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CLASSIFICATION OF TERNARY EXTREMAL
SELF-DUAL CODES OF LENGTH 28

MASAAKI HARADA, AKIHIRO MUNEMASA, AND BORIS VENKOV

Abstract. All 28-dimensional unimodular lattices with minimum norm 3 are
known. Using this classification, we give a classification of ternary extremal
self-dual codes of length 28. Up to equivalence, there are 6,931 such codes.

1. Introduction

As described in [21], self-dual codes are an important class of linear codes for
both theoretical and practical reasons. It is a fundamental problem to classify
self-dual codes of modest length and determine the largest minimum weight among
self-dual codes of that length. By the Gleason–Pierce theorem, there are nontrivial
divisible self-dual codes over Fq for q = 2, 3 and 4 only, where Fq denotes the finite
field of order q; this is one of the reasons why much work has been done concerning
self-dual codes over these fields.

A ternary self-dual code C of length n is a code over F3 satisfying C = C⊥

where the dual code C⊥ of C is defined as C⊥ = {x ∈ F
n
3 | x · y = 0 for all y ∈ C}

under the standard inner product x · y. A ternary self-dual code of length n exists
if and only if n ≡ 0 (mod 4). It was shown in [18] that the minimum weight d of a
self-dual code of length n is bounded by d ≤ 3[n/12] + 3. If d = 3[n/12] + 3, then
the code is called extremal.

All ternary self-dual codes of length ≤ 20 have been classified [5, 17, 20]. At
length 24, the complete classification has not yet been done, but by showing that
every ternary extremal self-dual code is generated by the rows of some Hadamard
matrix of order 24, it is shown that there are exactly two inequivalent extremal
self-dual codes [16] (see [14] for known results on the classification).

The aim of this paper is to establish the following classification.

Theorem 1. There are exactly 6,931 inequivalent ternary extremal self-dual codes
of length 28.

Generator matrices of all codes can be obtained electronically from [11]. All
computer calculations in this paper were done using Magma [4].
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2. Self-dual codes and unimodular lattices

Let Zk be the ring of integers modulo k, where k is a positive integer. Although
we shall exclusively deal with the special case k = 3 (and hence Zk = F3) in later
sections, we discuss the general case here since the presentation remains the same
for all k. A code C of length n over Zk (or a Zk-code of length n) is a Zk-submodule
of Z

n
k . A code C is self-dual if C = C⊥ where the dual code C⊥ of C is defined as

C⊥ = {x ∈ Z
n
k | x · y = 0 for all y ∈ C} under the standard inner product x · y.

Two Zk-codes C and C ′ are equivalent if there exists a monomial (±1, 0)-matrix P
with C ′ = C · P = {xP | x ∈ C}. The automorphism group Aut(C) of C is the
group of all monomial (±1, 0)-matrices P with C = C · P .

A (Euclidean) lattice L in dimension n is integral if L ⊆ L∗, where the dual
lattice L∗ is defined as L∗ = {x ∈ R

n|(x, y) ∈ Z for all y ∈ L} under the standard
inner product (x, y). An integral lattice with L = L∗ is called unimodular. The
norm of a vector x is (x, x). The minimum norm of L is the smallest norm among
all nonzero vectors of L. The theta series θL(q) of L is the formal power series
θL(q) =

∑
x∈L q(x,x) =

∑∞
m=0 Nmqm, where Nm is the number of vectors of norm

m. The kissing number is the second nonzero coefficient of the theta series, that
is, the number of vectors of L with minimum norm. Two lattices L and L′ are
isomorphic, denoted L ∼= L′, if there exists an orthogonal matrix A with L′ = L ·A.
The automorphism group Aut(L) of L is the group of all orthogonal matrices A
with L = L · A.

