matrices and for computing eigen-
values of symmetric diagonally dominant matrices with positive diagonals. For the
matrix eigenvalue problem (or the singular value problem), it is well-known that the
standard algorithms such as the QR algorithm are norm-wise backward stable, and
then smaller eigenvalues may be computed with lower relative accuracy. We note
that, for a general matrix, smaller eigenvalues are not determined by its entries to
the same relative accuracy as in the matrix data. Then, even though an algorithm
might be able to compute the smaller eigenvalues of the matrix stored in memory
to high relative accuracy by, for example, using higher precision arithmetic, such
high accuracy is not necessarily warranted by the data (i.e. the entries).

Starting with a work by Demmel and Kahan [10] on computing singular values
of bidiagonal matrices, the research on high relative accuracy algorithms has flour-
ished. Special matrices with certain structure or properties have been identified
for which the singular values or eigenvalues are determined and can be computed
to high relative accuracy. Among them are well-scalable symmetric positive def-
inite matrices [13] and matrices that admit accurate rank-revealing factorizations
[8], which will form the basis of our works. For such matrices, the Jacobi method
can be used to efficiently compute, respectively, the smaller eigenvalue and singular
values to high relative accuracy. Some other examples are bidiagonal and acyclic
matrices [4, 7, 15], diagonally scaled totally unimodular matrices [8], and totally
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non-negative matrices [8, 14, 20] (including Cauchy and Vandermonde [6]). There
have also been works on several special diagonally dominant matrices. Specifically,
entrywise perturbation analysis and algorithms have been developed for the eigen-
values of so-called γ-scaled symmetric diagonally dominant matrices in [3], for the
smallest eigenvalue of a diagonally dominant M-matrix in [1, 2], and for all singular
values of a diagonally dominant M-matrix in [11]. We note that one idea that has
played a crucial role in several recent works and in this work as well is the need
to re-parameterize matrices in some cases in order to obtain high relative accuracy
algorithms; see [1, 2, 6, 11, 12, 14, 21].

In this paper, we consider a (row) diagonally dominant matrix with a representa-
tion by its off-diagonal entries and its diagonally dominant parts (which are defined
for each row as the absolute value of the diagonal entry subtracted by the sum of the
absolute values of off-diagonal entries in that row). When the off-diagonal entries
and the diagonally dominant parts are accurately known, we present an algorithm
with a forward error analysis that computes all singular values with relative er-
rors in the order of machine precision. As a byproduct, zero singular values, if
any, and ranks are computed exactly. When the matrix is also symmetric with
positive diagonals (i.e. a symmetric positive definite diagonally dominant matrix),
the algorithm computes all eigenvalues to high relative accuracy. Our algorithm is
based on computing an accurate LDU -factorization and then using the algorithm
of Demmel et al. [8]. Comparing our algorithms with existing ones for diagonally
dominant matrices, we note that the relative accuracy of eigenvalues computed in
[3] for a γ-scaled symmetric diagonally dominant matrix still depends on a certain
condition number intrinsic to the matrix, and the algorithms in [2, 11] are valid for
M-matrices only.

While our forward error analysis demonstrates the ability of the new algorithm
to compute singular values to the order of machine precision independent of any
condition number, the error bounds are weak in that they depend on the matrix
dimension exponentially. Nevertheless, such a dependence is not present in our
numerical testing. It remains to be seen whether this bound can be improved. On
the other hand, the forward error analysis also implies a relative perturbation bound
for the singular values and singular vectors, but again the bounds are weak. So,
deriving a strong relative perturbation for the singular values is an important open
problem. In the case of symmetric positive definite diagonally dominant matrices,
however, we have recently obtained some sharp relative perturbation bounds for
their eigenvalues in [28].

We remark that diagonally dominant matrices are a class of matrices that arise
in many applications. Indeed, the diagonal dominance is often a natural physical
characteristic of practical problems. One example of the eigenvalue problem for
diagonally dominant matrices is the finite difference discretizations of elliptic dif-
ferential operators [26, p. 211]. Here, the eigenvalues that are usually of physical
interest and are well approximated by the discretization are the smaller ones. How-
ever, as the mesh size decreases, the condition number of the discretization matrix
increases, and so does the relative error of a smaller eigenvalue computed. There-
fore, methods for computing smaller eigenvalues of such matrices to high relative
accuracy would be of great interest.

The rest of this paper is organized as follows. In Section 2 we first give some def-
initions and notation. Section 3 presents our main algorithm for an accurate LDU



COMPUTING SINGULAR VALUES OF DIAGONALLY DOMINANT MATRICES 2197

factorization and then an accurate SVD. Section 4 gives an error analysis of the
LDU factorization algorithm. We separate out the technical proofs in three sub-
sections within this section. We then present some numerical examples in Section
5, with some concluding remarks in Section 6.

2. Preliminaries and notation

Definition 1. Given an n × n matrix M = (mij) with zero diagonals and an n-
vector v = (vi), we use D(M, v) to denote the matrix A = (aij) whose off-diagonal
entries are the same as M and whose i-th diagonal entry is aii = vi +

∑
j �=i |mij |.

Namely, we write A = D(M, v), if

aij = mij for i �= j; and aii = vi +
∑
j �=i

|mij |.

D can be considered as a function that maps a matrix M and a vector v to a
matrix A. Now, given a matrix A = [aij ], we denote by AD the matrix whose
off-diagonal entries are the same as A and whose diagonal entries are zero. Then,
letting vi = aii −

∑
j �=i |aij | and v = (v1, v2, · · · , vn)T , which will be called the

diagonally dominant parts of A, we have

(1) A = D(AD, v).

Therefore, the pair (AD, v) provides a representation of the matrix A, which will be
called a representation by diagonally dominant parts. In this way, the off-diagonal
entries and diagonally dominant parts are the data (parameters) that defines the
matrix A.

The need to represent the matrix in this way is, as we will see, that the singular
values of diagonally dominant matrices can be computed to high relative accuracy
from (AD, v) but not from the entries of A. Relative perturbation bounds have been
obtained in [28] to show that the eigenvalues of a symmetric diagonally dominant
matrix are determined by (AD, v) with the same relative accuracy. We also note
that, when vi ≥ 0, the entries of A can be computed from (AD, v) accurately, but
the converse is not true. In other words, once we store the entries of A in memory
which encounters roundoff errors, it will not be possible to recover v from the matrix
A in memory to the machine accuracy. Therefore, (AD, v) should be obtained from
A in its exact form, and one may need to go back a few steps in the formation of A
to form v accurately. In many applications, v is comprised of (physical) parameters
that defines A and is given naturally.

A matrix A = (aij) is said to be diagonally dominant if aii ≥
∑

j �=i |aij | for all
i. Then a matrix A, represented by D(AD, v), is diagonally dominant if and only if
vi ≥ 0. Note that this definition of diagonally dominant matrices requires the diag-
onal entries to be nonnegative and is more restrictive than the customary definition.
However, this does not impose any restriction for computing singular values of di-
agonally dominant matrices with negative diagonals, as we can multiply the matrix
by a diagonal matrix of ±1 to turn the diagonals into positive numbers, which does
not change the singular values of the matrix and the diagonal dominant parts. For
computing eigenvalues of symmetric diagonally dominant matrices, however, this
definition imposes the condition that A must be positive semi-definite.

The diagonal dominant matrices defined above are based on row dominance and
we sometimes refer to them as being row diagonally dominant. If a matrix is such
that ajj ≥

∑
i �=j |aij |, it is said to be column diagonally dominant.
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Here is some notation that will be used throughout. Inequalities on matrices
and vectors are entry-wise, sign(α) is the sign of α if α �= 0 and sign(0) = 1, u is
the machine roundoff unit and fl(z) is the computed result of the expression z in
the floating point arithmetic.

3. Accurate SVD of diagonally dominant matrices

Our high relative accuracy algorithm for SVD of a diagonally dominant matrix
is based on a general algorithm developed by Demmel et al. [8]. Two similar
algorithms based on the Jacobi method [13, 22] can compute the singular values
of A to high relative accuracy if a rank-revealing factorization A = XDY can be
computed accurately in the sense that

1. each entry of the diagonal matrix D has a relative accuracy in the order of
machine precision;

2. X and Y are well-conditioned;
3. X and Y are norm-wise accurate, i.e. if X̂ is the computed X factor, then

‖X̂ − X‖/‖X‖ is in the order of machine precision.
Throughout this paper, we shall refer to A = XDY as an accurate factorization if
it satisfies the three conditions above.

For a diagonally dominant matrix given by D(AD, v), we shall compute an accu-
rate rank-revealing factorization by modifying the standard Gaussian elimination
algorithm for the LDU factorization with diagonal pivoting such that each entry of
D is computed to the order of machine precision and L and U have relative errors in
norm bounded by the order of machine precision. Here, L is unit lower triangular,
U is unit upper triangular, and D is diagonal. Since the diagonal dominance prop-
erty is inherited by Schur complements in the Gaussian elimination, the diagonal
pivoting, which selects the maximum entry on the diagonal for the pivot, will be
equivalent to the complete pivoting. Therefore, U is (row) diagonally dominant
and well-conditioned and L is usually well-conditioned as well. Thus the algorithm
of Demmel et al. [8] can be used to compute SVD of A accurately.

The matrix L produced by the diagonal pivoting could potentially have a large
condition number. To theoretically guarantee well-conditioning of L, we can also use
a more expensive pivoting strategy1 that produces a column diagonally dominant L.
This pivoting strategy has essentially been proposed by J. Pena [25] for diagonally
dominant M-matrices and Stiejies matrices, where it is called maximal absolute
diagonal dominance pivoting. For a (row) diagonally dominant matrix A = [aij ],
we have

n∑
i=1

aii ≥
n∑

i=1

n∑
j=1,j �=i

|aij |.

Unless the matrix is entirely zero (in which case we stop the elimination and set
L = U = I and D = 0), there is at least one k such that akk �= 0 and column k is
column diagonally dominant, i.e.

akk ≥
n∑

i=1,i �=k

|aik|.

Now our pivoting strategy is to permute row 1 with row k and column 1 with column
k, after which the first column of the matrix is diagonally dominant, i.e. |a11| ≥

1This pivoting strategy was suggested by an anonymous referee.
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i=2 |ai1|. When there are many columns satisfying the above, we can simply

pick the one with maximal akk or, in [25], the one that gives the most diagonal
dominance. Applying the Gaussian elimination, the first column of L = [lij ] that is
produced will be column diagonally dominant, i.e.

∑n
i=2 |li1| =

∑n
i=2 |ai1/a11| ≤ 1.

It is well known that the Schur complement after the elimination is still a (row)
diagonally dominant matrix. We can apply the same pivoting strategy to the Schur
complement. Repeating this strategy, at the end, we obtain a (row) diagonally
dominant U as usual, but now L will be column diagonally dominant as each
column of L is diagonally dominant by the pivoting. With L unit lower triangular
and column diagonally dominant, its condition numbers can be bounded as

κ∞(L) := ‖L‖∞‖L−1‖∞ ≤ n2 and κ1(L) := ‖L‖1‖L−1‖1 ≤ 2n;

see [25, Proposition 2.1]. Similarly, with U unit upper triangular and row diagonally
dominant, we have

κ∞(U) ≤ 2n and κ1(U) ≤ n2.

We call this pivoting strategy column diagonal dominance pivoting. It theoret-
ically guarantees that both L and U are well-conditioned. It needs to compute
the sums of off-diagonal entries for all columns at each step of the Gaussian elim-
ination, which requires in total O(n3) flops. This extra cost over the standard
diagonal pivoting may be significant. However, in the context of our algorithms
for computing accurate SVD (see Section 3.2), this is relatively insignificant, as the
Jacobi algorithms used there will have the dominating cost overall. Nevertheless, if
the extra cost is a concern, we can always use the standard diagonal pivoting as a
first attempt, which does usually produce a well-conditioned L. We then check the
condition number of L in O(n2) flops and recompute, if necessary, the factorization
with the column diagonal dominance pivoting strategy.

3.1. Accurate LDU-factorization. We now turn to the problem of computing L,
D and U accurately. Similar to the accurate algorithm for computing LU factoriza-
tion of a diagonally dominant M-matrix [2, 17], we shall proceed with the Gaussian
elimination by updating the diagonals from the off-diagonals and the diagonally
dominant parts without subtractions. Our key observation is that, even without
the sign properties of an M-matrix, the diagonally dominant parts can still be com-
puted without subtractions. Furthermore, when computing off-diagonals, possible
subtractions and catastrophic cancellations do not affect the relative accuracy of
the LDU factorization in the sense discussed at the beginning of this section.

