
MATHEMATICS OF COMPUTATION
Volume 78, Number 267, July 2009, Pages 1319–1331
S 0025-5718(09)02207-8
Article electronically published on January 22, 2009

INF-SUP CONDITION FOR SPHERICAL POLYNOMIALS AND
RADIAL BASIS FUNCTIONS ON SPHERES

IAN H. SLOAN AND HOLGER WENDLAND

Abstract. Interpolation by radial basis functions and interpolation by poly-
nomials are both popular methods for function reconstruction from discrete
data given on spheres. Recently, there has been an increasing interest in em-
ploying these function families together in hybrid schemes for scattered data
modeling and the solution of partial differential equations on spheres. For the
theoretical analysis of numerical methods for the associated discretized sys-
tems, a so-called inf-sup condition is crucial. In this paper, we derive such
an inf-sup condition, and show that the constant in the inf-sup condition is
independent of the polynomial degree and of the chosen point set, provided
the mesh norm of the point set is sufficiently small. We then use the inf-sup
condition to derive a new error analysis for the hybrid interpolation scheme of
Sloan and Sommariva.

1. Introduction

The inf-sup condition is a fundamental tool for the stability and convergence
analysis of mixed finite element methods for PDEs [1, 2, 4]. In this paper we prove
an inf-sup condition in a completely different context, that of approximation by
spherical polynomials and radial basis functions on spheres of arbitrary dimension,
as discussed in [11].

The inf-sup condition is presented in the next section. In the following para-
graphs we introduce just enough notation and definitions to make the result under-
standable.

We will work on the unit sphere Sd := {x ∈ R
d+1 : ‖x‖2 = 1} and use the usual

function spaces C(Sd), L2(Sd).
The set of (d + 1)-variate polynomials of degree less than or equal to L ∈ N0,

restricted to the sphere Sd, will be denoted by PL. This space can be equipped
with an L2(Sd)-orthonormal basis {Y�,k : 0 ≤ � ≤ L, 1 ≤ k ≤ N(d, �)}, consisting
of the so-called spherical harmonics. Here, � refers to the degree, while k indicates
a numeration of the orthonormal basis functions of the same degree, which span a
linear space of dimension N(d, �). It is well known (see [9]) that the collection of
all spherical harmonics forms a complete orthonormal basis of L2(Sd), hence every
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function u ∈ L2(Sd) can be represented by its Fourier series

u =
∞∑

�=0

N(d,�)∑
k=1

û�,kY�,k, û�,k =
∫

Sd

u(x)Y�,k(x)dx,

where dx denotes the area measure on Sd.
This representation can be used to introduce Sobolev spaces on Sd. To be more

precise, we define the Sobolev space Hs for s ≥ 0 by

Hs :=

⎧⎨⎩u ∈ L2(Sd) :
∞∑

�=0

N(d,�)∑
k=1

(1 + �2)s|û�,k|2 < ∞

⎫⎬⎭ .

Obviously, this space is equipped with a norm stemming from the inner product

(u, v)Hs :=
∞∑

�=0

N(d,�)∑
k=1

(1 + �2)sû�,kv̂�,k.

Putting s = 0 we obtain H0 = L2(Sd).
It is also known that if s > d/2, the Sobolev embedding theorem gives Hs ⊂

C(Sd). In this case Hs possesses a reproducing kernel, i.e. a symmetric function
Φ = Φs : Sd × Sd → R with the properties

(1) Φ(·, x) ∈ Hs for x ∈ Sd, u(x) = (u, Φ(·, x))Hs for u ∈ Hs, x ∈ Sd.

It is easy to verify that this kernel has the Fourier representation

(2) Φ(x, y) =
∞∑

�=0

N(d,�)∑
k=1

1
(1 + �2)s

Y�,k(x)Y�,k(y).

This kernel is (strictly) positive definite, in the sense that for all possible choices
of distinct points X = {x1, . . . , xN} ⊂ Sd the N×N matrices of the form (Φ(xi, xj))
are positive definite. Consequently, for a given fixed set X and given data values
f1, . . . , fN at x1, . . . , xN , there always exists a unique interpolant from the space

(3) VX := span{Φ(·, x1), . . . , Φ(·, xN )} .

The approximation error for such an interpolant is in general expressed in terms of
the fill distance

hX := sup
x∈Sd

min
xj∈X

dist(x, xj),

where dist(x, y) denotes the geodesic distance cos−1(x · y) between two points x, y
on the sphere.

