ON THE IWASAWA λ -INVARIANT OF THE CYCLOTOMIC \mathbb{Z}_2 -EXTENSION OF $\mathbb{Q}(\sqrt{p})$

TAKASHI FUKUDA AND KEIICHI KOMATSU

In memory of Professor H. Ogawa

ABSTRACT. We study the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\sqrt{p})$ for an odd prime number p which satisfies $p \equiv 1 \pmod{16}$ relating it to units having certain properties. We give an upper bound of λ and show $\lambda = 0$ in certain cases. We also give new numerical examples of $\lambda = 0$.

1. INTRODUCTION

Let k be a finite algebraic number field, ℓ a prime number and ζ_{ℓ^n} a primitive ℓ^n -th root of unity. There exists the unique intermediate field k_{∞} of $\bigcup_{n=0}^{\infty} k(\zeta_{\ell^n})/k$ such that the Galois group $G(k_{\infty}/k)$ is topologically isomorphic to the additive group of the ring of ℓ -adic integers \mathbb{Z}_{ℓ} , which is called the cyclotomic \mathbb{Z}_{ℓ} -extension of k. Let k_n be the unique intermediate field of k_{∞}/k with degree ℓ^n over k. Then the class number of k_n is controlled by the Iwasawa invariants $\mu_{\ell}(k)$, $\lambda_{\ell}(k)$ and $\nu_{\ell}(k)$ of k_{∞}/k , which were introduced by Iwasawa [10] and [12]. Namely, if ℓ^{e_n} denotes the ℓ -part of the ideal class number of k_n , then

$$e_n = \mu_\ell(k)\ell^n + \lambda_\ell(k)n + \nu_\ell(k)$$

for all sufficiently large n.

Iwasawa pointed out that $\mu_{\ell}(k)$ always seems to be zero and Ferrero and Washington [2] proved that $\mu_{\ell}(k)$ is zero for any abelian number field k and any prime number ℓ . Furthermore, Greenberg [7] suggests the possibility that $\lambda_{\ell}(k)$ is zero for any totally real number field k and any prime number ℓ , which is now called Greenberg conjecture.

In 1986, the authors [4] provided a criterion of verifying Greenberg conjecture numerically for a real quadratic field k and an odd prime number ℓ , and showed numerical evidence for the conjecture by giving a considerable amount of examples which satisfy $\lambda_{\ell}(k) = 0$. At the end of the twentieth century, Kraft and Schoof [15] and Ichimura and Sumida [9] developed a powerful computational technique verifying $\lambda_{\ell}(k) = 0$ for any odd prime number ℓ and any abelian number field kwith degree prime to ℓ based on a new idea of using cyclotomic units. In particular, Ichimura and Sumida showed that $\lambda_3(\mathbb{Q}(\sqrt{m})) = 0$ for all positive integers m <10000. In 2003, Tsuji generalized the Ichimura-Sumida criterion to be applicable to the case that ℓ divides the degree $[k : \mathbb{Q}]$.

©2009 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editor May 30, 2007 and, in revised form November 16, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11G15, 11R27, 11Y40.

Key words and phrases. Iwasawa invariants, real quadratic fields.

In 1973, preceding the work of Ferrero and Washington, Iwasawa [11] indicated the importance of studying the cyclotomic \mathbb{Z}_{ℓ} -extension of k when k is a cyclic extension of \mathbb{Q} with degree ℓ . In fact, he proved that $\mu_{\ell}(k) = 0$ for such a k. It is then considered a fundamental step to study $\lambda_2(k)$ for real quadratic fields k from the viewpoint of Greenberg conjecture. It is essentially important to study $\lambda_2(\mathbb{Q}(\sqrt{p}))$ for a prime number p. The first breakthrough was brought by Ozaki and Taya [19] in 1997. They constructed certain families of infinitely many quadratic fields k which satisfy $\lambda_2(k) = 0$ and, in particular, obtained the following result:

Theorem 1.1 (cf. Ozaki and Taya [19]). Let p be a prime number which satisfies one of the following conditions:

(1) $p \equiv 3 \pmod{4}$, (2) $p \equiv 5 \pmod{8}$, (3) $p \equiv 9 \pmod{16}$, (4) $p \equiv 1 \pmod{16}$ and $2^{\frac{p-1}{4}} \equiv -1 \pmod{p}$. Then $\lambda_2(\mathbb{Q}(\sqrt{p}))$ is zero.

After Ozaki and Taya [19], the properties of $\lambda_2(k)$ for real quadratic fields k have been studied by several mathematicians (cf. [5], [18]). The purpose of this paper is to prove Theorem 1.2 below and Theorem 3.7 in §3.

Theorem 1.2. Let p be any prime number with $p \equiv 1 \pmod{16}$, ε_0 the fundamental unit of $\mathbb{Q}(\sqrt{p})$, and $\varepsilon'_0 = a + b\sqrt{2p}$ the fundamental unit of $\mathbb{Q}(\sqrt{2p})$, where a is a positive rational integer and $b \in \mathbb{Z}$. Let 2^s be the highest power of 2 which divides p-1. Then we have the following criteria concerning the Iwasawa λ -invariant $\lambda_2(\mathbb{Q}(\sqrt{p}))$:

(1) If $a \equiv 1 \pmod{p}$, then $\lambda_2(\mathbb{Q}(\sqrt{p})) \leq 2^{s-2} - 3$. (2) If $a^2 \equiv -1 \pmod{p}$ and if $\varepsilon_0^2 \not\equiv 1 \pmod{32}$, then $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$.

Remark 1.1. Since ε'_0 is a unit of $\mathbb{Q}(\sqrt{2p})$, $N_{\mathbb{Q}(\sqrt{2p})/\mathbb{Q}}(\varepsilon'_0) = a^2 - 2pb^2 = \pm 1$. This means $a^2 \equiv \pm 1 \pmod{p}$.

The proofs of Theorems 1.2 and 3.7 are carried out in a different way from that of Theorem 1.1. The key idea is based on the property of units in k_n , which enables us to evaluate the 2-rank of the subgroup of the ideal class group of k_n generated by primes lying above p.

As a computational application of Theorem 3.7, we show in §4 that $\lambda_2(\mathbb{Q}(\sqrt{p})) =$ 0 for all prime numbers p less than 10^4 .

