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ON THE IWASAWA λ-INVARIANT OF THE CYCLOTOMIC
Z2-EXTENSION OF Q(

√
p )

TAKASHI FUKUDA AND KEIICHI KOMATSU

In memory of Professor H. Ogawa

Abstract. We study the Iwasawa λ-invariant of the cyclotomic Z2-extension
of Q(

√
p ) for an odd prime number p which satisfies p ≡ 1 (mod 16) relating

it to units having certain properties. We give an upper bound of λ and show
λ = 0 in certain cases. We also give new numerical examples of λ = 0.

1. Introduction

Let k be a finite algebraic number field, � a prime number and ζ�n a primitive
�n-th root of unity. There exists the unique intermediate field k∞ of

⋃∞
n=0 k(ζ�n)/k

such that the Galois group G(k∞/k) is topologically isomorphic to the additive
group of the ring of �-adic integers Z�, which is called the cyclotomic Z�-extension
of k. Let kn be the unique intermediate field of k∞/k with degree �n over k. Then
the class number of kn is controlled by the Iwasawa invariants µ�(k), λ�(k) and
ν�(k) of k∞/k, which were introduced by Iwasawa [10] and [12]. Namely, if �en

denotes the �-part of the ideal class number of kn, then

en = µ�(k)�n + λ�(k)n + ν�(k)

for all sufficiently large n.
Iwasawa pointed out that µ�(k) always seems to be zero and Ferrero and Wash-

ington [2] proved that µ�(k) is zero for any abelian number field k and any prime
number �. Furthermore, Greenberg [7] suggests the possibility that λ�(k) is zero
for any totally real number field k and any prime number �, which is now called
Greenberg conjecture.

In 1986, the authors [4] provided a criterion of verifying Greenberg conjecture
numerically for a real quadratic field k and an odd prime number �, and showed
numerical evidence for the conjecture by giving a considerable amount of examples
which satisfy λ�(k) = 0. At the end of the twentieth century, Kraft and Schoof
[15] and Ichimura and Sumida [9] developed a powerful computational technique
verifying λ�(k) = 0 for any odd prime number � and any abelian number field k
with degree prime to � based on a new idea of using cyclotomic units. In particular,
Ichimura and Sumida showed that λ3(Q(

√
m )) = 0 for all positive integers m <

10000. In 2003, Tsuji generalized the Ichimura-Sumida criterion to be applicable
to the case that � divides the degree [k : Q].
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In 1973, preceding the work of Ferrero and Washington, Iwasawa [11] indicated
the importance of studying the cyclotomic Z�-extension of k when k is a cyclic
extension of Q with degree �. In fact, he proved that µ�(k) = 0 for such a k. It
is then considered a fundamental step to study λ2(k) for real quadratic fields k
from the viewpoint of Greenberg conjecture. It is essentially important to study
λ2(Q(

√
p )) for a prime number p. The first breakthrough was brought by Ozaki and

Taya [19] in 1997. They constructed certain families of infinitely many quadratic
fields k which satisfy λ2(k) = 0 and, in particular, obtained the following result:

Theorem 1.1 (cf. Ozaki and Taya [19]). Let p be a prime number which satisfies
one of the following conditions:

(1) p ≡ 3 (mod 4),
(2) p ≡ 5 (mod 8),
(3) p ≡ 9 (mod 16),
(4) p ≡ 1 (mod 16) and 2

p−1
4 ≡ −1 (mod p).

Then λ2(Q(
√

p )) is zero.

After Ozaki and Taya [19], the properties of λ2(k) for real quadratic fields k have
been studied by several mathematicians (cf. [5], [18]). The purpose of this paper
is to prove Theorem 1.2 below and Theorem 3.7 in §3.

Theorem 1.2. Let p be any prime number with p ≡ 1 (mod 16), ε0 the fundamen-
tal unit of Q(

√
p), and ε′0 = a + b

√
2p the fundamental unit of Q(

√
2p), where a is

a positive rational integer and b ∈ Z. Let 2s be the highest power of 2 which divides
p − 1. Then we have the following criteria concerning the Iwasawa λ-invariant
λ2(Q(

√
p)):

(1) If a ≡ 1 (mod p), then λ2(Q(
√

p)) ≤ 2s−2 − 3.
(2) If a2 ≡ −1 (mod p) and if ε2

0 �≡ 1 (mod 32), then λ2(Q(
√

p)) = 0.

Remark 1.1. Since ε′0 is a unit of Q(
√

2p), NQ(
√

2p)/Q(ε′0) = a2 − 2pb2 = ± 1. This
means a2 ≡ ± 1 (mod p).

The proofs of Theorems 1.2 and 3.7 are carried out in a different way from that
of Theorem 1.1. The key idea is based on the property of units in kn, which enables
us to evaluate the 2-rank of the subgroup of the ideal class group of kn generated
by primes lying above p.

