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RECONSTRUCTION OF MATRICES FROM SUBMATRICES

GÉZA KÓS, PÉTER LIGETI, AND PÉTER SZIKLAI

Abstract. For an arbitrary matrix A of n×n symbols, consider its submatri-
ces of size k×k, obtained by deleting n−k rows and n−k columns. Optionally,
the deleted rows and columns can be selected symmetrically or independently.
We consider the problem of whether these multisets determine matrix A.

Following the ideas of Krasikov and Roditty in the reconstruction of se-
quences from subsequences, we replace the multiset by the sum of submatrices.
For k > cn2/3 we prove that the matrix A is determined by the sum of the
k × k submatrices, both in the symmetric and in the nonsymmetric cases.

1. Introduction

1.1. Problem statement. Let Σ be an alphabet, and denote by Σn×n the set of
n × n matrices over Σ. Call a matrix B ∈ Σk×k a submatrix of A ∈ Σn×n if B can
be obtained by deleting n − k rows and n − k columns of A. If we delete rows and
columns symmetrically, then B is a principal submatrix of A.

Denote by Mk(A) and M sym
k (A) the multisets of the

(
n
k

)2 submatrices and the(
n
k

)
principal submatrices of A of size k×k, respectively. We consider the following

two questions.

Problem 1. For a given n, what is the smallest k such that every A ∈ Σn×n is
uniquely determined by Mk(A), i.e. the map Mk is injective on Σn×n?

Problem 2. For a given n, what is the smallest k such that every A ∈ Σn×n is
uniquely determined by M sym

k (A), i.e. the map M sym
k is injective on Σn×n?

Notice that if k < �, then
⊎

B∈M�(A) Mk(B) =
(
n−k
�−k

)2 · Mk(A) and therefore
M�(A) determines Mk(A). (Here

⊎
is the multiset union symbol.) So, if Mk is

injective, then M� also must be injective as well. Similarly, we can show that
M sym

� (A) determines M sym
k (A). Hence, it is sufficient to find the smallest such k in

both cases.
Beyond their theoretical interest, Problems 1 and 2 have a connection with the

(vertex) graph reconstruction problem of Kelly [5] and Ulam [11]. For {0, 1} matri-
ces, the two variants of the matrix reconstruction problem (in the symmetric and
nonsymmetric case) are equivalent to the vertex reconstruction problems of ordered
ordinary and bipartite graphs, respectively.
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Marcus and Tardos [8], Tardos [10], Pach and Tardos [9] also settled a series of
conjectures and gave new proofs for related problems on 0-1 matrices and ordered
graphs.

1.2. Previous work. The one-dimensional analogue of our problems is the recon-
struction of sequences of length n from the multiset of subsequences of length k.
The problem was raised first in an information-theoretic study of Kalashnik [4]
about noisy deletion channels in which characters of a transmitted sequence are
randomly (but not necessarily independently) omitted.

The best known lower bound is due to Dudik and Schulman [2] who proved that
if k < ec

√
log n, then there exist distinct 0-1 sequences having the same multiset of

the
(
n
k

)
subsequences.

The best upper bounds are based on the ideas of Krasikov and Roditty [6].
Assuming Σ = {0, 1} — which can be done without loss of generality — they
considered the coordinatewise sum of the subsequences of length k. Suppose that
(a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1) are distinct 0-1 sequences such that their
subsequences of length k give the same sum, and let di = ai − bi. Krasikov and
Roditty showed that for every polynomial p(x) with deg p < k,

(1.1)
n−1∑
i=0

p(i) · di = 0.

(This observation links the problem to the famous Prouhet-Tarry-Escott problem
as well.)

In order to obtain an upper bound, Krasikov and Roditty combined this fact
with a result of Borwein, Erdélyi and Kós [1]: for every positive integer n, there
exists a polynomial p(x) such that deg p <

(
16
7 + ε

)√
n and

(1.2) p(0) > |p(1)| + |p(2)| + . . . + |p(n)|.

Later, in [3], Foster and Krasikov showed that the constant 16
7 ≈ 2.286 can be

replaced by 2
√

log 2 ≈ 1.665.
It is easy to see that the relations (1.1) and (1.2) are mutually exclusive, as by

permuting the sequences one can assume that d0 �= 0. Hence, if

k >
(
2
√

log 2 + ε
)√

n,

then every 0-1 sequence of length n is determined by the sum of its
(
n
k

)
subsequences

of length k.
Contrary to the case of sequences, the reconstruction problem of matrices has not

been extensively studied. We refer only to a result by Manvel and Stockmeyer [7],
who proved that for n ≥ 5, every matrix A of size n × n is reconstructible from
M sym

n−1(A).