2. NOTATIONS

We denote by \mathbb{Z} and \mathbb{Q} the ring of integers and the field of rational numbers, respectively. For elements g_1, g_2, \ldots, g_r of a group G, we denote by $\langle g_1, g_2, \ldots, g_r \rangle$ the subgroup of G generated by g_1, g_2, \ldots, g_r . Let N be a normal subgroup of G. We denote by G/N the factor group of G over N and by [G:N] the group index of N in G. For a finite algebraic extension K over k, $N_{K/k}$ means the norm mapping of K over k and if K is a Galois extension over k, G(K/k) means the Galois group of K over k. If k is an algebraic number field, we denote by Ω_k and E_k the integer ring of k and the unit group of k, respectively. For an element α of Ω_k , we denote by $\alpha \Omega_k$ the principal ideal of Ω_k generated by α . We denote by ζ_{2^n} a primitive 2^n -th root of unity in the complex number field \mathbb{C} . Let ℓ be a prime number and

 \mathbb{Z}_{ℓ} the ℓ -adic integer ring. We denote by $\Lambda = \mathbb{Z}_{\ell}[[T]]$ the ring of formal power series in an indeterminate T over \mathbb{Z}_{ℓ} .

3. Proof of Theorem 1.2

Let p be a prime number, n a nonnegative integer and $k = \mathbb{Q}(\sqrt{p})$. We put $\alpha_n = 2\cos(2\pi/2^{n+2})$. It is well known that the field $\mathbb{Q}(\alpha_n)$ is a cyclic extension over \mathbb{Q} with degree 2^n . Since $\alpha_{n+1} = \sqrt{2 + \alpha_n}$, we have $\mathbb{Q}(\alpha_n) \subset \mathbb{Q}(\alpha_{n+1})$. Hence $\mathbb{Q}_{\infty} = \bigcup_{n=0}^{\infty} \mathbb{Q}(\alpha_n)$ is the unique \mathbb{Z}_2 -extension of \mathbb{Q} , which is called the cyclotomic \mathbb{Z}_2 -extension of \mathbb{Q} . We put $k_n = k(\alpha_n)$ and $k_\infty = k\mathbb{Q}_\infty$. Then k_∞ is the unique \mathbb{Z}_2 -extension of k. Let M_n be the maximal abelian 2-extension of k_n unramified outside 2 and L_n the maximal abelian unramified 2-extension of k_n . Then $M_{\infty} = \bigcup_{n=0}^{\infty} M_n$ and $L_{\infty} = \bigcup_{n=0}^{\infty} L_n$ are the maximal abelian 2-extension of k_{∞} unramified outside 2 and the maximal abelian unramified 2-extension of k_{∞} , respectively. Moreover, we put $I_n = G(M_n/L_n), I_\infty = G(M_\infty/L_\infty), \mathfrak{X}_\infty = G(M_\infty/k_\infty)$ and $X_{\infty} = G(L_{\infty}/k_{\infty})$. As usual, we regard \mathfrak{X}_{∞} as a $\Lambda = \mathbb{Z}_{2}[[T]]$ -module, where 1+T acts as a fixed topological generator γ of $G(k_{\infty}/k)$. Then we have the following exact sequence of Λ -modules:

(1)
$$1 \longrightarrow I_{\infty} \longrightarrow \mathfrak{X}_{\infty} \longrightarrow X_{\infty} \longrightarrow 1.$$

Since $\mu_2(k(\sqrt{-1}))$ is zero by [2] and since \mathfrak{X}_{∞} has no finite Λ -submodule by Theorem 1 of [8], \mathfrak{X}_{∞} is a finitely generated free \mathbb{Z}_2 -module. Let $\lambda(I_{\infty}), \lambda(\mathfrak{X}_{\infty})$ and $\lambda(X_{\infty})$ be \mathbb{Z}_2 -ranks of I_{∞} , \mathfrak{X}_{∞} , and X_{∞} , respectively. Then we have

(2)
$$\lambda(\mathfrak{X}_{\infty}) = \lambda(X_{\infty}) + \lambda(I_{\infty})$$

by (1). Hereafter, we denote by λ_k the Iwasawa invariant $\lambda_2(k)$ of the cyclotomic \mathbb{Z}_2 extension of k_{∞}/k . By definition of λ_k , we have $\lambda_k = \lambda(X_{\infty})$. Let 2^s be the highest power of 2 which divides p-1. We have $\lambda(\mathfrak{X}_{\infty}) = 2^{s-2}-1$ for $s \geq 2$ by [14, Theorem 1] and [25]. If $s \leq 3$, then $\lambda_k = 0$ by Theorem 1.1. So we assume $s \geq 4$. Now, there exist distinct prime ideals $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_{2^{s-2}}$ in k_{s-2} with $\sqrt{p} \Omega_{k_{s-2}} = \mathfrak{p}_1 \mathfrak{p}_2 \cdots \mathfrak{p}_{2^{s-2}}$ and the ideal $\mathfrak{p}_i\Omega_{k_n}$ generated by \mathfrak{p}_i in Ω_{k_n} is a prime ideal of k_n for any integer $n \geq s-2$. Since 2 does not divide the class number of $\mathbb{Q}(\alpha_{s-2})$ (cf. p. 186 in [23]), there exists an odd integer t such that \mathbf{p}_i^{2t} is a principal ideal of k_{s-2} for $1 \leq i \leq 2^{s-2}$. We denote by $cl(\mathfrak{p}_i^t\Omega_{k_n})$ the ideal class of k_n containing the ideal $\mathfrak{p}_i^t\Omega_{k_n}$ and by ρ_n the 2-rank of a subgroup $\langle \operatorname{cl}(\mathfrak{p}_1^t\Omega_{k_n}), \operatorname{cl}(\mathfrak{p}_2^t\Omega_{k_n}), \ldots, \operatorname{cl}(\mathfrak{p}_{2^{s-2}}^t\Omega_{k_n}) \rangle$ in the ideal class group of k_n . The 2-rank of the ideal class group of k_n is stable for sufficiently large n because of $\mu_2(k) = 0$ and ρ_n is also stable. More precisely, there exists an integer $N \ge s-2$ such that $\lambda_k = \rho_n$ for all $n \ge N$ by [13, pp. 272, 287] and [6, Lemma 3.3]. Thus we have proved the following:

Lemma 3.1. Notations and assumptions being as above, the following four assertions hold:

- (1) $\lambda_k = \lambda(X_\infty)$.
- (2) $\lambda(\mathfrak{X}_{\infty}) = \lambda(X_{\infty}) + \lambda(I_{\infty}).$ (3) $\lambda(\mathfrak{X}_{\infty}) = 2^{s-2} 1.$
- (4) The 2-rank of the ideal class group of k_n is stable and $\lambda_k = \rho_n$ for $n \ge N$.