As a computational application of Theorem 3.7, we show in §4 that λ2(Q(
√

p)) =
0 for all prime numbers p less than 104.

2. Notations

We denote by Z and Q the ring of integers and the field of rational numbers,
respectively. For elements g1, g2, . . . , gr of a group G, we denote by 〈 g1, g2, . . . , gr 〉
the subgroup of G generated by g1, g2, . . . , gr. Let N be a normal subgroup of G.
We denote by G/N the factor group of G over N and by [G : N ] the group index of
N in G. For a finite algebraic extension K over k, NK/k means the norm mapping
of K over k and if K is a Galois extension over k, G(K/k) means the Galois group
of K over k. If k is an algebraic number field, we denote by Ωk and Ek the integer
ring of k and the unit group of k, respectively. For an element α of Ωk, we denote
by αΩk the principal ideal of Ωk generated by α. We denote by ζ2n a primitive
2n-th root of unity in the complex number field C. Let � be a prime number and
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Z� the �-adic integer ring. We denote by Λ = Z�[[T ]] the ring of formal power series
in an indeterminate T over Z�.

3. Proof of Theorem 1.2

Let p be a prime number, n a nonnegative integer and k = Q(
√

p). We put
αn = 2 cos(2π/2n+2). It is well known that the field Q(αn) is a cyclic extension
over Q with degree 2n. Since αn+1 =

√
2 + αn, we have Q(αn) ⊂ Q(αn+1). Hence

Q∞ =
⋃∞

n=0 Q(αn) is the unique Z2-extension of Q, which is called the cyclo-
tomic Z2-extension of Q. We put kn = k(αn) and k∞ = kQ∞. Then k∞ is the
unique Z2-extension of k. Let Mn be the maximal abelian 2-extension of kn un-
ramified outside 2 and Ln the maximal abelian unramified 2-extension of kn. Then
M∞ =

⋃∞
n=0 Mn and L∞ =

⋃∞
n=0 Ln are the maximal abelian 2-extension of k∞

unramified outside 2 and the maximal abelian unramified 2-extension of k∞, respec-
tively. Moreover, we put In = G(Mn/Ln), I∞ = G(M∞/L∞), X∞ = G(M∞/k∞)
and X∞ = G(L∞/k∞). As usual, we regard X∞ as a Λ = Z2[[T ]]-module, where
1+T acts as a fixed topological generator γ of G(k∞/k). Then we have the following
exact sequence of Λ-modules:

(1) 1 −→ I∞ −→ X∞ −→ X∞ −→ 1.

Since µ2(k(
√
−1 )) is zero by [2] and since X∞ has no finite Λ-submodule by The-

orem 1 of [8], X∞ is a finitely generated free Z2-module. Let λ(I∞), λ(X∞) and
λ(X∞) be Z2-ranks of I∞, X∞, and X∞, respectively. Then we have

(2) λ(X∞) = λ(X∞) + λ(I∞)

by (1). Hereafter, we denote by λk the Iwasawa invariant λ2(k) of the cyclotomic Z2-
extension of k∞/k. By definition of λk, we have λk = λ(X∞). Let 2s be the highest
power of 2 which divides p−1. We have λ(X∞) = 2s−2−1 for s ≥ 2 by [14, Theorem
1] and [25]. If s ≤ 3, then λk = 0 by Theorem 1.1. So we assume s ≥ 4. Now, there
exist distinct prime ideals p1, p2, . . . , p2s−2 in ks−2 with

√
pΩks−2 = p1p2 · · · p2s−2

and the ideal piΩkn
generated by pi in Ωkn

is a prime ideal of kn for any integer
n ≥ s − 2. Since 2 does not divide the class number of Q(αs−2) (cf. p. 186 in
[23]), there exists an odd integer t such that p2t

i is a principal ideal of ks−2 for
1 ≤ i ≤ 2s−2. We denote by cl(pt

iΩkn
) the ideal class of kn containing the ideal

pt
iΩkn

and by ρn the 2-rank of a subgroup 〈 cl(pt
1Ωkn

), cl(pt
2Ωkn

), . . . , cl(pt
2s−2Ωkn

) 〉
in the ideal class group of kn. The 2-rank of the ideal class group of kn is stable
for sufficiently large n because of µ2(k) = 0 and ρn is also stable. More precisely,
there exists an integer N ≥ s − 2 such that λk = ρn for all n ≥ N by [13, pp. 272,
287] and [6, Lemma 3.3]. Thus we have proved the following:

Lemma 3.1. Notations and assumptions being as above, the following four asser-
tions hold:

(1) λk = λ(X∞).
(2) λ(X∞) = λ(X∞) + λ(I∞).
(3) λ(X∞) = 2s−2 − 1.
(4) The 2-rank of the ideal class group of kn is stable and λk = ρn for n ≥ N .