1.3. New results on matrices. The answers in Problems 1 and 2 are obviously
the same for all alphabets consisting of at least two symbols. From now on we
assume, without loss of generality, that Σ = {0, 1}.
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The lower bound by Dudik and Schulman can be applied to matrices as well.
Suppose that the sequences (a1, . . . , an) and (b1, . . . , bn) have the same

(
n
k

)
subse-

quences, and consider

A =

⎛
⎜⎜⎜⎝

a1 a2 . . . an

a1 a2 . . . an

...
...

. . .
...

a1 a2 . . . an

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎝

b1 b2 . . . bn

b1 b2 . . . bn

...
...

. . .
...

b1 b2 . . . bn

⎞
⎟⎟⎟⎠ .

These matrices obviously satisfy Mk(A) = Mk(B) and M sym
k (A) = M sym

k (B).
Therefore, the smallest values of k in Problems 1 and 2 are greater than ec

√
log n.

In this paper we focus on the upper bound and generalize the ideas of Krasikov
and Roditty. For an arbitrary matrix A ∈ {0, 1}n×n, define the sums of submatrices
(with multiplicities) of A as

Sk(A) =
∑

B∈Mk(A)

B and Ssym
k (A) =

∑
B∈Msym

k (A)

B.

Replacing in Problems 1 and 2 the maps Mk and M sym
k by Sk and Ssym

k , respectively,
we ask the following simplified questions as well.

Problem 3. For a given n, what is the smallest k such that every A ∈ {0, 1}n×n

is uniquely determined by Sk(A), i.e. the map Sk is injective on {0, 1}n×n?

Problem 4. For a given n, what is the smallest k such that every A ∈ {0, 1}n×n

is uniquely determined by Ssym
k (A), i.e. the map Ssym

k is injective on {0, 1}n×n?

Similarly to Problems 1 and 2, it is sufficient to ask the smallest possible values

of k, since Sk(A) =
Sk

(
S�(A)

)
(n−k

�−k)2 and Ssym
k (A) =

Ssym
k

(
Ssym

� (A)
)

(n−k
�−k)

for k < �.

In Section 2 we prove the analogues of equation (1.1) for matrices. Then, in
Section 3 we prove the following results.

Result 1 (Theorem 3.1). (a) If k < n2/3

3
√

2 log2(n+1)
, then the map Sk is not injective

on {0, 1}n×n.
(b) If k < n2/3

3
√

log2(n+1)
, then the map Ssym

k is not injective on {0, 1}n×n.

Result 2 (Theorem 3.2). If n is sufficiently large and k > 38n2/3, then both Sk

and Ssym
k are injective on {0, 1}n×n.

From Result 2 we immediately obtain the following corollary:

Result 3. If n is sufficiently large and k > 38n2/3, then both Mk and M sym
k are

injective, and every matrix A ∈ Σn×n is uniquely determined by Mk(A) as well as
by M sym

k (A).

The main tool, which is the analogue of relation (1.2), is proved in Section 3.3.

2. Rephrasing the reconstruction problem

In this section we generalize equation (1.1) for matrices. The generalizations are
different for the symmetric and nonsymmetric cases.
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2.1. The nonsymmetric case. In the case of nonsymmetric deletion, we prove
the following fact.

Lemma 2.1. Let A, B ∈ {0, 1}n×n be two arbitrary matrices and let D = A−B =
(dij)1≤i,j≤n be their difference. The following two statements are equivalent:

(a) Sk(A) = Sk(B);
(b) if p(x, y) is an arbitrary polynomial with real coefficients such that degx p < k

and degy p < k, then

(2.1)
n∑

i=1

n∑
j=1

p(i, j) · dij = 0.

The proof is a combination of the following two observations.

Lemma 2.2. Define the polynomials βu(x) =
(

x−1
u−1

)(
n−x
k−u

)
for 1 ≤ u ≤ k. Let

A, B ∈ {0, 1}n×n be arbitrary matrices and let D = A − B = (dij)1≤i,j≤n. Then
for each 1 ≤ u, v ≤ k, the (u, v)th entry in the matrix Sk(A)− Sk(B) = Sk(D) can
be expressed as

(
Sk(D)

)
uv

=
n∑

i=1

n∑
j=1

βu(i)βv(j)dij .