Consider applying the Gaussian elimination to A with one of the pivoting strate-
gies discussed earlier. Assuming that k steps of eliminations can be carried out, we
let A(k+1) = [a(k+1)

ij ] denote the matrix obtained after the k-th Gaussian elimina-
tion, and we write A(1) = A. For the ease of presentation, we assume that the rows
and columns of A are already permuted so that no pivoting is carried out during
the Gaussian elimination.

It is well known that A(k) is still diagonally dominant. We represent it as A(k) =
D(A(k)

D , v(k)) where v(k) = [v(k)
1 , v

(k)
2 , · · · , v

(k)
n ]T with

v
(k)
i = a

(k)
ii −

n∑
j=k,j �=i

|a(k)
ij |
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for i ≥ k, and v
(k)
i = v

(k−1)
i for i < k. We first establish a formula for updating

v
(k)
i for i ≥ k.

Theorem 1. Assume that k steps of the Gaussian eliminations can be carried out
for A (i.e. a

(�)
�� �= 0 for 1 ≤ � ≤ k). For for k + 1 ≤ i, j ≤ n, let

s
(k)
ij = sign

(
a
(k+1)
ij

)
sign

(
a
(k)
ij

)
and

t
(k)
ij =

⎧⎨⎩−sign
(
a
(k+1)
ij

)
sign

(
a
(k)
ik

)
sign

(
a
(k)
kj

)
, if i �= j

sign
(
a
(k)
ik

)
sign

(
a
(k)
ki

)
, if i = j.

We have for k + 1 ≤ i ≤ n,

(2) v
(k+1)
i = v

(k)
i +

n∑
j=k+1,j �=i

(1−s
(k)
ij )|a(k)

ij |+ |a(k)
ik |

a
(k)
kk

⎛⎝v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠ .

Proof. First, for k + 1 ≤ i, j ≤ n, we have from the Gaussian elimination that

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

.

Let p
(k)
ij = sign

(
a
(k)
ij

)
. Then, for i ≥ k + 1,

v
(k+1)
i = a

(k+1)
ii −

n∑
j=k+1,j �=i

p
(k+1)
ij a

(k+1)
ij

= a
(k)
ii − a

(k)
ik a

(k)
ki

a
(k)
kk

−
n∑

j=k+1,j �=i

p
(k+1)
ij

(
a
(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

)

= a
(k)
ii −

n∑
j=k+1,j �=i

p
(k+1)
ij a

(k)
ij +

|a(k)
ik |

a
(k)
kk

⎛⎝−p
(k)
ik a

(k)
ki +

n∑
j=k+1,j �=i

p
(k)
ik p

(k+1)
ij a

(k)
kj

⎞⎠
= a

(k)
ii − |a(k)

ik | −
n∑

j=k+1,j �=i

s
(k)
ij |a(k)

ij |+ |a(k)
ik |

a
(k)
kk

⎛⎝a
(k)
kk −t

(k)
ii |a(k)

ki |−
n∑

j=k+1,j �=i

t
(k)
ij |a(k)

kj |

⎞⎠
= v

(k)
i +

n∑
j=k+1,j �=i

(1 − s
(k)
ij )|a(k)

ij | + |a(k)
ik |

a
(k)
kk

⎛⎝v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠ .

�

Recall that we use the definition sign(0) = 1 throughout. However, the above
theorem is still valid if we adopt a more conventional definition sign(0) = 0; but it
will complicate the error analysis in the next section.

We note that 1 − s
(k)
ij and 1 − t

(k)
ij are either 0 or 2. Then the above formula

computes v(k+1) without subtractions. The diagonal entries, including the pivot,
can be updated with addition operations through

(3) a
(k+1)
ii = v

(k+1)
i +

n∑
j=k+1,j �=i

|a(k+1)
ij |.
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It turns out that computing v(k+1) and the diagonals a
(k+1)
ii as above is sufficient

for computing an accurate LDU factorization. Of course, when computing an off-
diagonal entry a

(k+1)
ij , subtractions and catastrophic cancellations may occur, which

means a large relative error in the computed a
(k+1)
ij . But we will show that its

absolute error is actually small relative to a
(k+1)
ii , which is sufficient to guarantee

that a
(k+1)
ii as computed from (3) has high relative accuracy. Similar results hold for

the computation of v(k+1). See the analysis of Section 4 for details. We summarize
this in the following implementation of the Gaussian elimination with either the
diagonal pivoting (using lines 8 and 8a below) or the column diagonal dominance
pivoting (using lines 8 and 8b below).

Algorithm 1. LDU Factorization of D(AD, v)

1 Input: AD = [aij ] and v = [vi] ≥ 0;
2 Initialize: P = I, L = I, D = 0, U = I.
3 For k = 1 : (n − 1)
4 For i = k : n
5 aii = vi +

∑n
j=k,j �=i |aij |;

6 End For
7 If maxi≥k aii = 0, stop;
8 Choose an interchange permutation P1 s.t. A = P1AP1 satisfies:
8a a) for diagonal pivoting: akk = maxi≥k aii;
8b b) for column diagonal dominance pivoting:

0 �= akk ≥
∑n

i=k+1 |aik|;
9 P = P1P ; L = P1LP1; U = P1UP1; dk = akk;
10 For i = (k + 1) : n
11 lik = aik/akk; uki = aki/akk; aik = 0;
12 vi = vi + |lik|vk;
13 For j = (k + 1) : n
14 p = sign(aij − likakj);
15 s = sign(aij)p;
16 t = −sign(lik)sign(akj)p;
17 If j = i
18 s = 1; t = sign(lik)sign(aki);
19 End if
20 vi = vi + (1 − s)|aij | + (1 − t)|likakj |;
21 aij = aij − likakj ;
22 End for
23 End For
24 End for
25 ann = vn; dn = ann.

For the input matrix AD, only its off-diagonals are used by the algorithm. In
the algorithm, we have created L, D, and U for the purpose of precisely identifying
them in the error analysis later. Note that on line 9, L = P1LP1 and U = P1UP1

effectively apply the permutation P1 on the first (k − 1)-st columns of L and the
first (k − 1)-st rows of U , respectively, and they can be replaced by L:,1:(k−1) =
P1L:,1:(k−1) and U1:(k−1),: = U1:(k−1),:P1. We have also explicitly set aik = 0 on
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line 11 after elimination. In this way, the matrix A = [aij ] at the k-th loop on line 6
is precisely A(k), the matrix obtained after the (k − 1)-st Gaussian elimination. In
practical implementations, L, D, and U need not be created and should be stored
in A by overwriting the entries of A. A corresponding algorithm should replace
line 11 by aik = aik/akk; aki = aki/akk and replace all subsequent lik by aik. Lines
4-6 compute all the diagonal entries. With the exception of the pivot entry, they
are not used in the subsequent steps for actual computations; they are only used
to determine the pivot. Then, in practical implementations, we can first use the
diagonal entries as computed by the standard Gaussian elimination at line 21 to
determine the pivot and a permutation, and then compute the pivot akk by formula
on line 5.

In output, the algorithm produces the factorization PAPT = LDU . When
akk = 0 occurs on line 7, the remaining matrix is entirely zero (i.e. aij = 0 for all
k ≤ i, j ≤ n) and no further elimination is necessary. Note that, in this case, the
factorization PAPT = LDU is still valid with di = 0 for k ≤ i ≤ n.

3.2. Accurate SVD via LDU-factorization. The LDU factorization as com-
puted by Algorithm 1 can be fed into one of the algorithms of [8] to compute SVD
to high relative accuracy. For completeness, we present one of them (i.e. Algo-
rithm 3.2 of [8]) here. The algorithm is based on the one-sided Jacobi for SVD as
presented as Algorithm 4.1 of [13].

Algorithm 2. Accurate SVD of D(AD, v)
1 Input: AD = [aij ] and v = [vi] ≥ 0
2 Compute P , L, D, U by Algorithm 1;
3 Compute SVD of LD = Z̄Σ̄V̄ T by the one-sided Jacobi algorithm
4 Multiply W = Σ̄(V̄ T U), respecting parentheses;
5 Compute SVD of W = Z̃ΣV T by the one-sided Jacobi algorithm;
6 Z = Z̄Z̃ and A = (PT Z)Σ(PT V )T is the SVD of A.

We can change the order of computing SVD at steps 3 and 5 to take advantage of
the fact that DU is already given in the Gaussian elimination. Namely, we compute
the SVD of DU = Z̄Σ̄V̄ T first and then the SVD of W = (LZ̄)Σ̄. Then, in the
factorization algorithm, we do not explicitly compute the LDU -factorization, but
rather the LU -factorization directly A = LU1 with U1 = DU . This will eliminate
a redundant step of dividing and later multiplying by D. However, we still present
Algorithm 1 as an LDU -factorization algorithm for the purpose of error analysis.

Algorithm 2 uses the one-sided Jacobi twice, once at step 3 and again at step
5. One of them can be replaced by the QR factorization with column pivoting.
Namely, instead of using SVD at step 3, one can compute the QR factorization with
pivoting LD = QRP where P is a permutation and then compute correspondingly
W = RPU at step 4 followed by the same steps 5 and 6. As R is usually well-
conditioned, the resulting algorithm is then as accurate as the more expensive
version above; see Algorithm 3.1 of [8] for more details.

Both Algorithm 1 and Algorithm 2 require O(n3) floating point operations.
If A is symmetric, a symmetric version of Algorithm 1 can be easily worked

out, which computes the LDLT factorization (with U = LT ). Also, there is no
need to use any of the pivoting strategies since L = UT will be automatically
column diagonally dominant. We might still use a diagonal permutation to ensure
nonzero pivots. Then Algorithm 2 can be simplified as follows. Writing PAPT =
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(LD
1
2 )(LD

1
2 )T , where the permutation P is used to ensure nonzero pivots during

elimination, we just need to compute the SVD of LD
1
2 = V̄ Σ̄Z̄T by the one-sided

Jacobi to obtain the eigenvalue decomposition A = V ΛV T where Λ = Σ̄2 and
V = PT V̄ . We state this as the following algorithm.

Algorithm 3. Accurate Eigenvalue Decomposition of Symmetric Posi-

tive Semi-definite D(AD, v)
1 Input: symmetric AD = [aij ] and v = [vi] ≥ 0
2 Compute P , L, D by Algorithm 1 (symmetric version);
3 Compute SVD of LD

1
2 = V̄ Σ̄Z̄T by the one-sided Jacobi (no need to keep Z̄);

4 Λ = Σ̄2 and V = PT V̄ .

When we compute SVD at step 3 in the algorithm, we do not need to keep Z̄.
Then, if we use the right-handed Jacobi method (i.e. the one by applying the Jacobi
rotation from the right), we do not need to accumulate the Jacobi rotations in the
iterations.

4. Error analysis of the LDU algorithm

We now present a forward error analysis of Algorithm 1 in a floating point
arithmetic to show that L and U are norm-wise accurate while D is entrywise
accurate. Note that it is this type of forward stability that is needed for Algorithm
2 and Algorithm 3 to compute an accurate SVD. We present the idea and the main
results first and leave their detailed proofs to three subsections later.

Let P be the permutation matrix constructed in a floating point arithmetic from
Algorithm 1 with either the diagonal pivoting or the column diagonal dominance
pivoting. For ease of presentation, we assume that the matrix A has been permuted
by this P in advance so that no pivoting is carried out in the process. We also
assume that the off-diagonal entries and the diagonal dominant parts vi are machine
numbers. The results that take into consideration the initial errors are similar.
We shall denote the computed quantities of Algorithm 1 by adding a hat to the
corresponding notation. Thus, Â(k) = (â(k)

ij ) denotes the computed matrix after the

(k − 1)-st Gaussian elimination and v̂(k) = (v̂(k)
i ) denotes the computed diagonally

dominant part, i.e. they are A and v on line 6 at the k-th loop of Algorithm 1 in
the floating point arithmetic.

Recall that fl(z) denotes the computed result of the expression z. We assume
the following standard model of floating point arithmetic:

fl(a op b) = (a op b)(1 + δ), |δ| ≤ u,

where op = +,−, ∗ or / and u is the machine roundoff unit. We assume that
no underflow or overflow occurs in our algorithm. At a few places, our algorithm
requires computing a sum of nonnegative numbers

∑n
i=1 si with si ≥ 0, which has

a relative error bounded by (n − 1)u + O(u2). However, the error bound can be
improved to 2u+O(nu2) by using the compensated summation algorithm [19]; see
also [18, p. 93]. To simplify our presentation, we shall assume that all summations
of nonnegative numbers are evaluated with the compensated summation algorithm
and nu << 1. Then we have

(4) fl

(
n∑

i=1

si

)
=

(
n∑

i=1

si

)
(1 + δ)
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with δ ≤ 2u + O(u2). Without using the compensated summation algorithm,
several constants in error bounds (e.g. Lemma 5) will be replaced by O(n), and
the final bounds will be increased by an O(n) factor.