Let σ be a generator of G(k∞/Q∞) and ln a prime ideal of kn lying above 2.
Then we have lnlσn = αnΩkn

(n ≥ 1), (lnlσn)2
n

= 2Ωkn
and ln �= lσn. We denote by

En the unit group Ekn
of Ωkn

for simplicity. Let kn ln be the completion of kn at
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ln, Ω×
ln

the unit group of kn ln and Un = Ω×
ln

× Ω×
ln

. We embed En in Un by the
injective homomorphism

(3) ϕ : En � ε �→ (ε, εσ) ∈ Un.

Then we have
G(Mn/Ln)  Un/ ϕ(En)

by class field theory, where ϕ(En) is the topological closure of ϕ(En) in Un. Now,
we need the following lemma:

Lemma 3.2. The element (1,−1) of Un does not belong to ϕ(En).

Proof. Let ε1, ε2, . . . , ε2n+1−1 be fundamental units of kn. We assume (1,−1) ∈
ϕ(En). Then there exist 2-adic integers x1, x2, . . . , x2n+1−1 with

(1,−1) = ± (ε1, ε
σ
1 )x1(ε2, ε

σ
2 )x2 · · · (ε2n+1−1, ε

σ
2n+1−1)

x2n+1−1 .

Hence we have
2n+1−1∏

i=1

ε2xi
i = 1 and

2n+1−1∏
i=1

(εσ
i )2xi = 1.

Let γ be a generator of G(kn ln/Q2), where Q2 is the 2-adic number field. Then we
have

2n+1−1∏
i=1

(εγj

i )2xi = 1 and
2n+1−1∏

i=1

(εσγj

i )2xi = 1

for 1 ≤ j ≤ 2n. This means

2n+1−1∑
i=1

xi log2(ε
γj

i )2 = 0 and
2n+1−1∑

i=1

xi log2(ε
σγj

i )2 = 0,

where log2 is a 2-adic log function. Therefore, we have

x1 = · · · = x2n+1−1 = 0

by Leopoldt conjecture, which was proved in [1]. This is a contradiction. �

Remark 3.1. Using (1,−1) �∈ ϕ(E0), Ozaki proved in his thesis that λk = 0 if s = 3.

Let Cn be the unit group of Q(αn) and Vn the unit group of Q2(αn). We put
Wn = {u ∈ Vn : u ≡ 1 (mod 4αn) }. Then we prove the following lemmas.

Lemma 3.3. We have Vn = 〈 3 〉CnWn.

Proof. Since the maximal 2-extension of Q unramified outside 2 is Q∞, the maximal
2-extension of Q(αn) unramified outside 2 is also Q∞. Hence we have G(Q∞/Q(αn))
 Vn/ Cn, where Cn is the topological closure of Cn in Vn. Since Vn/ Cn is gen-
erated by 3Cn as a topological group and since Wn is an open subgroup of Vn, we
have Vn = 〈 3 〉CnWn. �

Lemma 3.4. We have NQ2(αn)/Q2(u) ≡ 1 (mod 2n+3) for any element u in Wn.

Proof. Let vn be the normalized additive αn-adic valuation of Q(αn) and γ a gen-
erator of G(Q(αn)/Q). At first, we prove

vn(αγi

n − αn) ≤ 2n + 1 for 1 ≤ i ≤ 2n − 1
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by induction on n. We have vn(αγ2n−1

n − αn) = vn(2αn) = 2n + 1. Hence we
have v1(α

γ
1 − α1) = 2 + 1. We assume vm(αγi

m − αm) ≤ 2m + 1 for m < n and
1 ≤ i ≤ 2m − 1. Since α2

n = αn−1 + 2, we have

vn(αγi

n − αn) + vn(αγi

n + αn) = vn(α2γi

n − α2
n)

= vn(αγi

n−1 − αn−1)

= 2vn−1(α
γi

n−1 − αn−1) ≤ 2n + 2

for 1 ≤ i ≤ 2n − 1 and i �= 2n−1. Hence we have vn(αγi

n − αn) ≤ 2n + 1 for
1 ≤ i ≤ 2n−1 noting that vn(αγi

n +αn) ≥ 1. Therefore, we have NQ2(αn)/Q2(u) ≡ 1
(mod 2n+3) by (1) of Corollary 1 to Proposition 11 of Chapter XII in [24]. �

Lemma 3.5. Let F2 be the prime field of characteristic 2, G a cyclic group of order
2n generated by γ, and V = F2[G] the group ring of G over F2. Let i1, i2, . . . , ir
be integers with 0 ≤ i1 < i2 < · · · < ir ≤ 2n − 1 and v an element of V with
v = γi1 + γi2 + · · ·+ γir . If r is odd, then V is generated by {γiv : 0 ≤ i ≤ 2n − 1}
over F2.