Proof.

(
Sk(D)

)
uv

=
∑

1≤i1<i2<...<ik≤n

∑
1≤j1<j2<...≤jk≤n

⎛
⎜⎝

di1j1 . . . di1jk

...
. . .

...
dikj1 . . . dikjk

⎞
⎟⎠

uv

=
n∑

iu=1

n∑
jv=1

∑
i1<...<iu−1<iu

∑
iu<iu+1<...<ik≤n

∑
j1<...<jv−1<jv

∑
jv<jv+1<...<jk≤n

diujv

=
n∑

iu=1

n∑
jv=1

(
iu − 1
u − 1

)(
n − iu
k − u

)(
jv − 1
v − 1

)(
n − jv

k − v

)
diujv

=
n∑

i=1

n∑
j=1

βu(i)βv(j)dij .

�

Lemma 2.3. (i) The polynomials βu(x) (1 ≤ u ≤ k) form a basis of the linear
space of all polynomials with degree less than k.

(ii) The polynomials βu(x)βv(y) (1 ≤ u, v ≤ k) form a basis of the linear space
of all polynomials in two variables which have degree less than k in each variable.

Remark. The first statement was also proved and used in [6].

Proof. (i) The number of polynomials βu(x) is k which matches the dimension of
the linear space of polynomials with degree less than k. So it is sufficient to prove
that polynomials βu(x) are linearly independent. Suppose that λu (1 ≤ u ≤ n) are
real numbers, not all zero. We have to show that

k∑
u=1

λuβu(x) �= 0.
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Let u0 be the first index for which λu0 �= 0. Substituting x = u0, we have λu = 0
for u < u0 and βu(u0) = 0 for u > u0. Hence,

k∑
u=1

λuβu(u0) = λu0βu0(u0) = λu0

(
n − u0

k − u0

)
�= 0.

Statement (ii) follows from statement (i). �
Proof of Lemma 2.1. (b) ⇒ (a). For each pair 1 ≤ u, v ≤ k of indices, apply
Lemma 2.2 and property (b) on the polynomial puv(x, y) = βu(x)βv(y). Since the
degree of puv is less than k in each variable,

(
Sk(D)

)
uv

=
n∑

i=1

n∑
j=1

βu(i)βv(j)dij =
n∑

i=1

n∑
j=1

puv(i, j) · dij = 0.

This holds for each pair (u, v), so Sk(D) = 0 and Sk(A) = Sk(B).
(a) ⇒ (b). Let p(x, y) be an arbitrary polynomial with degx p, degy p < k. By

Lemma 2.3, there exist real numbers λu,v (1 ≤ u, v ≤ k) such that

p(x, y) =
k∑

u=1

k∑
v=1

λu,vβu(x)βv(y).

Then, applying Lemma 2.2,
n∑

i=1

n∑
j=1

p(i, j) · di,j =
n∑

i=1

n∑
j=1

(
k∑

u=1

k∑
v=1

λu,vβu(i)βv(j)

)
di,j

=
k∑

u=1

k∑
v=1

λu,v

⎛
⎝ n∑

i=1

n∑
j=1

βu(i)βv(j)di,j

⎞
⎠ =

k∑
u=1

k∑
v=1

λu,v · 0 = 0.

�
2.2. The symmetric case. In the symmetric case, the diagonal, the upper triangle
and the lower triangle of the matrix Ssym

k (A) are determined only by the diagonal,
the upper and lower triangle of A. For this reason, instead of a single family of
equations like (2.1), we have three distinct families for the elements in, above and
below the diagonal, respectively.

Lemma 2.4. For arbitrary matrices A, B ∈ {0, 1}n×n and D=A−B=(dij)1≤i,j≤n,
the following two statements are equivalent:

(a) Ssym
k (A) = Ssym

k (B);
(b) for arbitrary polynomials p(x, y) and q(x) with degrees deg p < k − 1 and

deg q < k,∑
1≤i<j≤n

p(i, j) · dij = 0,
∑

1≤j<i≤n

p(i, j) · dij = 0, and
n∑

j=1

q(i) · dii = 0.

In order to obtain a simpler necessary condition, we can replace these three
families by a single one.