We have introduced two finite-dimensional function spaces: the spherical poly-
nomials PL of degree at most L, and the kernel-based space VX . If both of these
spaces are employed in a mixed approximation scheme, an inf-sup condition is nec-
essary to make significant statements on the convergence of numerical schemes. We
will establish such a condition and use it to obtain an error analysis of a hybrid
approximation scheme.

We remark that a weaker inf-sup condition is relatively easy to establish, via the
“sampling theorem”; see [8, 12]. The result is weaker in the sense that the constant
in the inf-sup condition now depends on the polynomial degree L. Nonetheless,
for completeness, we state the sampling theorem and derive this weaker result in
Section 4.
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In Section 5 we use the inf-sup condition to obtain a new error analysis, this
time for the L2 norm of the error, for the hybrid interpolation scheme of Sloan
and Sommariva [11]. Finally, in Section 6 the results of the paper are extended
to approximation with more general kernels Φ(x,y) for which the norm in the
associated “native space” is merely equivalent (rather then identical) to the Hs

norm.

2. Main results

In this section, we will state the inf-sup condition for interpolation by radial
basis functions and spherical polynomials in three equivalent forms.

Theorem 2.1. There exist constants γ > 0 and τ > 0 depending only on d and
s > d/2 and such that for all L ≥ 1 and all X = {x1, . . . , xN} ⊂ Sd satisfying
hX ≤ τ/L the following inequality holds:

(4) sup
v∈VX\{0}

(p, v)Hs

‖v‖Hs

≥ γ‖p‖Hs , p ∈ PL.

Consequently, taking the infimum over all p ∈ PL, we can replace (4) by

inf
p∈PL\{0}

sup
v∈VX\{0}

(p, v)Hs

‖v‖Hs‖p‖Hs

≥ γ.

Later in this section we shall prove that this theorem can equivalently be stated
as in either of the next two theorems.

Theorem 2.2. There exist constants γ > 0 and τ > 0 depending only on d and
s such that for s > d/2 and all L ≥ 1 and all X = {x1, . . . , xN} ⊂ Sd satisfying
hX ≤ τ/L the following inequality holds:

‖P‖Hs ≥ γ‖p‖Hs

for all p ∈ PL and all P ∈ Hs satisfying P |X = p|X.

As pointed out earlier, for every continuous function f ∈ C(Sd), there exists a
unique interpolant IXf of the form

IXf =
N∑

j=1

αjΦ(·, xj),

where the coefficients αj are determined by the interpolation conditions IXf |X =
f |X. It is well known that the interpolant IXf from VX to f ∈ C(Sd) is also the
norm-minimal interpolant (see, for example, [12, Theorem 13.2]), i.e., it satisfies

(5) ‖IXf‖Hs = min{‖P‖Hs : P ∈ Hs and P |X = f |X}, f ∈ C(Sd).

From this minimal norm property it immediately follows that Theorem 2.2 can
equivalently be reformulated as

Theorem 2.3. There exist constants γ > 0 and τ > 0 depending only on d and s
such that for s > d/2 and all L ≥ 1 and all X = {x1, . . . , xN} ⊂ Sd satisfying
hX ≤ τ/L the following inequality holds:

‖IXp‖Hs ≥ γ‖p‖Hs

for all p ∈ PL.
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We will use the following rather simple Hilbert space proposition to establish
the equivalence of Theorems 2.1 and 2.3. Since we already know that Theorems 2.2
and 2.3 are equivalent, this will establish the equivalence of all three theorems.

Proposition 2.4. Let X and Y be subspaces of a Hilbert space H with inner product
(·, ·) and norm ‖ · ‖ = (·, ·)1/2. Then, for all y ∈ Y,

(6) sup
x∈X\{0}

(y, x)
‖x‖ = ‖Y ‖,

where Y is the orthogonal projection of y on X, i.e.,

(7) Y ∈ X and (Y − y, x) = 0 for all x ∈ X.

Proof. From (7) and the Cauchy-Schwarz inequality, for 0 �= x ∈ X and fixed y ∈ Y

we have
(y, x)
‖x‖ =

(Y, x)
‖x‖ ≤ ‖Y ‖.