For a Zk-code C of length n,

Ak(C) =
1√
k
{(x1, . . . , xn) ∈ Z

n | (x1 mod k, . . . , xn mod k) ∈ C}

is a lattice, and Ak(C)∗ = Ak(C⊥) holds (see e.g., [3, Lemma 3.1]). In particular,
C is self-dual if and only if Ak(C) is unimodular. This construction of lattices
from codes is called Construction A. Clearly, if Zk-codes C and C ′ are equivalent,
then the lattices Ak(C) and Ak(C ′) are isomorphic. Indeed, if P is a monomial
(±1, 0)-matrix and C ′ = C · P , then Ak(C) · P = Ak(C ′).

A set {f1, . . . , fn} of n vectors f1, . . . , fn in an n-dimensional lattice L with
(fi, fj) = kδij is called a k-frame of L, where δij is the Kronecker delta. Clearly,
Ak(C) has a k-frame. Conversely, self-dual codes over Zk correspond to k-frames
in unimodular lattices. To state this precisely and more generally, we consider an
arbitrary integral lattice L in dimension n, and let F = {f1, . . . , fn} be a k-frame
of L. Consider the mapping

πF :
1
k

n⊕
i=1

Zfi → Z
n
k ,

πF (x) = ((x, fi) mod k)1≤i≤n.

Then Ker πF =
⊕n

i=1 Zfi ⊂ L, so the code C = πF(L) satisfies π−1
F (C) = L. This

implies Ak(C) ∼= L and every code C with Ak(C) ∼= L is obtained as πF (L) for
some k-frame F of L. In particular, if L is unimodular, then πF (L) is self-dual and
every self-dual code C with Ak(C) ∼= L is obtained in this way.
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Lemma 2. Let L be an integral lattice in dimension n, and let F = {f1, . . . , fn},
F ′ = {f ′

1, . . . , f
′
n} be k-frames of L. Then the codes πF (L) and πF ′(L) are equiva-

lent if and only if there exists an orthogonal matrix P ∈ Aut(L) such that

{±f1, . . . ,±fn} · P = {±f ′
1, . . . ,±f ′

n}.

Proof. Let C = πF (L), C ′ = πF ′(L). Since Ak(C · Q) = Ak(C) · Q for a monomial
(±1, 0)-matrix Q, the codes C and C ′ are equivalent if and only if Ak(C) · Q =
Ak(C ′) for some monomial (±1, 0)-matrix Q. Let F and F ′ denote the n × n
matrices whose row vectors consist of the elements of F and F ′, respectively. Then

Ak(C) · 1√
k

F = Ak(C ′) · 1√
k

F ′ = L.

This implies that the codes C and C ′ are equivalent if and only if 1
kFT QF ′ ∈ Aut(L)

for some monomial (±1, 0)-matrix Q. This occurs precisely when FP = QF ′ for
some P ∈ Aut(L). �

3. Methods of classification

In this section, we describe our approach for classifying ternary extremal self-dual
codes of length 28.

The minimum norm of a unimodular lattice in dimension 28 is at most 3 (see
[6, Chapter 19]). We say that such a unimodular lattice with minimum norm 3
is optimal. There are 38 non-isomorphic optimal unimodular lattices in dimen-
sion 28 [2]. In [2], the 38 optimal unimodular lattices are denoted by R28,1(∅),
R28,2(∅), . . . ,R28,36(∅), R28,37e(∅), R28,38e(∅). These lattices have the following
theta series:

θR28,i(∅)(q) = 1 + 2240q3 + 98280q4 + · · · (i = 1, 2, . . . , 36),(1)

θR28,i(∅)(q) = 1 + 1728q3 + 106472q4 + · · · (i = 37e, 38e).(2)

In order to distinguish lattices, some polynomial mv(x) is defined in [2, p. 239]. We
remark that the polynomial mv(x) has a misprint, namely, “〈v, α〉 = 1” should be
“〈v, α〉 = −1”.

If C is a self-dual code with minimum weight d, then A3(C) is a unimodular
lattice with minimum norm min{3, d/3}. Thus, if C is an extremal self-dual code
of length 28, then A3(C) is an optimal unimodular lattice. An extremal self-dual
code C of length 28 has the following weight enumerator:

1 + 2184y9 + 78624y12 + 768096y15 + 2159976y18 + · · · .

