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A POSTERIORI ERROR ESTIMATOR AND ERROR CONTROL
FOR CONTACT PROBLEMS

ALEXANDER WEISS AND BARBARA I. WOHLMUTH

Abstract. In this paper, we consider two error estimators for one-body con-
tact problems. The first error estimator is defined in terms of H(div)-conform-
ing stress approximations and equilibrated fluxes while the second is a standard
edge-based residual error estimator without any modification with respect to
the contact. We show reliability and efficiency for both estimators. More-
over, the error is bounded by the first estimator with a constant one plus a
higher order data oscillation term plus a term arising from the contact that
is shown numerically to be of higher order. The second estimator is used in
a control-based AFEM refinement strategy, and the decay of the error in the
energy is shown. Several numerical tests demonstrate the performance of both
estimators.

1. Introduction

Finite element methods are commonly used in the numerical simulation of many
engineering applications. Adaptive techniques based on a posteriori error estimators
have become an indispensable tool and are well established for such methods; see
[2, 27, 55] and the references therein. Error estimators have also been successfully
used in the field of nonconforming discretizations [1, 19, 20, 24] and for variational
inequalities [3, 13, 26] such as obstacle problems; see [14, 32, 34, 53] and for contact
problems, see [11, 12, 18, 22, 31, 41, 61].

Recently, error control strategies, commonly known as AFEM refinement strate-
gies, have been developed, e.g., in [5, 21, 25, 42, 45, 46]. Here, special refinement
rules in combination with a control over the data oscillation terms lead to a guaran-
teed error decay. Moreover, optimal convergence under mild regularity assumptions
has been stated in [10, 51, 52]. These control-based strategies have also been ap-
plied to obstacle problems [15]. Here, a decay in the energy can be achieved instead
of the error decay.

Usually upper and lower bounds are proved in order to guarantee the reliability
and the efficiency of the proposed estimator. Most of the existing approaches
involve constants depending on the shape regularity of the elements and/or of the
jumps in the coefficients, but these dependences are often not given explicitly.
However, in a recent paper [44] an error estimator for the Lamé equation based
on H(div)-conforming approximations for the stress and on equilibrated fluxes has
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been introduced which guarantees an upper bound with constant one up to data
oscillation terms.

In this paper, we adapt this error estimator to one-body contact problems. Then,
the error is bounded by the same error estimator with a constant one plus an
extra term arising from the contact which proves numerically to be of higher order.
Moreover it is shown that the extra term can be neglected without losing the
reliability of the error estimator. Using a similar technique, also a new upper
bound for the error in the Lagrange multiplier is established.

We also define a control-based refinement strategy. Here a standard edge-based
residual error estimator is used in combination with the well-known AFEM marking
and refinement technique [42]. Even though the contact stress is not used in the
definition of this error estimator, reliability and efficiency for one-body contact
problems are established. Moreover, we show a strict energy decay when using the
AFEM technique.

The rest of the paper is organized as follows: In Section 2, we recall the contact
problem and its discretization. Section 3 is devoted to the introduction of the
estimator and the proofs of the upper and lower bounds. In Section 4, we present
some numerical examples that demonstrate the usage of our error estimator for
contact problems. A new upper bound for the Lagrange multiplier is derived in
Section 5. The last two sections are dedicated to an AFEM energy control strategy.
In Section 6, the strategy based on an edge-based error estimator is presented and
energy decay is shown. Numerical examples for this strategy and comparisons
between the two error estimators are given in Section 7.

2. Contact problem and discretization

In this section, we state the setting of a contact problem between an elastic
body and a rigid obstacle without friction and its discretization. The body in its
reference configuration is given by Ω ⊂ R

2. We assume the boundary ∂Ω to be
divided into three open disjoint measurable parts ΓD, ΓN , ΓC with meas(ΓD) > 0.
Furthermore, we assume that ΓC is a compact subset of ∂Ω\ΓD. We denote the
outer unit normal vector on the boundary ∂Ω by n. On the contact zone the
normal vector n is assumed to be constant. We impose Dirichlet conditions on
ΓD and homogeneous Neumann data on ΓN . Moreover, we denote volume forces
by f ∈ [L2(Ω)]2. We consider a homogeneous isotropic linearized Saint Venant–
Kirchhoff material, where the stress tensor is given in terms of Hooke’s tensor C
by

σ(v) := λ tr(ε(v))Id + 2µε(v) =: Cε(v) ,

and the linearized strain tensor is defined by ε(v) := 1
2

(
∇v + (∇v)�

)
. The positive

material parameters λ and µ are the Lamé parameters and are assumed to be
constant. Moreover, tr denotes the matrix trace operator and Id the identity matrix
in R

2. The elastic equilibrium condition can be written as

(2.1)
− div σ(u) = f in Ω ,

u = uD on ΓD ,
σ(u)n = 0 on ΓN .

In addition to (2.1), we have to satisfy the linearized nonpenetration condition.
Taking into account that we do not consider friction, we find on ΓC the following
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equality and inequality constraints:

un ≤ 0 , σn ≤ 0 , σnun = 0 ,(2.2)
σt = 0 ,(2.3)

where σn := n · σ(u)n and σt = σ(u)n − σnn are the normal and tangential
components, respectively, of the boundary stress, and un := u · n stands for the
displacement in the normal direction. Here, we have been assuming for simplicity
that the body in its reference configuration is in contact with the rigid obstacle on
ΓC and that there is no gap.

2.1. Weak formulation. It is well known that the solution of (2.1)–(2.3) can
be rewritten as a solution of a constrained minimization problem or equivalently
as a variational inequality on a convex set; see, e.g., [37]. To give the varia-
tional formulation of problem (2.1) with the nonpenetration condition (2.2) and
the condition of no friction (2.3), we introduce the space V := [H1(Ω)]2, equipped
with the H1-norm ‖v‖1. Moreover, we set V0 := {v ∈ V : v|ΓD

= 0} and
VD := {v ∈ V : v|ΓD

= uD}. For u,v ∈ V, we define the bilinear form a(u,v)
and the linear form f(v) by

a(u,v) :=
∫

Ω

σ (u) : ε(v) dx , f(v) :=
∫

Ω

f · v dx .

Let the convex set K be given by K := {v ∈ VD : vn ≤ 0 on ΓC}. Then the
solution u ∈ K of the contact problem satisfies the variational inequality

(2.4) a(u,v − u) ≥ f(v − u), v ∈ K .

Although our discretization is based on a pure displacement approach, the analy-
sis and the definition of the error estimator use a mixed formulation. Introducing
the surface traction on the contact boundary ΓC as an additional unknown, the
variational inequality (2.4) can be rewritten as a saddle point problem. The La-
grange multiplier space M is set to be the dual space of the trace space W of V0

restricted to ΓC . By assumption, ΓC is a compact subset of ∂Ω\ΓD, and thus we
have W = [H

1
2 (ΓC)]2. We now define the convex cone of Lagrange multipliers by

M+ :=
{
µ ∈ M : 〈µ,v〉 ≥ 0, v ∈ W+

}
,

where 〈·, ·〉 denotes the duality pairing between M and W on ΓC , and W+ := {v ∈
W : vn ≥ 0}. It is easy to see that for µ ∈ M+, we have µ · t = 0.