Thus,

sup
x∈X\{0}

(y, x)
‖x‖ ≤ ‖Y ‖,

in which the inequality can be replaced by equality, since equality is achieved by
x = Y , using (y, Y ) = (Y, Y ) = ‖Y ‖2. �

To apply this result to our situation, we take H = Hs, X = VX , Y = PL. Since
H is a reproducing kernel space with reproducing kernel Φ, we see that

(IXf − f, Φ(·, xj))Hs = IXf(xj) − f(xj) = 0, xj ∈ X,

since IXf interpolates f . This implies, given (3), that

(8) (IXf − f, v)Hs = 0 for all v ∈ VX .

Thus, IXf is the orthogonal projection of f on VX in Hs, or equally, the best
approximation to f from VX in the Hs norm. Proposition 2.4 therefore gives

sup
v∈VX\{0}

(p, v)Hs

‖v‖Hs

= ‖IXp‖Hs , p ∈ PL.

The equivalence of Theorem 2.3 and Theorem 2.1 is now obvious.

3. Proof of the inf-sup theorem

We will use the following L2(Sd) estimate from [5, 7].

Theorem 3.1. There exist constants C > 0 and h0 > 0 depending only on s and
d such that for s > d/2,

‖g‖L2 ≤ Chs
X‖g‖Hs

for all X ⊂ Sd with hX ≤ h0, and all g ∈ Hs satisfying g|X = 0.

The proof of this theorem rests on a corresponding result [10] for Euclidean
spaces, which in turn relies mainly on two steps. In the first step an error estimate
of this form for the L∞-norm is established, with an appropriately reduced exponent
of hX . This can be done using either the so-called power function approach, or using
the sampling theorem, which we will discuss in more detail in the next section. The
second step consists of a local covering argument due to Duchon (see [3, 6]), which
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then provides the additional convergence order reflecting the fact that the left-hand
side is measured in the weaker L2-norm.

Theorem 3.1 leads to the following corollary.

Corollary 3.2. Suppose f ∈ Hs with s > d/2. Then we have, for all X =
{x1, . . . , xN} ⊂ Sd with hX ≤ h0, the estimate

(9) ‖f − IXf‖L2 ≤ Chs
X‖f − IXf‖Hs ≤ Chs

X‖f‖Hs ,

where h0 and C are the constants from Theorem 3.1.

Note that in the last step in (9) we use the fact that IXf is the orthogonal
projection in Hs, implying ‖f − IXf‖Hs ≤ ‖f‖Hs .

The L2-estimate from Corollary 3.2 gives rise to an estimate in the Hs-norm for
functions from H2s; see also [6]. This follows simply from (8), together with the
Cauchy-Schwarz inequality:

‖f − IXf‖2
Hs = (f − IXf, f)Hs =

∞∑
�=0

N(d,�)∑
k=1

(1 + �2)s(f − IXf)∧�,kf̂�,k

≤

⎛⎝ ∞∑
�=0

N(d,�)∑
k=1

|f̂�,k|2(1 + �2)2s

⎞⎠1/2 ⎛⎝ ∞∑
�=0

N(d,�)∑
k=1

|(f − IXf)∧�,k|2
⎞⎠1/2

= ‖f‖H2s‖f − IXf‖L2

≤ Chs
X‖f‖H2s‖f − IXf‖Hs ,

provided that hX ≤ h0. The following result now follows from cancellation of
‖f − IXf‖Hs .

Corollary 3.3. Suppose f ∈ H2s with s > d/2. Then we have, for all X =
{x1, . . . , xN} ⊂ Sd with hX ≤ h0, the estimate

(10) ‖f − IXf‖Hs ≤ Chs
X‖f‖H2s ,

where h0 and C are the constants from Theorem 3.1.

Note that we can insert (10) into (9) to derive

‖f − IXf‖L2 ≤ C2h2s
X ‖f‖H2s ,

which means that we double the approximation order in the L2-norm for target
functions having twice the smoothness. This well-known L2-estimate will not play
a role in our subsequent arguments, but Corollary 3.3 will do so.