Since a codeword of weight 9 gives a vector of norm 3 in the lattice A3(C), A3(C)
has exactly 2184 + 2 · 28 vectors of norm 3. Hence we have the following:

Lemma 3. Let C be a ternary extremal self-dual code of length 28. Then the lattice
A3(C) has theta series (1).

Lemma 4. Let L be an optimal unimodular lattice in dimension 28 having a 3-
frame {u1, . . . , u28}. Let L0 be the even sublattice of the lattice L. If u ∈ L∗

0 \ L,
then

(3) u =
1
6

28∑
i=1

λiui

for some odd integers λ1, . . . , λ28.
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Proof. Follows from [10, Lemma 2]. �
Lemma 5. Let C be a ternary extremal self-dual code of length 28. Let {u1, . . . , u28}
be a 3-frame of L = A3(C) coming from C. Let L0 be the even sublattice of the
lattice L. Then L∗

0 has minimum norm 3. Moreover, for any vector u ∈ L∗
0 \ L of

norm 3, there exists a unique i0 ∈ {1, . . . , 28} such that

|(u, ui)| =

{
3
2 if i = i0,
1
2 otherwise.

Proof. Since C has minimum weight 9, L has minimum norm 3. Hence L0 has
minimum norm 4 (see also [10, Lemma 1]). Let u ∈ L∗

0 \ L and write u as in (3).
Then by Lemma 4, we have

28 ≤
28∑

i=1

λ2
i

=
1
3

28∑
i=1

(λiui, λiui)

=
1
3
(6u, 6u)

= 12(u, u).

Since (u, u) ∈ Z we have (u, u) ≥ 3, and equality holds if and only if there exists a
unique i0 ∈ {1, . . . , 28} such that

|λi| =

{
3 if i = i0,
1 otherwise,

and the assertion follows. �
Remark 6. By Lemma 3, L has theta series (1). From [6, p. xlv], the shadow L∗

0 \L
has minimum norm 3. This gives an alternative proof of the assertion that L∗

0 has
minimum norm 3.

For a lattice L, a vector u not necessarily in L, an integer m and a real number
c, set

(4) Lm,c(u) = {v | v ∈ L, (v, v) = m, (u, v) = ±c}.

Lemma 7. Let L be an optimal unimodular lattice in dimension 28. Let S3 be the
set of vectors of norm 3 in L∗

0 \L. Let u1, u2 be orthogonal vectors of norm 3 in L.
If there exists a 3-frame containing u1 and u2, then

(5) {u1, u2} 
⊂ L3,3/2(u) for all u ∈ S3.

Proof. Immediate from Lemma 5. �
Let L be a 28-dimensional optimal unimodular lattice with kissing number 2240.

Let L3 be the set {{x,−x}|(x, x) = 3, x ∈ L} and let S3 be the set {x|(x, x) = 3, x ∈
L∗

0 \ L}. We define the simple undirected graph Γ, whose set of vertices is the set
of 1120 pairs in L3 and two vertices {x,−x}, {y,−y} ∈ L3 are adjacent if (x, y) = 0
and {x, y} 
⊂ L3,3/2(u) for any u ∈ S3. It follows that the 3-frames are precisely the
28-cliques in the graph Γ. We could have defined Γ as the “orthogonality graph,” by
simply joining two vertices {x,−x}, {y,−y} ∈ L3 whenever (x, y) = 0. The effect
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of Lemma 7 is to remove those edges from the “orthogonality graph” which cannot
be contained in 3-frames. This speeds up the computations considerably. It is clear
that Aut(L) acts on the graph Γ as automorphisms, and Lemma 2 implies that the
Aut(L)-orbits on the set of 28-cliques in Γ are in one-to-one correspondence with the
equivalence classes of codes C satisfying A3(C) ∼= L. Therefore, the classification
of such codes reduces to finding a set of representatives of 28-cliques in Γ up to the
action of Aut(L). This computation was performed using Magma, the results were
then converted to 3-frames, and then to ternary extremal self-dual codes of length
28. In this way, by considering all 28-dimensional optimal unimodular lattices with
kissing number 2240, we have all inequivalent extremal self-dual codes of length 28
by Lemma 3.