In the rest of the paper, O(u2) denotes a quantity bounded by Cnu2 with Cn a
constant dependent on n only. For ease of presentation, we shall use ε� as a generic
notation to denote a quantity bounded in magnitude by �u +O(u2). Then ε� from
one expression to another may represent different quantities. For example, we may
write ε3(−1+ε1) = ε3, where ε3 on the left and on the right represents two different
terms that are both bounded by 3u + O(u2).

Our first result shows that zero pivots, if encountered in the process, are com-
puted exactly. Its proof will be given in Subsection 4.1.

Theorem 2. For k with 1 ≤ k ≤ n, a
(�)
�� > 0 for 1 ≤ � ≤ k if and only if â

(�)
�� > 0

for 1 ≤ � ≤ k. Namely, a pivot a
(k)
kk is 0 in the exact arithmetic if and only if the

pivot â
(k)
kk in the floating arithmetic is 0.

Remark. The theorem implies that exact singularity and the rank of the matrix are
detected by the algorithm exactly. This is basically because a zero pivot computed
by Algorithm 1 can only come from addition or multiplication operations involving
zeros, all of which are computed exactly. Indeed, if a pivot becomes 0, its diagonal
dominant part must be 0. For a row to have a zero diagonal dominant part after
k eliminations, its diagonal dominant part must be zero to start with and never
increases during each of the elimination processes. For this to happen during an
elimination, it turns out that the four entries involved in updating an off-diagonal
entry must have at least one zero or have an M-matrix like sign pattern2 (i.e. the
elimination operation on off-diagonal entries is an addition of two numbers of the
same sign). See Lemma 2 and the proof of Lemma 1 for details.

We shall present in Subsection 4.2 a related result (Theorem 4) that states that
a singular A can be permuted into a block upper triangular with a singular M-
matrix on its diagonal block after a sign scaling. Then applying the Gaussian
elimination (Algorithm 1) to A effectively carries out the Gaussian elimination on
the singular M-matrix, which involves no subtraction operations. So, even in a
floating arithmetic, the zero pivots are computed exactly. That provides additional
insights into why the singularity and rank can be computed exactly. However, we
note that Theorem 2 additionally says that encountering a zero pivot in a floating
arithmetic also implies a zero pivot in the exact arithmetic.

We now turn to the elimination steps before encountering zero pivots, if any. As
mentioned before, we assume that A is already permuted by the permutation matrix
determined under one of the pivoting schemes in the floating point arithmetic. Let
N be the maximal integer such that

N ≤ n − 1 and â
(�)
�� > 0 for 1 ≤ � ≤ N.

Equivalently, Â(N) is the last matrix that we can apply the elimination to, which
results in Â(N+1). By Theorem 2, A(N) is also the last matrix we can apply the
elimination to in the exact arithmetic. If N < n − 1, then â

(N+1)
N+1,N+1 = 0, and

Algorithm 1 terminates early at the (N + 1)-st iteration with no need of further

2This sign property was observed by J. Demmel and communicated to the author.
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elimination, as it follows from the pivoting that a
(N+1)
ij = â

(N+1)
ij = 0 for all N +1 ≤

i, j ≤ n.
Consider the elimination steps k with 1 ≤ k ≤ N . For k ≤ i, j ≤ n, let

(5) δ
(k)
ij = â

(k)
ij − a

(k)
ij and δ

(k)
i = v̂

(k)
i − v

(k)
i .

The first step in our forward error analysis is to bound the errors after the k-th
elimination δ

(k+1)
ij and δ

(k+1)
i in terms of the errors in the previous steps δ

(k)
ij and

δ
(k)
i . This is fairly easy to do for δ

(k+1)
ij , which corresponds to taking a differential

on the corresponding formula, but it is extremely difficult for δ
(k+1)
i , where we

have to account for the possibility that some signs contained in s
(k)
ij and t

(k)
ij are

computed wrong. When a computed sign differs from its corresponding sign in
exact arithmetic, δ

(k+1)
i contains nondifferential terms that are not readily bounded

by O(u) (assuming the errors in the previous steps are of O(u)). The key idea to
dealing with this situation is that, when a certain quantity is computed with a wrong
sign, it must be small. By examining various cases and analyzing the terms involved
carefully, it turns out that we can bound these nondifferential terms, sometimes in
combination, by the quantity whose computed counterpart has the wrong sign (see
Lemma 3 in Subsection 4.3).

The second step in our error analysis is to show that these errors are “relatively”
small. Namely, we show that |δ(k)

ij | for j �= i (i.e. the error for an off-diagonal entry)

is of O(u) relative to v
(k)
i + |a(k)

ij |, and the relative errors for v̂
(k)
i and â

(k)
ii are of

O(u). This is established inductively using the bounds we have obtained for δ
(k+1)
ij

and δ
(k+1)
i . Assuming they are true for δ

(k)
ij and δ

(k)
i , then our bounds for δ

(k+1)
ij

and δ
(k+1)
i will be in terms of related quantities in A(k) (e.g. a

(k)
ij and v

(k)
i ). Then

the key in establishing our relative bounds is the inequality

v
(k)
i + |a(k)

ij | + |a(k)
ik |

a
(k)
kk

(
v
(k)
k + |a(k)

kj |
)
≤ v

(k+1)
i + |a(k+1)

ij |.

which bounds those quantities in A(k) in terms of those quantities in A(k+1), leading
to relative bounds (see Lemma 4 in Subsection 4.3).

Applying the relative bounds to the LDU factors leads to our main result, a
complete proof of which is presented in Subsection 4.3.

Theorem 3. Let L̂ = [l̂ik], D̂ = diag{d̂i} and Û = [ûik] be the computed factors of
the LDU-factorization of D(AD, v) by Algorithm 1 and let L = [lik], D = diag{di}
and let U = [uik] be the corresponding factors computed exactly. We have

‖L̂ − L‖∞ ≤
(
nνn−1u + O(u2)

)
‖L‖∞,

|d̂i − di| ≤
(
ξn−1u + O(u2)

)
di, for 1 ≤ i ≤ n,

‖Û − U‖∞ ≤
(
νn−1u + O(u2)

)
‖U‖∞,

where νn−1 ≤ 6 · 8n−1 − 2 and ξn−1 ≤ 5 · 8n−1 − 5
2 .

The theorem shows that Algorithm 1 computes an accurate LDU factorization
with the appropriate entrywise and norm-wise relative errors of order O(u). The
main point of this analysis is to demonstrate that these relative errors are inde-
pendent of the intermediate matrices in the Gaussian elimination process and the
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condition of the matrix. In particular, possible large roundoff errors caused by
cancellations in computing off-diagonal entries do not affect the final accuracy.
However, our bounds are weak in that the constant coefficients νn−1 and ξn−1

in O(u) depend exponentially on n; a slightly better but still exponential bound
can be derived (see the remarks after the proof of the theorem). This exponential
bound is inherent in the forward error analysis where the worst cases of roundoff
error accumulations have to be taken into account. In practice, the bounds on the
constants are most likely pessimistic. Indeed, our numerical tests show that these
constants appear more like O(n); see the examples in the next section. It will be
interesting to study whether a better theoretical bound can be obtained. We note
that a corresponding forward error analysis for diagonally dominant M-matrices
have a bound with the constants of order O(n3); see [2, 11, 24].

The forward error analysis can also provide a perturbation bound on the LDU

factors. Specifically, let A = D(AD, v) and Ã = D(ÃD, ṽ) with A = [aij ], Ã = [ãij ],
v = [vi] and ṽ = [ṽi] be such that

(6) |aij − ãij | ≤ δ|aij |, and |vi − ṽi| ≤ δvi,

for all i �= j. If Ã(k) = D(Ã(k)
D , ṽ(k)) denotes the matrix obtained from Ã after

the (k − 1)-st Gaussian elimination in the exact arithmetic with Ã(k) = (ã(k)
ij ) and

ṽ(k) = (ṽ(k)
i ), then Lemma 3 holds with all ε� = 0 (exact arithmetic). Using that, a

result corresponding to Lemma 5 with ε1 replaced by δ can be worked out similarly
and, with φ(1) = 1 and ψ(1) = 1, we can obtain

‖L̃ − L‖∞ ≤
(
αnδ + O(δ2)

)
‖L‖∞

|d̃i − di| ≤
(
βnδ + O(δ2)

)
di

‖Ũ − U‖∞ ≤
(
γnδ + O(δ2)

)
‖U‖∞

where αn, βn, γn are some constants dependent on n exponentially. Applying the
results of [8], we have corresponding relative perturbation bounds on singular values
and singular vectors. Again, it will be interesting to see if a better bound can be
obtained from a direct perturbation analysis.

Finally, we remark that in the situation that the diagonally dominant part v
is not accurately known (or given), v has to be first computed from the entries
of A in order to apply Algorithm 1. In that case, we can only guarantee that
each computed vi, denoted by v̂i, is computed in a backward stable way while its
relative error could be large. Yet, it could still be beneficial to use our forward
stable algorithm, which computes the singular values of D(AD, v̂) accurately. Thus
the algorithm has a mixed forward-backward stability in the sense that it accurately
computes an (entrywise) nearby problem. To be more precise, we write

v̂i = (aii − (1 + ε2)
∑
j �=i

|aij |)(1 + ε1)

where we assume that the off-diagonals are summed first in computing vi. Let

ṽi :=
v̂i

1 + ε3
=

aii

1 + ε2
−

∑
j �=i

|aij |.

Then, applying our algorithm to D(AD, v̂), the computed singular values are ac-
curate approximations of those of D(AD, v̂) and hence of those of D(AD, ṽ) (with
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ṽ = [ṽi]). Letting Ã = [ãij ] := D(AD, ṽ), we have ãii = aii

1+ε2
and ãij = aij for

i �= j. Thus, the computed singular values are entrywise backward stable, which is
the best one can hope for when only the entries of A are given.

We now present the detailed proofs of the results presented in this section.

4.1. Proof of Theorem 2. We first present a lemma. We note that the diagonal
entries in both exact and finite precision arithmetic must be nonnegative.

Lemma 1. Let 1 ≤ k ≤ n and assume that a
(�)
�� > 0 and â

(�)
�� > 0 for 1 ≤ � ≤ k−1.

If either v
(k)
i = 0 or v̂

(k)
i = 0 for some i ≥ k, then v

(k)
i = v̂

(k)
i = 0, and for a fixed

j ≥ k with j �= i, we have that

â
(k)
ij and a

(k)
ij are either both zero or both nonzero with the same sign,

i.e. â
(k)
ij = c

(k)
ij a

(k)
ij for some c

(k)
ij > 0.

Proof. We prove by induction in k. We prove for the case v̂
(k)
i = 0 only; the proof

for the case v
(k)
i = 0 is similar. When k = 1, â

(k)
ij = a

(k)
ij (j �= i) and v̂

(k)
i = v

(k)
i .

The lemma is obviously true. Assuming that it is true for some k, we prove it for
k + 1, namely, supposing a

(�)
�� > 0 and â

(�)
�� > 0 for 1 ≤ � ≤ k and v̂

(k+1)
i = 0 for

some i ≥ k+1, we prove v
(k+1)
i = 0 and that â

(k+1)
ij and a

(k+1)
ij are either both zero

or both nonzero with the same sign.
First, we have

(7)

fl

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij | + |â(k)
ik |

â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠⎞⎠ = 0.

Since all terms in the summation are nonnegative, they must all be zero. In par-
ticular, v̂

(k)
i = 0. It follows from the induction assumption that for any j ≥ k with

j �= i,

(8) â
(k)
ij = c

(k)
ij a

(k)
ij for some c

(k)
ij > 0.

Furthermore v
(k)
i = 0. We now consider two cases.

Case 1. â
(k)
ik = 0. It follows from this and (8) that a

(k)
ik = 0. We therefore have for

j �= i,

â
(k+1)
ij = fl

(
â
(k)
ij −

â
(k)
ik â

(k)
kj

â
(k)
kk

)
= â

(k)
ij and a

(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

= a
(k)
ij .

Thus â
(k+1)
ij and a

(k+1)
ij are either both zero or both nonzero with the same sign.