Let σ be a generator of $G(k_{\infty}/\mathbb{Q}_{\infty})$ and \mathfrak{l}_n a prime ideal of k_n lying above 2. Then we have $\mathfrak{l}_n\mathfrak{l}_n^{\sigma} = \alpha_n\Omega_{k_n}$ $(n \ge 1)$, $(\mathfrak{l}_n\mathfrak{l}_n^{\sigma})^{2^n} = 2\Omega_{k_n}$ and $\mathfrak{l}_n \neq \mathfrak{l}_n^{\sigma}$. We denote by E_n the unit group E_{k_n} of Ω_{k_n} for simplicity. Let $k_n \mathfrak{l}_n$ be the completion of k_n at $\mathfrak{l}_n, \, \Omega_{\mathfrak{l}_n}^{\times}$ the unit group of $k_n \mathfrak{l}_n$ and $U_n = \Omega_{\mathfrak{l}_n}^{\times} \times \Omega_{\mathfrak{l}_n}^{\times}$. We embed E_n in U_n by the injective homomorphism

(3)
$$\varphi: E_n \ni \varepsilon \mapsto (\varepsilon, \varepsilon^{\sigma}) \in U_n.$$

Then we have

$$G(M_n/L_n) \simeq U_n/\overline{\varphi(E_n)}$$

by class field theory, where $\overline{\varphi(E_n)}$ is the topological closure of $\varphi(E_n)$ in U_n . Now, we need the following lemma:

Lemma 3.2. The element (1, -1) of U_n does not belong to $\overline{\varphi(E_n)}$.

Proof. Let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{2^{n+1}-1}$ be fundamental units of k_n . We assume $(1, -1) \in \overline{\varphi(E_n)}$. Then there exist 2-adic integers $x_1, x_2, \ldots, x_{2^{n+1}-1}$ with

$$(1,-1) = \pm (\varepsilon_1, \varepsilon_1^{\sigma})^{x_1} (\varepsilon_2, \varepsilon_2^{\sigma})^{x_2} \cdots (\varepsilon_{2^{n+1}-1}, \varepsilon_{2^{n+1}-1}^{\sigma})^{x_{2^{n+1}-1}}.$$

Hence we have

$$\prod_{i=1}^{2^{n+1}-1} \varepsilon_i^{2x_i} = 1 \quad \text{and} \quad \prod_{i=1}^{2^{n+1}-1} (\varepsilon_i^{\sigma})^{2x_i} = 1$$

Let γ be a generator of $G(k_n \mathfrak{l}_n/\mathbb{Q}_2)$, where \mathbb{Q}_2 is the 2-adic number field. Then we have

$$\prod_{i=1}^{2^{n+1}-1} (\varepsilon_i^{\gamma^j})^{2x_i} = 1 \quad \text{and} \quad \prod_{i=1}^{2^{n+1}-1} (\varepsilon_i^{\sigma\gamma^j})^{2x_i} = 1$$

for $1 \leq j \leq 2^n$. This means

$$\sum_{i=1}^{2^{n+1}-1} x_i \log_2(\varepsilon_i^{\gamma^j})^2 = 0 \quad \text{and} \quad \sum_{i=1}^{2^{n+1}-1} x_i \log_2(\varepsilon_i^{\sigma\gamma^j})^2 = 0,$$

where \log_2 is a 2-adic log function. Therefore, we have

$$x_1 = \dots = x_{2^{n+1}-1} = 0$$

by Leopoldt conjecture, which was proved in [1]. This is a contradiction. \Box

Remark 3.1. Using $(1, -1) \notin \overline{\varphi(E_0)}$, Ozaki proved in his thesis that $\lambda_k = 0$ if s = 3.

Let C_n be the unit group of $\mathbb{Q}(\alpha_n)$ and V_n the unit group of $\mathbb{Q}_2(\alpha_n)$. We put $W_n = \{ u \in V_n : u \equiv 1 \pmod{4\alpha_n} \}$. Then we prove the following lemmas.

Lemma 3.3. We have $V_n = \langle 3 \rangle C_n W_n$.

Proof. Since the maximal 2-extension of \mathbb{Q} unramified outside 2 is \mathbb{Q}_{∞} , the maximal 2-extension of $\mathbb{Q}(\alpha_n)$ unramified outside 2 is also \mathbb{Q}_{∞} . Hence we have $G(\mathbb{Q}_{\infty}/\mathbb{Q}(\alpha_n)) \simeq V_n/\overline{C}_n$, where \overline{C}_n is the topological closure of C_n in V_n . Since V_n/\overline{C}_n is generated by $3\overline{C}_n$ as a topological group and since W_n is an open subgroup of V_n , we have $V_n = \langle 3 \rangle C_n W_n$.

Lemma 3.4. We have $N_{\mathbb{Q}_2(\alpha_n)/\mathbb{Q}_2}(u) \equiv 1 \pmod{2^{n+3}}$ for any element u in W_n .

Proof. Let v_n be the normalized additive α_n -adic valuation of $\mathbb{Q}(\alpha_n)$ and γ a generator of $G(\mathbb{Q}(\alpha_n)/\mathbb{Q})$. At first, we prove

$$v_n(\alpha_n^{\gamma^i} - \alpha_n) \le 2^n + 1$$
 for $1 \le i \le 2^n - 1$

by induction on *n*. We have $v_n(\alpha_n^{\gamma^{2^{n-1}}} - \alpha_n) = v_n(2\alpha_n) = 2^n + 1$. Hence we have $v_1(\alpha_1^{\gamma} - \alpha_1) = 2 + 1$. We assume $v_m(\alpha_m^{\gamma^i} - \alpha_m) \leq 2^m + 1$ for m < n and $1 \leq i \leq 2^m - 1$. Since $\alpha_n^2 = \alpha_{n-1} + 2$, we have

$$v_n(\alpha_n^{\gamma^i} - \alpha_n) + v_n(\alpha_n^{\gamma^i} + \alpha_n) = v_n(\alpha_n^{2\gamma^i} - \alpha_n^2)$$

= $v_n(\alpha_{n-1}^{\gamma^i} - \alpha_{n-1})$
= $2v_{n-1}(\alpha_{n-1}^{\gamma^i} - \alpha_{n-1}) \le 2^n + 2$

for $1 \leq i \leq 2^n - 1$ and $i \neq 2^{n-1}$. Hence we have $v_n(\alpha_n^{\gamma^i} - \alpha_n) \leq 2^n + 1$ for $1 \leq i \leq 2^n - 1$ noting that $v_n(\alpha_n^{\gamma^i} + \alpha_n) \geq 1$. Therefore, we have $N_{\mathbb{Q}_2(\alpha_n)/\mathbb{Q}_2}(u) \equiv 1 \pmod{2^{n+3}}$ by (1) of Corollary 1 to Proposition 11 of Chapter XII in [24]. \Box

Lemma 3.5. Let \mathbb{F}_2 be the prime field of characteristic 2, G a cyclic group of order 2^n generated by γ , and $V = \mathbb{F}_2[G]$ the group ring of G over \mathbb{F}_2 . Let i_1, i_2, \ldots, i_r be integers with $0 \leq i_1 < i_2 < \cdots < i_r \leq 2^n - 1$ and v an element of V with $v = \gamma^{i_1} + \gamma^{i_2} + \cdots + \gamma^{i_r}$. If r is odd, then V is generated by $\{\gamma^i v : 0 \leq i \leq 2^n - 1\}$ over \mathbb{F}_2 .