Remark 8. From the odd Leech lattice which is the unique odd unimodular lattice
with minimum norm 3 in dimension 24, we can define the “orthogonality graph”
as above. Classifying 24-cliques up to the automorphism group of the odd Leech
lattice, we have verified that there are exactly two 3-frames in the odd Leech lat-
tice up to conjugacy under the automorphism group. This confirms the known
classification (see [16]) of ternary extremal self-dual codes of length 24.

4. Results of classification

By the approach described in Section 3, we completed the classification of ternary
extremal self-dual codes of length 28. The number Fi (i = 1, 2, . . . , 36) of 3-frames
in R28,i(∅) is listed in Table 1. The number Ni (i = 1, 2, . . . , 36) of inequivalent
extremal self-dual codes C with A3(C) ∼= R28,i(∅) is also listed in Table 1. The
last column (# Aut, Ni(# Aut)) in Table 1 lists the number Ni(# Aut) of the codes
whose automorphism groups have order # Aut. Therefore, we have Theorem 1. As
a corollary, we have the following:

Corollary 9. A 28-dimensional optimal unimodular lattice L can be constructed
from some ternary extremal self-dual code of length 28 by Construction A if and
only if L is isomorphic to R28,i(∅) for some i = 1, 2, . . . , 27, 29, . . . , 33, 35, 36.

We investigate the previously known extremal self-dual codes of length 28. Huff-
man [13] showed that there are 14 and 5 inequivalent extremal self-dual [28, 14, 9]
codes with automorphisms of orders 7 and 13, respectively. Denote the 14 codes
with automorphisms of order 7 by H7,1, . . . , H7,14, and the 5 codes with automor-
phisms of order 13 by H13,1, . . . , H13,5, according to the order in [13, Theorem 4].
However, he did not check if there is a pair of equivalent codes H7,i and H13,j

among these codes. We have verified that the codes H7,2 and H13,2 are equivalent
and the codes H7,14 and H13,3 are equivalent.

In [8], 16 inequivalent extremal self-dual codes which are inequivalent to any of
the codes in [13] are constructed and these codes are denoted by C28,1, . . . , C28,16 in
[8]. We remark that the existence of some extremal ternary self-dual code of length
28 with trivial automorphism group is announced in [9] and one example of such a
code is given. However, we have verified that the code with generator matrix G28

given in [9] is equivalent to C28,1. Hence 33 inequivalent extremal self-dual codes
are previously known explicitly. We have verified that all of these 33 codes appear
in the present classification, and we list the order # Aut(C) of the automorphism
group and the lattice R28,i(∅) with A3(C) ∼= R28,i(∅) in Table 2.
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Table 1. Ternary extremal self-dual codes of length 28

i Fi Ni (#Aut, Ni(#Aut))

1 4144 1036 (2, 1036)
2 4804 735 (2, 501), (4, 166), (8, 64), (16, 4)
3 4218 589 (2, 474), (4, 98), (8, 17)
4 4088 575 (2, 448), (4, 125), (8, 2)
5 4728 667 (2, 516), (4, 149), (8, 2)
6 3896 558 (2, 417), (4, 139), (8, 2)
7 4420 376 (2, 364), (4, 3), (6, 8), (12, 1)
8 4296 333 (2, 213), (4, 102), (8, 18)
9 4768 298 (2, 298)
10 3328 208 (2, 208)
11 4480 328 (2, 237), (4, 81), (8, 10)