Proof. Let f be a function of G into C such that f(γi) = 1 for i = i1, i2, . . . , ir and
that f(γi) = 0 for i �= i1, i2, . . . , ir, where i is an integer with 0 ≤ i ≤ 2n − 1. Then
we have

det(f(γi−j))0≤i,j≤2n−1 =
∏
χ∈Ĝ

2n−1∑
i=0

χ(γi)f(γi) ≡ r2n ≡ 1 (mod ζ2n − 1)

by [23, p. 71], where Ĝ is the character group of G. �

Recall that ϕ is the isomorphism of En into Un defined by (3).

Lemma 3.6. If n ≥ s− 2, we assume that pt
1Ωkn

is not principal in kn. Then, for
any unit ε of kn with Nkn/Q(αn)(ε) = 1, there exists an element c of Cn such that
ϕ(εc) is a square in Un.

Proof. Since Nkn/Q(αn)(ε) = 1, there exists an element α in Ωkn
with ε = ασ−1.

First we assume n ≥ s − 2. Since prime ideals p1Ωkn
, p2Ωkn

, . . . , p2s−2Ωkn
are the

prime ideals in kn which are ramified in kn over Q(αn), we may assume that αΩkn

is a product of the finite number of piΩkn
. Since each piΩkn

is conjugate to p1Ωkn

over k and not principal in kn, Lemma 3.5 leads to a conclusion that αΩkn
is a

product of an even number of piΩkn
. Hence we have

(4) Nkn/Q(α) ≡ ± 1 (mod 2n+3)

by p ≡ 1 (mod 2s) and s ≥ 3. Now we have αασ ∈ CnWn or αασ ∈ 3CnWn by
Lemma 3.3. If we assume αασ ∈ 3CnWn, then we have

(5) NQ(αn)/Q(αασ) ≡ ± (1 + 2n+2) (mod 2n+3)

by Lemma 3.4, which contradicts (4). Hence we have αασ ∈ CnWn. Since any
element of Wn is a square in Ω×

ln
(cf. [23, Exercises 9.3]), there exists an element c

of Cn such that both εc = αασc/α2 and εσc = αασc/(ασ)2 are squares in Ω×
ln

.
Now, we assume s − 2 > n. If αασ ∈ 3CnWn, then (5) again holds, which

contradicts p ≡ 1 (mod 2s). Hence αασ ∈ CnWn and a similar argument leads to
the conclusion. �
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Let E2
n be the set of squares of units in kn and let c1, c2, . . . , c2n−1 be fun-

damental units of Q(αn). Since p1Ωkn
, p2Ωkn

, . . . , p2s−2Ωkn
are ramified in kn

over Q(αn), elements c1E
2
n, c2E

2
n, . . . , c2n−1E

2
n of En/E2

n are independent
over F2 = Z/2Z. Hence there exist units η1, . . . , η2n in En such that elements
η1CnE2

n, . . . , η2nCnE2
n of En/CnE2

n are independent over F2. Then we can prove
the following:

Theorem 3.7. Let m be a rational nonnegative integer with m ≤ 2s−2 − 2 and
ε1, ε2, · · · , εm unit in kn such that ε1CnE2

n, ε2CnE2
n, . . . , εmCnE2

n are independent
over F2 in En/CnE2

n. If Nkn/Q(αn)(εi) = 1 and if Nkn/k0(εi) = ± 1 for 1 ≤ i ≤ m,
then λk ≤ 2s−2 − m − 2.

Proof. If pt
1 is principal in kn, then λk = 0 by (4) of Lemma 3.1. So we assume

pt
1 is not principal in kn. We identify kn,ln with Q2(αn). Since εi ∈ Vn and since

NQ2(αn)/Q2(εi) = Nkn/k0(εi) = ± 1, we have εi ∈ Cn by class field theory. Since
there exists an element c′i in Cn with εic

′
i ∈ V 2

n by Lemma 3.6 and since Vn/Cn 
Z2, there exists an element c′′i ∈ Cn with εic

′
i = (c′′i )2. Hence we have (εic

′
i, ε

σ
i c′i) =

((c′′i )2, (c′′i /εi)2). Since (c′′i , c′′i /εi) ≡ (1, 1/εi) (mod ϕ(En)), (c′′i , c′′i /εi)ϕ(En) is an
element of the inertia group of lσn in G(Mn/k∞) whose order is two. Hence the 2-
rank of the torsion part of I∞G(M∞/Mn)/G(M∞/Mn) is greater than m+1 because
(1,−1) �∈ ϕ(En) by Lemma 3.2. This shows our assertion by Lemma 3.1. �

After these preparations, we can now conclude our proof of Theorem 1.2.
(1) We assume a ≡ 1 (mod p), which implies a2 − 2pb2 = 1. We note that the

greatest common divisor of a + 1 and a− 1 is 2. We put ε1 =
√

a+1
2

√
2 + b√

a+1

√
p.