Furthermore, we have that ŝ
(k)
ij = sign(â(k+1)

ij )sign(â(k)
ij ) = sign(a(k+1)

ij )sign(a(k)
ij ) =

s
(k)
ij . Now, it follows from (7) that (1− ŝ

(k)
ij )|â(k)

ij | = 0 and hence (1−s
(k)
ij )|a(k)

ij | = 0,

which together with a
(k)
ik = 0 and (2) lead to v

(k+1)
i = 0. The lemma is proved in

this case.

Case 2. â
(k)
ik �= 0. In this case, (7) implies that v̂

(k)
k = 0. By the induction

assumption, we have v
(k)
k = 0 and

(9) â
(k)
kj = c

(k)
kj a

(k)
kj for some c

(k)
kj > 0.
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We now prove that â
(k+1)
ij and a

(k+1)
ij are either both zero or both nonzero with the

same sign for j ≥ k + 1 and j �= i in three subcases.

a) â
(k)
ij = 0. By (8), we have a

(k)
ij = 0. Then,

â
(k+1)
ij = fl

(
â
(k)
ij −

â
(k)
ik â

(k)
kj

â
(k)
kk

)
= −

â
(k)
ik â

(k)
kj

â
(k)
kk

(1 + ε2) = −
a
(k)
ik a

(k)
kj

â
(k)
kk

c
(k)
ik c

(k)
kj (1 + ε2)

where we have used (8) and (9). Also, a
(k+1)
ij = −a

(k)
ik a

(k)
kj

a
(k)
kk

. Therefore â
(k+1)
ij

and a
(k+1)
ij are either both zero or both nonzero with the same sign.

b) â
(k)
ij �= 0 and â

(k)
kj = 0. By (9), we have a

(k)
kj = 0. Then â

(k+1)
ij =

fl

(
â
(k)
ij − â

(k)
ik â

(k)
kj

â
(k)
kk

)
= â

(k)
ij and a

(k+1)
ij = a

(k)
ij . It therefore follows from

(8) that â
(k+1)
ij and a

(k+1)
ij are either both zero or both nonzero with the

same sign.
c) â

(k)
ij �= 0 and â

(k)
kj �= 0. From (7), we have (1 − ŝ

(k)
ij )|â(k)

ij | = 0 and

(1 − t̂
(k)
ij )|â(k)

kj | = 0. Therefore, ŝ
(k)
ij = t̂

(k)
ij = 1. Then sign(â(k+1)

ij ) =

sign(â(k)
ij ) and sign(â(k+1)

ij ) = −sign(â(k)
ik )sign(â(k)

kj ). Thus sign(â(k)
ij ) =

−sign(â(k)
ik )sign(â(k)

kj ). Therefore â
(k+1)
ij = fl

(
â
(k)
ij − â

(k)
ik â

(k)
kj

â
(k)
kk

)
has the same

sign as â
(k)
ij . On the other hand, â

(k)
ij , â

(k)
ik , â

(k)
kj are all nonzero; they have the

same signs as a
(k)
ij , a

(k)
ik , a

(k)
kj , respectively, by (8) and (9). Thus sign(a(k)

ij ) =

−sign(a(k)
ik )sign(a(k)

kj ) as well. Therefore a
(k+1)
ij = a

(k)
ij − a

(k)
ik a

(k)
kj

a
(k)
kk

has the

same sign as a
(k)
ij as well, which implies that â

(k+1)
ij and a

(k+1)
ij are nonzero

and have the same sign.

To finish the proof for Case 2, we need to show that v
(k+1)
i = 0. From what we

have proved and (8), it follows that

ŝ
(k)
ij = sign(â(k+1)

ij )sign(â(k)
ij ) = sign(a(k+1)

ij )sign(a(k)
ij ) = s

(k)
ij .

In addition, from (9), we have t̂
(k)
ij = t

(k)
ij . On the other hand, (7) leads to (1 −

ŝ
(k)
ij )|â(k)

ij | = 0 and (1− t̂
(k)
ij )|â(k)

kj | = 0, from which it follows that (1−s
(k)
ij )|a(k)

ij | = 0

and (1 − t
(k)
ij )|a(k)

kj | = 0. Thus, we have v
(k+1)
i = 0 by (2). �

Proof of Theorem 2. We prove by induction on k. For k = 1,

â
(1)
11 = fl

⎛⎝v
(1)
1 +

n∑
j=2

|a(1)
1j |

⎞⎠
which is 0 if and only if each term in the sum is 0, i.e. if and only if a

(1)
11 is 0. Now

assuming that the theorem is true for k − 1, we prove that the if part is true for k;
the only if part is proved similarly. Let â

(�)
�� > 0 for 1 ≤ � ≤ k and we show a

(�)
�� > 0.
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By the induction assumption, we have a
(l)
ll > 0 for 1 ≤ l ≤ k − 1. Furthermore,

â
(k)
kk = fl

⎛⎝v̂
(k)
k +

n∑
j=k+1

|â(k)
kj |

⎞⎠ = 0

implies that v̂
(k)
k = 0 and â

(k)
kj = 0 for k+1 ≤ j ≤ n. By Lemma 1, we have v

(k)
k = 0

and a
(k)
kj = 0 for k + 1 ≤ j ≤ n, which implies that a

(k)
kk = 0. Therefore a

(�)
�� > 0 for

1 ≤ � ≤ k. �

4.2. Characterization of singularity. We present a result that further helps
to understand why the algorithm computes singularity exactly. This result is not
required for the proofs of other results.

Lemma 2. For a fixed k, assume v
(k+1)
i = 0 for some i with k + 1 ≤ i ≤ n. Then

for 1 ≤ � ≤ k, v
(�)
i = 0. Furthermore, if a

(�)
ij �= 0 for some j ≥ � + 1 and j �= i,

then a
(�)
ij a

(�)
i� a

(�)
�j ≤ 0 and a

(�+1)
ij �= 0 has the same sign as a

(�)
ij . In particular, if

a
(k+1)
ij = 0 for some j ≥ k + 2, then a

(�)
ij = 0 for 1 ≤ � ≤ k.

Proof. The argument is essentially contained in the proof of Lemma 1, but we
present one here for completeness. We just need to show it for the case � = k only,
i.e. v

(k)
i = 0, and if a

(k)
ij �= 0, then a

(k)
ij a

(k)
ik a

(k)
kj ≤ 0 and a

(k+1)
ij �= 0 has the same

sign as a
(k)
ij .

By noting that each term in (2) is nonnegative, v
(k+1)
i = 0 immediately implies

that v
(k)
i = 0 and

(1 − s
(k)
ij )a(k)

ij = 0 and (1 − t
(k)
ij )

a
(k)
ik a

(k)
kj

a
(k)
kk

= 0,

where j ≥ k + 1 and j �= i. Since a
(k)
ij �= 0, then s

(k)
ij = 1, i.e.

(10) sign(a(k)
ij ) = sign(a(k+1)

ij ).

Now, if a
(k)
ik a

(k)
kj = 0, then a

(k+1)
ij = a

(k)
ij , and they have the same sign. In this case

a
(k)
ij a

(k)
ik a

(k)
kj = 0. If a

(k)
ik a

(k)
kj �= 0, then 1− t

(k)
ij = 0, which together with (10) implies

sign(a(k)
ik )sign(a(k)

kj ) = −sign(a(k)
ij ).

Therefore, a
(k)
ij a

(k)
ik a

(k)
kj ≤ 0 and a

(k+1)
ij = a

(k)
ij − a

(k)
ik a

(k)
kj /a

(k)
kk must have the same

sign as a
(k)
ij . The proof is complete. �

Theorem 4. A diagonally dominant matrix A is singular if and only if there is a
permutation matrix P such that

(11) PT AP =

⎛⎜⎜⎜⎝
A00 A01 · · · A0s

A11

. . .
Ass

⎞⎟⎟⎟⎠ ,

where the diagonal blocks are square with the A00 block possibly empty and, for
1 ≤ i ≤ s, Aii = DiMiiDi with Di = diag(±1) and Mii an irreducible diagonally
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dominant M-matrix (i.e. with nonnegative diagonals and nonpositive off-diagonals)
with zero diagonally dominant parts. Also, A00, if not empty, is nonsingular.

Proof. The if part is trivial, as Mii must be singular. We prove the only if part.
First, for a diagonally dominant matrix A, there is a permutation P0 such that

(12) PT
0 AP0 =

⎛⎜⎜⎜⎝
X11 X12 · · · X1q

X22 · · · X2q

. . .
...

Xqq

⎞⎟⎟⎟⎠
where Xii is square and irreducible. Since A is singular, there is at least one sin-
gular diagonal block. If a diagonal block Xii (for 1 ≤ i ≤ q − 1) is singular, then
Xij = 0 for i < j ≤ q, as otherwise Xii will have at least one row that is strictly
diagonally dominant and will then be nonsingular (noting that an irreducible diag-
onally dominant matrix with at least one row that is strictly diagonally dominant is
nonsingular; see [26, p. 23]). Therefore there is a permutation P such that PT AP
has all singular blocks in (12) moved to the lower-right corner on the diagonal.
Namely, rewriting the singular blocks in (12) as A11, · · · , Ass, and putting together
all remaining nonsingular blocks on the upper-left corner, if any, and writing them
as a single block A00, PT AP has the form of (11). Here, A00 is possibly empty but,
if not, it is nonsingular. Aii is singular and irreducible for 1 ≤ i ≤ s.

It remains to show that each Aii has the desired form. For this, we need to show
that if an n × n diagonally dominant matrix A is singular and irreducible, then
there exists D = diag(±1) such that DAD is an M-matrix. We next prove this by
induction in n.

The case n = 1 is trivial. Assume it is true for (n−1)×(n−1) matrices. Consider
an n×n singular and irreducible matrix A. Since A is irreducible and n ≥ 2, there
must be some a1j �= 0 and hence a11 �= 0. Also, all diagonally dominant parts vi

must be zero, as otherwise A will be nonsingular (again using [26, p. 23]). Apply
one step of the Gaussian elimination to A and denote as before the resulting matrix
as

(13) A(2) =
( 1 n−1

1 a11 x
n−1 0 B

)
,

where x denotes a vector or matrix of appropriate dimension. B is then singular
and still diagonally dominant. We show that B must be irreducible.

Suppose B is reducible. Using the proof at the beginning, we have a permutation
matrix P1 such that PT

1 BP1 takes the form of (11). In particular, we have

(14) PT
1 BP1 =

( n−1−p p

n−1−p B11 B12

p 0 B22

)
with B22 irreducible and singular. Without loss of generality, assume P1 = I, and
we write

(15) A(2) =

⎛⎝
1 n−1−p p

1 a11 x x
n−1−p 0 B11 B12

p 0 0 B22

⎞⎠.
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B22 being singular implies that its diagonally dominant parts are 0, i.e. v
(2)
i = 0

for n − p + 1 ≤ i ≤ n. Since the (3, 2) block of A(2) is zero, it follows from Lemma
2 that the (3, 2) block of A must be zero. If ai1 = 0 for all n − p + 1 ≤ i ≤ n, we
have

A =

⎛⎝
1 n−1−p p

1 a11 x x
n−1−p x x x
p 0 0 x

⎞⎠.

So, A is reducible, which is a contradiction. If ai1 �= 0 for some n − p + 1 ≤ i ≤ n,
we must have a1j = 0 for 2 ≤ j ≤ n − p, as otherwise the (3, 2) block of A(2),
which is obtained from a zero block after the Gaussian elimination, cannot be zero.
Therefore we have

A =

⎛⎝
1 n−1−p p

1 a11 0 x
n−1−p x x x
p x 0 x

⎞⎠.

Now, by permuting the first two blocks in both rows and columns, A becomes

⎛⎝
n−1−p 1 p

n−1−p x x x
1 0 a11 x
p 0 x x

⎞⎠.

This implies that A is reducible, which is a contradiction. Thus, we have shown
that B must be irreducible.

Applying the induction assumption to B, there exists D1 = diag(±1), such that
D1BD1 is an M-matrix with the diagonally dominant part v

(2)
i = 0 for 2 ≤ i ≤ n.

For ease of notation, we can assume without loss of generality that D1 = I, i.e. B is
an M-matrix. For 2 ≤ i ≤ n, it follows from v

(2)
i = 0 and Lemma 2 that aij ≤ 0 (for

2 ≤ j �= i) since, if aij is nonzero, it must have the same sign as the corresponding
off-diagonal entry of B which is nonpositive. Lemma 2 implies in addition that
ai1a1j ≥ 0. On the other hand, v

(2)
i = 0 also leads to (1 − t

(1)
ii )|a1i| = 0. Then

ai1a1i ≥ 0. Therefore, ai1a1j ≥ 0 for all j ≥ 2. Noting that A is irreducible, there
is one index i0 ≥ 2 such that ai01 �= 0. Let d1 = ±1 be such that d1ai01 < 0. Then
d1a1j = d1

ai01
ai01a1j ≤ 0 for all j ≥ 2. But there is at least one j0 with a1j0 �= 0.