Defining the bilinear form b(·, ·) on the product space V × M by

b(v, µ) := 〈µ,v〉 , µ ∈ M , v ∈ V ,

we get the saddle point formulation of a contact problem without friction; see, e.g.,
[28, Chap. 1.3]. We find u ∈ VD and λ ∈ M+ such that

(2.5)
a(u,v) + b(v, λ) = f(v) , v ∈ V0 ,

b(u, µ − λ) ≤ 0 , µ ∈ M+ .

The existence and uniqueness of (u, λ) ∈ VD × M+ has been stated, e.g., in [28,
Theorem 3.11 and Remark 3.10]. Moreover, we find that λ = −σ(u)n. Setting
µ = 0 and µ = 2λ, it is easy to see that b(u, λ) = 0. The second line of (2.5) reflects
the linearized nonpenetration condition and guarantees that u ∈ K. Restricting
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the first line of (2.5) to v − u for v ∈ K, we find v − u ∈ V0 and

a(u,v − u) = f(v − u) − b(v, λ) ≥ f(v − u) ,

and thus u solves (2.4).

Remark 2.1. We note that in the case of no friction it would be sufficient to work
with a scalar Lagrange multiplier space. Working with the vectorial space M has
the advantage that the approach can be easily generalized to friction.

2.2. Discretization. In this section, we consider a discrete formulation of the vari-
ational inequality (2.4) and the saddle point formulation (2.5). A one-body contact
problem can be regarded as a simplified case of a two-body contact problem for
which mortar techniques with nodal Lagrange finite elements as Lagrange multipli-
ers have been considered and analyzed, e.g., in [7, 8, 9, 23, 29, 30]. Here, we apply
these results and work with a dual Lagrange multiplier space; see, e.g., [33]. To
approximate V, we use standard conforming finite elements of lowest order. For
simplicity of notation, we restrict ourselves to the case of a locally quasi-uniform
simplicial triangulation, and we assume that the domain Ω and the sub-boundaries
ΓC , ΓN and ΓD are resolved by the triangulation. The finite element space associ-
ated with the shape regular triangulation Th is denoted by Sh(Ω). For ease of pre-
sentation, we assume that uD is a piecewise affine function and can be exactly repre-
sented by an element in [Sh(Ω)]2. We define the discrete space Vh :=

[
Sh(Ω)]2∩V0

and set Vh;D :=
[
Sh(Ω)]2 ∩ VD. In the mortar context, the Lagrange multiplier

space inherits its one-dimensional mesh from the two-dimensional triangulation on
the slave side. Here we only have one body which plays the role of the slave side.
The discrete Lagrange multiplier space is defined in terms of continuous piecewise
cubic nodal basis functions ψp, p ∈ PC

h , where PC
h denotes the set of nodes on ΓC ,

[59]; see Figure 1.
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Figure 1. Nodal basis function of a continuous dual Lagrange
multiplier space.

We recall that the two sets {ψp}p and {ϕp}p form a pair of biorthogonal basis
functions, where ϕp is the nodal Lagrange finite element basis function associ-
ated with the node p on the one-dimensional boundary ΓC , i.e.,

∫
ΓC

ψpϕq ds =
δpq

∫
ΓC

ϕq ds. The discrete vectorial Lagrange multiplier space is denoted by Mh.
Let Wh be the vector-valued trace space of Vh restricted to ΓC . We now define
the discrete approximation of M+ by

M+
h :=

{
µh ∈ Mh : 〈µh,vh〉 ≥ 0, vh ∈ W+

h

}
,

where W+
h := {vh ∈ Wh : (vh)n ≥ 0 on ΓC}. Using the biorthogonality between

{ϕp}p and {ψp}, it is easy to see that each element µh ∈ M+
h can be written as

µh =
∑

p∈PC
h

αpψpn, αp ≥ 0. We remark that ψpn 
∈ M+ and thus M+
h 
⊂ M+.



A POSTERIORI ERROR ESTIMATOR AND ERROR CONTROL 1241

With respect to the Lagrange multiplier this approach is a nonconforming finite
element technique.

The finite element solution of (2.4) is given by: find uh ∈ Kh,

(2.6) a(uh,v − uh) ≥ f(v − uh), v ∈ Kh ,

where Kh := {v ∈ Vh;D : (vh)n ≤ 0 on ΓC} ⊂ K. In contrast to the Lagrange
multiplier, the primal variable uh can be analyzed within the abstract framework
of conforming finite elements. Moreover it is easy to see that the discrete set Kh

can be characterized by

Kh = {v ∈ Vh;D :
∫

ΓC

(vh)nψp ds ≤ 0, p ∈ PC
h } .

Now, (2.6) can be reformulated as a mixed approach: find uh ∈ Vh;D and λh ∈ M+
h

such that

(2.7)
a(uh,vh) + b(vh, λh) = f(vh) , vh ∈ Vh ,

b(uh, µh − λh) ≤ 0 , µh ∈ M+
h .

Setting µh = 0 and µh = 2λh, we obtain the discrete complementary condition
b(uh, λh) = 0. We note that if the finite element solution of (2.6) is known, the
discrete Lagrange multiplier λh can be locally computed from (2.7) by static con-
densation. This results from the fact that we work with biorthogonal basis func-
tions, and thus the inverse of a diagonal matrix enters. More precisely, we have
λh =

∑
p∈PC

h
βpψpn, where βp is the local scaled residual given by

βp =
f(ϕpn) − a(uh, ϕpn)∫

ΓC
ϕp ds

≥ 0 .

In the case that M is discretized in terms of nodal Lagrange finite elements, one
has to solve a mass matrix system, and the coefficients of the solution vector do
not have to be nonnegative.

To show a local upper bound for the error estimator in the contact setting, we
use the mortar projection operators Π : [H

1
2 (ΓC)]2 → Wh and Π∗ : [H− 1

2 (ΓC)]2 →
Mh,

(2.8) 〈µ,Πw〉 := 〈µ,w〉, µ ∈ Mh, 〈Π∗µ,w〉 := 〈µ,w〉, w ∈ Wh .

Then it is easy to see that 〈µ,Πw〉 = 〈Π∗µ,w〉. It is well known that these
operators are stable and satisfy suitable approximation properties, [58, Chapters
1.2.1 and 1.2.2]. We note that due to the biorthogonality of the nodal basis functions
of Mh and Wh a local support is preserved under the mappings Π and Π∗.

The following local L2-stability and properties of Π and Π∗ will be used:

(2.9)
‖Πw‖0;e ≤ C‖w‖0;se

, w ∈ [L2(ΓC)]2,

‖Π∗w‖0;e ≤ C‖w‖0;se
, w ∈ [L2(ΓC)]2.

Here, se ⊆ ΓC is a local neighborhood of e consisting of at most three edges; see
Figure 2. Moreover, we note that from the locality of the support of the basis and
the biorthogonality, we can conclude that

(2.10) Πw|e = Π∗w|e = w|e if w is constant on se ⊆ ΓC .



1242 ALEXANDER WEISS AND BARBARA I. WOHLMUTH
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Figure 2. Definition of se.