Corollary 2.5. Let A, B ∈ {0, 1}n×n and D = A−B = (dij)1≤i,j≤n. If Ssym
k (A) =

Ssym
k (B). Then

n∑
i=1

n∑
j=1

p(i, j) · dij = 0
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for every polynomial p(x, y) with total degree deg p < k − 1.

Proof. Let p(x, y) be an arbitrary polynomial with deg p < k − 1 and let q(x) =
p(x, x). Then deg q ≤ deg p < k and

n∑
i=1

n∑
j=1

p(i, j) · dij =
∑
i<j

p(i, j) · dij +
∑
i=j

q(i) · dii +
∑
j>i

p(i, j) · dij = 0 + 0 + 0.

�
For proving Lemma 2.4, we show the analogues of Lemmas 2.2 and 2.3.

Lemma 2.6. For every pair 1 ≤ u < v ≤ k, define

γuv(x, y) =
(

x − 1
u − 1

)(
y − x − 1
v − u − 1

)(
n − y

k − v

)
.

If A, B ∈ {0, 1}n×n are arbitrary matrices and D = A−B = (dij)1≤i,j≤n, then for
each 1 ≤ u, v ≤ k, the (u, v)th entry of Ssym

k (D) is

(
Ssym

k (D)
)
uv

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i<j

γuv(i, j) · dij if u < v;

n∑
i=1

βu(i) · dii if u = v;

∑
j<i

γvu(j, i) · dij if u > v.

Proof. If u = v, then

(
Ssym

k (D)
)
uv

=
∑

1≤i1<i2<...<ik≤n

⎛
⎜⎝

di1i1 . . . di1ik

...
. . .

...
diki1 . . . dikik

⎞
⎟⎠

uu

=
n∑

iu=1

∑
i1<...<iu−1<iu

∑
iu<iu+1<...<ik

diuiu

=
n∑

iu=1

(
iu − 1
u − 1

)(
n − iu
k − u

)
diuiu

=
n∑

i=1

βu(i)dii.

If u < v, then

(
Ssym

k (D)
)
uv

=
∑

1≤i1<i2<...<ik≤n

⎛
⎜⎝

di1i1 . . . di1ik

...
. . .

...
diki1 . . . dikik

⎞
⎟⎠

uv

=
∑

iu<iv

∑
1≤i1<...<iu−1<iu

∑
iu<iu+1<...<iv−1<iv

∑
iv<iv+1<...<ik≤n

diuiv

=
∑

iu<iv

(
iu − 1
u − 1

)(
iv − iu − 1
v − u − 1

)(
n − iv
k − v

)
diuiv

=
∑
i<j

γuv(i, j) · dij .

The case u > v can be proved similarly. �
Lemma 2.7. The polynomials γuv(x, y) (1 ≤ u < v ≤ k) form a basis of the linear
space of polynomials in two variables with total degree less than k − 1.



RECONSTRUCTION OF MATRICES FROM SUBMATRICES 1739

Proof. Again, the number of polynomials matches the dimension which is 1
2k(k−1),

so it is sufficient to prove linear independence.
Let λuv (1 ≤ u < v ≤ k) be real numbers, not all zero; we have to show that∑

1≤u<v≤k

λuvγu,v(x, y) �= 0.

Let (u0, v0) be the first pair of indices in lexicographical order, for which λu0,v0 �=
0. This means that λuv = 0 in every case when u < u0, or u = u0 and v < v0.
Substituting x = u0, y = v0, we have γu,v(u0, v0) = 0 for u > u0 and v−u > v0−u0.
The only case when λuvγuv(u0, v0) �= 0 is u = u0, v = v0. Therefore,

∑
1≤u<v≤k

λuvγuv(u0, v0) = λu0v0γu0v0(u0, v0) = λu0v0

(
n − v0

k − v0

)
�= 0. �

Proof of Lemma 2.4. Similarly to the nonsymmetric case, Lemma 2.4 follows from
Lemma 2.6 and Lemma 2.7. �

3. Proofs of the results

3.1. Lower bounds. By simple applications of the pigeonhole principle, we can
obtain lower bounds for the smallest values of k in Problems 3 and 4.

Theorem 3.1 (Result 1). (i) If k < n2/3

3
√

2 log2(n+1)
, then there exist matrices A, B ⊂

{0, 1}n×n such that A �= B but Sk(A) = Sk(B).
(ii) If k < n2/3

3
√

log2(n+1)
, then there exist matrices A, B ⊂ {0, 1}n×n such that

A �= B but Ssym
k (A) = Ssym

k (B).