Therefore, d1ai1 = d1
a1j0

ai1a1j0 ≤ 0 for all i. Now, with D = diag{d1, I}, DAD is
an M-matrix with zero diagonally dominant parts. The induction is completed. �

When we apply the Gaussian elimination to a singular A, it effectively applies the
elimination to each of the diagonal blocks Aii. Examining the elimination process
on Aii, it is obvious that it is the same as the one applied to the M-matrix Mii.
For the singular M-matrix Mii, our algorithm (or the standard GTH algorithm
[17]) does not involve any subtraction operation throughout, and any result that is
exactly zero will be computed exactly.

4.3. Proof of Theorem 3. We first prove some lemmas.
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Lemma 3. For 1 ≤ k ≤ N and k ≤ i, j ≤ n, let δ
(k)
ij = â

(k)
ij − a

(k)
ij and δ

(k)
i =

v̂
(k)
i − v

(k)
i . Then, for k + 1 ≤ i, j ≤ n, we have

δ
(k+1)
ij = a

(k+1)
ij ε1 −

a
(k)
ik a

(k)
kj

a
(k)
kk

ε2 + δ
(k)
ij (1 + ε1) −

δ
(k)
ik

â
(k)
kk

a
(k)
kj (1 + ε3)

− â
(k)
ik

â
(k)
kk

δ
(k)
kj (1 + ε3) +

a
(k)
ik δ

(k)
kk

a
(k)
kk â

(k)
kk

a
(k)
kj (1 + ε3),(16)

if j �= i, and

|δ(k)
ii | ≤ a

(k)
ii |ε2| +

⎛⎝|δ(k)
i | +

n∑
j=k,j �=i

|δ(k)
ij |

⎞⎠ (1 + ε2),(17)

|δ(k+1)
i | ≤ |δ(k)

i | +
n∑

j=k+1,j �=i

(1 − s
(k)
ij )|δ(k)

ij |

+
|â(k)

ik |
â
(k)
kk

⎛⎝|δ(k)
k | +

n∑
j=k+1

(1 − t
(k)
ij )|δ(k)

kj |

⎞⎠
+

|δ(k)
ik |

â
(k)
kk

⎛⎝v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠(18)

+
|a(k)

ik δ
(k)
kk |

â
(k)
kk a

(k)
kk

⎛⎝v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠
+ 2

∑
j∈K

(i)
1

|δ(k)
ij |+Θi+2

∑
j∈K3

|â(k)
ik |

â
(k)
kk

|δ(k)
kj |

+ 2
∑

j∈K
(i)
4

|δ(k+1)
ij |(1+ε3)+ε7v̂

(k+1)
i

where

K
(i)
1 = {j �= i : k + 1 ≤ j ≤ n and |a(k)

ij | ≤ |δ(k)
ij |},

K2 = {i : k + 1 ≤ i ≤ n and |a(k)
ik | ≤ |δ(k)

ik |},
K3 = {j : k + 1 ≤ j ≤ n and |a(k)

kj | ≤ |δ(k)
kj |},

K
(i)
4 = {j �= i : k + 1 ≤ j ≤ n and |a(k+1)

ij | ≤ |δ(k+1)
ij |}

and

Θi =

{
2

∑n
j=k+1

|δ(k)
ik |

â
(k)
kk

|â(k)
kj |, if i ∈ K2,

0, otherwise.

Also recall that ε� is a generic notation for a quantity bounded by �u + O(u2).
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Proof. For i, j ≥ k + 1 and i �= j, we have

â
(k+1)
ij = fl

(
â
(k)
ij −

â
(k)
ik â

(k)
kj

â
(k)
kk

)
=

(
â
(k)
ij −

â
(k)
ik â

(k)
kj

â
(k)
kk

(1 + ε2)

)
(1 + ε1)

=

(
a
(k)
ij + δ

(k)
ij −

(a(k)
ik + δ

(k)
ik )(a(k)

kj + δ
(k)
kj )

â
(k)
kk

(1 + ε2)

)
(1 + ε1)

=

(
a
(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

(1 + ε2)

)
(1 + ε1) + δ

(k)
ij (1 + ε1) −

a
(k)
kj δ

(k)
ik

â
(k)
kk

(1 + ε3)

−
(a(k)

ik + δ
(k)
ik )δ(k)

kj

â
(k)
kk

(1 + ε3) +
a
(k)
ik a

(k)
kj δ

(k)
kk

a
(k)
kk â

(k)
kk

(1 + ε3)

= a
(k+1)
ij + a

(k+1)
ij ε1 −

a
(k)
ik a

(k)
kj

a
(k)
kk

ε2 + δ
(k)
ij (1 + ε1) −

a
(k)
kj δ

(k)
ik

â
(k)
kk

(1 + ε3)

− â
(k)
ik

â
(k)
kk

δ
(k)
kj (1 + ε3) +

a
(k)
ik a

(k)
kj δ

(k)
kk

a
(k)
kk â

(k)
kk

(1 + ε3).

This proves (16). Similarly, for i ≥ k + 1, using (4), we have

â
(k)
ii = fl

⎛⎝v̂
(k)
i +

n∑
j=k,j �=i

|â(k)
ij |

⎞⎠ =

⎛⎝v̂
(k)
i +

n∑
j=k,j �=i

|â(k)
ij |

⎞⎠ (1 + ε2).

Then

|δ(k)
ii | ≤ a

(k)
ii |ε2| + (|δ(k)

i | +
n∑

j=k,j �=i

|δ(k)
ij |)(1 + ε2).

On computing v
(k+1)
i , we assume that the two in the formula summations are

computed first by the compensated summation algorithm, and we have by (4)

fl

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |

⎞⎠ =

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |

⎞⎠ (1 + ε2)

and

fl

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠ =

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠ (1 + ε2),
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where we assume that multiplications by 1 − ŝ
(k)
ij or 1 − t̂

(k)
ij , which are either 0 or

2, encounter no roundoff errors. Then

v̂
(k+1)
i = fl

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |

+
|â(k)

ik |
â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠⎞⎠
=

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |

⎞⎠ (1 + ε3)

+
|â(k)

ik |
â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠ (1 + ε5).

Furthermore, replacing ε3 and ε5 by min{ε3, ε5} and noting that |min{ε3, ε5}| ≤
5u + O(u2), we have

v̂
(k+1)
i ≥

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |(19)

+
|â(k)

ik |
â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠⎞⎠ × (1 + ε5)

Let i be fixed (k + 1 ≤ i ≤ n). In considering the difference v̂
(k+1)
i − v

(k+1)
i , we

examine the difference in each term of the summation and for k + 1 ≤ j ≤ n let

Ωj =
{

(1 − ŝ
(k)
ij )|â(k)

ij | − (1 − s
(k)
ij )|a(k)

ij |, if j �= i,

0, if j = i,

Γj = (1 − t̂
(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj | − (1 − t

(k)
ij )

|a(k)
ik |

a
(k)
kk

|a(k)
kj |.

Then, we can write
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δ
(k+1)
i = v̂

(k+1)
i − v

(k+1)
i

= v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij | + |â(k)
ik |

â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠
+ ε3

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |

⎞⎠
+ ε5

|â(k)
ik |

â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠
− v

(k)
i −

n∑
j=k+1,j �=i

(1 − s
(k)
ij )|a(k)

ij | − |a(k)
ik |

a
(k)
kk

⎛⎝v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠
= δ

(k)
i +

n∑
j=k+1,j �=i

Ωj +
n∑

j=k+1

Γj +
|â(k)

ik |
â
(k)
kk

v̂
(k)
k − |a(k)

ik |
a
(k)
kk

v
(k)
k

+ ε3

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |

⎞⎠
+ ε5

|â(k)
ik |

â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠
= δ

(k)
i +

n∑
j=k+1

(Ωj + Γj) +
|â(k)

ik |
â
(k)
kk

δ
(k)
k +

(
|â(k)

ik |
â
(k)
kk

− |a(k)
ik |

a
(k)
kk

)
v
(k)
k

+ ε3

⎛⎝v̂
(k)
i +

n∑
j=k+1,j �=i

(1 − ŝ
(k)
ij )|â(k)

ij |

⎞⎠
+ ε5

|â(k)
ik |

â
(k)
kk

⎛⎝v̂
(k)
k +

n∑
j=k+1

(1 − t̂
(k)
ij )|â(k)

kj |

⎞⎠ .

Hence

|δ(k+1)
i | ≤ |δ(k)

i | +
n∑

j=k+1

|Ωj + Γj | +
|â(k)

ik |
â
(k)
kk

|δ(k)
k |(20)

+

(
|δ(k)

ik |
â
(k)
kk

+
|a(k)

ik δ
(k)
kk |

â
(k)
kk a

(k)
kk

)
v
(k)
k + ε5v̂

(k+1)
i

where we have used (19). To bound Ωj+Γj , we need to consider the situations where
the sign of a certain term is computed wrong such that ŝ

(k)
ij �= s

(k)
ij or t̂

(k)
ij �= t

(k)
ij . In

that case, Ωj + Γj is not a differential and may not appear to be small. However,
we shall bound them using the fact that a sign can only be computed wrong when
the corresponding quantity is small. We first separate out the part that can be
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written as a differential and let

∆j := (1 − t
(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj | − (1 − t

(k)
ij )

|a(k)
ik |

a
(k)
kk

|a(k)
kj |.

Then

(21) |∆j | ≤ (1 − t
(k)
ij )

(
|â(k)

ik |
â
(k)
kk

|δ(k)
kj | + |δ(k)

ik |
â
(k)
kk

|a(k)
kj | +

|a(k)
ik δ

(k)
kk |

â
(k)
kk a

(k)
kk

|a(k)
kj |

)
.

We now prove that

|Ωj + Γj | ≤ (1 − s
(k)
ij )|δ(k)

ij | + |∆j | + 2|δ(k)
ij | + 2

|δ(k)
ik |

â
(k)
kk

|â(k)
kj | + 2

|â(k)
ik |

â
(k)
kk

|δ(k)
kj |

+2|δ(k+1)
ij |(1 + ε3) + ε2

(
(1 − ŝ

(k)
ij )|â(k)

ij | + (1 − t̂
(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj |

)
,(22)

where the first term only appears if j �= i, the third term only appears if j ∈ K
(i)
1 ,

the fourth term only appears if i ∈ K2, the fifth term only appears if j ∈ K3, and
the last two terms only appear if j ∈ K

(i)
4 . The proof is divided into two cases

and several subcases that address all possible situations in the computed signs
ŝ
(k)
ij = sign(â(k+1)

ij )sign(â(k)
ij ), t̂

(k)
ij = −sign(â(k+1)

ij )sign(â(k)
ik )sign(â(k)

kj ) (for i �= j)

and t̂
(k)
ii = sign(â(k)

ik )sign(â(k)
ki ). Recall the convention sign(0) = 1.

Case 1. Either j = i or sign(â(k+1)
ij ) = sign(a(k+1)

ij ). We bound Ωj and Γj sepa-
rately. For Ωj , if j = i, we have Ωj = 0. If j �= i, we write

Ωj = (1 − s
(k)
ij )(|â(k)

ij | − |a(k)
ij |) − (ŝ(k)

ij − s
(k)
ij )|â(k)

ij |.

We then consider two subcases with j �= i:

a) If ŝ
(k)
ij = s

(k)
ij , we have |Ωj | ≤ (1 − s

(k)
ij )|δ(k)

ij |.
b) If ŝ

(k)
ij �= s

(k)
ij , we have sign(â(k)

ij ) �= sign(a(k)
ij ) and hence |â(k)

ij | + |a(k)
ij | =

|δ(k)
ij |. Therefore, we have |â(k)

ij | ≤ |δ(k)
ij |. Hence

j ∈ K
(i)
1 and |Ωj | ≤ (1 − s

(k)
ij )|δ(k)

ij | + 2|δ(k)
ij |.

For Γj , we write for all j

Γj = ∆j − (t̂(k)
ij − t

(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj |.

We similarly consider two subcases:

a) If t̂
(k)
ij = t

(k)
ij , we have |Γj | = |∆j |.

b) If t̂
(k)
ij �= t

(k)
ij , we have either sign(â(k)

ik ) �= sign(a(k)
ik ) or sign(â(k)

kj ) �=sign(a(k)
kj ).