Then we have ε2
1 = ε′0. If a ≡ 1 (mod 4), then

a + 1
2

a − 1
4p

=
( b

2

)2

implies ε1 ∈ Q(
√

2p), which is a contradiction. Hence we have a ≡ −1 (mod 4).
Then

√
a + 1/2 and b/

√
a + 1 are rational integers, which imply that ε0, ε1 and

1 +
√

2 are fundamental units in Q(
√

p,
√

2) by [16]. Since Nk1/Q(α1)(ε1) = 1 and
Nk1/k(ε1) = −1, we have λk ≤ 2s−2 − 3 by Theorem 3.7.

(2) We assume a2 ≡ −1 (mod p), which implies a2 − 2pb2 = −1. Let hk be
the class number of k. We note that hk is odd. Hence the order of the ideal class
containing (l1 ∩ Q(

√
2p))hk is two in the ideal class group of Q(

√
2p) by the genus

formula. This shows that cl(lhk
n ) is nontrivial in the 2-Sylow subgroup An of the

ideal class group of kn. Since ε2
0 �≡ 1 (mod 32), the order of

Bn = { a ∈ An | aτ = a for any element τ ∈ G(kn/k) }
is less than or equal to 2. Hence we have Bn = 〈 cl(lhk

n ) 〉. This shows λk = 0 by [7].

4. Examples

It is important to see how large an m we can choose in Theorem 3.7 for a
number of numerical examples in order to deepen our understanding of Greenberg
conjecture. So we examine the largest m in Theorem 3.7. We calculated certain
subgroups of

(6) En/CnE2
n
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for 1 ≤ n ≤ 7. Since the degree [k7 : Q] = 256 is large, special techniques are
required for the calculations. In this section we explain our particular algorithms.

4.1. Integral basis. The first task is a construction of an integral basis of kn. It
is well known that powers of αn form an integral basis of Q(αn). Since the discrim-
inant of k is prime to that of Q(αn), an integral basis of kn is easily constructed by
[17, Propositon 17 in Chapter III].

4.2. Unit group. The next task is a construction of unit groups Cn and En. Since
the group En/CnE2

n in Theorem 3.7 has 2-power order, subgroups of Cn and En

with odd indices are enough for our purpose. Since the methods for Cn and En are
the same, we restrict our interest to En.

Let r = 2n+1 − 1. We use a cyclotomic unit 1 + αn of Q(αn), a cyclotomic unit

ξ = NQ(ζf )/kn
(ζf − 1)

of kn and the fundamental unit ε0 of k, where f = 2n+2p is the conductor of kn.
We denote by γ the element of G(kn/k) such that αγ

n = 2 cos(10π/2n+2) and start
with E′

n = 〈−1, θ0, θ1, . . . , θr−1〉, where

θi =

⎧⎪⎨
⎪⎩

(1 + αn)γi

0 ≤ i ≤ 2n − 2,

ξγi−2n+1
2n − 1 ≤ i ≤ r − 2,

ε0 i = r − 1.

According to an idea of Zassenhaus [21, p. 66], we examine whether the index
(En : E′

n) is odd and enlarge E′
n if (En : E′

n) is even as follows. First we check
whether

√
θ0 is contained in kn using the method in 4.3. If

√
θ0 ∈ kn, we replace θ0

by
√

θ0. So we may assume that
√

θ0 �∈ kn. Next we find a prime number � which
splits completely in kn/Q and satisfies

θ
�−1
2

0 �≡ 1 (mod L),

where L is a prime ideal of kn lying over � (we fix arbitrary 1). For 1 ≤ i ≤ r − 1,
we set

ai =

⎧⎨
⎩

0 if θ
�−1
2

i ≡ 1 (mod L),

1 if θ
�−1
2

i �≡ 1 (mod L),

and put η0 = θ0, ηi = θiθ
ai
0 (1 ≤ i ≤ r − 1). Then E′

n = 〈−1, η0, η1, . . . , ηr−1〉 and√
ηe0
0 ηe1

1 · · · ηer−1
r−1 ∈ kn (0 ≤ ei ≤ 1)

implies e0 = 0. Hence we can reduce the number of trials finding a square from 2r

to 2r−1. Repeating this procedure, we can enlarge E′
n within r trials.

Finally, we obtain a subgroup En,0 = 〈−1, η0, η1, . . . , ηr−1〉 of En with odd index
(En : En,0). Since Nkn/k(ξ) = 1 (note that 2 splits in k/Q), the above algorithm
automatically leads to Nkn/k(ηi) = ± 1 for 0 ≤ i ≤ r − 2.

