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HYBRID SPLINE FRAMES

SAY SONG GOH, TIM N. T. GOODMAN, AND S. L. LEE

Abstract. Using their unitary extension principle, Ron and Shen have con-
structed a normalized tight frame for L2(R) consisting of spline functions with
uniform knots. This paper constructs a normalized tight frame for L2((0,∞))
comprising spline functions with knots on a hybrid of uniform and geometric
mesh. The construction is motivated by applications in adaptive approxi-
mation using spline functions on a hybrid mesh that admits a natural dyadic
multiresolution approximation of L2((0,∞)) based on dilation and translation.

1. Introduction

Cardinal splines or polynomial splines on R with integer knots were introduced
and studied by Schoenberg in a series of papers (see for instance [20, 21]). They
have been used by various authors (for instance [6, 7, 10, 11, 19]) to construct
wavelet bases and frames for L2(R). In particular, Chui and Wang [10] constructed
the semi-orthogonal spline wavelets and Ron and Shen [19] constructed normalized
tight frames of spline functions for L2(R). Polynomial splines on geometric mesh,
qi, i ∈ Z, or geometric splines were first studied by Micchelli [18]. They were
independently rediscovered by Mallat in the study of image foveation [17]. In this
paper we consider spline functions on (0,∞) with knots on a hybrid of geometric
and uniform meshes. More precisely, take an integer n ≥ 2, and let Ṽ0 denote the
space of all spline functions of order n in L2((0,∞)) with knots xi, i ∈ Z, where

(1.1) xi =
{

2i, i ≤ −1,
i + 1, i ≥ 0.

The knot sequence, xi, i ∈ Z, is a hybrid of uniform and geometric meshes, and the
corresponding piecewise polynomial functions will be referred to as hybrid uniform-
geometric splines or simply hybrid splines. For j ∈ Z, let Ṽj := {f(2j ·) : f ∈ Ṽ0}.
For each j, Ṽj is the space of polynomial splines of order n on (0,∞) with knots at
2−jxi, i ∈ Z, where xi are as in (1.1). We shall construct a normalized tight frame
for L2((0,∞)) of compactly supported functions in Ṽj , j ∈ Z.

This construction, which is motivated by applications in adaptive approximation,
such as image foveation ([3, 4, 17]) and feature preserving smoothing [12], is a
follow up of the construction in [12] of Riesz bases of wavelets for L2((0,∞)) from
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functions in Ṽj , j ∈ Z. It was shown in [12] that unlike the case of uniform splines,
there is no Riesz basis of compactly supported hybrid spline wavelets for L2((0,∞))
for n ≥ 2, which are orthogonal across different levels of scaling. One of the
objectives of this paper is to overcome this shortcoming by considering tight frames
instead of Riesz bases. It turns out that tight frames of compactly supported
hybrid splines exist for L2((0,∞)) and their construction is more natural and more
elegant and the analysis is much simpler than those of the Riesz bases. They will
be more versatile in applications, which may have wider ramifications, because the
processes of foveation, smoothing and compression are not restricted to images but
are applicable to a wider class of objects, including those in vision research, 3-D
visualization and virtual reality ([1, 2, 3, 15]), and in the multiresolution processing
of geometry information ([14], [16]).

The multiresolution setting of hybrid splines and our construction of the corre-
sponding tight frames are different from those studied by Chui, He and Stöckler
in [8, 9]. In [9] they developed a theory together and a general construction of
nonstationary tight frames for L2(I), where I = [0,∞) or R, using the kernels of
certain approximation operators on the multiresolution subspaces. In particular,
they studied in greater detail multiresolution subspaces of spline functions with ar-
bitrary nested knot sequences on R and on the semi-infinite interval [0,∞), where
0 is considered a multiple knot with maximum multiplicity. However, explicit con-
struction of nonstationary tight frames for specific cases remains an interesting and
challenging problem, even in the special case of cubic spline frames derived from
the general non-stationary construction in [9].