Proof. (i) For an arbitrary matrix A ∈ {0, 1}n×n, Sk(A) is the sum of
(
n
k

)2 subma-
trices, so each entry in Sk(A) is a nonnegative integer, not exceeding

(
n
k

)2. Hence,

∣∣∣{Sk(A) : A ∈ {0, 1}n×n
}∣∣∣ ≤

((
n

k

)2

+ 1

)k2

≤ (n2k + 1)k2
≤ (n + 1)2k3

< 2n2
=

∣∣{0, 1}n×n
∣∣.

There are fewer possible values of Sk(A) than 0-1 matrices, so the map Sk cannot
be injective.

(ii) Similarly to the nonsymmetric case, each entry of Ssym
k (A) is at most

(
n
k

)
and therefore

∣∣∣{Ssym
k (A) : A ∈ {0, 1}n×n

}∣∣∣ ≤ ((
n

k

)
+ 1

)k2

≤ (n + 1)k3
< 2n2

=
∣∣{0, 1}n×n

∣∣.
�

Remark. With more careful computation the conditions can be improved to k <(
3

√
3
2 − ε

)
n2/3

3
√

log2 n
and k <

(
3
√

3 − ε
)

n2/3

3
√

log2 n
, respectively, without any change in

the order of magnitude.
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3.2. Upper bounds. As mentioned in the Introduction, we prove the following
upper bound for the smallest k for which the maps Sk and Ssym

k are injective.

Theorem 3.2 (Result 2). If n is sufficiently large, k ≥ 38n2/3, and A, B ∈
{0, 1}n×n are two distinct matrices, then Sk(A) �= Sk(B), and Ssym

k (A) �= Ssym
k (B).

The main tool for proving the theorem is the following result.

Lemma 3.3. For sufficiently large n, for an arbitrary nonempty set H ⊂ {1, 2,
. . . , n}2 there exists a point a = (a1, a2) ∈ H and a polynomial p(x, y) such that
deg p < 37.5n2/3 and

(3.1) p(a1, a2) >
∑

(x,y)∈H, (x,y) �=(a1,a2)

|p(x, y)|.

We prove this lemma in Section 3.3.

Proof of Theorem 3.2. Let D = A−B = (dij)1≤i,j≤n and apply Lemma 3.3 on the
set H =

{
(i, j) ∈ {1, 2, . . . , n}2 : dij �= 0

}
. By the lemma, there exists a point

(a1, a2) ∈ H and a polynomial p(x, y) such that deg p < k − 1 and relation (3.1)
holds. Then∣∣∣∣∣∣

n∑
i=1

n∑
j=1

p(i, j)dij

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(i,j)∈H

p(i, j)dij

∣∣∣∣∣∣ ≥ p(a1, a2) −
∑

(x,y)∈H\{(a1,a2)}
|p(x, y)| > 0.

Hence,
∑n

i=1

∑n
j=1 p(i, j)dij �= 0. By Lemmas 2.1 and 2.4 this implies Sk(A) �=

Sk(B) and Ssym
k (A) �= Ssym

k (B), respectively. �

3.3. Proof of Lemma 3.3.

Lemma 3.4. For arbitrary real numbers A, M > 0 there exists a polynomial f(x)
with real coefficients with the following properties:

(a) f(0) = M ,

(b) |f(x)| ≤ min
(

M,
1
x2

)
for all x ∈ (0, A] and

(c) deg f <
√

π
√

A 4
√

M + 2.

Remark. This lemma and this polynomial come from a previous paper [1], but the
proof has been arranged in a different way to make generalizations easier, such as
in Lemma 3.5.

Proof. Let k =
⌈√

π
2

√
A 4
√

M
⌉

+ 1 and consider the Chebyshev polynomial Tk(x).
Let u0 = cos π

2k which is the largest root and u1 = cos π
k which is the largest local

minimum (see Figure 1).
The polynomial we seek will be constructed as

f(x) = cg2(x); g(x) =
−Tk

(
u0 −

1 + u0

A
x
)

x
, c =

M

g2(0)
.

Obviously, f(0) = M and deg f = 2(k − 1) <
√

π
√

A 4
√

M + 2, so properties (a)
and (c) hold.