4.3. Square root. Let r = 2n+1 − 1 and {v0, v1, . . . , vr} be an integral basis of
kn. When an integer β of kn is square in kn, we wish to obtain

√
β. Namely, we

want to determine xj ∈ Z such that (
∑

j xjvj)2 = β. It is difficult to solve the
system of simultaneous equations

(7)
∑

j

xjv
σ
j =

√
β

σ
(σ ∈ G(kn/Q))
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approximately for large n (e.g. n ≥ 4) because of the ambiguity of the sign of
√

β
σ

(
√

β
σ =

√
βσ or

√
β

σ = −
√

βσ). There is another method of Fincke and Pohst [3],
[20, p. 33] based on the algorithm for finding small vectors in a lattice. But it does
not fit our purpose even for small n because the coefficient of the quadratic form∑

σ∈G(kn/Q) |βσ|−1|
∑2n+1−1

j=0 xjv
σ
j |2 are very small for our targets. So we proceed

as follows:

(1) Prepare prime numbers �0, �1, ..., �N which split completely in kn/Q.
(2) Let β be a totally positive integer of kn. If β is not square in kn modulo some

�i, then
√

β �∈ kn. Otherwise we search xj ∈ Z such that (
∑

j xjvj)2 = β.
(3) Calculate the minimal polynomial f(X) of β over Q.
(4) Factorize f(X2) over Z. We assume that f(X2) splits into g1(X)g2(X).
(5) Determine

√
β

σ = ±
√

βσ mod �i (σ ∈ G(kn/Q)) using g1(X). Namely,
we choose

√
β

σ mod �i so that g1(
√

β
σ) ≡ 0 (mod �i) and g1(−

√
β

σ) �≡ 0
(mod �i). If g1(±

√
βσ) ≡ 0 (mod �i), then we skip this �i.

(6) Solving the simultaneous equations (7) modulo �i, construct βi =
∑

j xijvj

(xij ∈ Z) such that β2
i ≡ β (mod �0�1 · · · �i) and 2|xij | < �0�1 · · · �i.

(7) Find i such that βi = βi+1.
(8) Compare β2

i with β. If β2
i = β, then

√
β is found.

In many cases, f(X2) splits into two factors and we can eliminate the ambiguity
of

√
βσ mod �j using a factor of f(X). If f(X2) remains irreducible (i.e. deg f ≤

2n), we get
√

βδ2 for an appropriate δ ∈ kn and set
√

β =
√

βδ2/δ.
We make two technical remarks. For small n, we can determine the sign of

√
β

σ

so that g1(
√

β
σ) = 0 and get

√
β directly solving the equations (7) approximately.

If n is large, then coefficients of g1(X) are large and the calculation becomes slow
because of high precision. For example, we need an accuracy of more than 105

digits for n = 7. So we switch approximate calculations to congruence calculations.
Our next remark is related to congruence solutions of equations (7). Let α =

αn + ω, where ω = (1 +
√

p)/2. Then kn = Q(α). We prepare the (r + 1)× (r + 1)
integer matrix B such that

(1 α α2 · · ·αr) = (v0 v1 · · · vr)B.

If β =
∑

j bjvj with bj ∈ Z, then

βσ mod �i ≡ (vσ
0 vσ

1 · · · vσ
r ) t(b0 b1 · · · br)

≡ (1 ασ α2σ · · ·αrσ)B−1 t(b0 b1 · · · br) (mod �i).(8)

Since the entries of B are very large for large n, the calculation of B−1 takes a long
time. So we solve a system of linear equations each time modulo each �i.

We get βσ mod �i by (8) and choose
√

β
σ mod �i using g1(X). Then we get√

β mod �i =
∑

j xjα
j mod �i by solving a system of linear equations

∑
j

xjα
jσ ≡

√
β

σ
(mod �i) (σ ∈ G(kn/Q))

and get
√

β mod �i =
∑

j yjvj mod �i by

(y0 y1 · · · yr) = (x0 x1 · · ·xr) tB.

The remainder is a straightforward application of the Chinese Remainder Theorem.
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4.4. Minimal polynomial. If the degree [kn : Q] = 2n+1 is not too large (e.g.
n ≤ 5), then the approximate calculation of

(9) f(X) =
∏

σ∈G(kn/Q)

(X − βσ)

works well. But the size of coefficients of f(X) grows rapidly (e.g. 104 digits for
n = 7), and the high accuracy of approximation makes calculations slow. This
phenomenon is caused by a property of β being a product of units in kn.

So we calculate f(X) modulo each �i and construct fi(X) ∈ Z[X] such that
fi(X) ≡ f(X) (mod �0�1 · · · �i) and all the absolute values of coefficients of fi(X)
are less than �0�1 · · · �i/2. If fi(X) = fi+1(X), then fi(X) is very likely to be f(X).
Of course it is not guaranteed that fi(X) = f(X); but we do not need to worry
whether fi(X) = f(X) if we find

√
β using fi(X).

In general, f(X) is not always irreducible. If f(X) is square-free, then f(X) is
the minimal polynomial of β. When f(X) is not square-free, f(X) = g(X)m with
irreducible g(X) ∈ Z[X] and m ≥ 2. Then g(X) is the minimal polynomial of β.

4.5. α mod �i. The minimal polynomial fα(X) ∈ Z[X] of α = αn + ω over Q is
easily obtained by an approximate calculation similar to (9). A rational prime
� splits completely in kn if � ≡ 1 (mod 2n+2) and (p/�) = 1. We build a finite
set L = {�0, �1, . . . , �N} consisting of an appropriate number of such � satisfying
detB �≡ 0 (mod �) and fα(�) �≡ 0 (mod �).