3. Error estimator and a priori analysis

Our error estimator is defined in terms of equilibrated fluxes. Equilibrated fluxes
are well established and often used for an adaptive error control. We refer to the
monographs [2, 6, 55] and the references therein. The basic ideas can be found in the
early works [35, 39], and general equilibration techniques for problems in structural
mechanics are presented in [40, 48]. Equilibrated fluxes in linear elasticity reflect the
duality between displacement and traction. From the mathematical point of view,
they can be analyzed in the framework of mixed finite elements. Knowing the finite
element solution of the displacement-based primal formulation, a consistent flux can
be easily computed by a local postprocess. Moreover, the so-computed flux satisfies
locally the equilibrium condition and can be used to obtain a symmetric and H(div)-
conforming approximation for the stress. In contrast to the Laplace operator for
which low order H(div)-conforming finite elements for the flux are well known, the
construction of symmetric and H(div)-conforming stress approximations is much
more involved. There exists no low order finite element; see [4]. Therefore, we have
to work with a discrete space for the stress which includes locally cubic polynomials.
However in the context of a posteriori error estimates, this stress approximation
can be easily obtained by a local postprocess from the finite element displacement.
Moreover it can provide an upper bound for the error where the constant is one
which is of special interest within an adaptive error control. This is not the case if we
work with the simpler edge-related approach based on equilibrated fluxes or with a
standard residual type estimator. A posteriori error estimates for the displacements
in terms of local surface tractions are also considered in [17, 36, 47, 49, 50]. Here,
we use these ideas and extend the approach to the variational inequality setting.

3.1. Definition of the error estimator. Let us assume from now on that λh

is known. Then using the equivalence between (2.6) and (2.7), we find that uh

satisfies a variational equality where λh plays the role of a Neumann boundary
condition on ΓC , i.e.,

(3.11) a(uh,v) = f(v) − 〈λh,v〉, v ∈ Vh .

Following the construction in [2], we define locally for each edge e of the triangu-
lation Th a flux ge ∈ [P1(e)]2 such that for all T ∈ Th and v ∈ [P1(T )]2, the local
equilibrium

(3.12) aT (uh,v) = fT (v) +
∑

e⊂∂T

∫
e

(ne · nT )ge · v ds

is satisfied. Here aT (·, ·) and fT (·) denote the elementwise contributions of the
bilinear form a(·, ·) and the linear form f(·), respectively, and ne stands for a fixed
unit normal on the edge e, and nT is the outer unit normal on ∂T . If e ⊂ ∂Ω, we
set ne = n. Additionally, we set on the homogeneous Neumann boundary part ΓN

the flux to be zero, i.e., ge := 0. To define ge on the contact boundary, we use λh
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Figure 3. Local numbering of edges and elements.

and set for each edge e on ΓC ,

(3.13)
∫

e

ge · v ds := −
∫

e

λh · v ds, v ∈ [P1(e)]2 .

We note that in our definition, ΓC is treated as a Neumann boundary and that
the exact surface traction λ is replaced by a discrete one, i.e., by λh. A unique
solution for the equilibrated fluxes can be obtained by solving a minimization prob-
lem, i.e., ge is as close as possible to the average of the discrete flux {σ(uh)ne}.
In order to preserve the locality, we do not minimize

∑
e∈Eh

‖ge − {σ(uh)ne}‖2
0;e

but minimize the difference between the moments of the equilibrated flux and the
average of the discrete flux. Here Eh denotes the set of all edges in Th. We refer
to [2] for details regarding the structure of the linear systems, the minimization
step and the different cases of vertices associated with the interior of the domain
or boundary conditions.

For the convenience of the reader, we recall the basic steps for an inner node p.
The moments of ge are defined by me(p) :=

∫
e
geϕp ds. Using Condition (3.12) for

all elements sharing a given vertex p and setting v = ϕpej with the unit vector ej ,
j ∈ {1, 2}, we see that only the moments me(p) for adjacent edges of p enter. By
using a clockwise numbering T1, . . . , Tkp

for neighboring elements and e1, . . . ekp
for

the edges such that ∂Tl ∩ ∂Tl+1 = el, where Tkp+1 := T1, see Figure 3, Condition
(3.12) reads

(nel
· nTl

)|el
mel

(p) · ej + (nel+1 · nTl+1)|el+1mel+1(p) · ej = rl+1(p) · ej ,

which leads to a kp-dimensional linear system for each of the two components of
the moments mel

(p). Here, the size kp is given by the number of triangles sharing
the node p, and the right-hand side is defined by

rl+1(p) · ej = aTl+1(uh, ϕpej) − fTl+1(ϕpej).

Without loss of generality we can assume that nel
= nTl

|el
. Then the associated

linear system has the simple form

(3.14)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Id 0 · · · 0 −Id

−Id Id
. . . 0 0

0 −Id Id
. . .

...
...

. . . . . . . . .
...

0 0 · · · −Id Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

me1(p)
...

mekp
(p)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

r2(p)
...

rkp
(p)

r1(p)

⎞
⎟⎟⎟⎠ ,
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where Id is the 2 × 2 identity matrix. Obviously the matrix is singular; the kernel
has dimension two and is generated by (ej , . . . , ej)�, j = 1, 2. The solvability of
the system is guaranteed by the observation that

kp∑
l=1

rl(p) · ej = a(uh, ϕpej) − f(ϕpej) = 0, j = 1, 2.

As already noted, a unique solution is obtained by a local minimization step, i.e.,
by taking the solution of the linear system (3.14) such that

kp∑
l=1

‖mel
(p) − 1

2
|el|{σ(uh) · nel

|el
}‖2

is minimal. For vertices on the boundary the system has to take into account the
boundary conditions but similar arguments apply; see [2, 39].

In terms of the equilibrated fluxes, we construct a locally defined but globally
H(div)-conforming approximation σh of the stress σ(u). To do so, we use Arnold–
Winther elements; see [4, 57]. The stress approximation and error estimator are
defined in the same way as in [44] for the Lamé equation. The main difference
is in the computation of the equilibrated fluxes on the possible contact zone ΓC .
This step has been worked out in [60] for the more general case of a two-body
contact problem. However in [60], the upper and lower bound for the discretization
error are not strong enough to guarantee an error decay for the adaptive refinement
process. In contrast to the linear Lamé equation, the unknown contact forces have
to be replaced by the discrete approximation. For the convenience of the reader,
we recall the basic steps and refer to [44, 60] for details.

The Arnold–Winther element is locally defined on T by the 24-dimensional space

XT :=
{
τh ∈ [P3(T )]2×2, (τh)12 = (τh)21, divτh ∈ [P1(T )]2

}
, T ∈ Th ,

and a global finite element space Xh which is H(div)-conforming can be obtained
using

• the nodal values (3 dof) at each node p,
• the zero and first order moments of τhne (4 dof) on each edge e,
• the mean value (3 dof) on each element T

as degrees of freedom; see [4]. We note that the subset of ΓC where the body is
actually in contact with the rigid obstacle is not known a priori. Thus the contact
problem can be regarded as a free boundary value problem. In the following, we
assume that the actual discrete contact set is a compact subset of ΓC in the sense
that λh =

∑
p∈PC

h
βpψp and βp = 0 if p ∈ ∂ΓC .