12 4184 166 (2, 102), (4, 51), (8, 13)
13 5268 154 (2, 83), (4, 40), (6, 6), (8, 13), (12, 6), (16, 1), (24, 4), (48, 1)
14 5656 180 (2, 64), (4, 102), (6, 2), (8, 4), (12, 6), (24, 2)
15 5744 176 (2, 56), (4, 74), (8, 35), (16, 5), (56, 5), (112, 1)
16 4720 76 (2, 44), (4, 28), (8, 4)
17 5080 84 (2, 30), (4, 40), (6, 3), (8, 2), (12, 8), (24, 1)
18 5968 83 (2, 49), (4, 15), (6, 13), (8, 5), (24, 1)
19 3360 37 (2, 19), (4, 11), (8, 7)
20 4608 57 (2, 18), (4, 33), (8, 6)
21 5360 44 (2, 25), (4, 15), (8, 4)
22 3100 16 (2, 15), (4, 1)
23 6336 36 (2, 16), (4, 15), (8, 5)
24 5568 22 (2, 9), (4, 9), (8, 4)
25 9432 36 (2, 3), (4, 7), (6, 1), (8, 11), (12, 2), (16, 3), (24, 6), (48, 3)
26 18688 26 (4, 4), (6, 5), (8, 3), (12, 6), (16, 1), (24, 6), (48, 1)
27 5120 4 (6, 4)
28 0 0
29 5472 3 (6, 2), (54, 1)
30 41856 9 (4, 1), (6, 1), (12, 1), (16, 1), (18, 1), (24, 3), (72, 1)
31 14400 6 (24, 2), (48, 3), (336, 1)
32 16960 5 (28, 3), (52, 2)
33 36864 4 (24, 2), (48, 1), (336, 1)

34 0 0
35 230400 1 (3024, 1)
36 12908160 3 (2184, 1), (4212, 1), (117936,1)

For those lattices R28,i(∅) which are not listed in Table 2, we list a code Ci with
R28,i(∅) ∼= A3(Ci) where the rows of the matrix Mi in a generator matrix (I, Mi)
of Ci are given in Table 3. The order # Aut(Ci) of the automorphism group of Ci

is also listed.
The lattice R28,35(∅) was constructed by Nebe [19], and it can be given simply

as
Λ = E8 ∧ E8,

where E8 denotes the root lattice of type E8. The unique code C with A3(C) ∼= Λ
can be constructed from a 3-frame of the lattice Λ, which we shall now describe.

Let e1, . . . , e9 denote an orthonormal basis of the vector space R
9. The Z-linear

span of {ei − ej | 1 ≤ i < j ≤ 9} is known as the A8-lattice. For a subset T
of {1, . . . , 9}, we denote by eT the vector

∑
i∈T ei, and by T̄ the complementary

set of T in {1, . . . , 9}. Let T denote the set of all 3-subsets of the set {1, . . . , 9}.
Then, together with the 72 roots of A8, the 2

(
9
3

)
= 168 roots {±1

3 (2eT − eT̄ ) | T ∈
T } form the root system E8. The group PSL(2, 8) acts triply transitively on the
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Table 2. The automorphism groups and lattices of known codes

Codes C #Aut(C) R28,i(∅) Codes C #Aut(C) R28,i(∅)
H7,1 56 R28,15(∅) C28,1 2 R28,16(∅)
H7,2 2184 R28,36(∅) C28,2 4 R28,12(∅)
H7,3 28 R28,32(∅) C28,3 2 R28,11(∅)
H7,4 56 R28,15(∅) C28,4 24 R28,17(∅)
H7,5 28 R28,32(∅) C28,5 2 R28,9(∅)
H7,6 28 R28,32(∅) C28,6 4 R28,5(∅)
H7,7 56 R28,15(∅) C28,7 2 R28,2(∅)
H7,8 112 R28,15(∅) C28,8 4 R28,6(∅)
H7,9 3024 R28,35(∅) C28,9 2 R28,2(∅)
H7,10 56 R28,15(∅) C28,10 2 R28,6(∅)
H7,11 56 R28,15(∅) C28,11 4 R28,5(∅)
H7,12 336 R28,33(∅) C28,12 8 R28,2(∅)
H7,13 336 R28,31(∅) C28,13 8 R28,13(∅)
H7,14 117936 R28,36(∅) C28,14 2 R28,3(∅)
H13,1 4212 R28,36(∅) C28,15 2 R28,2(∅)
H13,4 52 R28,32(∅) C28,16 4 R28,3(∅)
H13,5 52 R28,32(∅)