Then either |â(k)
ik | + |a(k)

ik | = |δ(k)
ik | or |â(k)

kj | + |a(k)
kj | = |δ(k)

kj |. In the former

case, we have |â(k)
ik | ≤ |δ(k)

ik | and hence

i ∈ K2 and |Γj | ≤ |∆j | + 2
|δ(k)

ik |
â
(k)
kk

|â(k)
kj |.
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In the latter case, we have |â(k)
kj | ≤ |δ(k)

kj | and hence

j ∈ K3 and |Γj | ≤ |∆j | + 2
|â(k)

ik |
â
(k)
kk

|δ(k)
kj |.

Combining the bounds for Ωj and Γj together, we have proved (22) for Case 1.

Case 2. j �= i and sign(â(k+1)
ij ) �= sign(a(k+1)

ij ). In this case, |â(k+1)
ij | + |a(k+1)

ij | =

|δ(k+1)
ij | and therefore j ∈ K

(i)
4 . We write

Ωj = (1 − s
(k)
ij )(|â(k)

ij | − |a(k)
ij |) + (ŝ(k)

ij + s
(k)
ij )|â(k)

ij | − 2ŝ
(k)
ij |â(k)

ij |,

Γj = ∆j + (t̂(k)
ij + t

(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj | − 2t̂

(k)
ij

|â(k)
ik |

â
(k)
kk

|â(k)
kj |.

We bound the second term in Ωj above as follows. If ŝ
(k)
ij �= s

(k)
ij , then (ŝ(k)

ij +

s
(k)
ij )|â(k)

ij | = 0. If ŝ
(k)
ij = s

(k)
ij , we have sign(â(k)

ij ) �= sign(a(k)
ij ) and |â(k)

ij | + |a(k)
ij | =

|δ(k)
ij |. Therefore

j ∈ K
(i)
1 and |(ŝ(k)

ij + s
(k)
ij )|â(k)

ij || ≤ 2|δ(k)
ij |.

Similarly, we bound the second term in Γj above. If t̂
(k)
ij �= t

(k)
ij , then (t̂(k)

ij +

t
(k)
ij ) |â

(k)
ik |

â
(k)
kk

|â(k)
kj | = 0. But if t̂

(k)
ij = t

(k)
ij , we have either sign(â(k)

ik ) �= sign(a(k)
ik ) or

sign(â(k)
kj ) �= sign(a(k)

kj ). Then either

i ∈ K2 and (t̂(k)
ij + t

(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj | ≤ 2

|δ(k)
ik |

â
(k)
kk

|â(k)
kj |

or

j ∈ K3 and (t̂(k)
ij + t

(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj | ≤ 2

|â(k)
ik |

â
(k)
kk

|δ(k)
kj |.

Thus, we have shown

(23) (ŝ(k)
ij +s

(k)
ij )|â(k)

ij |+(t̂(k)
ij +t

(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj | ≤ 2|δ(k)

ij |+2
|δ(k)

ik |
â
(k)
kk

|â(k)
kj |+2

|â(k)
ik |

â
(k)
kk

|δ(k)
kj |,

which leads to

(24) |Ωj + Γj | ≤ (1− s
(k)
ij )|δ(k)

ij |+ |∆j |+ 2|δ(k)
ij |+ 2

|δ(k)
ik |

â
(k)
kk

|â(k)
kj |+ 2

|â(k)
ik |

â
(k)
kk

|δ(k)
kj |+ 2Λ,

where the third, fourth and fifth terms only appear if j ∈ K
(i)
1 , i ∈ K2, or j ∈ K3,

respectively, and

Λ :=

∣∣∣∣∣ŝ(k)
ij |â(k)

ij | + t̂
(k)
ij

|â(k)
ik |

â
(k)
kk

|â(k)
kj |

∣∣∣∣∣
=

∣∣∣∣∣sign(â(k+1)
ij )â(k)

ij − sign(â(k+1)
ij )

â
(k)
ik

â
(k)
kk

â
(k)
kj

∣∣∣∣∣
=

∣∣∣∣∣â(k)
ij − â

(k)
ik

â
(k)
kk

â
(k)
kj

∣∣∣∣∣ .
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It follows from

â
(k+1)
ij =

(
â
(k)
ij − â

(k)
ik

â
(k)
kk

â
(k)
kj (1 + ε2)

)
(1 + ε1) =

(
â
(k)
ij

1 + ε2
− â

(k)
ik

â
(k)
kk

â
(k)
kj

)
(1 + ε3)

that

â
(k)
ij − â

(k)
ik

â
(k)
kk

â
(k)
kj = â

(k+1)
ij (1 + ε1) − ε2

â
(k)
ik

â
(k)
kk

â
(k)
kj

and

â
(k)
ij − â

(k)
ik

â
(k)
kk

â
(k)
kj = â

(k+1)
ij (1 + ε3) − ε2â

(k)
ij .

We now consider three subcases. In the first two subcases, we bound Ωj + Γj

through bounding Λ, but in the third, we bound Ωj + Γj directly.

a) If ŝ
(k)
ij = −1, we have

Λ ≤ |â(k+1)
ij |(1 + ε3) + ε2|â(k)

ij | ≤ |δ(k+1)
ij |(1 + ε3) + ε1(1 − ŝ

(k)
ij )|â(k)

ij |.

Substituting this into (24) leads to (22).
b) If t̂

(k)
ij = −1, we have

Λ ≤ |â(k+1)
ij |(1 + ε1) + ε2

|â(k)
ik |

â
(k)
kk

|â(k)
kj | ≤ |δ(k+1)

ij |(1 + ε1) + ε1(1 − t̂
(k)
ij )

|â(k)
ik |

â
(k)
kk

|â(k)
kj |.

Again, substituting this into (24) leads to (22).
c) If ŝ

(k)
ij = t̂

(k)
ij = 1, then we go back to the definitions of Ωj and Γj and have

Ωj + Γj = −(1 − s
(k)
ij )|a(k)

ij | − (1 − t
(k)
ij )

|a(k)
ik |

a
(k)
kk

|a(k)
kj |

= −(ŝ(k)
ij + s

(k)
ij )|a(k)

ij | − (t̂(k)
ij + t

(k)
ij )

|a(k)
ik |

a
(k)
kk

|a(k)
kj | + 2s

(k)
ij |a(k)

ij |

+ 2t
(k)
ij

|a(k)
ik |

a
(k)
kk

|a(k)
kj |

= −(ŝ(k)
ij + s

(k)
ij )|a(k)

ij | − (t̂(k)
ij + t

(k)
ij )

|a(k)
ik |

a
(k)
kk

|a(k)
kj | + 2|a(k+1)

ij |.

Bounding the first two terms as in (23), we obtain

|Ωj + Γj | ≤ 2|δ(k)
ij | + 2

|δ(k)
ik |

â
(k)
kk

|â(k)
kj | + 2

|â(k)
ik |

â
(k)
kk

|δ(k)
kj | + 2|δ(k+1)

ij |

where the first, the second and the third terms appear only if j ∈ K
(i)
1 ,

i ∈ K2, or j ∈ K3, respectively. So, (22) is true in this subcase, too.

Thus, we have proved (22) for Case 2.
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Finally, noting
∑

j∈K
(i)
4

(
(1 − ŝ

(k)
ij )|â(k)

ij | + (1 − t̂
(k)
ij ) |â

(k)
ik |

â
(k)
kk

|â(k)
kj |

)
≤ v̂

(k+1)
i /(1 +

ε5) by (19), we have
n∑

j=k+1

|Ωj + Γj | ≤
n∑

j=k+1,j �=i

(1 − s
(k)
ij )|δ(k)

ij | +
n∑

j=k+1

|∆j | + 2
∑

j∈K
(i)
1

|δ(k)
ij |

+Θi + 2
∑

j∈K3

|â(k)
ik |

â
(k)
kk

|δ(k)
kj | + 2

∑
j∈K

(i)
4

|δ(k+1)
ij |(1 + ε3) + ε2v̂

(k+1)
i .

Substitute this and (21) into (20), we have (18). �
We now present an inequality that allows bounding (16), (17) and (18) in terms

of the quantities in A(k+1).

Lemma 4. Let 1 ≤ k ≤ N . For any k + 1 ≤ i ≤ n and any J ⊂ {k + 1, k +
2, · · · , n} \ {i}, we have

(25) v
(k+1)
i +

∑
j∈J

|a(k+1)
ij | ≥ v

(k)
i +

∑
j∈J

|a(k)
ij | + |a(k)

ik |
a
(k)
kk

⎛⎝v
(k)
k +

∑
j∈J

|a(k)
kj |

⎞⎠ .

Proof. Let K = {k + 1, k + 2, · · · , n} \ ({i} ∪ J). Using the same equation in the
proof of Theorem 1, we have

v
(k+1)
i +

∑
j∈J

|a(k+1)
ij | = a

(k+1)
ii −

∑
j∈K

|a(k+1)
ij |

= a
(k)
ii − |a(k)

ik | −
∑
j∈K

s
(k)
ij |a(k)

ij | + |a(k)
ik |

a
(k)
kk

⎛⎝a
(k)
kk − t

(k)
ii |a(k)

ki | −
∑
j∈K

t
(k)
ij |a(k)

kj |

⎞⎠
≥ v

(k)
i +

∑
j∈J

|a(k)
ij | + |a(k)

ik |
a
(k)
kk

⎛⎝v
(k)
k +

∑
j∈J

|a(k)
kj |

⎞⎠ . �

Next lemma gives relative error bounds.

Lemma 5. For some fixed k (1 ≤ k ≤ N), assume that for any i ≥ k and for any
J ⊂ {k, k + 1, · · · , n} \ {i} that

(26)
∑
j∈J

|δ(k)
ij | ≤ φ(k)ε1

⎛⎝v
(k)
i +

∑
j∈J

|a(k)
ij |

⎞⎠
and

(27) |δ(k)
i | ≤ ψ(k)ε1v

(k)
i ,

where φ(k) ≥ 0 and ψ(k) ≥ 0 are some functions of k. Then,

(28) |δ(k)
ii | ≤ ξ(k)ε1a

(k)
ii

with ξ(k) = φ(k) + ψ(k) + 2. Furthermore, for any i ≥ k + 1 and for any J ⊂
{k + 1, k + 2, · · · , n} \ {i}, we have

∑
j∈J

|δ(k+1)
ij | ≤ (3φ(k) + ψ(k) + 5)ε1

⎛⎝v
(k+1)
i +

∑
j∈J

|a(k+1)
ij |

⎞⎠ ,(29)
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and

|δ(k+1)
i | ≤ (14φ(k) + 4ψ(k) + 19)ε1v

(k+1)
i ,(30)

where we assume ξ(k)ε1 < 1. Recall that ε1 ≤ u + O(u2).

Proof. From (17), we obtain

|δ(k)
ii | ≤ a

(k)
ii |ε2| + ψ(k)ε1v

(k)
i (1 + ε2) + φ(k)ε1

⎛⎝v
(k)
i +

n∑
j=k,j �=i

|a(k)
ij |

⎞⎠ (1 + ε2)

≤ (φ(k) + ψ(k) + 2)ε1a
(k)
ii .

Now, for i ≥ k + 1 and for any J ⊂ {k + 1, k + 2, · · · , n}/{i}, we use (16) to prove
(29). We note first that the terms ε� in (16) are dependent on j (for a fixed i).
Therefore, we use a superscript j on all ε� appearing in the equation for δ

(k+1)
ij to

distinguish them in the inequalities below. Summing (16) over j ∈ J , we have

∑
j∈J

|δ(k+1)
ij | ≤

∑
j∈J

|a(k+1)
ij ε

(j)
1 | + |a(k)

ik |
a
(k)
kk

∑
j∈J

|a(k)
kj ε

(j)
2 | +

∑
j∈J

|δ(k)
ij |(1 + ε

(j)
1 )

+
|δ(k)

ik |
â
(k)
kk

∑
j∈J

|a(k)
kj (1 + ε

(j)
3 )| + |â(k)

ik |
â
(k)
kk

∑
j∈J

|δ(k)
kj |(1 + ε

(j)
3 )

+
|a(k)

ik δ
(k)
kk |

a
(k)
kk â

(k)
kk

∑
j∈J

|a(k)
kj (1 + ε

(j)
3 )|.