We define our stress approximation σh of σ(u) by setting

σh(p) :=
1

Np
T

∑
T∈Tp

σ(uh)|T (p) + α(p),(3.15)

∫
e

σhne · q ds :=
∫

e

ge · q ds, q ∈ [P1(e)]2 ,(3.16) ∫
T

σh : ∇v dx := aT (uh,v), v ∈ [P1(T )]2 .(3.17)

Here, Tp denotes the set of all triangles having the node p as vertex, and Np
T is the

number of those triangles. For each node p not on ∂Ω\ΓD, α(p) = 0. Otherwise, it
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is defined such that α(p) is a symmetric 2×2 matrix, α11(p)2 +2α12(p)2 +α22(p)2

is minimal and σh(p)n = 0 for each node p on ΓN and σh(p)n = −λh(p) = −βp

for each node p on ΓC . If p is a corner point of the boundary, then n is not well
defined, and we understand the notation σh(p)n = 0 such that σh(p) = 0. We note
that due to the continuity of the elements in Mh, α(p) is well defined. Moreover,
due to the symmetry of σh, (3.17) yields only three independent conditions on each
element.

Observing that the normal component of the discrete Lagrange multiplier does
not have to be positive on ΓC , we cannot conclude that b(u, λh) ≤ 0. To obtain
suitable upper bounds for the error, we introduce an operator Puh

which depends
on the finite element solution uh. This operator maps the normal component of
λh on a nonnegative function. A first step towards the definition of Puh

is the
introduction of a mesh-dependent enlarged support of uh by

suppuh ⊂ supphuh :=
⋃

ē ∩ suppuh �=∅
ē ,

where we understand the notation suppuh as the support of (uh)n. The left picture
of Figure 4 shows the support of uh, whereas supphuh is depicted in the right
picture.
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Figure 4. Orthogonality between the normal components of uh

and λh (left) and Puh
λh (right).

Now, we decompose the set EC
h of boundary edges e ⊂ ΓC into three disjoint

subsets. Es
h stands for the set of all edges e ⊂ suppuh; E i

h is defined as the set of
all edges e ∈ EC

h such that e ⊂ ΓC \ supphuh and Eb
h := EC

h \ (Es
h ∪E i

h). It is easy to
see that the elements e ∈ Eb

h can also be characterized by e ⊂ supphuh \ suppuh.
For each e ∈ Eb

h, we define a neighborhood γe containing at most three elements by

(3.18) γ̄e := ē ∪
⋃

es∈Es
h;ēs∩ē�=∅

ēs .

The observation that the support of uh cannot contain an isolated edge and thus
γe ∩ γê = ∅ for e 
= ê yields that for each e ∈ E i

h ∪ Es
h,

(3.19) γe :=

{
γê ∃ê ∈ Eb

h : e ⊂ γê,

e else,

is well defined. We note that for e ∈ E i
h, we always get γe = e.
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The idea is now to construct the operator Puh
such that the mean value on each

γe is locally preserved, Puh
λh is zero on suppuh and Puh

λh ≥ 0. Therefore we
introduce the following assumption.

Assumption 3.1. For each edge e ⊂ supp λh ∩ supp uh, we assume that there
exists an adjacent edge ê such that ê ⊂ ΓC \ supp uh.

This assumption is equivalent to for each edge e ⊂ suppλh∩suppuh, there exists
an ê ∈ Eb

h such that e ⊂ γê and hence γe = γê.
The definition of M+

h yields that on each edge e ∈ EC
h , we can write µh ∈ M+

h as
µh = (α1

eψ
1
e + α2

eψ
2
e)n, where α1

e, α
2
e ≥ 0, and ψ1

e , ψ2
e are the local nodal dual basis

functions. In terms of these preliminary observations, we define Puh
µh, µh ∈ M+

h ,
locally on each edge e ∈ EC

h by

(3.20) Puh
µh :=

⎧⎪⎪⎨
⎪⎪⎩

0 e ∈ Es
h,

µh e ∈ E i
h and if (µh)n ≥ 0 on e,

(α1
eϕ

1
e + α2

eϕ
2
e)n e ∈ E i

h and otherwise,
(α̃1

eϕ
1
e + α̃2

eϕ
2
e)n e ∈ Eb

h,

where ϕ1
e, ϕ

2
e are the local nodal Lagrange basis functions associated with the edge

e and α̃i
e := αi

ew
i
e, where wi

e :=
∫
ΓC

ϕpi
e
ds/

∫
e
ϕi

e ds if supp ϕpi
e
⊂ supphuh and

wi
e := 1 otherwise. Here ϕpi

e
stands for the global basis function associated with

the node pi
e, which can be identified with the local node i of the edge e. We remark

that in the case of a uniform mesh, wi
e ∈ {1, 2}. As can be easily verified, we obtain

(Puh
µh)n ≥ 0 and meas(supp uh ∩ supp Puh

µh) = 0.

Lemma 3.2. Under Assumption 3.1, for each e ∈ EC
h , it follows that

(3.21)
∫

γe

Puh
λh ds =

∫
γe

λh ds.

Proof. For e ∈ E i
h, we have γe = e. Then, (3.21) results directly from the definition

of Puh
and the fact that the dual basis functions ψp and the standard basis functions

ϕp have the same mean value on each edge and that λh ·t = 0. Let us now consider
the case e ∈ Es

h. For e 
∈ supp λh, we have Puh
λh|e = 0 = λh|e. If e ∈ supp λh,

Assumption 3.1 guarantees the existence of ê ∈ Eb
h such that γe = γê. Therefore it

remains to prove the case e ∈ Eb
h. Here, γ̄e = ē ∪ ē1 ∪ ē2, where ej = ∅ or ej = ê

for a suitable ê ∈ Es
h. By definition of Eb

h we find that ej ⊂ supp λh ∩ supp uh and
therefore α1

ej
= 0, α2

ej
= αj

e or α2
ej

= 0, α1
ej

= αj
e for ej 
= ∅. Hence, we have

∫
ej

λh ds = (αj
e

∫
ej

ψpj
e
ds)n.
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Moreover, by definition, we have Puh
λh|ej

= 0. A straightforward computation
now gives∫

γe

Puh
λh ds =

∫
e

Puh
λh ds =

(
α1

ew
1
e

∫
e

ϕ1
e ds + α2

ew
2
e

∫
e

ϕ2
e ds

)
n

=
(

α1
e

∫
e∪e1

ϕp1
e
ds + α2

e

∫
e∪e2

ϕp2
e
ds

)
n

=
(

α1
e

∫
e∪e1

ψp1
e
ds + α2

e

∫
e∪e2

ψp2
e
ds

)
n

=
∫

γe

λh ds. �

Remark 3.3. Assumption 3.1 excludes isolated nodes p with uh(p) = 0 and λh(p) 
=
0. In this case, Puh

λh = 0 on both neighboring edges of p as both edges are
elements of the set Es

h, and thus we cannot satisfy (3.21) and Puh
λh · uh = 0

at the same time. These situations can easily occur for coarse meshes but not
asymptotically. Such a situation for h → 0 corresponds to a Lagrange multiplier
which is represented by a Delta distribution which is not in M.

Now we are in the situation to define the components of our error estimator. As
is quite standard, the global error estimator for the energy norm ‖v‖2

a := a(v,v)
of the error in the displacement is given in terms of local contributions,

η2 :=
∑

T∈Th

η2
T , η2

T := ‖C−1/2(σh − σ(uh))‖2
0;T .