RECONSTRUCTION OF MATRICES FROM SUBMATRICES 1741

1

−1

0

Tk(x)

u1 1−1

T ′
k(ω)(x − ω)

u0

Figure 1. Construction of polynomial in Lemma 3.4

To estimate g(0), notice that

T ′
k(cos t) = −

(
Tk(cos t)

)′
sin t

= −
(
cos kt

)′
sin t

=
k sin kt

sin t
for all 0 < t < π. Then

g(0) =
1 + u0

A
T ′

k(u0) =
1 + cos π

2k

A
·
k sin π

2

sin π
2k

>
2 − 1

2

(
π
2k

)2

A
· k

π
2k

=
4
π k2 − π

4

A
>

√
M,

therefore c = M
g2(0) < 1.

For all x ∈ (0, A], we have u0− 1+u0
A x ∈ [−1, 1] and |Tk

(
u0− 1+u0

A x
)
| ≤ 1. Hence,

(3.2) |f(x)| = c

(
Tk

(
u0 − 1+u0

A x
)

x

)2

≤ c

x2
<

1
x2

.

In the interval [u1, u0], by the convexity of the function Tk(x), we have |Tk(x)| ≤
T ′

k(u0)(x−u0). For x ∈ [−1, u1] we have T ′
k(u0)(x−u0) < −1. Therefore |Tk(x)| ≤

|T ′
k(u0)| · (u0 − x) holds in the entire interval [−1, u0]. Then, for all x ∈ (0, A],

(3.3) |f(x)| = c

(
Tk

(
u0 − 1+u0

A x
)

x

)2

≤ c

(
|T ′

k(u0)| · 1+u0
A x

x

)2

= cg2(0) = M.

Estimates (3.2) and (3.3) together provide property (b). �
Lemma 3.5. For arbitrary real numbers A, B, M ≥ 1, there exists a polynomial
f(x) with real coefficients such that

(a) f(0) = M ,

(b) |f(x)| < min
(

4M,
1
x2

)
for all x ∈ [−A, B], x �= 0 and

(c) deg f < 7
√

ABM + 2.

Proof. Without loss of generality, we can assume A ≥ B. Let k be the smallest odd
integer which is not less than 7

2

√
ABM and consider the Chebyshev polynomial

Tk(x). Let ω = arccos A−B
A+B and let u0 = cos ω0 be the largest root of Tk(x) in the

interval [−1, A−B
A+B ]. Since k is odd, u0 ≥ 0. Similarly to Lemma 3.4, the polynomial

we seek will be constructed as

f(x) = cg2(x), g(x) =
Tk

(
u0 +

1 + u0

A
x

)
x

, c =
M

g2(0)
.
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−1

1
Tk(x)

u1 u0 u2 x
y

Figure 2. Construction of polynomial in Lemma 3.5

Again, properties (a) and (c) are obvious. For all x ∈ [−A, B] we have u0+ 1+u0
A x ∈

[−1, 1] and therefore |g(x)| ≤ 1
|x| .

Since ω ≤ ω0 ≤ min
(
ω + π

k , π
2

)
,

sin ω0 < sin ω +
π

k
≤

√
1 −

(
A − B

A + B

)2

+
π

7
2

√
ABM

=
2
√

AB

A + B
+

2
7π√

ABM
< 3

√
B

A
,

|g(0)| =
1 + u0

A
|T ′

k(u0)| ≥
1
A

· k

sin ω0
>

7
2

√
ABM

A · 3
√

B
A

>
√

M

and

(3.4) |f(x)| =
M

g2(0)
g2(x) < 1 ·

(
1
x

)2

=
1
x2

.

To finish proving property (b) we show that

(3.5)
∣∣∣∣ Tk(x)
x − u0

∣∣∣∣ < 2|T ′
k(u0)|

for all x ∈ [−1, 1], x �= u0. Let u1 = cos ω1 and u2 = cosω2 be the two neighboring
local extrema of Tk(x) around u0 (see Figure 2). Consider an arbitrary point
x ∈ [−1, 1], x �= u0. If Tk(x) = 0, then inequality (3.5) is trivial. Otherwise,
choose the point y = cos ϑ ∈ [u1, u2] such that x and y lie on the same side of u0

and |Tk(y)| = |Tk(x)|. Then 0 < |y − u0| ≤ |x − u0| and by Cauchy’s mean value
theorem, there exists ξ ∈ (ω2, ω1) such that∣∣∣∣ Tk(x)

x − u0

∣∣∣∣ ≤
∣∣∣∣Tk(y) − Tk(u0)

y − u0

∣∣∣∣ =
∣∣∣∣cos kϑ − cos kω0

cos ϑ − cos ω0

∣∣∣∣
=

∣∣∣∣−k sin kξ

− sin ξ

∣∣∣∣ <
k

sin ω2
=

sin ω0

sin ω2
· |T ′

k(u0)|.