Our approach in the construction of tight frames of hybrid splines uses a direct
method based on matrix extension in the time domain. The idea is to integrate
uniform splines on a half infinite interval with geometric splines near the origin.
It is possible to extend the idea to develop a theory and general method of con-
struction of tight frames of spline functions for L2(0,∞), with arbitrary nested knot
sequences, but the explicit construction of tight frames for specific cases will remain
a technically difficult problem. The salient point in the case of hybrid splines is the
simplicity and elegance of the multiresolution structure, the construction and the
results, which hold for arbitrary degree. Interestingly, the hybrid spline tight frames
(Theorem 3.1) comprise the dyadic dilations of a finite set of compactly supported
spline functions with a mix of uniform and geometric knots and a single geometric
B-spline with knots 2�, � = 0, 1, ..., n, together with the dyadic dilations and shifts
by positive integers of the uniform spline frame generators of Ron and Shen [19]. In
Section 2 we construct a normalized tight frame of uniform splines for L2([0,∞))
from the nonnegative integer shifts of the uniform spline frame generators and the
uniform B-spline with knots at 0, 1, . . . , n. They are then used in Section 3 for the
construction of tight frames of hybrid splines for L2((0,∞)).

2. Spline frames on the half line

Take an integer n ≥ 2. Let Sn denote the space of all spline functions of order
n, i.e. Cn−2 piecewise polynomials of degree n − 1, with knots in Z. Let

V0 := {f ∈ Sn : supp(f) ⊂ [0,∞)} ∩ L2(R)

and
Vj := {f(2j · ) : f ∈ V0}, j ∈ Z.
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We shall construct a normalized tight frame for L2([0,∞)) from functions in Vj ,
j ∈ Z, where for f ∈ Vj we confuse f and f |[0,∞).

Let N ∈ Sn denote the B-spline with support [0, n], normalized by
∫ n

0
N = 1, so

that
∞∑

j=−∞
N( · − j) = 1. Note that

(2.1) N(x) =
n∑

i=0

an
0iN(2x − i), x ∈ R,

where

(2.2) Pn
0 (z) := 2−n+1(1 + z)n =:

n∑
i=0

an
0iz

i.

For k = 1, 2, ..., n, let

Pn
k (z) := 2−n+1(1 − z)k(1 + z)n−k =:

n∑
i=0

an
kiz

i

and

(2.3) ψk(x) :=

√(
n

k

) n∑
i=0

an
kiN(2x − i), x ∈ R.

By applying the ‘unitary extension principle’, introduced by Ron and Shen in [19],
it can easily be seen that the functions

(2.4) 2j/2ψk(2j · −i), i, j ∈ Z, k = 1, 2, ..., n,

form a normalized tight frame for L2(R). The essential idea of this construction was
given in [19]. We shall see that the functions ψk, k = 1, 2, ..., n, in (2.3) together
with the uniform B-spline will lead to a normalized tight frame for L2([0,∞)).

Theorem 2.1. Let S ⊂ L2([0,∞)) denote the set

ψk( · − i), i = 0, 1, ..., k = 1, 2, ..., n, c
1/2
� N(2 · −�), � = 0, 1, ..., n − 2,

where

(2.5) c� := 2−n+1
n−1∑

j=�+1

(
n − 1

j

)
, � = 0, 1, . . . , n − 2.

Then {2j/2f(2j · ) : f ∈ S, j ∈ Z} is a normalized tight frame for L2([0,∞)).

We shall need the following lemma to prove the theorem.

Lemma 2.2. For n ≥ 1 and i, j ∈ {0, 1, ..., n},
n∑

k=0

(
n

k

)
an

kia
n
kj =

{
0, i �= j,
2−n+2

(
n
i

)
, i = j.

Proof. We prove by induction on n. The identity is easily seen to be true for n = 1.
Assume it is true for some n ≥ 1. Now for k = 0, 1, ..., n,

Pn+1
k (z) = 2−1(1 + z)Pn

k (z), Pn+1
k+1 (z) = 2−1(1 − z)Pn

k (z),

and hence for i = 0, 1, ..., n + 1,

an+1
ki =

1
2
(an

k,i−1 + an
ki), an+1

k+1,i =
1
2
(an

ki − an
k,i−1),
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where we have taken an
k,−1 = an

k,n+1 = 0. Then for i, j ∈ {0, 1, ..., n + 1},

n+1∑
k=0

(
n + 1

k

)
an+1

ki an+1
kj =

n+1∑
k=0

((
n

k − 1

)
+

(
n

k

))
an+1

ki an+1
kj

=
n∑

k=0

(
n

k

)
1
4
(an

ki − an
k,i−1)(a

n
kj − an

k,j−1)

+
n∑

k=0

(
n

k

)
1
4
(an

k,i−1 + an
ki)(a

n
k,j−1 + an

kj)

=
1
2

n∑
k=0

(
n

k

)
(an

k,i−1a
n
k,j−1 + an

kia
n
kj).