In addition to η, we define the quantity

(3.22) η2
C :=

∑
e∈EC

h

η2
e , η2

e :=
he√
2µ

‖λh − Puh
λh‖2

0;e .

3.2. Upper bound for the discretization error. In this subsection, we show
that the error estimator yields an upper bound for the discretization error. A
preliminary step is to consider the divergence of the stress approximation. We
recall a result which has been shown for the more general case of a two-body contact
problem in [60] and note that the proof also applies for our simpler situation of a
one-body contact problem.

Lemma 3.4. i) Let σh ∈ Xh be defined such that (3.16) and (3.17) hold. Then,

div σh = −Π1f ,

where Π1 is the L2-projection onto piecewise affine functions.
ii) Let σh ∈ Xh be defined such that (3.15) and (3.16) hold. Then,

(σhn)|ΓN
= 0 and (σhn)|ΓC

= −λh .

As is standard for a posteriori estimates, we define an oscillation term which
only depends on the given data

ξ2 :=
∑

T∈Th

ξ2
T , ξ2

T :=
h2

T

2µ
‖f − Π1f‖2

0;T .

In the case of more general boundary conditions, additional terms reflecting the
approximation error in the Neumann and Dirichlet boundary conditions enter into
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the definition of ξ; see, e.g., [2]. We note that in contrast to [60] no term depending
on the unknown solution on ΓC enters. Thus we can control ξ within an adaptive
refinement process.

Lemma 3.4 results in an upper bound for the discretization error. In a first step,
we show that the discretization error can be bounded by η + ηC . To estimate the
discretization error in terms of the error estimator, the difference σ(u)−σh has to
be considered.

Theorem 3.5. Under Assumption 3.1, there exist constants C1, C2 < ∞ indepen-
dent of the mesh-size such that

(3.23) ‖u − uh‖a ≤ η + C1ηC + C2ξ .

Proof. Using the symmetry of Hooke’s tensor, we find, for the energy norm of the
discretization error in the displacement,

(3.24)

‖u − uh‖2
a =

∫
Ω
(σ(u) − σ(uh)) : (ε(u) − ε(uh)) dx

=
∫
Ω
(σ(u) − σh) : (ε(u) − ε(uh)) dx

+
∫
Ω
C−1/2(σh − σ(uh)) : C1/2(ε(u) − ε(uh)) dx

≤ η‖u − uh‖a +
∫
Ω
(σ(u) − σh) : (ε(u) − ε(uh)) dx .

Now we have to consider the second term on the right side of (3.24) in more detail.
Due to the symmetry and the H(div)-conformity of σh and σ(u), we can apply
integration by parts. Then, the homogeneous Neumann boundary condition on ΓN ,
the fact that u − uh = 0 on ΓD and Lemma 3.4 yield∫

Ω

(σ(u) − σh) : (ε(u) − ε(uh)) dx =
∫

Ω

(σ(u) − σh) : (∇(u− uh)) dx

= −
∫

Ω

div (σ(u) − σh) · (u− uh) dx +
∫

∂Ω

(σ(u) − σh)n · (u − uh) ds

=
∫

Ω

(f − Π1f) · (u− uh) dx − b(u− uh, λ − λh)

≤ C

( ∑
T∈Th

h2
T

2µ
‖f − Π1f‖2

0;T

) 1
2

‖u − uh‖a − b(u − uh, λ − λh) .

Using the orthogonalities, b(uh, λh) = 0 and b(u, λ) = 0, the sign properties λ ∈
M+, λh ∈ M+

h , the conformity Kh ⊂ K and meas(suppuh ∩ suppPuh
λh) = 0, we

find

b(uh − u, λ − λh) = b(u, λh) + b(uh, λ) ≤ b(u, λh − Puh
λh) + b(u,Puh

λh)
≤ b(u, λh − Puh

λh) = b(u − uh, λh − Puh
λh)

≤
∑

e∈EC
h

‖u − uh‖ 1
2 ;e‖λh − Puh

λh‖− 1
2 ;e

≤ C‖u− uh‖a

⎛
⎝ ∑

e∈EC
h

1
2µ

‖λh − Puh
λh‖2

− 1
2 ;e

⎞
⎠

1
2

.

To bound the last term by ηC , we use that
∫

γe
λh −Puh

λh ds = 0; see Lemma 3.2.
Hence, we obtain

‖λh − Puh
λh‖2

− 1
2 ;e ≤ C‖λh − Puh

λh‖2
− 1

2 ;γe
≤ Che‖λh − Puh

λh‖2
0;γe

. �
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We note that no constant depending on Korn’s inequality or on the shape reg-
ularity of the mesh or on the Lamé parameters enters as a factor in front of η.
The special situation of the variational inequality does not enter directly into the
definition of η. It is only reflected by the term ηC . As is shown in [60], ηC can
be bounded by an additional higher order term on the contact boundary involving
the unknown solution. This type of term also enters for general nonhomogeneous
Neumann boundary conditions. Unfortunately, λ is not a given data, and thus we
cannot control this oscillation term within our adaptive refinement algorithm. The
next theorem provides a new upper bound for the discretization error in terms of
η and the data oscillation.

Theorem 3.6. Under Assumption 3.1, there exists a constant C < ∞ independent
of the mesh-size such that

‖u − uh‖a ≤ C(η + ξ) .

Proof. Using the result of Theorem 3.5, we have to consider ηC in more detail and
bound it by η. Using Lemma 3.2 and the definitions of Puh

λh and of σh gives

‖λh − Puh
λh‖0;e ≤ Che|λh|1;γe

≤ C‖λh + σ(uh)n‖0;γe
= C‖σ(uh)n− σhn‖0;γe

.

Let Te be the subset of elements in Th such that each T ∈ Te contains one edge of
γe. We note that the number of elements in Te is bounded by three. Then, we find,
in terms of standard scaling arguments and a discrete inverse estimate,

η2
e ≤ C

∑
T∈Te

η2
T

and thus ηC ≤ Cη. �
Remark 3.7. The proof of Theorem 3.6 shows that ηC can be bounded by η. More
precisely

η2
C ≤ C

∑
e∈En

C

∑
T∈Te

η2
T ≤ β(h)2η2 ,

where β(h) ≤ C and En
h ⊂ EC

h such that λh −Puh
λh restricted to e is not equal to

zero. Then Theorem 3.5 yields

‖u − uh‖a ≤ (1 + C1β(h))η + C2ξ .

The numerical results show that the number of edges in En
h is bounded by a small

number nm independently of h. For most examples, we find nm = 4. We note that
if β(h) tends asymptotically to zero, then the upper bound 1 + C1β(h) tends to
one.

Corollary 3.8. There exists a constant independent of the mesh-size such that

J(uh) − J(u) ≤ C(η2 + ξ2) ,

where the energy J(v) is given by J(v) := 1
2a(v,v)− f(v).

Proof. The proof of Theorem 3.5 shows that we have the stronger estimate

‖u − uh‖2
a − b(uh, λ) ≤ (η + C1ηC + C2ξ)‖u− uh‖a .