Proof. Let f be a function of G into \mathbb{C} such that $f(\gamma^i) = 1$ for $i = i_1, i_2, \ldots, i_r$ and that $f(\gamma^i) = 0$ for $i \neq i_1, i_2, \ldots, i_r$, where i is an integer with $0 \leq i \leq 2^n - 1$. Then we have

$$\det(f(\gamma^{i-j}))_{0 \le i,j \le 2^n - 1} = \prod_{\chi \in \widehat{G}} \sum_{i=0}^{2^n - 1} \chi(\gamma^i) f(\gamma^i) \equiv r^{2^n} \equiv 1 \pmod{\zeta_{2^n} - 1}$$

by [23, p. 71], where \widehat{G} is the character group of G.

Recall that φ is the isomorphism of E_n into U_n defined by (3).

Lemma 3.6. If $n \ge s-2$, we assume that $\mathfrak{p}_1^t \Omega_{k_n}$ is not principal in k_n . Then, for any unit ε of k_n with $N_{k_n/\mathbb{Q}(\alpha_n)}(\varepsilon) = 1$, there exists an element c of C_n such that $\varphi(\varepsilon c)$ is a square in U_n .

Proof. Since $N_{k_n/\mathbb{Q}(\alpha_n)}(\varepsilon) = 1$, there exists an element α in Ω_{k_n} with $\varepsilon = \alpha^{\sigma-1}$. First we assume $n \geq s-2$. Since prime ideals $\mathfrak{p}_1\Omega_{k_n}, \mathfrak{p}_2\Omega_{k_n}, \ldots, \mathfrak{p}_{2^{s-2}}\Omega_{k_n}$ are the prime ideals in k_n which are ramified in k_n over $\mathbb{Q}(\alpha_n)$, we may assume that $\alpha\Omega_{k_n}$ is a product of the finite number of $\mathfrak{p}_i\Omega_{k_n}$. Since each $\mathfrak{p}_i\Omega_{k_n}$ is conjugate to $\mathfrak{p}_1\Omega_{k_n}$ over k and not principal in k_n , Lemma 3.5 leads to a conclusion that $\alpha\Omega_{k_n}$ is a product of an even number of $\mathfrak{p}_i\Omega_{k_n}$. Hence we have

(4)
$$N_{k_n/\mathbb{O}}(\alpha) \equiv \pm 1 \pmod{2^{n+3}}$$

by $p \equiv 1 \pmod{2^s}$ and $s \geq 3$. Now we have $\alpha \alpha^{\sigma} \in C_n W_n$ or $\alpha \alpha^{\sigma} \in 3C_n W_n$ by Lemma 3.3. If we assume $\alpha \alpha^{\sigma} \in 3C_n W_n$, then we have

(5)
$$N_{\mathbb{Q}(\alpha_n)/\mathbb{Q}}(\alpha \alpha^{\sigma}) \equiv \pm (1+2^{n+2}) \pmod{2^{n+3}}$$

by Lemma 3.4, which contradicts (4). Hence we have $\alpha \alpha^{\sigma} \in C_n W_n$. Since any element of W_n is a square in $\Omega_{\mathfrak{l}_n}^{\times}$ (cf. [23, Exercises 9.3]), there exists an element c of C_n such that both $\varepsilon c = \alpha \alpha^{\sigma} c / \alpha^2$ and $\varepsilon^{\sigma} c = \alpha \alpha^{\sigma} c / (\alpha^{\sigma})^2$ are squares in $\Omega_{\mathfrak{l}_n}^{\times}$.

Now, we assume s - 2 > n. If $\alpha \alpha^{\sigma} \in 3C_n W_n$, then (5) again holds, which contradicts $p \equiv 1 \pmod{2^s}$. Hence $\alpha \alpha^{\sigma} \in C_n W_n$ and a similar argument leads to the conclusion.

Let E_n^2 be the set of squares of units in k_n and let $c_1, c_2, \ldots, c_{2^n-1}$ be fundamental units of $\mathbb{Q}(\alpha_n)$. Since $\mathfrak{p}_1\Omega_{k_n}, \mathfrak{p}_2\Omega_{k_n}, \ldots, \mathfrak{p}_{2^{s-2}}\Omega_{k_n}$ are ramified in k_n over $\mathbb{Q}(\alpha_n)$, elements $c_1E_n^2, c_2E_n^2, \ldots, c_{2^n-1}E_n^2$ of E_n/E_n^2 are independent over $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$. Hence there exist units $\eta_1, \ldots, \eta_{2^n}$ in E_n such that elements $\eta_1 C_n E_n^2, \ldots, \eta_{2^n} C_n E_n^2$ of $E_n/C_n E_n^2$ are independent over \mathbb{F}_2 . Then we can prove the following:

Theorem 3.7. Let m be a rational nonnegative integer with $m \leq 2^{s-2} - 2$ and $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_m$ unit in k_n such that $\varepsilon_1 C_n E_n^2, \varepsilon_2 C_n E_n^2, \ldots, \varepsilon_m C_n E_n^2$ are independent over \mathbb{F}_2 in $E_n/C_n E_n^2$. If $N_{k_n/\mathbb{Q}(\alpha_n)}(\varepsilon_i) = 1$ and if $N_{k_n/k_0}(\varepsilon_i) = \pm 1$ for $1 \leq i \leq m$, then $\lambda_k \leq 2^{s-2} - m - 2$.

Proof. If \mathfrak{p}_1^t is principal in k_n , then $\lambda_k = 0$ by (4) of Lemma 3.1. So we assume \mathfrak{p}_1^t is not principal in k_n . We identify k_{n,\mathfrak{l}_n} with $\mathbb{Q}_2(\alpha_n)$. Since $\varepsilon_i \in V_n$ and since $N_{\mathbb{Q}_2(\alpha_n)/\mathbb{Q}_2}(\varepsilon_i) = N_{k_n/k_0}(\varepsilon_i) = \pm 1$, we have $\varepsilon_i \in \overline{C}_n$ by class field theory. Since there exists an element c'_i in C_n with $\varepsilon_i c'_i \in V_n^2$ by Lemma 3.6 and since $V_n/\overline{C}_n \simeq \mathbb{Z}_2$, there exists an element $c''_i \in \overline{C}_n$ with $\varepsilon_i c'_i = (c''_i)^2$. Hence we have $(\varepsilon_i c'_i, \varepsilon_i^\sigma c'_i) = ((c''_i)^2, (c''_i/\varepsilon_i)^2)$. Since $(c''_i, c''_i/\varepsilon_i) \equiv (1, 1/\varepsilon_i) \pmod{\overline{\varphi(E_n)}}, (c''_i, c''_i/\varepsilon_i)\overline{\varphi(E_n)}$ is an element of the inertia group of \mathfrak{l}_n^σ in $G(M_n/k_\infty)$ whose order is two. Hence the 2-rank of the torsion part of $I_\infty G(M_\infty/M_n)/G(M_\infty/M_n)$ is greater than m+1 because $(1, -1) \notin \overline{\varphi(E_n)}$ by Lemma 3.2. This shows our assertion by Lemma 3.1.