So our induction hypothesis gives for i �= j,

n+1∑
k=0

(
n + 1

j

)
an+1

ki an+1
kj = 0,

and for i = j,

n+1∑
k=0

(
n + 1

k

)
(an+1

ki )2 =
1
2

n∑
k=0

(
n

k

)
(an

k,i−1)
2 +

1
2

n∑
k=0

(
n

k

)
(an

ki)
2

= 2−n+1

(
n

i − 1

)
+ 2−n+1

(
n

i

)
= 2−n+1

(
n + 1

i

)
.

Thus, the result is true for n + 1, and this concludes the inductive proof. �

Whether (2.4) forms a normalized tight frame depends on the following (see [5],
p. 319). For simplicity we write 〈f, g〉 :=

∫ ∞
−∞ fg for f, g ∈ L2(R), and for j ∈ Z,

Nj := N( · − j), Ñj :=
√

2N(2 · −j), ψkj := ψk( · − j), k = 1, 2, ..., n. Then for
f ∈ L2(R),

(2.6)
∞∑

j=−∞
〈f, Ñj〉2 =

∞∑
j=−∞

〈f, Nj〉2 +
∞∑

j=−∞

n∑
k=1

〈f, ψkj〉2.

(In fact, in [5] this is stated for f in a dense subset of L2(R), but by passing to the
limit it easily follows that it holds for all L2(R).)

In a similar manner Theorem 2.1 is based upon the following lemma, where 〈f, g〉
now denotes

∫ ∞
0

fg for f, g ∈ L2([0,∞)).

Lemma 2.3. For f ∈ L2([0,∞)),

(2.7)
∞∑

j=0

〈f, Ñj〉2 =
∞∑

j=0

〈f, Nj〉2 +
∞∑

j=0

n∑
k=1

〈f, ψkj〉2 +
n−2∑
j=0

cj〈f, Ñj〉2.

Proof. Take f ∈ L2([0,∞)). By (2.6),
∞∑

j=1−n

〈f, Ñj〉2 =
∞∑

j=1−n

〈f, Nj〉2 +
∞∑

j=1−n

n∑
k=1

〈f, ψkj〉2.
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Thus (2.7) is equivalent to

−1∑
j=1−n

〈f, Nj〉2 +
−1∑

j=1−n

n∑
k=1

〈f, ψkj〉2 −
−1∑

j=1−n

〈f, Ñj〉2 =
n−2∑
j=0

cj〈f, Ñj〉2,

which is

(2.8)
1
2

−1∑
j=1−n

n∑
k=0

(
n

k

)
〈f,

n∑
i=0

an
kiÑi+2j〉2 −

−1∑
j=1−n

〈f, Ñj〉2 =
n−2∑
j=0

cj〈f, Ñj〉2,

by (2.1) and (2.3). Letting αj := 〈f, Ñj〉, j ∈ Z, (2.8) becomes

(2.9)
1
2

−1∑
j=1−n

n∑
k=0

(
n

k

) (
n∑

i=0

an
kiαi+2j

)2

−
−1∑

j=1−n

α2
j =

n−2∑
j=0

cjα
2
j .

Now applying Lemma 2.2,

1
2

−1∑
j=1−n

n∑
k=0

(
n

k

) (
n∑

i=0

an
kiαi+2j

)2

=
1
2

−1∑
j=1−n

n∑
i=0

n∑
�=0

αi+2jα�+2j

n∑
k=0

(
n

k

)
an

kia
n
k�

= 2−n+1
−1∑

j=1−n

n∑
i=0

(
n

i

)
α2

i+2j .(2.10)

Performing further calculations and recalling αj = 0, j = 2 − 2n, ...,−n, we have