The second ingredient in our proof will be an inverse estimate for spherical
polynomials: For every p ∈ PL and every t > s ≥ 0 we have

(11)

‖p‖2
Ht =

L∑
�=0

N(d,�)∑
k=1

|p̂�,k|2(1 + �2)t

≤ (1 + L2)t−s

L∑
�=0

N(d,�)∑
k=1

|p̂�,k|2(1 + �2)s = (1 + L2)t−s‖p‖2
Hs .
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Proof of Theorem 2.3. Since PL ⊂ H2s for all L ≥ 1, we can combine the error
estimate (10) with the inverse estimate (11) with t = 2s to give, for arbitrary
p ∈ PL and hX ≤ h0,

‖p − IXp‖Hs ≤ Chs
X‖p‖H2s ≤ Chs

X(
√

2L)s‖p‖Hs ,

where we used 1 + L2 ≤ 2L2. Now we choose a fixed δ ∈ (0, 1), and deduce

‖p − IXp‖Hs ≤ δ‖p‖Hs ,

provided that

hX ≤ min

{
h0,

(
δ

C

)1/s 1√
2L

}
.

Because IXp is the orthogonal projection of p in Hs, we can use the Pythagoras
theorem

‖p‖2
Hs = ‖p − IXp‖2

Hs + ‖IXp‖2
Hs

to obtain

(12) ‖IXp‖2
Hs = ‖p‖2

Hs − ‖p − IXp‖2
Hs ≥ (1 − δ2)‖p‖2

Hs .

Theorem 2.3 is therefore proved with

�(13) γ =
√

1 − δ2, τ = min

{
h0,

1√
2

(
δ

C

)1/s
}

.

In the proof above, δ is an arbitrary number in (0, 1), hence so too is γ. For
applications we may wish to be more careful in the choice of parameters. Suppose
γ0 is the minimum value of γ we would wish to allow in Theorem 2.3 for some
application; for example, perhaps γ0 = 0.1. Then δ0 :=

√
1 − γ2

0 is the maximum
permissible value of δ. If h0 ≥ (1/

√
2)(δ0/C)1/s, then a natural choice is δ = δ0,

in which case γ = γ0 and τ = (1/
√

2)(δ0/C)1/s < h0. If, on the other hand,
h0 < (1/

√
2)(δ0/C)1/s, then we may without loss take δ = C(

√
2h0)s < δ0, in

which case γ =
√

1 − C2(
√

2h0)2s > γ0 and τ = h0.
We finally observe that the requirement in (13) that τ ≤ h0 places a severe

restriction on the mesh norm hX when L is large, given the assumption that hX ≤
τ/L. If the theorems are stated not for all L ≥ 1 but instead for all L ≥ L0, then it
is easily seen that h0 in (13) (and hence also in the paragraph that follows it) can
be replaced by L0h0, since that will be enough to ensure hX ≤ h0 for L ≥ L0.

4. Sampling Theorem

Underlying the L2-estimate in Theorem 3.1, is the sampling theorem; see [8, 12].
For completeness, we state it here and show how it can be used to establish easily
a weaker version of our main result.

Theorem 4.1. Suppose X = {x1, . . . , xN} ⊂ Sd is a finite set satisfying hX ≤
1/(2L). Then, for every x ∈ Sd there exist numbers aj(x), j = 1, . . . , N , such that

N∑
j=1

aj(x)q(xj) = q(x), for all q ∈ PL,
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and such that

(14)
N∑

j=1

|aj(x)| ≤ 2.

Given a fixed p ∈ PL, let x0 ∈ Sd be a point at which |p(x)| takes its maximum
value. Then we have

N∑
j=1

aj(x0)p(xj) = p(x0) = ±‖p‖L∞ .

Now choose w ∈ VX to be

(15) w = ±
N∑

j=1

aj(x0)Φ(·, xj),

where the sign is the same as in the preceding equation. Then

(p, w)Hs = ±
N∑

j=1

aj(x0)(p, Φ(·, xj))Hs = ±
N∑

j=1

aj(x0)p(xj) = ‖p‖L∞ ,

so that

(16) sup
v∈VX\{0}

(p, v)Hs

‖v‖Hs

≥ (p, w)Hs

‖w‖Hs

=
‖p‖L∞

‖w‖Hs

.

As a special case of the addition theorem for spherical harmonics (cf. [9]), it follows
from (2) that

Φ(xj , xj) :=
∞∑

�=0

1
(1 + �2)s

N(d,�)∑
k=1

Y�,k(xj)Y�,k(xj) =
∞∑

�=0

1
(1 + �2)s

N(d, �)
ωd

=:
cs,d

4ωd
,

where ωd denotes the surface area of Sd. Hence, we see from (15) and (14) and the
reproducing property of the kernel Φ that

‖w‖Hs ≤
N∑

j=1

|aj(x0)|‖Φ(·, xj)‖Hs =
N∑

j=1

|aj(x0)|Φ(xj , xj)
1
2 ≤

√
cs,d/ωd.