After these preparations, we can now conclude our proof of Theorem 1.2.

(1) We assume $a \equiv 1 \pmod{p}$, which implies $a^2 - 2pb^2 = 1$. We note that the greatest common divisor of a + 1 and a - 1 is 2. We put $\varepsilon_1 = \frac{\sqrt{a+1}}{2}\sqrt{2} + \frac{b}{\sqrt{a+1}}\sqrt{p}$. Then we have $\varepsilon_1^2 = \varepsilon_0'$. If $a \equiv 1 \pmod{4}$, then

$$\frac{a+1}{2}\frac{a-1}{4p} = \left(\frac{b}{2}\right)^2$$

implies $\varepsilon_1 \in \mathbb{Q}(\sqrt{2p})$, which is a contradiction. Hence we have $a \equiv -1 \pmod{4}$. Then $\sqrt{a+1/2}$ and $b/\sqrt{a+1}$ are rational integers, which imply that ε_0 , ε_1 and $1 + \sqrt{2}$ are fundamental units in $\mathbb{Q}(\sqrt{p}, \sqrt{2})$ by [16]. Since $N_{k_1/\mathbb{Q}(\alpha_1)}(\varepsilon_1) = 1$ and $N_{k_1/k}(\varepsilon_1) = -1$, we have $\lambda_k \leq 2^{s-2} - 3$ by Theorem 3.7.

(2) We assume $a^2 \equiv -1 \pmod{p}$, which implies $a^2 - 2pb^2 = -1$. Let h_k be the class number of k. We note that h_k is odd. Hence the order of the ideal class containing $(\mathfrak{l}_1 \cap \mathbb{Q}(\sqrt{2p}))^{h_k}$ is two in the ideal class group of $\mathbb{Q}(\sqrt{2p})$ by the genus formula. This shows that $\mathrm{cl}(\mathfrak{l}_n^{h_k})$ is nontrivial in the 2-Sylow subgroup A_n of the ideal class group of k_n . Since $\varepsilon_0^2 \not\equiv 1 \pmod{32}$, the order of

$$B_n = \{ a \in A_n \mid a^{\tau} = a \text{ for any element } \tau \in G(k_n/k) \}$$

is less than or equal to 2. Hence we have $B_n = \langle \operatorname{cl}(\mathfrak{l}_n^{h_k}) \rangle$. This shows $\lambda_k = 0$ by [7].

4. Examples

It is important to see how large an m we can choose in Theorem 3.7 for a number of numerical examples in order to deepen our understanding of Greenberg conjecture. So we examine the largest m in Theorem 3.7. We calculated certain subgroups of

(6)
$$E_n/C_n E_n^2$$

for $1 \leq n \leq 7$. Since the degree $[k_7 : \mathbb{Q}] = 256$ is large, special techniques are required for the calculations. In this section we explain our particular algorithms.

4.1. **Integral basis.** The first task is a construction of an integral basis of k_n . It is well known that powers of α_n form an integral basis of $\mathbb{Q}(\alpha_n)$. Since the discriminant of k is prime to that of $\mathbb{Q}(\alpha_n)$, an integral basis of k_n is easily constructed by [17, Propositon 17 in Chapter III].

4.2. Unit group. The next task is a construction of unit groups C_n and E_n . Since the group $E_n/C_nE_n^2$ in Theorem 3.7 has 2-power order, subgroups of C_n and E_n with odd indices are enough for our purpose. Since the methods for C_n and E_n are the same, we restrict our interest to E_n .

Let $r = 2^{n+1} - 1$. We use a cyclotomic unit $1 + \alpha_n$ of $\mathbb{Q}(\alpha_n)$, a cyclotomic unit

$$\xi = N_{\mathbb{Q}(\zeta_f)/k_n}(\zeta_f - 1)$$

of k_n and the fundamental unit ε_0 of k, where $f = 2^{n+2}p$ is the conductor of k_n . We denote by γ the element of $G(k_n/k)$ such that $\alpha_n^{\gamma} = 2\cos(10\pi/2^{n+2})$ and start with $E'_n = \langle -1, \theta_0, \theta_1, \dots, \theta_{r-1} \rangle$, where

$$\theta_i = \begin{cases} (1 + \alpha_n)^{\gamma^i} & 0 \le i \le 2^n - 2, \\ \xi^{\gamma^{i-2^n+1}} & 2^n - 1 \le i \le r - 2, \\ \varepsilon_0 & i = r - 1. \end{cases}$$

According to an idea of Zassenhaus [21, p. 66], we examine whether the index $(E_n : E'_n)$ is odd and enlarge E'_n if $(E_n : E'_n)$ is even as follows. First we check whether $\sqrt{\theta_0}$ is contained in k_n using the method in 4.3. If $\sqrt{\theta_0} \in k_n$, we replace θ_0 by $\sqrt{\theta_0}$. So we may assume that $\sqrt{\theta_0} \notin k_n$. Next we find a prime number ℓ which splits completely in k_n/\mathbb{Q} and satisfies

$$\theta_0^{\frac{\ell-1}{2}} \not\equiv 1 \pmod{\mathcal{L}},$$

where \mathcal{L} is a prime ideal of k_n lying over ℓ (we fix arbitrary 1). For $1 \leq i \leq r-1$, we set

$$a_i = \begin{cases} 0 & \text{if } \theta_i^{\frac{\ell-1}{2}} \equiv 1 \pmod{\mathcal{L}}, \\ 1 & \text{if } \theta_i^{\frac{\ell-1}{2}} \neq 1 \pmod{\mathcal{L}}, \end{cases}$$

and put $\eta_0 = \theta_0, \ \eta_i = \theta_i \theta_0^{a_i} \ (1 \le i \le r-1)$. Then $E'_n = \langle -1, \ \eta_0, \eta_1, \dots, \eta_{r-1} \rangle$ and $\sqrt{\eta_0^{e_0} \eta_1^{e_1} \cdots \eta_{r-1}^{e_{r-1}}} \in k_n \ (0 \le e_i \le 1)$

implies $e_0 = 0$. Hence we can reduce the number of trials finding a square from 2^r to 2^{r-1} . Repeating this procedure, we can enlarge E'_n within r trials.