2−n+1
−1∑

j=1−n

n∑
i=0

(
n

i

)
α2

i+2j = 2−n+1
−1∑

j=1−n

n∑
i=0

{(
n − 1
i − 1

)
+

(
n − 1

i

)}
α2

i+2j

= 2−n+1
n−1∑
�=0

(
n − 1

�

) �−1∑
j=�+2−2n

α2
j

= 2−n+1
n−2∑

j=1−n

α2
j

n−1∑
�=j+1

(
n − 1

�

)

=
−1∑

j=1−n

α2
j +

n−2∑
j=0

cjα
2
j .(2.11)

Hence by (2.10) and (2.11), we obtain (2.9) which gives (2.7) and completes the
proof. �

Proof of Theorem 2.1. Take f ∈ L2([0,∞)). By scaling (2.7) we see that for any
j ∈ Z,

∞∑
i=0

〈f, 2(j+1)/2N(2j+1 · −i)〉2 =
∞∑

i=0

〈f, 2j/2N(2j · −i)〉2

+
∞∑

i=0

n∑
k=1

〈f, 2j/2ψk(2j · −i)〉2 +
n−2∑
i=0

ci〈f, 2(j+1)/2N(2j+1 · −i)〉2.
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So for any integers r < s,

∞∑
i=0

〈f, 2s/2N(2s · −i)〉2 =
∞∑

i=0

〈f, 2r/2N(2r · −i)〉2

+
s−1∑
j=r

∞∑
i=0

n∑
k=1

〈f, 2j/2ψk(2j · −i)〉2 +
s∑

j=r+1

n−2∑
i=0

ci〈f, 2j/2N(2j · −i)〉2.(2.12)

It is well known that

lim
s→∞

∞∑
i=−∞

〈f, 2s/2N(2s · −i)〉 2s/2N(2s · −i) = f

in L2([0,∞)). (For more general results, see [13].) It follows immediately that

(2.13) lim
s→∞

∞∑
i=−∞

〈f, 2s/2N(2s · −i)〉2 = ‖f‖2.

Taking any ε > 0 and applying (2.13) to f |[0,ε), we see that

lim
s→∞

−1∑
i=1−n

〈f, 2s/2N(2s · −i)〉2 ≤
∫ ε

0

f2,

and letting ε → 0 shows that

(2.14) lim
s→∞

−1∑
i=1−n

〈f, 2s/2N(2s · −i)〉2 = 0.

Since 〈f, N(2s · −i)〉 = 0 for i ≤ −n, (2.13) and (2.14) give

(2.15) lim
s→∞

∞∑
i=0

〈f, 2s/2N(2s · −i)〉2 = ‖f‖2.

It is shown in ([5], p. 320) that

lim
r→−∞

∞∑
i=−∞

〈f, 2r/2N(2r · −i)〉2 = 0,

and hence

(2.16) lim
r→−∞

∞∑
i=0

〈f, 2r/2N(2r · −i)〉2 = 0.

From (2.12), (2.15) and (2.16) we then have

‖f‖2 =
∞∑

j=−∞

∞∑
i=0

n∑
k=1

〈f, 2j/2ψk(2j · −i)〉2 +
∞∑

j=−∞

n−2∑
i=0

ci〈f, 2j/2N(2j · −i)〉2,

which proves the result. �
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3. Spline frames on a hybrid mesh

Again take an integer n ≥ 2, the knot sequence xi, i ∈ Z, as in (1.1) and as before
let Ṽ0 denote the space of all spline functions of order n in L2((0,∞)) with knots
xi, i ∈ Z, and Ṽj := {f(2j ·) : f ∈ Ṽ0} for j ∈ Z. We now construct a normalized
tight frame for L2((0,∞)) from functions in Ṽj , j ∈ Z.

For j ∈ Z, let Nj denote the B-spline with knots xj , ..., xj+n, normalized so that

(3.1)
∞∑

j=−∞
Nj(x) = 1, x > 0.

We write

(3.2) Ij :=
∫ ∞

0

Nj =
xj+n − xj

n
, j ∈ Z.

Since Ṽ0 ⊂ Ṽ1, the functions (Nj) satisfy a refinement equation of the form

(3.3) Nj =
∞∑

k=−∞
bn
jkNk(2·), j ∈ Z.