Thus from (16) we have

sup
v∈VX\{0}

(p, v)Hs

‖v‖Hs

≥
√

ωd√
cs,d

‖p‖L∞ ≥ 1
√

cs,d
‖p‖L2 ≥ 1

√
cs,d(

√
2L)s

‖p‖Hs ,

using again in the last step the inverse estimate (11) for spherical polynomials.
This is a weaker result than Theorem 2.1, since the constant now decreases with

increasing L.

5. Error analysis for the hybrid method

In this section we illustrate the use of the inf-sup condition by using it to give
a new error analysis for the hybrid polynomial-plus-radial-basis-function method
of Sloan and Sommariva [11]. We shall assume in this section that Φ = Φs is the
reproducing kernel for the space Hs given by (2). In Section 6 we shall show that
essentially the same result holds if Φ is the reproducing kernel of any Hilbert space
that is norm equivalent to Hs.
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To define the hybrid approximation, let X = XN := {x1, . . . , xN} ⊂ Sd be
a finite point set on Sd, and let L ≥ 1 be fixed. Given f ∈ Hs, the hybrid
approximation approximates f by

(17) fX,L = uX,L + pX,L,

where pX,L ∈ PL is a polynomial and

uX,L =
N∑

j=1

αjΦ(·, xj)

is a linear combination of radial basis functions centred at the points in X, and
where the approximation is fixed by the interpolation conditions

fX,L(xj) = f(xj), j = 1, . . . , N,

and the side conditions
N∑

j=1

αjq(xj) = 0, q ∈ PL.

An equivalent formulation, better suited to the present analysis, is: Find uX,L ∈
VX and pX,L ∈ PL such that

(18) (uX,L, vX)Hs + (pX,L, vX)Hs = (f, vX)Hs , vX ∈ VX ,

and

(19) (q, uX,L)Hs = 0, q ∈ PL.

The equivalence follows from (3) and the reproducing property (1) of Φ.
Now assume that hX ≤ τ/L, where the parameter τ is as in Theorems 2.1–

2.3. That the approximation is well defined can be demonstrated as follows. First,
assuming uX,L ∈ VX and pX,L ∈ PL satisfy (18) and (19), we have

‖uX,L‖2
Hs = (uX,L, uX,L)Hs

= (f, uX,L)Hs − (pX,L, uX,L)Hs

= (f, uX,L)Hs ,

where we used (18) and then (19). The Cauchy-Schwarz inequality then gives

‖uX,L‖2
Hs ≤ ‖f‖Hs‖uX,L‖Hs ,

and on cancelling ‖uX,L‖Hs ,

(20) ‖uX,L‖Hs ≤ ‖f‖Hs .

The inf-sup condition (4) now gives

‖pX,L‖Hs ≤ 1
γ

sup
vX∈VX\{0}

(pX,L, vX)Hs

‖vX‖Hs

=
1
γ

sup
vX∈VX\{0}

(f, vX)Hs − (uX,L, vX)Hs

‖vX‖Hs

≤ 1
γ

(
‖f‖Hs + ‖uX,L‖Hs

)
≤ 2

γ
‖f‖Hs ,(21)
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where in the last step we used (20). Thus the approximate problem is well posed in
Hs. The fact that the approximate problem has a unique solution then follows from
(20) and (21) with f replaced by 0 (since (18) and (19) certainly have a solution
when f = 0). In turn, existence of a solution for general f follows from the fact
that (18) and (19) together form a square linear system (of dimension N +N(d, �)).
Thus the approximation is well defined.

To discuss the error, we first write the exact function f in an analogous way to
fX : We write

f = u + p,

where p ∈ PL and u ∈ Hs are defined by

(p, q)Hs = (f, q)Hs , q ∈ PL,

so that p is the Hs-orthogonal projection of f on PL, and

u := f − p.