projective line F8∪{∞}. Identifying F8∪{∞} with {1, . . . , 9}, we regard PSL(2, 8)
as a permutation group on the set {1, . . . , 9}. The group PSL(2, 8) has a unique
conjugacy class C of fixed-point-free elements of order 3. This conjugacy class C
contains 28 pairs of elements and their inverses. Let x ∈ C, and let T1, T2, T3 be
the 〈x〉-orbits on {1, . . . , 9}. Define fx ∈ Λ by

fx =
1
3
(eT1 ∧ eT2 + eT2 ∧ eT3 + eT3 ∧ eT1).

Note that fx is not uniquely determined by x, but determined up to sign. The set
{±fx | x ∈ C} forms a 3-frame in the lattice Λ. One obtains an extremal ternary
self-dual code of length 28 from this 3-frame of Λ.

Finally, we remark that the lattice R28,36(∅) was first constructed in [1], and
3-frames of the lattice R28,36(∅) correspond to symplectic spreads in F

6
3, as pointed

out in [2, Remark 2.1]. Consequently, our classification gives an alternative proof
of the classification of symplectic spreads in F

6
3, given in [7].

Table 3. Some generator matrices of extremal self-dual codes

i Mi #Aut(Ci)

1 12211011201012, 10210021121122, 11102212101220, 10002220012101, 2
00212001122200, 02222011011000, 21022211212001, 22222221220200,
02010102210102, 22202122120011, 01212120122022, 12221120120120,
02121021200020, 01210002020222

4 22222002021111, 01012111210222, 12101200211221, 20221222012011, 8
12000020211012, 20201121222210, 20202101200022, 11222221222111,
01211000210201, 00102111212000, 02122011001001, 20110001222020,

02000102201222, 00222022122212

7 00001210210122, 22121101220202, 00220222212222, 02012002211001, 12
01122210010100, 10102000022221, 01212012020002, 22222210102101,
00101101110012, 20120000101121, 11010012200201, 21222122112211,
20212202211210, 22211010112210

8 00122221211210, 22210220110221, 20102111111202, 01122010200220, 8
00022121112122, 20210121121022, 22012200212122, 11121020222021,
20222121201101, 02211111220012, 02212112001111, 21200110112122,
00011002012222, 11202200012100
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Table 3. Some generator matrices of extremal self-dual codes (continued)

i Mi #Aut(Ci)

10 02010220110021, 21201022112201, 00110120101101, 21210001211211, 2
21122022100222, 20221100212221, 01022111112110, 01220112101122,
00122212012000, 21120011202112, 02112002002220, 22201111211001,
12012222012201, 22200021200202

14 02220020101110, 00121002102210, 22210202112022, 12221100121101, 24
21011111210102, 00211021100011, 22110021121012, 21102211022220,
01002002111110, 21011002201200, 00212211022111, 11122201110210,
11101210102212, 01121212002121

18 21211122212212, 02221000210120, 22102201111210, 02111210220221, 24
21211220101102, 11012122111002, 20220100110021, 10020001210222,
00221122012121, 02110000202111, 21222222111221, 11001112021212,
02212101110000, 02201220000111

19 10102002022202, 21220200100021, 00002011012211, 02102220111000, 8
02012212202221, 11100210210001, 00111201002201, 21120210012122,
20010022011011, 20120112211101, 20200201120110, 22222100111201,
02201201012010, 01121110111021

20 20222002202200, 02000220120212, 02212222102202, 20001112200201, 8
00202202101120, 10001212111000, 11010221222202, 20120221212220,
12201002111111, 21202022221110, 22211120002122, 20022022020101,
12212020112021, 11021011001020

21 11011212011220, 10002202120102, 12010100022102, 10110221221011, 8
10112021120222, 21110210110222, 12111020020001, 21211121001120,
10212222102012, 01100000111121, 00220220221200, 00211210010201,
21100122112201, 11222121000212