Let �i ∈ L and gi be a primitive root of �i. If z1 is a rational integer satisfying
z1 ≡ g

(�−1)/2n+2

i (mod �i), then 2 cos(2π/2n+2) ≡ z1 +z−1
1 (mod L1) for some prime

ideal L1 of Q(αn) lying above �i. We also find z2 ∈ Z such that z2 ≡ ω (mod L2)
for some prime ideal L2 of k lying above �i by solving x2 ≡ p (mod �i). Then
α ≡ z1 + z2 (mod L) for some prime ideal L of kn lying above �i. We abbreviate
this congruence as α ≡ z1 + z2 (mod �i).

We prepare a table of ασ mod �i (σ ∈ G(kn/Q), 0 ≤ i ≤ N) and a table of
vj mod �i (0 ≤ i ≤ N, 0 ≤ j ≤ 2n+1 − 1) in order to verify quickly that a given
β =

∑
j xjvj is not square in kn. But we do not prepare a table of vσ

j mod �i (σ ∈
G(kn/Q), 0 ≤ i ≤ N, 0 ≤ j ≤ 2n+1 − 1) because it requires 256 times the amount
of memory as for n = 7.

4.6. Subgroup calculation. It is enough to construct the subgroup

En,1 = { ε ∈ En | Nkn/Q(αn)(ε) = 1, Nkn/k(ε) = ± 1 }

of En in order to see how many independent units there are in Theorem 3.7.
We may assume that we find positive ηi ∈ En such that

Cn = 〈−1, η0, η1, . . . , η2n−2 〉,
En = 〈−1, η0, η1, . . . , η2n−2, η2n−1, η2n , . . . , η2n+1−2 〉

with properties

Nkn/k(ηi) = ± 1 (0 ≤ i ≤ 2n+1 − 3),
Nkn/k(η2n+1−2) �= ± 1 .

First we find η ∈ En which satisfies Nkn/Q(αn)(η) = −1 and Nkn/k(η) = ± 1.
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Let t = 2n − 1, u = 2n+1 − 2 and let

Nkn/Q(αn)(ηj) = ±
t−1∏
i=0

η
aij

i (0 ≤ j ≤ u − 1)

with aij ∈ Z. Then, the norm of

u−1∏
j=0

η
xj

j (xj ∈ Z)

from kn to Q(αn) is equal to ± 1 if and only if x = t(x0, x1, . . . , xu−1) is contained
in the kernel of the linear map ψ : Zu � x �→ Ax ∈ Zt, where A = (aij). Let v be
the dimension of Kerψ and {ω0, ω1, . . . , ωv−1} a Z-basis of Kerψ. Then the above
η exists if and only if

∏
i Nkn/Q(αn)(ηi)xij < 0 for some ωj = t(x0j , x1j , . . . , xu−1,j).

In this manner we find η ∈ En. Now, for 0 ≤ j ≤ v−1, set ej to be 1 or 0 according
to

∏
i Nkn/Q(αn)(ηi)xij < 0 or not. Then

En,1 = 〈−1, ηej

u−1∏
i=0

η
xij

i | 0 ≤ j ≤ v − 1 〉.

The index (En : En,1CnE2
n) is easily calculated using the Hermite normal form of

the integer matrix. Since (En : CnE2
n) = 22n

, if (En : En,1CnE2
n) = 2d, then there

are 2n − d independent units in Theorem 3.7.

4.7. Tables. We calculated En,1 (2 ≤ n ≤ 7) for k = Q(
√

p), where p is a prime
number less than 104 which satisfies p ≡ 1 (mod 24) and 2

p−1
4 ≡ 1 (mod p). We

denote by mn the maximal number of independent units in Theorem 3.7. Namely,
mn = 2n − d, where (En : En,1CnE2

n) = 2d. Let 2s be the highest power of 2
dividing p − 1. Once mn has attained 2s−2 − 2 for some n, then we do not need
to calculate mk for k ≥ n + 1. Our calculation summarized in the following tables,
together with Theorem 1.1, shows that λ2(Q(

√
p)) = 0 for all prime numbers p less

than 104.
For k = Q(

√
4481), which is the most difficult example, our algorithms with

Pentium 4 2.0 GHz handled k5 in 4 minutes, k6 in 45 minutes and k7 in 11 hours.