Clearly, then u and p satisfy equations analogous to (18) and (19),

(u, v)Hs + (p, v)Hs = (f, v)Hs , v ∈ Hs,(22)
(q, u)Hs = 0, q ∈ PL.(23)

On subtracting (18) from (22) (with v replaced by vX ∈ VX) and (19) from (23),
we obtain

(u − uX,L, vX)Hs + (p − pX,L, vX)Hs = 0, vX ∈ VX ,(24)
(q, u − uX,L)Hs = 0, q ∈ PL.(25)

Now define ũX ∈ VX to be the Hs-orthogonal projection of u on VX , that is,

(26) (ũX , vX)Hs = (u, vX)Hs , vX ∈ Hs,

thus ũX is the interpolant of u in the space VX at the points of X. (The function ũX

plays the role of the “elliptic projection” in a finite element analysis. Essentially, it
is a convenient function lying in VX that, unlike uX,L, differs in a known way from
u.) From (24), (25) and (26) we clearly have

(27) (ũX − uX,L, vX)Hs + (p − pX,L, vX)Hs = 0, vX ∈ VX

and

(28) (q, ũX − uX,L)Hs = (q, ũX − u)Hs , q ∈ PL.

The inf-sup condition (4) now gives

(29)

‖p − pX,L‖Hs ≤ 1
γ

sup
vX∈VX\{0}

(p − pX,L, vX)Hs

‖vX‖Hs

= − 1
γ

sup
vX∈VX\{0}

(ũX − uX,L, vX)Hs

‖vX‖Hs

≤ 1
γ
‖ũX − uX,L‖Hs ,
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where we used (27). We also have, using (27) with vX = ũX − uX,L and then (28),

(30)

‖ũX − uX,L‖2
Hs = −(p − pX,L, ũX − uX,L)Hs

= −(p − pX,L, ũX − u)Hs

≤ ‖p − pX,L‖Hs‖ũX − u‖Hs

≤ ε‖p − pX,L‖2
Hs +

1
4ε

‖ũX − u‖2
Hs ,

where in the last step we used the inequality

ab ≤ εa2 +
1
4ε

b2,

which holds for arbitrary ε ∈ (0, 1). Then from (29) we obtain

‖p − pX,L‖2
Hs ≤ ε

γ2
‖p − pX,L‖2

Hs +
1

4εγ2
‖ũX − u‖2

Hs ,

and on choosing ε = 1
2γ2 and simplifying,

(31) ‖p − pX,L‖2
Hs ≤ 1

γ4
‖ũX − u‖2

Hs ,

and in turn from (30)

(32) ‖ũX − uX,L‖2
Hs ≤ 1

γ2
‖ũX − u‖2

Hs .

We are now ready to state the main result for the error analysis of the hybrid
method.

Theorem 5.1. Let L ≥ 1 and X = {x1, . . . , xN} ⊂ Sd be such that hX ≤ τ/L,
where τ is as in Theorem 2.1, and let Φ = Φs be the reproducing kernel in the space
Hs for some fixed s > d/2. Moreover, given f ∈ Hs let fX,L = uX,L + pX,L, where
uX,L ∈ VX and pX,L ∈ PL are the solutions of (18) and (19). Then,

‖f − fX,L‖L2 ≤ chs inf
q∈PL

‖f − q‖Hs ≤ Chs‖f‖Hs ,

and, if f ∈ H2s,

‖f − fX,L‖L2 ≤ ch2s inf
q∈PL

‖f − q‖H2s ≤ Ch2s‖f‖H2s ,

with C independent of X and L.

Here, and in the following work, C denotes a generic constant, whose value at
each occurrence may be different.

Proof. The first step is to note from Theorem 3.1 that

‖f − fX,L‖L2 ≤ Chs‖f − fX,L‖Hs

≤ Chs(‖u − uX,L‖Hs + ‖p − pX,L‖Hs),

where we used the fact that f − fX,L vanishes at the points of X, together with
f = u + p and fX,L = uX,L + pX,L. Next we note that (31) and (32) give

‖p − pX,L‖Hs ≤ C‖ũX − u‖Hs

and
‖u − uX,L‖Hs ≤ ‖u − ũX‖Hs + ‖ũX − uX,L‖Hs ≤ C‖ũX − u‖Hs ,
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and putting these together,

(33) ‖f − fX,L‖L2 ≤ Chs‖ũX − u‖Hs .

Since ũX is the interpolant of u on VX , it follows from Corollary 3.3 that

(34) ‖ũX − u‖Hs ≤ Chs
X‖u‖H2s ,

and also we have that
‖ũX − u‖Hs ≤ ‖u‖Hs ,

since ũX is the Hs-orthogonal projection of u on VX . It therefore follows from (33)
that

(35) ‖f − fX,L‖L2 ≤ Cht‖u‖Ht for t = s, 2s.