For j ≥ 0, Nj = N(· − j − 1), Ij = 1, and from (2.1) and (2.2),

Nj = 2−n+1
n∑

k=0

(
n

k

)
Nk+1+2j(2·).

Thus,

(3.4) bn
jk = 2−n+1

(
n

k − 2j − 1

)
, j ≥ 0, k ∈ Z.

Note that for j ≤ 1 − n, Nj has knots 2j , ..., 2j+n, and so

(3.5) Nj = M(2−j ·), j ≤ 1 − n,

where M is the ‘geometric’ B-spline with knots 2�, � = 0, 1, ..., n, with
∫ ∞
0

M =
2n−1

n . Thus,

(3.6) Nj = Nj+1(2·), j ≤ −n

and
bn
jk = δj,k−1, j ≤ −n.

It can be shown that bn
jk ≥ 0, j, k ∈ Z, and bn

jk > 0 if and only if

(3.7)

⎧⎪⎨⎪⎩
k = j + 1, j ≤ −n,

j + 1 ≤ k ≤ 2j + n + 1, −n < j ≤ 0,

2j + 1 ≤ k ≤ 2j + n + 1, j > 0.

From (3.1) and (3.3),

1 =
∞∑

j=−∞
Nj =

∞∑
k=−∞

Nk(2·)
∞∑

j=−∞
bn
jk,

and so

(3.8)
∞∑

j=−∞
bn
jk = 1, k ∈ Z.
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In order to state our main result, we define for integers k, �,

(3.9) ck� :=
1
2
IkI�

−1∑
j=1−n

1
Ij

bn
jkbn

j�.

Clearly, ck� = c�k ≥ 0 for any integers k �= �. We can see from (3.7) that for k < �,
ck� > 0 if and only if

2 − n ≤ k < � ≤ min{n − 1 + 2k, n − 1}.
Note that (3.3) gives

(3.10) Ij =
1
2

∞∑
k=−∞

bn
jkIk.

Theorem 3.1. Let T ⊂ L2((0,∞)) denote the set of functions
(

n
2n−1

) 1
2

M,

ψk(· − i), i = 1, 2, ..., k = 1, 2, ..., n, and

(3.11) c
1/2
�m

(
N�

I�
− Nm

Im

)
, 2 − n ≤ � < m ≤ min{n − 1 + 2�, n − 1}.

Then {2j/2f(2j ·) : f ∈ T, j ∈ Z} is a normalized tight frame for L2((0,∞)).

We shall see in due course that the (n − 1)2 functions in (3.11) can in fact be
replaced by 2n − 3 functions, but not of such a simple form. The form of (3.11)
comes from the following.

Lemma 3.2. Let A = (Aij)m
i,j=1 be a symmetric matrix satisfying

∑m
j=1 Aij = 0,

i = 1, 2, ..., m. Then for any β1, ..., βm,
m∑

i=1

m∑
j=1

Aijβiβj = −
∑

1≤i<j≤m

Aij(βi − βj)2.

Proof. For any β1, ..., βm,∑
1≤i<j≤m

Aij(βi − βj)2 =
m∑

i=1

β2
i

m∑
j=1
j �= i

Aij − 2
∑

1≤i<j≤m

Aijβiβj

= −
m∑

i=1

β2
i Aii − 2

∑
1≤i<j≤m

Aijβiβj

= −
m∑

i=1

m∑
j=1

Aijβiβj . �

Now, in a similar manner to Lemma 2.3, the proof of Theorem 3.1 is based on
the following.

Lemma 3.3. For f ∈ L2((0,∞)),

2
∞∑

j=−∞
I−1
j 〈f, Nj(2·)〉2 =

∞∑
j=−∞

I−1
j 〈f, Nj〉2 +

∞∑
j=1

n∑
k=1

〈f, ψkj〉2

+2
∑

2−n≤�<m≤n−1

c�m

〈
f,

N�(2·)
I�

− Nm(2·)
Im

〉2

.(3.12)
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Proof. By Lemma 2.3 applied on [1,∞),

(3.13) 2
∞∑

j=1

〈f, Nj(2·)〉2 =
∞∑

j=0

〈f, Nj〉2 +
∞∑

j=1

n∑
k=1

〈f, ψkj〉2 + 2
n−1∑
j=1

cj−1〈f, Nj(2·)〉2.