It is easy to show that maxj∈J |ε(j)� | = ε�. Then using

|â(k)
ij | ≤ |a(k)

ij | + |δ(k)
ij | ≤ |a(k)

ij | + φ(k)ε1(v
(k)
i + |a(k)

ij |)

≤ |a(k)
ij |(1 + φ(k)ε1) + φ(k)ε1v

(k)
i(31)

and

(32) â
(k)
ii ≥ a

(k)
ii − |δ(k)

ii | ≥ a
(k)
ii (1 − ξ(k)ε1),

we bound each of the terms above as follows:
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j∈J

|a(k+1)
ij ε

(j)
1 | ≤

∑
j∈J

|a(k+1)
ij |max

j∈J
|ε(j)1 | = ε1

∑
j∈J

|a(k+1)
ij |

|a(k)
ik |

a
(k)
kk

∑
j∈J

|a(k)
kj ε

(j)
2 | ≤ max

j∈J
|ε(j)2 | |a

(k)
ik |

a
(k)
kk

∑
j∈J

|a(k)
kj | = ε2

|a(k)
ik |

a
(k)
kk

∑
j∈J

|a(k)
kj |∑

j∈J

|δ(k)
ij |(1 + ε

(j)
1 ) ≤ (1 + max

j∈J
|ε(j)1 |)

∑
j∈J

|δ(k)
ij |

≤ (1 + ε1)φ(k)ε1

⎛⎝v
(k)
i +

∑
j∈J

|a(k)
ij |

⎞⎠
= φ(k)ε1

⎛⎝v
(k)
i +

∑
j∈J

|a(k)
ij |

⎞⎠
|δ(k)

ik |
â
(k)
kk

∑
j∈J

|a(k)
kj (1 + ε

(j)
3 )| ≤ φ(k)ε1(v

(k)
i + |a(k)

ik |)
a
(k)
kk (1 − ξ(k)ε1)

∑
j∈J

|a(k)
kj |(1 + ε3)

≤ φ(k)
ε1(1 + ε3)
1 − ξ(k)ε1

⎛⎝v
(k)
i

a
(k)
kk

∑
j∈J

|a(k)
kj | +

|a(k)
ik |

a
(k)
kk

∑
j∈J

|a(k)
kj |

⎞⎠
≤ φ(k)ε1

⎛⎝v
(k)
i +

|a(k)
ik |

a
(k)
kk

∑
j∈J

|a(k)
kj |

⎞⎠
|â(k)

ik |
â
(k)
kk

∑
j∈J

|δ(k)
kj |(1 + ε

(j)
3 ) ≤ |a(k)

ik |(1 + φ(k)ε1) + φ(k)ε1v
(k)
i

a
(k)
kk (1 − ξ(k)ε1)

× φ(k)ε1

⎛⎝v
(k)
k +

∑
j∈J

|a(k)
kj |

⎞⎠ (1 + ε3)

=
|a(k)

ik |φ(k)ε1 + φ(k)2ε21v
(k)
i

a
(k)
kk

⎛⎝v
(k)
k +

∑
j∈J

|a(k)
kj |

⎞⎠
≤ φ(k)ε1

|a(k)
ik |

a
(k)
kk

⎛⎝v
(k)
k +

∑
j∈J

|a(k)
kj |

⎞⎠
+ φ(k)2ε21v

(k)
i

v
(k)
k +

∑
j∈J |a(k)

kj |
a
(k)
kk

≤ φ(k)ε1
|a(k)

ik |
a
(k)
kk

⎛⎝v
(k)
k +

∑
j∈J

|a(k)
kj |

⎞⎠ + φ(k)2ε21v
(k)
i

|a(k)
ik δ

(k)
kk |

a
(k)
kk â

(k)
kk

∑
j∈J

|a(k)
kj (1 + ε

(j)
3 )| ≤ |a(k)

ik |ξ(k)ε1a
(k)
kk

a
(k)
kk a

(k)
kk (1 − ξ(k)ε1)

∑
j∈J

|a(k)
kj |(1 + ε3)

≤ (φ(k) + ψ(k) + 2)ε1
|a(k)

ik |
a
(k)
kk

∑
j∈J

|a(k)
kj |.



2222 QIANG YE

Adding them together and noting that φ(k)2ε21v
(k)
i in the fifth term can be combined

into φ(k)ε1v
(k)
i in the third term, i.e. φ(k)ε1v

(k)
i +φ(k)2ε21v

(k)
i = φ(k)ε1v

(k)
i , we have

∑
j∈J

|δ(k+1)
ij | ≤ ε1

∑
j∈J

|a(k+1)
ij | + ε2

|a(k)
ik |

a
(k)
kk

∑
j∈J

|a(k)
kj |

+ φ(k)ε1

⎛⎝2v
(k)
i +

∑
j∈J

|a(k)
ij | + |a(k)

ik |
a
(k)
kk

⎛⎝v
(k)
k + 3

∑
j∈J

|a(k)
kj |

⎞⎠⎞⎠
+ (ψ(k) + 2)ε1

|a(k)
ik |

a
(k)
kk

∑
j∈J

|a(k)
kj |

≤ (3φ(k) + ψ(k) + 5)ε1

⎛⎝v
(k+1)
i +

∑
j∈J

|a(k+1)
ij |

⎞⎠ ,

where we have used Lemma 4.
We now prove (30). Using (31) and (32) again, we bound the terms of (18) as

follows.

n∑
j=k+1,j �=i

(1 − s
(k)
ij )|δ(k)

ij | =
n∑

j=k+1,j �=i,s
(k)
ij =−1

(1 − s
(k)
ij )|δ(k)

ij |

= 2
n∑

j=k+1,j �=i,s
(k)
ij =−1

|δ(k)
ij |

≤ 2φ(k)ε1

⎛⎜⎝v
(k)
i +

n∑
j=k+1,j �=i,s

(k)
ij =−1

|a(k)
ij |

⎞⎟⎠
= φ(k)ε1

⎛⎝2v
(k)
i +

n∑
j=k+1,j �=i

(1 − s
(k)
ij )|a(k)

ij |

⎞⎠
|â(k)

ik |
â
(k)
kk

|δ(k)
k | ≤ |a(k)

ik |(1 + φ(k)ε1) + φ(k)ε1v
(k)
i

a
(k)
kk (1 − ξ(k)ε1)

ψ(k)ε1v
(k)
k

≤ ψ(k)ε1
|a(k)

ik |
a
(k)
kk

v
(k)
k + ψ(k)φ(k)ε21v

(k)
i

|â(k)
ik |

â
(k)
kk

n∑
j=k+1

(1 − t
(k)
ij )|δ(k)

kj | ≤ |a(k)
ik |(1 + φ(k)ε1) + φ(k)ε1v

(k)
i

a
(k)
kk (1 − ξ(k)ε1)

×
n∑

j=k+1

(1 − t
(k)
ij )|δ(k)

kj |

≤ φ(k)ε1
|a(k)

ik |
a
(k)
kk

⎛⎝2v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠ + 2φ(k)2ε21v
(k)
i
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|δ(k)
ik |

â
(k)
kk

(v(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |) ≤
φ(k)ε1(v

(k)
i + |a(k)

ik |)
a
(k)
kk (1 − ξ(k)ε1)

(v(k)
k

+
n∑

j=k+1

(1 − t
(k)
ij )|a(k)

kj |)

≤ φ(k)ε1

⎛⎝2v
(k)
i +

|a(k)
ik |

a
(k)
kk

⎛⎝v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠⎞⎠
|a(k)

ik δ
(k)
kk |

â
(k)
kk a

(k)
kk

(v(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |) ≤
|a(k)

ik |ξ(k)ε1a
(k)
kk

a
(k)
kk (1 − ξ(k)ε1)a

(k)
kk

× (v(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |)

≤ (φ(k) + ψ(k) + 2)ε1
|a(k)

ik |
a
(k)
kk

(v(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |).

Using the definition of K
(i)
1 , we have

∑
j∈K

(i)
1

|δ(k)
ij | ≤ φ(k)ε1

⎛⎜⎝v
(k)
i +

∑
j∈K

(i)
1

|a(k)
ij |

⎞⎟⎠ ≤ φ(k)ε1

⎛⎜⎝v
(k)
i +

∑
j∈K

(i)
1

|δ(k)
ij |

⎞⎟⎠ .

Then ∑
j∈K

(i)
1

|δ(k)
ij | ≤ φ(k)ε1v

(k)
i

1 − φ(k)ε1
= φ(k)ε1v

(k)
i .

Similarly, if i ∈ K2, then |δ(k)
ik | ≤ φ(k)ε1(v

(k)
i + |a(k)

ik |) ≤ φ(k)ε1(v
(k)
i + |δ(k)

ik |) which
implies |δ(k)

ik | ≤ φ(k)ε1v
(k)
i . Then using

(33) â
(k)
kk =

⎛⎝v̂
(k)
k +

n∑
j=k+1

|â(k)
kj |

⎞⎠ (1 + ε2) ≥
n∑

j=k+1

|â(k)
kj |(1 + ε2)

we have

Θi ≤ 2
|δ(k)

ik |
â
(k)
kk

n∑
j=k+1

|â(k)
kj | ≤ 2φ(k)ε1v

(k)
i

∑n
j=k+1 |â

(k)
kj |

â
(k)
kk

≤ 2φ(k)ε1v
(k)
i /(1 + ε2) = 2φ(k)ε1v

(k)
i .

Similarly, using the definition of K3, (31) and (32), we have

∑
j∈K3

|â(k)
ik |

â
(k)
kk

|δ(k)
kj | ≤ |a(k)

ik |(1 + φ(k)ε1) + φ(k)ε1v
(k)
i

a
(k)
kk (1 − ξ(k)ε1)

φ(k)ε1v
(k)
k

≤ φ(k)ε1
|a(k)

ik |
a
(k)
kk

v
(k)
k + φ(k)2ε21v

(k)
i .
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Using (29) that is already proved, we have

∑
j∈K

(i)
4

|δ(k+1)
ij | ≤ (3φ(k) + ψ(k) + 5)ε1

⎛⎜⎝v
(k+1)
i +

∑
j∈K

(i)
4

|a(k+1)
ij |

⎞⎟⎠
≤ (3φ(k) + ψ(k) + 5)ε1

⎛⎜⎝v
(k+1)
i +

∑
j∈K

(i)
4

|δ(k+1)
ij |

⎞⎟⎠
which implies ∑

j∈K
(i)
4

|δ(k+1)
ij | ≤ (3φ(k) + ψ(k) + 5)ε1v

(k+1)
i .

Summing all the terms in (18) as we have bounded above and noting that higher
order terms like ε21v

(k)
i can be combined into φ(k)ε1v

(k)
i in the second term, we have

|δ(k+1)
i | ≤ ψ(k)ε1

⎛⎝v
(k)
i +

|a(k)
ik |

a
(k)
kk

⎛⎝2v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠⎞⎠
+ φ(k)ε1

⎛⎝8v
(k)
i +

n∑
j=k+1,j �=i

(1 − s
(k)
ij )|a(k)

ij |

+
|a(k)

ik |
a
(k)
kk

⎛⎝6v
(k)
k + 3

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠⎞⎠
+ 2ε1

|a(k)
ik |

a
(k)
kk

⎛⎝v
(k)
k +

n∑
j=k+1

(1 − t
(k)
ij )|a(k)

kj |

⎞⎠
+ 2(3φ(k) + ψ(k) + 5)ε1v

(k+1)
i + ε7v̂

(k+1)
i

≤ (14φ(k) + 4ψ(k) + 19)ε1v
(k+1)
i + ε7|δ(k+1)

i |.
This leads to

|δ(k+1)
i | ≤ (14φ(k) + 4ψ(k) + 19)ε1v

(k+1)
i

1 − ε7
= (14φ(k) + 4ψ(k) + 19)ε1v

(k+1)
i .

The proof is complete. �

Applying the above lemma inductively, we see that (26), (27) and (28) hold for
1 ≤ k ≤ N + 1 with φ(k) and ψ(k) defined by

φ(k + 1) = 3φ(k) + ψ(k) + 5, φ(1) = 0;(34)
ψ(k + 1) = 14φ(k) + 4ψ(k) + 19, ψ(1) = 0.(35)

Clearly, φ(k) and ψ(k) are increasing sequences.