Finally, we obtain a subgroup $E_{n,0} = \langle -1, \eta_0, \eta_1, \ldots, \eta_{r-1} \rangle$ of E_n with odd index $(E_n : E_{n,0})$. Since $N_{k_n/k}(\xi) = 1$ (note that 2 splits in k/\mathbb{Q}), the above algorithm automatically leads to $N_{k_n/k}(\eta_i) = \pm 1$ for $0 \le i \le r-2$.

4.3. Square root. Let $r = 2^{n+1} - 1$ and $\{v_0, v_1, \ldots, v_r\}$ be an integral basis of k_n . When an integer β of k_n is square in k_n , we wish to obtain $\sqrt{\beta}$. Namely, we want to determine $x_j \in \mathbb{Z}$ such that $(\sum_j x_j v_j)^2 = \beta$. It is difficult to solve the system of simultaneous equations

(7)
$$\sum_{j} x_{j} v_{j}^{\sigma} = \sqrt{\beta}^{\sigma} \quad (\sigma \in G(k_{n}/\mathbb{Q}))$$

approximately for large n (e.g. $n \ge 4$) because of the ambiguity of the sign of $\sqrt{\beta}^{\sigma}$ $(\sqrt{\beta}^{\sigma} = \sqrt{\beta^{\sigma}} \text{ or } \sqrt{\beta}^{\sigma} = -\sqrt{\beta^{\sigma}})$. There is another method of Fincke and Pohst [3], [20, p. 33] based on the algorithm for finding small vectors in a lattice. But it does not fit our purpose even for small n because the coefficient of the quadratic form $\sum_{\sigma \in G(k_n/\mathbb{Q})} |\beta^{\sigma}|^{-1} |\sum_{j=0}^{2^{n+1}-1} x_j v_j^{\sigma}|^2$ are very small for our targets. So we proceed as follows:

- (1) Prepare prime numbers $\ell_0, \ell_1, ..., \ell_N$ which split completely in k_n/\mathbb{Q} .
- (2) Let β be a totally positive integer of k_n . If β is not square in k_n modulo some ℓ_i , then $\sqrt{\beta} \notin k_n$. Otherwise we search $x_j \in \mathbb{Z}$ such that $(\sum_j x_j v_j)^2 = \beta$.
- (3) Calculate the minimal polynomial f(X) of β over \mathbb{Q} .
- (4) Factorize $f(X^2)$ over \mathbb{Z} . We assume that $f(X^2)$ splits into $g_1(X)g_2(X)$.
- (5) Determine $\sqrt{\beta}^{\sigma} = \pm \sqrt{\beta^{\sigma}} \mod \ell_i$ ($\sigma \in G(k_n/\mathbb{Q})$) using $g_1(X)$. Namely, we choose $\sqrt{\beta}^{\sigma} \mod \ell_i$ so that $g_1(\sqrt{\beta}^{\sigma}) \equiv 0 \pmod{\ell_i}$ and $g_1(-\sqrt{\beta}^{\sigma}) \not\equiv 0 \pmod{\ell_i}$. If $g_1(\pm \sqrt{\beta^{\sigma}}) \equiv 0 \pmod{\ell_i}$, then we skip this ℓ_i .
- (6) Solving the simultaneous equations (7) modulo ℓ_i , construct $\beta_i = \sum_j x_{ij} v_j$ $(x_{ij} \in \mathbb{Z})$ such that $\beta_i^2 \equiv \beta \pmod{\ell_0 \ell_1 \cdots \ell_i}$ and $2|x_{ij}| < \ell_0 \ell_1 \cdots \ell_i$.
- (7) Find *i* such that $\beta_i = \beta_{i+1}$.
- (8) Compare β_i^2 with β . If $\beta_i^2 = \beta$, then $\sqrt{\beta}$ is found.

In many cases, $f(X^2)$ splits into two factors and we can eliminate the ambiguity of $\sqrt{\beta^{\sigma}} \mod \ell_j$ using a factor of f(X). If $f(X^2)$ remains irreducible (i.e. deg $f \leq 2^n$), we get $\sqrt{\beta\delta^2}$ for an appropriate $\delta \in k_n$ and set $\sqrt{\beta} = \sqrt{\beta\delta^2}/\delta$.

We make two technical remarks. For small n, we can determine the sign of $\sqrt{\beta}^{\sigma}$ so that $g_1(\sqrt{\beta}^{\sigma}) = 0$ and get $\sqrt{\beta}$ directly solving the equations (7) approximately. If n is large, then coefficients of $g_1(X)$ are large and the calculation becomes slow because of high precision. For example, we need an accuracy of more than 10^5 digits for n = 7. So we switch approximate calculations to congruence calculations.

Our next remark is related to congruence solutions of equations (7). Let $\alpha = \alpha_n + \omega$, where $\omega = (1 + \sqrt{p})/2$. Then $k_n = \mathbb{Q}(\alpha)$. We prepare the $(r+1) \times (r+1)$ integer matrix B such that

$$(1 \alpha \alpha^2 \cdots \alpha^r) = (v_0 v_1 \cdots v_r)B.$$

If $\beta = \sum_{j} b_j v_j$ with $b_j \in \mathbb{Z}$, then

$$\beta^{\sigma} \mod \ell_i \equiv (v_0^{\sigma} v_1^{\sigma} \cdots v_r^{\sigma})^t (b_0 \ b_1 \cdots b_r)$$

(8)
$$\equiv (1 \ \alpha^{\sigma} \ \alpha^{2\sigma} \cdots \alpha^{r\sigma}) B^{-1 \ t} (b_0 \ b_1 \cdots b_r) \pmod{\ell_i}.$$

Since the entries of B are very large for large n, the calculation of B^{-1} takes a long time. So we solve a system of linear equations each time modulo each ℓ_i .

We get $\beta^{\sigma} \mod \ell_i$ by (8) and choose $\sqrt{\beta}^{\sigma} \mod \ell_i$ using $g_1(X)$. Then we get $\sqrt{\beta} \mod \ell_i = \sum_i x_j \alpha^j \mod \ell_i$ by solving a system of linear equations

$$\sum_{j} x_{j} \alpha^{j\sigma} \equiv \sqrt{\beta}^{\sigma} \pmod{\ell_{i}} \quad (\sigma \in G(k_{n}/\mathbb{Q}))$$

and get $\sqrt{\beta} \mod \ell_i = \sum_j y_j v_j \mod \ell_i$ by

$$(y_0 \ y_1 \cdots y_r) = (x_0 \ x_1 \cdots x_r)^t B.$$

The remainder is a straightforward application of the Chinese Remainder Theorem.