Now let

(3.14) Y := 2
∞∑

j=−∞
I−1
j 〈f, Nj(2·)〉2 −

∞∑
j=−∞

I−1
j 〈f, Nj〉2 −

∞∑
j=1

n∑
k=1

〈f, ψkj〉2.

By (3.6), I−1
j Nj = 2I−1

j+1Nj+1(2·), j ≤ −n, and so

(3.15) Y = 2
∞∑

j=2−n

I−1
j 〈f, Nj(2·)〉2 −

∞∑
j=1−n

I−1
j 〈f, Nj〉2 −

∞∑
j=1

n∑
k=1

〈f, ψkj〉2.

Adding (3.13) and (3.15) and recalling, Ij = 1, j ≥ 0, gives

Y = 2
0∑

j=2−n

I−1
j 〈f, Nj(2·)〉2 + 2

n−1∑
j=1

cj−1〈f, Nj(2·)〉2 −
−1∑

j=1−n

I−1
j 〈f, Nj〉2.

Putting βj :=
√

2I−1
j 〈f, Nj(2·)〉, j ∈ Z, and applying (3.3), this becomes

Y =
0∑

j=2−n

Ijβ
2
j +

n−1∑
j=1

cj−1β
2
j −

−1∑
j=1−n

1
2Ij

{ ∞∑
k=−∞

bn
jkIkβk

}2

,

which simplifies to

Y =
0∑

j=2−n

Ijβ
2
j +

n−1∑
j=1

cj−1β
2
j −

n−1∑
k=2−n

n−1∑
�=2−n

ck�βkβ�,

using (3.7) and (3.9). We may write this as

(3.16) Y =
n−1∑

k=2−n

n−1∑
�=2−n

Ak�βkβ�,

where A = (Ak�)
n−1
k,�=2−n is a symmetric matrix given by

(3.17)

⎧⎪⎨⎪⎩
Akk = Ik − ckk, k = 2 − n, ..., 0,

Akk = ck−1 − ckk, k = 1, ..., n − 1,

Ak� = −ck�, 2 − n ≤ k < � ≤ n − 1.

We shall show that for k = 2 − n, ..., n − 1,

(3.18)
n−1∑

�=2−n

Ak� = 0.

First take 2 − n ≤ k ≤ 0. Then using (3.17) and (3.9),
n−1∑

�=2−n

Ak� = Ik − 1
2
Ik

−1∑
j=1−n

1
Ij

bn
jk

n−1∑
�=2−n

bn
j�I�

= Ik − Ik

−1∑
j=1−n

bn
jk,(3.19)



1546 SAY SONG GOH, TIM N. T. GOODMAN, AND S. L. LEE

by (3.10), on noting from (3.7) that bn
j� = 0 except for 2−n ≤ j+1 ≤ � ≤ 2j+n+1 ≤

n−1. Also from (3.7) we see that bn
jk = 0 except for 1−n ≤ k−n−1

2 ≤ j ≤ k−1 ≤ −1.
Thus

−1∑
j=1−n

bn
jk =

∞∑
j=−∞

bn
jk = 1,

by (3.8), and so (3.19) gives (3.18) .
Now take 1 ≤ k ≤ n − 1. As in the derivation of (3.19), and noting that Ik = 1,

we have

(3.20)
n−1∑

�=2−n

Ak� = ck−1 −
−1∑

j=1−n

bn
jk.

From (3.7) we see that bn
jk �= 0 implies j ≥ k−n−1

2 , and since 1 − n ≤ k−n−1
2 ,

−1∑
j=1−n

bn
jk =

−1∑
j=−∞

bn
jk = 1 −

∞∑
j=0

bn
jk,

by (3.8). Thus by (3.20), (2.5) and (3.4), we have

n−1∑
�=2−n

Ak� = 2−n+1
n−1∑
j=k

(
n − 1

j

)
+ 2−n+1

∞∑
j=0

(
n

k − 2j − 1

)
− 1

= 2−n+1
∞∑

j=0

(
n − 1
k + j

)
+ 2−n+1

∞∑
j=0

{(
n − 1

k − 2j − 2

)
+

(
n − 1

k − 2j − 1

)}
− 1

= 2−n+1
∞∑

j=−∞

(
n − 1
k + j

)
− 1

= 2−n+12n−1 − 1 = 0.