Proof of Theorem 3. For 1 ≤ k ≤ N , the L and U factors are obtained from the
Gaussian elimination matrices through

l̂ik = fl

(
â
(k)
ik

â
(k)
kk

)
and ûkj = fl

(
â
(k)
kj

â
(k)
kk

)
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where i, j = k + 1, · · · , n. For i ≥ k + 1, we have |â(k)
ik | ≤ â

(k)
ii ≤ â

(k)
kk if using

the diagonal pivoting and |â(k)
ik | ≤ â

(k)
kk if using the column diagonal dominance

pivoting. Therefore, |â(k)
ik |/â

(k)
kk ≤ 1, and we have

|l̂ik − lik| ≤
∣∣∣∣∣ â(k)

ik

â
(k)
kk

− a
(k)
ik

a
(k)
kk

∣∣∣∣∣ +
|â(k)

ik |
â
(k)
kk

u

≤ |δ(k)
ik |

a
(k)
kk

+
|â(k)

ik δ
(k)
kk |

â
(k)
kk a

(k)
kk

+
|â(k)

ik |
â
(k)
kk

u

≤ φ(k)ε1 + ξ(k)ε1 + ε1

≤ νn−1ε1,

where νn−1 = 2φ(n − 1) + ψ(n − 1) + 3. Similarly, for j > k, we have
n∑

j=k+1

|ûkj − ukj | ≤
∑n

j=k+1 |δ
(k)
kj |

a
(k)
kk

+
n∑

j=k+1

|â(k)
kj δ

(k)
kk |

â
(k)
kk a

(k)
kk

+

∑n
j=k+1 |â

(k)
kj |

â
(k)
kk

u

≤ (φ(k) + ξ(k) + 1)ε1
≤ νn−1ε1

where we have used (33). Now, if N + 1 < n, the elimination is terminated at
step N + 1, and we have a

(N+1)
ij = â

(N+1)
ij = 0 for all N + 1 ≤ i, j ≤ n. Thus for

N + 1 ≤ i, j ≤ n, l̂ik = lik = 0 and ûkj = ukj = 0. Putting all of these together, we
have shown that

‖L̂ − L‖∞ ≤ (n − 1)νn−1ε1 = (n − 1)νn−1u + O(u2)

and
‖Û − U‖∞ ≤ νn−1ε1 = νn−1u + O(u2).

On the other hand, d̂i = â
(i)
ii for 1 ≤ i ≤ N + 1. If N + 1 < n, we also have

that a
(N+1)
ii = â

(N+1)
ii = 0 and hence d̂i = di = 0 for N + 1 ≤ i ≤ n. So, letting

ξn−1 = ξ(n− 1) = φ(n− 1) + ψ(n− 1) + 2, the bound on d̂i − di follows from (28).
Finally, using (34) and (35), it can be proved by induction that

φ(k) ≤ 8k−1 − 1
2

and ψ(k) ≤ 4 · 8k−1 − 4.

Thus,

νn−1 ≤ 6 · 8n−1 − 2 and ξn−1 ≤ 5 · 8n−1 − 5
2
.

Now, the theorem is proved by noting that ‖L‖∞ ≥ 1 and ‖U‖∞ ≥ 1. �

We note that slightly better bounds for νn−1, ξn−1 can be obtained by solving

(36)
(

Φ(k + 1)
Ψ(k + 1)

)
=

(
3 1
14 4

) (
Φ(k)
Ψ(k)

)
+

(
5
19

)
with

(
Φ(1)
Ψ(1)

)
=

(
0
0

)
.

Its solution is (
Φ(k)
Ψ(k)

)
= c1λ

k−1
1 v1 + c2λ

k−1
2 v2 +

(
−1/2
−4

)
,

where (λ1, v1) and (λ2, v2) are two eigenpairs of the coefficient matrix of (36) and
c1, c2 are chosen to satisfy the initial conditions. Since λ1 ≈ −0.275 and λ2 ≈
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7.275, this will lead to slightly smaller bounds for νn−1, ξn−1, but they are more
complicated.

5. Numerical examples

In this section, we present three numerical examples of diagonally dominant ma-
trices (that are not M-matrices) to demonstrate the high relative accuracy achieved
by the new algorithm. We compare it with the Jacobi algorithms [13] as well as
the svd (or eig if the matrix is symmetric) of MATLAB which is based on the QR
algorithm. We also present one example of singular matrix that is essentially an
M-matrix to demonstrate the ability of the algorithm to compute the rank exactly.
All tests were performed in MATLAB on an Intel Pentium PC.

We have implemented Algorithm 1, Algorithm 2 and Algorithm 3 as presented,
except that A is overwritten by L, D and U in our implementation of Algorithm 1.
Our implementations of the Jacobi algorithms are also straight out of Algorithm 3.1
of [13] (two-sided Jacobi for symmetric positive definite eigenvalue problems) and
Algorithm 4.1 of [13] (one-sided right-handed Jacobi for singular value problems)
except that, in the computation of t = sign(ζ)/(|ζ| +

√
1 + ζ2) there, we scale the

numerator and denominator by the exponential part of ζ to prevent overflow in ζ2.
The termination threshold for the Jacobi method is set as n ∗ eps.

Example 1. We consider a 100 × 100 symmetric matrix D(AD, v) whose off-
diagonals are −1 except at the anti-diagonals (i + j = n + 1), where they are
η = 10−16. We let the diagonals of A be such that the row sums of A are all
λ = 10−15. Then λ is an eigenvalue of A with e = [1, · · · , 1]T as an eigenvector.

The diagonally dominant parts are then vi = λ − 2η, which are computed with
high relative accuracy for the given λ and η. We list and compare the smallest
eigenvalue λ̂ as computed by Algorithm 3, by the Jacobi algorithm (one-sided for
singular values) and by MATLAB’s eig in Table 1 below. Since the matrix is
symmetric, no pivoting scheme is used in our LDLT factorization algorithm, and the
L and LT obtained are well-conditioned with κ∞(L) = 617.0 and κ∞(LT ) = 12.4.
With the matrix extremely close to being singular (or being indefinite), the two-
sided Jacobi for this matrix fails as it encounters a negative diagonal. The result
listed is based on computing singular values by the one-sided Jacobi.

We see from the table that our algorithm computes λ = 1e − 15 to the order
of machine precision, while both the one-sided Jacobi and eig lost all significant
digits. All other eigenvalues are computed to the order of machine precision by all
three algorithms.

Table 1. Computed λ̂ and relative error for approximating λ=1e−15

λ̂ rel.error = |λ−λ̂|
λ

Algorithm 3 1.00000000000000070e − 15 5.9e − 16
one-sided Jacobi 1.88038238345742960e − 14 1.8e1

eig 7.14271307031277840e − 14 7.0e1

More generally we can construct a set of random test matrices like this with a
known tiny eigenvalue as follows. We first construct an n×n random sparse matrix
with normally distributed random entries and then take negative absolute value
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(B=-abs(sprandn(n,n,1)) in MATLAB); we then take the strict lower triangular
part and symmetrize it (B=tril(B, -1); A=B+B’); we then assign to every zero
off-diagonal entry of B a random number uniformly distributed in [0, 1] multiplied
by η. We now let the diagonals of A be such that the row sum of A is λ. Then λ is
an eigenvalue of A with e = [1, · · · , 1]T as an eigenvector. The diagonally dominant
part can be computed as

vi = aii −
∑
j �=i

|aij | = λ −
∑

j �=i,bij=0

2|aij |

which is computed to high relative accuracy if η is sufficiently small so that vi ≈ λ.
We have tested Algorithm 3 on such random matrices with n up to 500, and we
have obtained a similar result as in Table 1.

Example 2. This matrix is modified from the one in Example 1 so that there are
two close small eigenvalues. A is a 20 × 20 symmetric matrix whose off-diagonals
are −1 except the last column and the last row, where they are η = 10−16. We let
the diagonals of A be such that the row sums of A are all λ = 10−13. Then λ is an
eigenvalue, but there is a smaller eigenvalue. We use MATLAB’s Symbolic Toolbox
with 200-digits arithmetic to compute all eigenvalues. The two smallest eigenvalues
computed are λ1 = 9.8000000000000012e−14 and λ2 = 1.0000000000000000e−13.

We list and compare the relative errors for the two smallest eigenvalues as com-
puted by Algorithm 3, by the Jacobi algorithm (two-sided for eigenvalues) and
by MATLAB’s eig in Table 2. Again, no pivoting scheme is used in our LDLT

factorization algorithm, and the L and LT obtained are well-conditioned with
κ∞(L) = 85.4 and κ∞(LT ) = 8.9. Our algorithm computes both eigenvalues to the
order of machine precision while the two-sided Jacobi and eig can obtain about 2
to 4 significant digits.

Table 2. Relative errors for approximating λ1 = 9.8000000000000012e−
14 and λ2 = 1.0000000000000000e − 13

|λ1−λ̂1|
λ1

|λ2−λ̂2|
λ2

Algorithm 3 3.9e − 16 1.3e − 16
two-sided Jacobi 1.1e − 4 2.3e − 3

eig 2.2e − 2 1.8e − 2

Our third example is a randomly generated extremely ill-conditioned nonsym-
metric matrix taken from [11] and slightly modified so that A is not an M-matrix.

Example 3. We construct a matrix D(AD, v) as follows.
1. We choose a 20× 20 random sparse matrix A with nonzero offdiagonal en-

tries random numbers uniformly distributed in [−1, 0] (B=-sprand(n,n,1)
in MATLAB); we then replace the zero off-diagonal entries by a random
number uniformly distributed in [0, 1] multiplied by η = 1e − 15.

2. We choose 20 random numbers of the form r · 10k for the diagonally dom-
inant parts vi, where r is a uniform random number in [0, 1] and k is a
uniform random integer in [−40,−20].

3. We multiply the i-th row of A and vi by another random number of the
form r ·10j , where r is a uniform random number in [0, 1] and j is a uniform
random integer in [−100, 100].
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Figure 1. Left: Relative errors of singular values; Right: Singular
values. +-sign: Algorithm 2 (or symbolic toolbox on the right);
square box: one-sided Jacobi; o-sign: svd of MATLAB.

We compute the singular values of A using MATLAB’s Symbolic Toolbox with 400-
digits arithmetic and consider the result as “exact”” for comparison. (The results
obtained using 600-digits arithmetic are the same.) The singular values are plotted
in + in Figure 1 (right). We then compute the singular values by Algorithm 2, by
the one-sided Jacobi and by svd of MATLAB, and we compare them with the ones
obtained in 400-digits arithmetic. The relative errors are plotted in Figure 1 (left)
and the singular values are plotted in Figure 1 (right).

We see that Algorithm 2 computes all singular values to the order of machine
precision (the relative errors are all less than 7 · 10−15), while svd only computes
the largest four correctly (the smallest two were 0 and were not shown on the plot).
The one-sided Jacobi did not compute the smallest singular value accurately with
relative error 7.2e − 2, while all other singular values are accurate to the order
of machine precision. This can be explained by the fact that all tiny singular
values except one is due to extremely bad scaling, which the Jacobi algorithm can
effectively overcome.

In our implementation of Algorithm 1 here, we have used both diagonal pivoting
and the column diagonal dominance pivoting which return the same result. The
condition numbers for the L and U factors are κ∞(L) = 1.03 and κ∞(U) = 9.26.
We also note that all one-sided Jacobi we have mentioned are the right-handed
version, but we have also tested the left-handed Jacobi for this problem, which give
a similar result.

Finally, we present an example to demonstrate that the algorithm can detect
singularity and compute the rank exactly.

Example 4. Let B be the 4 × 4 matrix whose off-diagonals are −1 and whose
diagonally dominant parts are all zero. For D1 = diag{1,−1, 1,−1} and D2 =
diag{1, 1,−1,−1}, let A = diag{D1BD1, D2BD2}. We show the diagonal blocks
below:
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3 1 -1 1

1 3 1 -1

-1 1 3 1

1 -1 1 3

3 -1 1 1

-1 3 1 1

1 1 3 -1

1 1 -1 3

A has exactly two zero pivots, one from each block. Applying Algorithm 1, we ob-
tained the following for L and d (D=diag{d}) with the permutation [1 5 3 6 2 7 4 8].

L =

1.0000 0 0 0 0 0 0 0

0 1.0000 0 0 0 0 0 0

-0.3333 0 1.0000 0 0 0 0 0

0 -0.3333 0 1.0000 0 0 0 0

0.3333 0 0.5000 0 1.0000 0 0 0

0 0.3333 0 0.5000 0 1.0000 0 0

0.3333 0 0.5000 0 -1.0000 0 1.0000 0

0 0.3333 0 0.5000 0 -1.0000 0 1.0000

d =

3.0000 3.0000 2.6667 2.6667 2.0000 2.0000 0 0

We see that the algorithm computes two zero pivots exactly. Further applying
Algorithm 3, we obtain two zero eigenvalues exactly.

6. Concluding remarks

We have obtained an algorithm that computes all singular values of a diagonally
dominant matrix to the order of machine precision. A forward error analysis is
given to demonstrate the high relative accuracy of the algorithm. As a byproduct,
ranks and zero singular values are computed exactly. It will be interesting to see if
the constants in our error bounds can be improved. Although there are substantial
difficulties, it might be possible to obtain better bounds along the analysis for the
GTH-algorithm by O’Cinneide [23, 24]. It is also possible that a backward error
analysis in combination with the perturbation bounds [28] could lead to better
bounds. We shall study these issues in our future works.
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