Finally, we may note that p has the Fourier series representation

p =
L∑

�=0

N(d,�)∑
k=1

f̂�,kY�,k,

which is the Ht-orthogonal projection of f on PL for all t ≥ 0. It follows that p
and u = f − p are orthogonal in Ht for all t ≥ 0, and hence that

(36) ‖u‖Ht = ‖f − p‖Ht = inf
q∈PL

‖f − q‖Ht ≤ ‖f‖Ht .

The theorem now follows from (35) and (36). �

6. The native space corresponding to Φ

In this section we broaden the assumptions on Φ, by replacing (2) with the more
general assumption

(37) Φ(x, y) =
∞∑

�=0

N(d,�)∑
k=1

a�Y�,k(x)Y�,k(y)

with

(38) a� ∼ (1 + �2)−s

for some s > d/2, where (38) means that there exist positive constants c1 and c2,
independent of �, such that

(39) c1(1 + �2)−s ≤ a� ≤ c2(1 + �2)−s, � ∈ N.

In this situation the “native space” NΦ that corresponds to the kernel Φ is the
Hilbert space

NΦ :=

⎧⎨⎩u ∈ L2(Sd) :
∞∑

�=0

N(d,�)∑
k=1

|û�,k|2
a�

< ∞

⎫⎬⎭ ,

and the norm in NΦ is defined by the inner product

(u, v)NΦ :=
∞∑

�=0

N(d,�)∑
k=1

1
a�

û�,kv̂�,k.

The space NΦ is a reproducing kernel Hilbert space with reproducing kernel Φ(x, y).
The norms in NΦ and Hs are clearly equivalent.



1330 IAN H. SLOAN AND HOLGER WENDLAND

Our purpose in this section is to establish that the principal conclusions of this
paper are unaltered if throughout we replace Hs by NΦ. First, Theorem 2.1 is
replaced by:

Theorem 6.1. Let Φ be a kernel of the form (37) satisfying (39) for some s > d/2.
Then there exist constants γ′ > 0 and τ ′ > 0 depending only on d and s such that
for all L ≥ 1 and all X = {x1, . . . , xN} ⊂ Sd satisfying hX ≤ τ ′/L the following
inequality holds:

sup
v∈VX\{0}

(p, v)NΦ

‖v‖NΦ

≥ γ′‖p‖NΦ , p ∈ PL.

Proof. Note first that for f ∈ C(Sd) the interpolant IXf is now the NΦ-orthogonal
projection of f on VX , since

0 = IXf(xj) − f(xj) = (IXf − f, Φ(·, xj))NΦ , j = 1, . . . , N.

Thus, Proposition 2.4 gives

sup
v∈VX\{0}

(p, v)NΦ

‖v‖NΦ

= ‖IXp‖NΦ

≥ c
−1/2
2 ‖IXp‖Hs

≥ c
−1/2
2 (1 − δ2)‖p‖Hs ,

where in the last step we used (12). Now the argument proceeds as in the proof of
Theorem 2.3, with γ′ = γ/

√
c2. �

The hybrid approximation now takes the same form as (17), but instead of (18)
and (19) we have

(uX,L, vX)NΦ + (pX,L, vX)NΦ = (f, vX)NΦ , vX ∈ VX ,(40)
(q, uX,L)NΦ = 0, q ∈ PL.(41)

Instead of Theorem 5.1 we obtain:

Theorem 6.2. Let Φ be a kernel of the form (37) satisfying (39) for some s > d/2.
Moreover, let L ≥ 1 and X = {x1, . . . , xN} ⊂ S2 be such that hX ≤ τ ′/L where τ ′

is as in Theorem 6.1. Given f ∈ NΦ, let fX,L = uX,L + pX,L, where uX,L ∈ VX

and pX,L ∈ PL are solutions of (40) and (41). Then,

‖f − fX,L‖L2 ≤ C ′hs‖f‖Hs ,

and, if f ∈ H2s,
‖f − fX,L‖L2 ≤ C ′h2s‖f‖H2s ,

with C ′ independent of X and L.

The proof is exactly the same as for the proof of Theorem 5.1 if we replace Hs

by NΦ throughout, if we note that the modified version of (34) still holds because
of the norm equivalence of Hs and NΦ.
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