Hence (3.18) holds for k = 2 − n, ..., n − 1.
By Lemma 3.2, (3.16) and (3.17),

Y = −
∑

2−n≤i<j≤n−1

Aij(βi − βj)2

= 2
∑

2−n≤i<j≤n−1

cij

〈
f,

Ni(2·)
Ii

− Nj(2·)
Ij

〉2

.

From (3.14), this gives (3.12). �

Proof of Theorem 3.1. Take f ∈ L2((0,∞)). By scaling (3.12) we see that for any
j ∈ Z,

∞∑
i=−∞

2j+1I−1
i 〈f, Ni(2j+1·)〉2 =

∞∑
i=−∞

2jI−1
i 〈f, Ni(2j ·)〉2

+
∞∑

i=1

n∑
k=1

2j〈f, ψki(2j ·)〉2 +
∑

2−n≤�<m≤n−1

2j+1c�m

〈
f,

N�(2j+1·)
I�

−Nm(2j+1·)
Im

〉2

.
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So for any integers r < s, we have

∞∑
i=−∞

I−1
i 〈f, 2s/2Ni(2s·)〉2 =

∞∑
i=−∞

I−1
i 〈f, 2r/2Ni(2r·)〉2

+
s−1∑
j=r

∞∑
i=1

n∑
k=1

〈f, 2j/2ψki(2j ·)〉2

+
s∑

j=r+1

∑
2−n≤�<m≤n−1

c�m

〈
f, 2j/2

(
N�(2j ·)

I�
− Nm(2j ·)

Im

)〉2

.(3.21)

Now for any integers i, s, recalling from (3.1) that 0 ≤ Ni(x) ≤ 1, x > 0, we have

I−1
i 〈f, 2

s
2 Ni(2s·)〉2 ≤ 2sI−1

i

∫ 2−sxi+n

2−sxi

f2

∫ 2−sxi+n

2−sxi

Ni(2s·)2

≤ I−1
i (xi+n − xi)

∫ 2−sxi+n

2−sxi

f2 = n

∫ 2−sxi+n

2−sxi

f2,

by (3.2). Thus,

−1∑
i=−∞

I−1
i 〈f, 2s/2Ni(2s·)〉2 ≤ n

−1∑
i=−∞

∫ 2−sxi+n

2−sxi

f2

≤ n2

∫ 2−sxn−1

0

f2 → 0 as s → ∞.(3.22)

Also,

∞∑
i=0

I−1
i 〈f, 2s/2Ni(2s·)〉2 =

∞∑
i=1

〈f, 2s/2N(2s · −i)〉2

→ ‖f‖2 as s → ∞,(3.23)

as in the proof of Theorem 2.1. As above,

∞∑
i=2−n

I−1
i 〈f, 2r/2Ni(2r·)〉2 ≤ n

∞∑
i=2−n

∫ 2−rxi+n

2−rxi

f2

≤ n2

∫ ∞

2−rx2−n

f2 → 0 as r → −∞.(3.24)

Also by (3.5),

1−n∑
i=−∞

I−1
i 〈f, 2r/2Ni(2r·)〉2 =

1−n∑
i=−∞

2−in

2n − 1
〈f, 2r/2M(2r−i·)〉2

=
1−n−r∑
j=−∞

n

2n − 1
〈f, 2−j/2M(2−j ·)〉2.(3.25)
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From (3.21)–(3.25),

‖f‖2 =
∞∑

j=−∞

n

2n − 1
〈f, 2−j/2M(2−j ·)〉2 +

∞∑
j=−∞

∞∑
i=1

r∑
k=1

〈f, 2j/2ψki(2j ·)〉2

+
∞∑

j=−∞

∑
2−r≤�<m≤n−1

c�m

〈
f, 2j/2

(
N�(2j ·)

I�
− Nm(2j ·)

Im

)〉2

,

which proves the result. �

Now recall the matrix A, as in (3.17), and consider the Cholesky type factoriza-
tion A = LLT . Here L = (Lk�)n−1

k,�=2−n, where Lk� = 0 unless

2 − n ≤ � ≤ k ≤ min{n − 1 + 2�, n − 1}

and
n−1∑
k=�

Lk� = 0, 2 − n ≤ � ≤ n − 1.