Since ω ≤ ω0 ≤ π
2 and ω2 = ω0 − π

2k ,

sin ω2

sin ω0
>

sin ω0 − π
2k

sin ω0
= 1 −

π
2k

sin ω0
≥ 1 −

π
2k

sin ω
≥ 1 −

π
7
√

ABM

2
√

AB
A+B

>
1
2

and inequality (3.5) follows.
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Pn

Figure 3. Construction of Pn in Lemma 3.6

Applying inequality (3.5) to polynomial g(x),

|g(x)| =
1 + u0

A
·
∣∣∣∣∣Tk

(
u0 + 1+u0

A x
)

1+u0
A x

∣∣∣∣∣ <
1 + u0

A
· 2|T ′

k(u0)| = 2g(0)

and

(3.6) |f(x)| = M

(
g(x)
g(0)

)2

< 4M.

Inequalities (3.4) and (3.6) prove property (b). �

Lemma 3.6. For sufficiently large n there exists a convex lattice polygon Pn with
the following properties:

(a) Pn contains a square of size n×n in its interior, with horizontal and vertical
sides;

(b) the side lengths of Pn lie in the interval [n1/3, 2n1/3];
(c) the sides of Pn do not contain any lattice point other than the vertices.

Proof. Denote by N(R) the number of lattice points (x, y) on the disk x2 +y2 < R2

which are visible from the origin (i.e. x and y are relatively prime). It is well known
that

lim
R→∞

N(R)
R2

=
6
π

.

Let R1 = n1/3 and R2 = 2n1/3 and consider the lattice vectors (x, y) where x
and y are relatively prime integers and R2

1 ≤ x2 + y2 < R2
2. Choose these vectors

to be the sides of Pn; i.e. sort the vectors by direction and arrange them such that
they form a convex polygon (see Figure 3). Obviously, properties (b) and (c) hold.

The perimeter of Pn is at least

(
N(R2) − N(R1)

)
· R1 >

(
6
π
− ε

)
R2

2R1 −
(

6
π

+ ε

)
R3

1 =
(

18
π

− 5ε

)
n > 4

√
2n.

By the symmetry of Pn, property (a) follows. �

Lemma 3.7. Let � be an arbitrary line intersecting Pn and let �1 and �2 be the
two supporting lines of Pn, parallel to �; denote the distance between � and �i by
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Pn

�

�1

�2

ϕS

d2

d1

Figure 4. Estimating min(d1, d2) in Lemma 3.7

di (i = 1, 2). Assume that � has a common point with a side S of Pn such that the
angle between � and S is ϕ = arcsin n−1/3 (see Figure 4). Then

min(d1, d2) < 15n1/3.

Proof. Without loss of generality, we can assume that d1 ≤ d2. Consider the
side vectors of Pn which lie completely or partially between the lines � and �1.
Translating these vectors to start from the origin, the endpoints lie in a region D
which is bounded by two concentric circular arcs of radii R1 = n1/3 and R2 = 2n1/3

and two radii of the same circles. The central angle of the arcs is 2ϕ (see Figure 5).
Drawing a unit square around the endpoints of the vectors, these squares do not

overlap and they lie in a region denoted by D′ in Figure 5. The central angle of this
region is less than 4ϕ and its area is less than

(
(R2 +1)2− (R1−1)2

)
·4ϕ < 15n1/3.

Therefore, the number of sides of Pn which have at least one endpoint between the
lines � and �1 is less than 15n1/3. Since the side lengths of Pn do not exceed 2n1/3

and the angles between � and the mentioned sides do no exceed arcsin n−1/3, this
implies d1 < 15n1/3. �

D

D′

O2ϕ

Figure 5. Regions D and D′

Proof of Lemma 3.3. Let H ⊂ {1, 2, . . . , n}2 be an arbitrary nonempty set. Trans-
late the polygon Pn, provided by Lemma 3.6, to polygon P ′

n such that the set H
is contained in P ′

n and at least one point of H lies on the boundary of P ′
n. By the

choice of the side vectors, any side of P ′
n may contain at most two lattice points;

if a side contains two lattice points, they must be the two endpoints. Since set
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a

t0 t1 t2

H

P ′
nS u

Figure 6. Construction of the first polynomial in Lemma 3.3

H cannot contain all vertices of the polygon P ′
n, there is a side S which contains

exactly one element of H. Let a = (a1, a2) be this element.
The desired polynomial p(x, y) will be constructed as a product of two polyno-

mials p1 and p2. To construct the first polynomial, rotate the side vector of S by
90 degrees such that it points inside P ′

n; let this vector be u = (u1, u2); by the
construction of Pn, the coordinates u1 and u2 are relatively prime integers and
n1/3 ≤ |u| ≤ 2n1/3 (see Figure 6).

Let f1(t) be the polynomial provided by Lemma 3.4 for M = 19 and A = 2n4/3

and define

g1(x, y) = u1(x − a1) + u2(y − a2), p1(x, y) = f1

(
g1(x, y)

)
.

For each integer k, let tk be the line where g1(x, y) = k. Line t0 is the ex-
tension of side S and the distance between lines tk and tk+1 is 1/|u| for ev-
ery k. Since the diameter of set H is at most

√
2n and |u| ≤ 2n1/3, we have

g1(H) ⊂
{
0, 1, 2, . . . ,

[
2
√

2n4/3
]}

.
To construct the second polynomial, take a unit vector v which encloses an angle

ϕ = arcsin n−1/3 with u. Let � be the line through (a1, a2) which is perpendicular
to v and let �1 and �2 be the two supporting lines of the set H, parallel to �. Let
di be the distance between � and �i (i = 1, 2). We can assume d1 ≤ d2. Moreover,
by Lemma 3.7, we have d1 < 15n1/3 and d2 ≤

√
2n since the diameter of H is at

most
√

2n (Figure 7).

tk
Pn

P ′
n

�2

�1

v
ϕ

S

d2

d1

S

�

H

a

Figure 7. Construction of the second polynomial in Lemma 3.3
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Let f2(t) be the polynomial by Lemma 3.5 for parameters A = max(d1, 1),
B = max(d2, 1) and M = 1 and define

g2(x, y) = v1(x − a1) + v2(y − a2), p2(x, y) = f2

(
g2(x, y)

)
.

For an arbitrary integer k, consider the lattice points on line tk. The lattice
points are distributed uniformly; the distance between the consecutive pairs is |u|.
Hence, the values g2(x, y) on these points form an arithmetic progression lying in
the interval [−d1, d2] with difference |u|/ sin ϕ ≥ 1.

Since |f2(t)| ≤ min(4, 1/t2) in the interval [−d1, d2], this implies

∑
(x,y)∈H∩tk

|p2(x, y)| < 2
[max(d1,d2)]∑

h=0

min
(

4,
1
h2

)
< 8 +

π2

3
.

Now let
p(x, y) = p1(x, y) · p2(x, y).

Then
p(a1, a2) = f1(0) · f2(0) = 19 · 1 = 19

and

∑
(x,y)∈H, (x,y) �=(a1,a2)

|p(x, y)| =
[2
√

2n4/3]∑
k=1

∑
(x,y)∈H∩tk

|p1(x, y)| · |p2(x, y)|

=
[2
√

2n4/3]∑
k=1

|f1(k)|
∑

(x,y)∈H∩tk

|p2(x, y)| <

[2
√

2n4/3]∑
k=1

1
k2

(
8 +

π2

3

)
<

π2

6

(
8 +

π2

3

)

< 19 = p(a1, a2),

so the polynomial p(x, y) satisfies (3.1).
The degree of the polynomial is

deg p = deg p1 + deg p2 <

(√
π
√

2n4/3 4
√

19 + 2
)

+
(

7
√

15n1/3 ·
√

2n + 2
)

< 37.5n2/3. �

4. Summary

We proved that if k > cn2/3, then every matrix A ∈ {0, 1}n×n is uniquely
determined by Mk(A) and M sym

k (A). To prove this, we simplified the problem,
replacing the multisets by the sums Sk(A) and Ssym

k (A). We also showed that
the smallest values of k, for which Sk(A) or Ssym

k (A) determines the matrix A, is

between Ω
(

n2/3

3√log n

)
and O

(
n2/3

)
. These results indicate that the exponent 2/3

is sharp in the simplified problem, pointing out the limitations of the presented
method.
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