A straightforward computation and Theorem 3.5 and Theorem 3.6 yield that

J(uh) − J(u) =
1
2
‖u − uh‖2

a − b(uh, λ) ≤ ‖u − uh‖2
a − b(uh, λ)

≤ (η + C1ηC + C2ξ)
2 ≤ C(η2 + ξ2) . �
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Remark 3.9. The proof of Theorem 3.5 shows that the constants in the upper bound
(3.23) depend on the constant in Korn’s inequality but do not depend on the Lamé
parameters. In particular, in the nearly incompressible limit, i.e., λ → ∞, the
constants C1 and C2 in (3.23) are uniformly bounded. This is not the case for the
constant in Theorem 3.6 and Corollary 3.8. Here the continuity constant of Hooke’s
tensor C enters.

3.3. Lower bound for the discretization error. In this subsection, we provide
a local upper bound for our error estimator. The structure of this subsection follows
[60], where the more general situation of a two-body problem is considered. However
only a weaker result, involving additional terms depending on the unknown contact
stress λ and the displacement on the contact boundary, has been established.

We will bound the local contribution of our error estimator by hT ‖Π1f‖0;T and√
he‖[σ(uh) · ne]‖0;e, e ∈ Eh \ EC

h . These terms are standard in the estimates for
residual type error estimators and can be bounded by the local discretization error
and by local higher order terms, i.e.,

(3.25)
hT ‖Π1f‖0;T ≤ C(‖u− uh‖a;T + ξT ),√

he‖[σ(uh) · ne]‖0;e, ≤ C(‖u− uh‖a;ωe
+ ξωe

);

see, e.g., [55, 56]. Here, ωe is defined by the two adjacent elements of e. Due to
the zero values of the element bubble function on ∂T and due to the fact that
only interior edges appear, the variational contact inequality in our setting is not
seen. We recall that the proof of (3.25) involves cubic element and quadratic edge
bubbles. More precisely, it is based on the observation that on a finite dimensional
polynomial space the L2-norm ‖ · ‖0;ω and the weighted L2-norm ‖b1/2

ω · ‖0;ω are
equivalent. Here, bω > 0 on ω and bω = 0 on ∂ω is a smooth bubble function
such that maxx∈ω bω(x) = 1 and |bω|21;ω = O

(
|ω|
h2

ω

)
. Replacing the norms on the

left side of (3.25) by the weighted L2-norms, using the variational equation and
integration by parts yields the upper bound; see [55, Chapter 1.2] for details. In
general, a posteriori error estimates for linear finite elements involve f −Π0f and
not f − Π1f . Here, we work with Π1 instead of Π0, which is motivated by the
fact that the Arnold–Winther elements have a divergence in [P1(T )]2 and not in
[P0(T )]2. However, as noted before, the norm equivalence also holds for polynomials
in [P1(T )]2. As we restrict ourselves to edges not on the contact boundary, the
result from the linear setting of a variational equality also applies to our variational
inequality setting.

Following the proof given in [60] for the two-body case, we get

(3.26)

η2
T ≤ C

∑
e∈Ef

T

he

(
‖ge − {σ(uh)}ne‖2

0;e + ‖[σ(uh)]ne‖2
0;e

)

+
∑

e∈EC
T

he‖λh + σ(uh)n‖2
0;e ,

where EC
T is the subset of edges which have a vertex of T as endpoint and which

are on the contact boundary ΓC and Ef
T := ET \ EC

T . Here ET denotes all edges
sharing one vertex with T ; see Figure 5. The proof of this local upper bound is
based on a discrete mesh-dependent norm which is equivalent to the L2-norm on
the local Arnold-Winther element XT . This equivalence has been shown in [4] and
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T

T

ET EC
T

Figure 5. Definition of ET and EC
T .

has also been used in [44]. The upper bound in (3.26) involves boundary terms on
ΓC which have to be eliminated. However, the first two terms are standard terms in
the definition of a residual-based and an equilibrated flux-based error estimator, see
[2, 6, 54], and can be bounded by the element and edge residuals. Because e ∈ Ef

T

is an interior edge or an edge on ΓD ∪ ΓN , both of them are bounded in terms of
(3.25). We recall that we have homogeneous Neumann boundary conditions, and
thus no additional term reflecting the Neumann data oscillations occurs.

In the following, we have to consider the third term in (3.26) in more detail. To
bound he‖λh + σ(uh)n‖2

0;e, e ∈ EC
h , e ⊂ ∂T , we use a decomposition into normal

and tangential parts, i.e.,

‖λh + σ(uh)n‖2
0;e = ‖λh · n + σ(uh)n · n‖2

0;e + ‖λh · t + σ(uh)n · t‖2
0;e.

Observing that we have a contact problem without friction, we have λh · t = 0 and
σ(u)n · t = 0 on ΓC and thus ‖λh · t + σ(uh)n · t‖2

0;e = ‖σ(uh)n · t‖2
0;e. Using the

quadratic edge bubble function be, we find by integration by parts√
he‖σ(uh)n · t‖0;e = C

∣∣∣∣
∫

e

σ(uh)n · (tbe) ds

∣∣∣∣ = C

∣∣∣∣
∫

e

(σ(uh) − σ(u))n · (tbe) ds

∣∣∣∣
≤ C

∣∣∣∣
∫

T

(σ(uh) − σ(u)) : ε(tbe) dx

∣∣∣∣ + C

∣∣∣∣
∫

T

f · (tbe) dx

∣∣∣∣
≤ C (‖u − uh‖a;T + ξT + hT ‖Π1f‖0;T ) .

For the normal component, we insert the projection Π∗ which is the scalar variant
of the one given in (2.8) and get

(3.27) ‖(λh + σ(uh)n) · n‖0;e ≤ ‖λh · n + Π∗σn‖0;e + ‖Π∗σn − σn‖0;e,

where we denote σ(uh)n · n by σn. We start with the second term and use that
the mortar projection locally reproduces constants; see (2.10).

In terms of the local L2-stability (2.9) of Π∗, we find

‖Π∗σn − σn‖0;e = ‖Π∗(σn − σn,e) − (σn − σn,e)‖0;e ≤ C‖σn − σn,e‖0;se
.

Here, we denote by σn,e the constant σ(uh)|en · n extended to ΓC . This difference
can be written in terms of the jump between neighboring edges, and we obtain

‖σn − σn,e‖0;se
≤ C

√
he

2∑
i=1

‖(σ(uh)|T (pe
i ) − σ(uh)|T e

i
(pe

i ))n‖,

where pe
i , i = 1, 2, denote the two endpoints of the edge e and T e

i 
= T is the element
sharing the node pe

i and having an edge on the contact boundary; see Figure 6. If
such an element does not exist, i.e., if pe

i ∈ ∂ΓC , we formally set T e
i = T . The jump
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T

epe
1 pe

2

Epe
1

Epe
2

T e
1

T e
2

Figure 6. Definition of pe
i , T e

i and Epe
i
.

at the nodes can easily be bounded by the jump on the edges√
he‖(σ(uh)|T (pe

i ) − σ(uh)|T e
i
(pe

i ))n‖ ≤ C
∑

ê∈Epe
i

‖[σ(uh)]‖0;ê

≤ C
∑

ê∈Epe
i

‖[σ(uh)nê]‖0;ê ,

where Epe
i

stands for the set of all interior edges sharing the node pe
i . Here we have

used that the jump of σ(uh) on the edges can be bounded by the jump of σ(uh)n;
see [44].