Then Ln−1,n−1 = 0 and from (3.16),

Y =
n−2∑

�=2−n

(
n−1∑
k=�

Lk�βk

)2

= 2
n−2∑

�=2−n

〈f,

n−1∑
k=�

Lk�I
−1
k Nk(2·)〉2.

So in Theorem 3.1 we may replace the (n − 1)2 functions in (3.11) by the 2n − 3
functions

n−1∑
k=�

Lk�
Nk

Ik
, � = 2 − n, ..., n − 2.

Example. Take n = 2. From (3.9), c01 = 1
2I−1

b2
−1,0b

2
−1,1. Since b2

−1,0 = 1, b2
−1,1 =

1
2 , I−1 = x1−x−1

2 = 3
4 , we have c01 = 1

3 , and so (3.11) comprises the function
1√
3
(N0 − N1).

Example. Take n = 3. Here b3
−1,0 = 2

3 and the other values follow from (3.4) or
(3.8). From (3.9), the matrix A in (3.17) is given by

A =

⎡⎢⎢⎢⎣
5
21 − 5

21 0 0
− 5

21
67
105 − 3

10 − 1
10

0 − 3
10

33
80 − 9

80

0 − 1
10 − 9

80
17
80

⎤⎥⎥⎥⎦ .

Thus (3.11) comprises
√

105
105

(6N−1 − 5N0) ,

√
30

10
(N0 − N1) ,

√
10

10
(N0 − N2) ,

3
√

5
20

(N1 − N2) .
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A simple calculation shows A = LLT , where

L =

⎡⎢⎢⎢⎢⎣
√

105
21 0 0 0

−
√

105
21

√
10
5 0 0

0 −3
√

10
20

√
3

4 0

0 −
√

10
20 −

√
3

4 0

⎤⎥⎥⎥⎥⎦ .

So we may replace (3.11) by the three functions:
√

105
105

(6N−1 − 5N0) ,

√
10

20
(4N0 − 3N1 − N2) ,

√
3

4
(N1 − N2) .

Example. Take n = 4. Here (b4
j,k)1,5

j=−4,k=−4 is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0

0 0 1 2
7 0 0 0 0 0 0

0 0 0 5
7

3
5

3
20 0 0 0 0

0 0 0 0 2
5

29
40

1
2

1
8 0 0

0 0 0 0 0 1
8

1
2

3
4

1
2

1
8

0 0 0 0 0 0 0 1
8

1
2

3
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From (3.9), the functions in (3.11) are

4
√

165
1155

(14N−2 − 11N−1) ,

√
33

77
(8N−1 − 7N0) ,

√
33

154
(8N−1 − 7N1) ,

√
34265
385

(N0 − N1) ,
2
√

35
35

(N0 − N2) ,

√
1015
70

(N1 − N2) ,
√

35
35

(N0 − N3) ,

√
1015
140

(N1 − N3) ,

√
7

14
(N2 − N3) .

Also from (3.9), the matrix A in (3.17) is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
60 −11

60 0 0 0 0

−11
60

173
330 − 3

11 − 3
44 0 0

0 − 3
11

249
385 − 89

385 − 4
35 − 1

35

0 − 3
44 − 89

385
3439
6160 − 29

140 − 29
560

0 0 − 4
35 − 29

140
5
14 − 1

28

0 0 − 1
35 − 29

560 − 1
28

13
112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A simple calculation shows A = LLT , where

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
165
30 0 0 0 0 0

−
√

165
30

√
165
22 0 0 0 0

0 −2
√

165
55

√
21
7 0 0 0

0 −
√

165
110 −2

√
21

21

√
51

12 0 0

0 0 −4
√

21
105 −

√
51

15

√
10

10 0

0 0 −
√

21
105 −

√
51

60 −
√

10
10 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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So we may replace (3.11) by the five functions:

√
165

1155
(14N−2 − 11N−1) ,

√
165

110
(40N−1 − 28N0 − 7N1) ,

√
21

105
(15N0 − 10N1 − 4N2 − N3) ,

√
51

60
(5N1 − 4N2 − N3) ,

√
10

10
(N2 − N3) .
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