22 02211201222021, 10011021200102, 12221111112121, 00121200211001, 4
21201111210102, 01020021201120, 00221222011212, 20021221000220,
20202102020101, 12220100000111, 02111100020201, 11122021202012,
12210211022110, 00102101101201

23 01110221001020, 11101211001111, 10010110011202, 01121221012102, 8
22111010112021, 21012220020010, 12102000220102, 20110222102221,

01211122210101, 22210012222220, 02202101011020, 02000102121011,
00202210111200, 21100220112000

24 00111220000122, 00220011012110, 10100022222002, 00121212012221, 8
22122111001110, 12112001100010, 11200122200100, 00121022210100,
11201012001002, 12112122210001, 01212010222111, 12202101112021,
20202200211020, 01202221000202

25 21222200220000, 12011220000021, 20020122101010, 20102102121211, 48
00012002212022, 01120200110220, 20221112010000, 10200221101100,
22121000112211, 02012110100101, 22021112201102, 21120210121011,
20110021200110, 11000102022201

26 20002202001122, 11100202121112, 00221102212212, 21010012012010, 48
10010101210202, 00110011002111, 12021011201111, 20011020222020,
21121120102120, 11001120212222, 00111212100001, 22220100122112,
22211010221102, 21220000100221

27 01121210201122, 12212010222110, 11201111001121, 12121111020201, 6
01200202121010, 20012201221221, 10201222212202, 20111100021200,
22101110110000, 21222020122101, 10221012211120, 10100010201111,
11020021210020, 00001021122102

29 12021100210100, 10102100012102, 21022101101222, 22220111100211, 54
21001220122111, 02202022101100, 22011011201212, 20011022222122,
22110110012212, 10122001002220, 11001020010122, 12102021221210,
02201202002220, 02120100022120

30 00202020211102, 20001201001121, 01120020210110, 22020102002120, 72
21002011010021, 20011012021001, 22200210222211, 02200022021201,
10102121221012, 12121120122002, 20022011120200, 01010220202011,
00110121022001, 01112200212122
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5. Covering radii and 3-designs

The covering radius R(C) of a code C of length n is the smallest integer R such
that spheres of radius R around codewords of C cover the space F

n
3 . For linear

codes, the covering radius is the largest weight of all coset leaders of the code. The
covering radius is a basic and important geometric parameter of a code. Let C be
an extremal self-dual code of length 28. Then, by the sphere-covering bound and
the Delsarte bound, it is known that R(C) = 6 or 7 (see [12, Table 1]). Using our
classification, explicit calculations show the following:

Proposition 10. Every extremal self-dual code of length 28 has covering radius 7.

A t-(v, k, λ) design is a set X of v points together with a collection B of k-
subsets of X called blocks such that every t-subset of X is contained in exactly λ
blocks. Two designs with the same parameters are isomorphic if there is a bijection
between their point sets that maps the blocks of the first design into blocks of the
second design. The automorphism group Aut(D) of a t-design D is the group of
all isomorphisms of D with itself. If a 3-(28, 9, λ) design exists, then λ must be
divisible by 28 (see [15, p. 57]). Hence 3-(28, 9, 28) designs have the smallest λ
among 3-(28, 9, λ) designs.

By the Assmus–Mattson theorem, the supports of the codewords of minimum
weight in an extremal self-dual code of length 28 form a 3-(28, 9, 28) design. We
have verified that the 6,931 3-(28, 9, 28) designs obtained from the extremal self-dual
codes are non-isomorphic. Thus we have the following:

Proposition 11. There are at least 6,931 non-isomorphic 3-(28, 9, 28) designs.

Remark 12. We have verified that every extremal self-dual code of length 28 is
generated by the codewords of minimum weight.

For every extremal self-dual code C of length 28, we have verified that the order
of the automorphism group of the 3-(28, 9, 28) design obtained from C is half of the
order of the automorphism group of C.
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