4.4. Minimal polynomial. If the degree $[k_n : \mathbb{Q}] = 2^{n+1}$ is not too large (e.g. $n \leq 5$), then the approximate calculation of

(9)
$$f(X) = \prod_{\sigma \in G(k_n/\mathbb{Q})} (X - \beta^{\sigma})$$

works well. But the size of coefficients of f(X) grows rapidly (e.g. 10^4 digits for n = 7), and the high accuracy of approximation makes calculations slow. This phenomenon is caused by a property of β being a product of units in k_n .

So we calculate f(X) modulo each ℓ_i and construct $f_i(X) \in \mathbb{Z}[X]$ such that $f_i(X) \equiv f(X) \pmod{\ell_0 \ell_1 \cdots \ell_i}$ and all the absolute values of coefficients of $f_i(X)$ are less than $\ell_0 \ell_1 \cdots \ell_i/2$. If $f_i(X) = f_{i+1}(X)$, then $f_i(X)$ is very likely to be f(X). Of course it is not guaranteed that $f_i(X) = f(X)$; but we do not need to worry whether $f_i(X) = f(X)$ if we find $\sqrt{\beta}$ using $f_i(X)$.

In general, f(X) is not always irreducible. If f(X) is square-free, then f(X) is the minimal polynomial of β . When f(X) is not square-free, $f(X) = g(X)^m$ with irreducible $g(X) \in \mathbb{Z}[X]$ and $m \geq 2$. Then g(X) is the minimal polynomial of β .

4.5. $\alpha \mod \ell_i$. The minimal polynomial $f_\alpha(X) \in \mathbb{Z}[X]$ of $\alpha = \alpha_n + \omega$ over \mathbb{Q} is easily obtained by an approximate calculation similar to (9). A rational prime ℓ splits completely in k_n if $\ell \equiv 1 \pmod{2^{n+2}}$ and $(p/\ell) = 1$. We build a finite set $L = \{\ell_0, \ell_1, \ldots, \ell_N\}$ consisting of an appropriate number of such ℓ satisfying det $B \not\equiv 0 \pmod{\ell}$ and $f_\alpha(\ell) \not\equiv 0 \pmod{\ell}$.

Let $\ell_i \in L$ and g_i be a primitive root of ℓ_i . If z_1 is a rational integer satisfying $z_1 \equiv g_i^{(\ell-1)/2^{n+2}} \pmod{\ell_i}$, then $2\cos(2\pi/2^{n+2}) \equiv z_1 + z_1^{-1} \pmod{\mathcal{L}_1}$ for some prime ideal \mathcal{L}_1 of $\mathbb{Q}(\alpha_n)$ lying above ℓ_i . We also find $z_2 \in \mathbb{Z}$ such that $z_2 \equiv \omega \pmod{\mathcal{L}_2}$ for some prime ideal \mathcal{L}_2 of k lying above ℓ_i by solving $x^2 \equiv p \pmod{\ell_i}$. Then $\alpha \equiv z_1 + z_2 \pmod{\mathcal{L}}$ for some prime ideal \mathcal{L} of $z_1 + z_2 \pmod{\ell_i}$ for some prime ideal \mathcal{L} of k_n lying above ℓ_i . We abbreviate this congruence as $\alpha \equiv z_1 + z_2 \pmod{\ell_i}$.

We prepare a table of $\alpha^{\sigma} \mod \ell_i$ ($\sigma \in G(k_n/\mathbb{Q}), 0 \leq i \leq N$) and a table of $v_j \mod \ell_i$ ($0 \leq i \leq N, 0 \leq j \leq 2^{n+1} - 1$) in order to verify quickly that a given $\beta = \sum_j x_j v_j$ is not square in k_n . But we do not prepare a table of $v_j^{\sigma} \mod \ell_i$ ($\sigma \in G(k_n/\mathbb{Q}), 0 \leq i \leq N, 0 \leq j \leq 2^{n+1} - 1$) because it requires 256 times the amount of memory as for n = 7.

4.6. Subgroup calculation. It is enough to construct the subgroup

$$E_{n,1} = \{ \varepsilon \in E_n \mid N_{k_n/\mathbb{Q}(\alpha_n)}(\varepsilon) = 1, \ N_{k_n/k}(\varepsilon) = \pm 1 \}$$

of E_n in order to see how many independent units there are in Theorem 3.7. We may assume that we find positive $\eta_i \in E_n$ such that

$$C_n = \langle -1, \eta_0, \eta_1, \dots, \eta_{2^n - 2} \rangle, E_n = \langle -1, \eta_0, \eta_1, \dots, \eta_{2^n - 2}, \eta_{2^n - 1}, \eta_{2^n}, \dots, \eta_{2^{n+1} - 2} \rangle$$

with properties

$$N_{k_n/k}(\eta_i) = \pm 1 \quad (0 \le i \le 2^{n+1} - 3),$$

$$N_{k_n/k}(\eta_{2^{n+1}-2}) \neq \pm 1.$$

First we find $\eta \in E_n$ which satisfies $N_{k_n/\mathbb{Q}(\alpha_n)}(\eta) = -1$ and $N_{k_n/k}(\eta) = \pm 1$.

Let $t = 2^n - 1$, $u = 2^{n+1} - 2$ and let

$$N_{k_n/\mathbb{Q}(\alpha_n)}(\eta_j) = \pm \prod_{i=0}^{t-1} \eta_i^{a_{ij}} \quad (0 \le j \le u-1)$$

with $a_{ij} \in \mathbb{Z}$. Then, the norm of

$$\prod_{j=0}^{u-1} \eta_j^{x_j} \quad (x_j \in \mathbb{Z})$$

from k_n to $\mathbb{Q}(\alpha_n)$ is equal to ± 1 if and only if $x = {}^t(x_0, x_1, \ldots, x_{u-1})$ is contained in the kernel of the linear map $\psi : \mathbb{Z}^u \ni x \mapsto Ax \in \mathbb{Z}^t$, where $A = (a_{ij})$. Let v be the dimension of Ker ψ and $\{\omega_0, \omega_1, \ldots, \omega_{v-1}\}$ a \mathbb{Z} -basis of Ker ψ . Then the above η exists if and only if $\prod_i N_{k_n/\mathbb{Q}(\alpha_n)}(\eta_i)^{x_{ij}} < 0$ for some $\omega_j = {}^t(x_{0j}, x_{1j}, \ldots, x_{u-1,j})$. In this manner we find $\eta \in E_n$. Now, for $0 \leq j \leq v-1$, set e_j to be 1 or 0 according to $\prod_i N_{k_n/\mathbb{Q}(\alpha_n)}(\eta_i)^{x_{ij}} < 0$ or not. Then

$$E_{n,1} = \langle -1, \eta^{e_j} \prod_{i=0}^{u-1} \eta_i^{x_{ij}} \mid 0 \le j \le v-1 \rangle.$$

The index $(E_n : E_{n,1}C_nE_n^2)$ is easily calculated using the Hermite normal form of the integer matrix. Since $(E_n : C_nE_n^2) = 2^{2^n}$, if $(E_n : E_{n,1}C_nE_n^2) = 2^d$, then there are $2^n - d$ independent units in Theorem 3.7.