To bound the first term on the right side of (3.27), we use that λh · n + Π∗σn ∈
Mh := Mh · n and can therefore be written on e as αψpe

1
+ βψpe

2
. Setting vh =

sign(α)ϕpe
1

+ sign(β)ϕpe
2
, and using the biorthogonality of ϕp and ψq, a simple

calculation gives

‖αψpe
1
+βψpe

2
‖0,e ≤ C√

he

∫
ΓC

(αψpe
1
+βψpe

2
)vh ds =

C√
he

∫
ΓC

(λh +σ(uh)n) ·nvh ds.

To bound this term, we apply Green’s formula on each element and find∫
ΓC

(λh + σ(uh)n) · nvh ds = f(vhn) −
2∑

i=1

∑
ê∈Epe

i

∫
ê

[σ(uh)nê] · vhn ds

≤ C

⎛
⎝ ∑

T∈Te

hT ‖Π1f‖0;T +
2∑

i=1

∑
ê∈Epe

i

√
hê‖[σ(uh)nê]‖0;ê

⎞
⎠ ,

where Te stands for the set of all elements which are in the support of ϕpe
1

and ϕpe
2
,

and Epe
i

is the set of all interior edges having pe
i as endpoint. Here, we have used

that f(vhn) =
∫
Ω

Π1f · vhn dx and that vhn has a support in
⋃

T∈Te
T . Moreover,

the L2-norms on the elements and edges are bounded by ‖vhn‖0;T ≤ ChT and
‖vhn‖0;ê ≤ C

√
hê. Finally, by (3.27) and using the local shape regularity of the

mesh, we get the upper bound

(3.28)

he‖λh + σ(uh)n‖2
0;e

≤ C

⎛
⎝ ∑

T∈Te

h2
T ‖Π1f‖2

0;T +
2∑

i=1

∑
ê∈Epe

i

hê‖[σ(uh)nê]‖2
0;ê

⎞
⎠ .

Combining (3.25), (3.26) and (3.28), we get the following lower bound for the
discretization error.
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Theorem 3.10. The element contribution ηT of the error estimator can be bounded
by the error on a local neighborhood ωT and some local oscillation terms

η2
T ≤ C

∑
T̂∈Th,T̂⊂ωT

(
‖u − uh‖2

a;T̂
+ ξ2

T̂

)
.

The number of elements in ωT does not depend on h but only on the shape regularity
of Th.

4. Numerical results

In this section, we apply our error estimator to several contact problems and use
it to obtain adaptively generated meshes.

4.1. Square on a plane. In our first example, we consider a square that is pushed
onto a rigid plane; see Figure 7. The square is given by Ω = (0, 1)2. In addition to
the force applied on the top, we compress the square by forces on the left and the
right boundary of the square. An additional issue is to prevent corner singularities;
hence we use as the boundary force on the noncontact sides g = −200pn, where n
is the outer normal of the corresponding side and p = x2(1− x)2 on the upper side
and p = y2(1 − y)2 on the left and right sides. The material parameters are given
by E = 200 and ν = 0.3. This problem setting leads to a nontrivial contact zone as
can be seen in the right picture of Figure 7. Here, the contact pressure is shown.
In the middle picture, the effective von Mises stress is given.

0 0.5 1
0

10

20

x−coordinate

LM

Figure 7. Square on plane: Problem setting with initial mesh,
solution and contact stress.

Mesh at level 6 Mesh at level 9 Mesh at level 12

Figure 8. Square on plane: Mesh on level 6, 9 and 12.

For the mesh refinement, we use a bisection strategy based on the error estimator
η. The meshes at different levels are depicted in Figure 8. Here, we see that our
adaptive strategy leads at the beginning to an almost uniform mesh refinement
which can be explained by the high regularity of the solution of the given contact
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problem. In the middle picture, the mesh on level 9 is shown. We observe at the
two endpoints of the contact zone (marked by an arrow) the refinement is higher,
whereas in the interior of the actual contact zone the mesh is relatively coarse.

Additionally, we consider the error reduction; see Figure 9. In the left picture,
we compare the convergence rates using our adaptive mesh refinement with uni-
form mesh refinement. Using a uniform mesh refinement, we observe an error of
O(h), which indicates that our problem has H2-regularity. In the right picture,
we compare the estimated error η with the extra term ηC . Here, we define the
mean element diameter h by h :=

√
# elements. We see that ηC is of higher order

compared to η and can thus asymptotically be neglected.

10
1

10
2

10
3

10
4

10
−1

10
0

# elements

es
t. 

er
ro

r

error reduction

uniform
O(h)
adaptive
O(h)

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

# elements

es
t. 

er
ro

r

error reduction

η
O(h)
η

C

O(h2)

Figure 9. Square on plane: Estimated error, left: uniform/adap-
tive, right: η/ηC .

4.2. Square on a circle. In the second example, we push the square of Example
1 on a rigid circle with radius 1 and midpoint (0.5,−1). Here, we apply inhomo-
geneous Neumann boundary conditions only on the top with g = 50x(1 − x)n. As
material parameters, we use E = 7000 and ν = 0.3. The problem setting and
solution are depicted in Figure 10.

0 0.5 1
0

50

100

x−coordinate

LM

Figure 10. Square on circle: Problem setting, solution and con-
tact stress.

In Figure 11, we show the meshes obtained by bisection using the error estima-
tor η. Here we see, in comparison to the first example, that the meshes are refined
much more locally. As a result, the quantitative error decay obtained by our adap-
tive algorithm is better than the one obtained by uniform mesh refinement; see
Figure 12. As in Example 1, we observe that the ratio ηC/η tends asymptotically
to zero.
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Mesh at level 6 Mesh at level 9 Mesh at level 12

Figure 11. Square on circle: Mesh on levels 6, 9 and 12.

10
1

10
2

10
3

10
4

10
−2

10
−1

# elements

es
t. 

er
ro

r

error reduction

uniform
O(h0.9)
adaptive
O(h)

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

# elements

es
t. 

er
ro

r

error reduction

η
O(h)
η

C

O(h2)

Figure 12. Square on circle: Estimated error, left: uni-
form/adaptive, right: η/ηC .

4.3. Square on a triangle. To get contact problems with low regularity, we push
the square onto a triangle with different angles α; see Figure 13. Here, the regularity
of the solution depends on the angle α. In our tests, we use α = π/6, α = π/4 and
α = π/3. The material parameters of the square are given by E = 200, ν = 0.3.
We use the same boundary conditions as in Example 2.

α
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0

5000

10000

x−coordinate

LM
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0

5000

10000

x−coordinate

LM

Figure 13. Square on triangle: Problem setting (left) and contact
stress α = π/6 (middle) and α = π/3 (right).

Due to the decreasing regularity for increasing α the adaptive meshes differ for
the different values of α; see Figure 14. We observe that for α = π/3, the mesh is
much more locally refined compared to α = π/6.
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Mesh at level 12 Mesh at level 12 Mesh at level 12

Figure 14. Square on triangle: Mesh on level 12 for α = π/6, π/4, π/3.