24 || p − 1

p m2 m3 p m2 m3 p m2 m3 p m2 m3 m4

113 2 3089 2 4721 2 7793 2
337 1 2 3121 2 4817 2 8081 2
593 1 2 3217 1 2 5233 1 2 8209 2
881 1 2 3313 2 5297 2 8273 2

1201 2 3761 2 5393 1 2 8369 2
1553 2 4049 1 2 6353 2 9137 1 2
1777 2 4177 2 6449 2 9521 1 1 2
2129 1 2 4273 0 2 6481 2 9649 2
2833 2 4657 1 2 7121 1 2
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25 || p − 1

p m3 m4 m5 p m3 m4 m5 m6 p m3 m4

353 6 3361 5 5 5 6 8161 4 6
1249 5 6 4001 5 6 8609 5 6
1889 3 3 6 4513 6 9377 4 6
2273 6 6689 5 6 9697 5 6
2593 6 7393 6
2657 6 7841 4 6

26 || p − 1

p m4 m5 p m4 m5 p m4 p m4 p m4

577 13 14 1601 14 3137 14 4801 14 7489 14
1217 14 2113 13 14 4289 14 5569 14 9281 14

27 || p − 1

p m5 m6 p m5 m6 m7 p m5 m6

1153 30 4481 29 29 30 6529 30
2689 29 30 4993 30 9601 28 30

28 || p − 1

p m6 m7

257 62
9473 61 62

References

[1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124.
MR0220694 (36:3746)

[2] B. Ferrero and L. C. Washington, The Iwasawa invariant µp vanishes for abelian number
fields, Ann. of Math. 109 (1979), no. 2, 377–395. MR528968 (81a:12005)

[3] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis, Math. Comp. 44 (1985), 463–471. MR777278 (86e:11050)

[4] T. Fukuda and K. Komatsu, On Zp-extensions of real quadratic fields, J. Math. Soc. Japan
38 (1986), 95–102. MR816225 (87d:11081)

[5] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic Z2-extension of
a real quadratic field, Tokyo J. Math. 28 (2005), 259–264. MR2149635 (2006b:11134)

[6] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa λp-invariants of relative
real cyclic extensions of degree p, Tokyo J. Math. 20 (1997), no. 2, 475–480. MR1489480
(98k:11153)

[7] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98
(1976), 263–284. MR0401702 (53:5529)

[8] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), no. 1,
85–99. MR504453 (80b:12007)

[9] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, Inter.
J. Math. 7 (1996), 721–744. MR1417782 (98e:11128c)

[10] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959),
183–226. MR0124316 (23:A1630)

[11] K. Iwasawa, On the µ-invariants of Z�-extensions, Number Theory, Algebraic Geometry and
Commutative Algebra (in honor of Y. Akizuki), Kinokuniya, Tokyo (1973), 1–11. MR0357371
(50:9839)

[12] K. Iwasawa, On Z�-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326.
MR0349627 (50:2120)

[13] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields,
Tohoku Math. J. 33 (1981), no. 2, 263–288. MR624610 (83b:12003)

[14] Y. Kida, Cyclotomic Z2-extensions of J-fields, J. Number Theory 14 (1982), no. 3, 340–352.
MR660379 (84b:12010)

[15] J. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Com-
positio Math. 97 (1995), 135–155. MR1355121 (97b:11129)

http://www.ams.org/mathscinet-getitem?mr=0220694
http://www.ams.org/mathscinet-getitem?mr=0220694
http://www.ams.org/mathscinet-getitem?mr=528968
http://www.ams.org/mathscinet-getitem?mr=528968
http://www.ams.org/mathscinet-getitem?mr=777278
http://www.ams.org/mathscinet-getitem?mr=777278
http://www.ams.org/mathscinet-getitem?mr=816225
http://www.ams.org/mathscinet-getitem?mr=816225
http://www.ams.org/mathscinet-getitem?mr=2149635
http://www.ams.org/mathscinet-getitem?mr=2149635
http://www.ams.org/mathscinet-getitem?mr=1489480
http://www.ams.org/mathscinet-getitem?mr=1489480
http://www.ams.org/mathscinet-getitem?mr=0401702
http://www.ams.org/mathscinet-getitem?mr=0401702
http://www.ams.org/mathscinet-getitem?mr=504453
http://www.ams.org/mathscinet-getitem?mr=504453
http://www.ams.org/mathscinet-getitem?mr=1417782
http://www.ams.org/mathscinet-getitem?mr=1417782
http://www.ams.org/mathscinet-getitem?mr=0124316
http://www.ams.org/mathscinet-getitem?mr=0124316
http://www.ams.org/mathscinet-getitem?mr=0357371
http://www.ams.org/mathscinet-getitem?mr=0357371
http://www.ams.org/mathscinet-getitem?mr=0349627
http://www.ams.org/mathscinet-getitem?mr=0349627
http://www.ams.org/mathscinet-getitem?mr=624610
http://www.ams.org/mathscinet-getitem?mr=624610
http://www.ams.org/mathscinet-getitem?mr=660379
http://www.ams.org/mathscinet-getitem?mr=660379
http://www.ams.org/mathscinet-getitem?mr=1355121
http://www.ams.org/mathscinet-getitem?mr=1355121


1808 T. FUKUDA AND K. KOMATSU
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