4.7. Tables. We calculated $E_{n,1}$ $(2 \le n \le 7)$ for $k = \mathbb{Q}(\sqrt{p})$, where p is a prime number less than 10⁴ which satisfies $p \equiv 1 \pmod{2^4}$ and $2^{\frac{p-1}{4}} \equiv 1 \pmod{p}$. We denote by m_n the maximal number of independent units in Theorem 3.7. Namely, $m_n = 2^n - d$, where $(E_n : E_{n,1}C_nE_n^2) = 2^d$. Let 2^s be the highest power of 2 dividing p - 1. Once m_n has attained $2^{s-2} - 2$ for some n, then we do not need to calculate m_k for $k \ge n+1$. Our calculation summarized in the following tables, together with Theorem 1.1, shows that $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ for all prime numbers p less than 10^4 .

For $k = \mathbb{Q}(\sqrt{4481})$, which is the most difficult example, our algorithms with Pentium 4 2.0 GHz handled k_5 in 4 minutes, k_6 in 45 minutes and k_7 in 11 hours.

p	m_2	m_3	m_4									
113	2		3089	2		4721	2		7793	2		
337	1	2	3121	2		4817	2		8081	2		
593	1	2	3217	1	2	5233	1	2	8209	2		
881	1	2	3313	2		5297	2		8273	2		
1201	2		3761	2		5393	1	2	8369	2		
1553	2		4049	1	2	6353	2		9137	1	2	
1777	2		4177	2		6449	2		9521	1	1	2
2129	1	2	4273	0	2	6481	2		9649	2		
2833	2		4657	1	2	7121	1	2				

 $2^4 || p - 1$

	p	m_3	m_4	m_5	p	m_3	m_4	m_5	m_6	p	m_3	m_4	
ſ	353	6			3361	5	5	5	6	8161	4	6	
	1249	5	6		4001	5	6			8609	5	6	
	1889	3	3	6	4513	6				9377	4	6	
	2273	6			6689	5	6			9697	5	6	
	2593	6			7393	6							
	2657	6			7841	4	6						

 $2^5 || p-1$

	- P										
p	m_4	m_5	p	m_4	m_5	p	m_4	p	m_4	p	
577	13	14	1601	14		3137	14	4801	14	7489	
217	14		2113	13	14	4289	14	5569	14	9281	

 $2^7 || p - 1$

 $2^6 || p - 1$

 $2^8 || p - 1$

 $\frac{m_4}{14}$

p	m_5	m_6	p	m_5	m_6	m_7	p	m_5	m_6	p	m_6	m_7
1153	30		4481	29	29	30	6529	30		257	62	
2689	29	30	4993	30			9601	28	30	9473	61	62

References

- A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124. MR0220694 (36:3746)
- [2] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. 109 (1979), no. 2, 377–395. MR528968 (81a:12005)
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), 463–471. MR777278 (86e:11050)
- [4] T. Fukuda and K. Komatsu, On Z_p-extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95–102. MR816225 (87d:11081)
- [5] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic Z₂-extension of a real quadratic field, Tokyo J. Math. 28 (2005), 259–264. MR2149635 (2006b:11134)
- [6] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa λ_p -invariants of relative real cyclic extensions of degree p, Tokyo J. Math. **20** (1997), no. 2, 475–480. MR1489480 (98k:11153)
- [7] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. MR0401702 (53:5529)
- [8] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), no. 1, 85–99. MR504453 (80b:12007)
- H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, Inter. J. Math. 7 (1996), 721–744. MR1417782 (98e:11128c)
- [10] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226. MR0124316 (23:A1630)
- [11] K. Iwasawa, On the μ-invariants of Z_ℓ-extensions, Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Y. Akizuki), Kinokuniya, Tokyo (1973), 1–11. MR0357371 (50:9839)
- [12] K. Iwasawa, On Z_ℓ-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326. MR0349627 (50:2120)
- [13] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tohoku Math. J. 33 (1981), no. 2, 263–288. MR624610 (83b:12003)
- [14] Y. Kida, Cyclotomic Z₂-extensions of J-fields, J. Number Theory 14 (1982), no. 3, 340–352.
 MR660379 (84b:12010)
- [15] J. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135–155. MR1355121 (97b:11129)

- [16] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85. MR0083009 (18:643e)
- [17] S. Lang, Algebraic Number Theory. Second edition. Graduate Texts in Mathematics, 1103. Springer-Verlag, New York, 1994. MR1282723 (95f:11085)
- [18] Y. Mizusawa, On the Iwasawa invariants of Z₂-extensions of certain real quadratic fields, Tokyo J. Math. 27 (2004), 255–261. MR2060089 (2005e:11140)
- [19] M. Ozaki and H. Taya, On the Iwasawa λ₂-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), no. 4, 437- 444. MR1484637 (99a:11122)
- [20] M. E. Pohst, Computational Algebraic Number Theory, DMV Seminar 21, Birkhäuser, Basel, 1993. MR1243639 (94j:11132)
- [21] M. E. Pohst, Computing invariants of algebraic number fields, in Group Theory, Algebra, and Number Theory, Ed. by H. G. Zimmer, de Gruyter, 1996, 53–73. MR1440204 (98d:11162)
- [22] T. Tsuji, On the Iwasawa λ-invariants of real abelian fields, Trans. Amer. Math. Soc. 355 (2003), 3699–3714. MR1990169 (2004e:11122)
- [23] L. C. Washington, Introduction to cyclotomic fields. Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997. MR1421575 (97h:11130)
- [24] A. Weil, Basic number theory. Third edition. Die Grundlehren der Mathematischen Wissenschaften, Band 144. Springer-Verlag, New York-Berlin, 1974. MR0427267 (55:302)
- [25] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), no. 3, 493–540. MR1053488 (91i:11163)

DEPARTMENT OF MATHEMATICS, COLLEGE OF INDUSTRIAL TECHNOLOGY, NIHON UNIVERSITY, 2-11-1 SHIN-EI, NARASHINO, CHIBA, JAPAN

E-mail address: fukuda@math.cit.nihon-u.ac.jp

DEPARTMENT OF MATHEMATICAL SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, 3-4-1 OKUBO, SHINJUKU, TOKYO 169-8555, JAPAN *E-mail address:* kkomatsu@waseda.jp