The regularity can be estimated by observing the convergence rates for the uni-
form refinement; see Figure 15. Here, we get a convergence rate of approximately
O(h0.7) for α = π/6, O(h0.5) for α = π/4 and O(h0.3) for α = π/3. However, using
adaptive mesh refinement, we observe O(h) in all cases.
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Figure 15. Square on triangle: Estimated error (adaptive/uni-
form) for α = π/6, π/4, π/3.

Again we see that the error contribution ηC decreases much faster compared to
η; see Figure 16. However, for low regularities, we do not observe that ηC is of
order O(h2). To get a better understanding of the situation, we define

ηcontact
C :=

⎛
⎝ ∑

e∈EC
h \Ei

h

η2
e

⎞
⎠

1/2

≤ ηC .
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Figure 16. Square on triangle: Comparison of η, ηC and ηcontact
C

for α = π/6, π/4, π/3.

If the singularity in λ is small enough, we find asymptotically ηcontact
C = ηC and

that ηC is of order O(h2). However, for strong singularities in λ, there are non-
trivial contributions ηe, e ∈ E i

h. If e ∈ E i
h ∩ En

h is in the actual contact area of the
solution u, then

∫
e
u · (λh −Puh

λh) ds = 0 although λh 
= Puh
λh. This is the case

in our situation; thus the error is bounded by η + C1η
contact
C + C2ξ, and ηcontact

C /η
tends to zero for all three values of α.
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5. Upper bound for the error in the Lagrange multiplier

In this section, we show that the error in the Lagrange multiplier can be bounded
in terms of the discretization error in the displacement and additional data oscilla-
tion terms. The abstract framework of mixed finite elements in combination with
a discrete uniform inf-sup condition yields the standard a priori estimate

‖λ − λh‖− 1
2 ;ΓC

≤ C

(
inf

µh∈Mh

‖λ − µh‖− 1
2 ;ΓC

+ ‖u − uh‖a

)
.

If the solution is smooth enough, the first term on the right side is O(h3/2), whereas
the second term is in general only of order h. Unfortunately, the first term cannot
be controlled a priori because the contact stress is not included in the given data.

Let V0;h := Vh ∩ [H1
0 (Ω)]2. Then there exists a space Xh such that dimXh =

dimV0;h and moreover Xh = span{χpei, i = 1, 2, p ∈ P0
h}, where the basis func-

tions χp satisfy
•

∫
Ω

χpϕq dx = δpq

∫
Ω

ϕq dx, p, q ∈ P0
h,

•
∑

p∈P0
h

χp = 1,

• suppχp = suppϕp, p ∈ P̃0
h.

Here P0
h stands for the set of all nodes in the interior of Ω and P̃0

h ⊂ P0
h such that

suppϕp ⊂ Ω for p ∈ P̃0
h. For p ∈ P̃0

h, we set χp = 3ϕp−
∑

q∈Pp
ϕq on suppϕp, where

Pp is the set of all nodes q 
= p such that q is in the support of ϕp. For p ∈ P0
h \ P̃0

h,
we have to modify the definition. We refer to [16, 58], for the modification of the
basis functions in the neighborhood of the boundary ∂Ω. In terms of Xh, we can
introduce a new operator Q∗ : [L2(Ω)]2 −→ Xh by

(5.29)
∫

Ω

Q∗gϕp dx =
∫

Ω

gϕp dx, p ∈ P0
h .

It is easy to see that Q∗ is locally defined. We can write Q∗g =
∑

p∈P0
h

γpχp with

γp :=

∫
Ω

gϕp dx∫
Ω

ϕp dx
.

Associated with Q∗ is the operator Q : [H1(Ω)]2 −→ Vh which satisfies the follow-
ing conditions:

Qv|ΓC
= Πv,(5.30) ∫

Ω

Qvχp dx =
∫

Ω

vχp dx, p ∈ P0
h,(5.31)

Qv(p) = Sv(p), p ∈ Pb
h,(5.32)

where S is a locally defined Scott–Zhang type operator, see, e.g., [38], preserving
the Dirichlet boundary conditions on ΓD, and Pb

h stands for all nodes on ΓD ∪ΓN .
By (5.30)–(5.32), the operator Q is uniquely defined. We note that Q is not well
defined for [L2(Ω)]2 but can be extended to functions with a well-defined trace.
This operator is itself a Scott–Zhang type operator, and it can be easily shown that

‖v − Qv‖0;T ≤ ChT |v|1;ωT
,(5.33)

‖v − Qv‖0;e ≤ Ch1/2
e |v|1;ωe

,(5.34)

where ωT includes all elements which share at least one vertex with T , and ωe

is the union of all elements having an endpoint of e as vertex. We introduce a
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data-dependent oscillation term

ξ̃2 :=
∑

T∈Th

ξ̃2
T , ξ̃2

T :=
h2

T

2µ
‖f − Q∗f‖2

0;T

and note that ξT ≤ ξ̃T but that ξ̃ is also of order h2 if f ∈ [H1(Ω)]2 and that ξ̃ = 0
if f is constant on Ω.

Theorem 5.1. There exists a constant C < ∞ independent of the mesh-size such
that

‖λ − λh‖− 1
2 ;ΓC

≤ C
(
‖u − uh‖a + ξ̃

)
.

Proof. We start with the definition of the dual norm and use the definition (2.8) of
the mortar projection Π and property (5.30) of the operator Q:

‖λ − λh‖− 1
2 ;ΓC

= sup
v∈W

b(v, λ − λh)
‖v‖ 1

2 ;ΓC

= sup
v∈W

b(Qv, λ − λh) + b(v − Qv, λ)
‖v‖ 1

2 ;ΓC

.

In the following, for simplicity of notation, we denote the harmonic extension of
v ∈ W onto V0 by v. Using the variational equation and the stability of Q, we
get

b(Qv, λ − λh) = a(uh − u,Qv) ≤ C‖u− uh‖a‖Qv‖1 ≤ C‖u− uh‖a‖v‖1 .

To bound the second term on the right-hand side, we use the property (5.31),
the dual operator Q∗ and the stability and the approximation property (5.33) of
Q:

b(v − Qv, λ) = f(v − Qv) − a(u,v − Qv)
= (f − Q∗f ,v − Qv)0 − a(u− uh,v − Qv) − a(uh,v − Qv)

≤ C(ξ̃ + ‖u − uh‖a)‖v‖1 + a(uh,Qv − v) .

Using b(Qv − v, λh) = b(Πv − v, λh) = 0, integration by parts and the approxi-
mation property (5.34) give that the last term can be bounded by

a(uh,Qv − v) = a(uh,Qv − v) + b(Qv − v, λh)

≤ C

⎛
⎝ ∑

e∈Ef
h

he‖[σ(uh)n]‖2
0;e +

∑
e∈EC

h

he‖λh + σ(uh)n‖2
0;e

⎞
⎠

1
2

‖v‖1.
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These jump-terms have already been bounded by C(‖u− uh‖2
a + ξ2) in (3.25) and

(3.28). Hence we get

b(v − Qv, λ) ≤ C(ξ̃ + ‖u − uh‖a + ξ)‖v‖1 ≤ C(‖u− uh‖a + ξ̃)‖v‖1.

Finally, using the continuity of the harmonic extension yields the result. �

6. AFEM energy control

The error estimator η is quite attractive because it provides upper bounds which
tend numerically to one, and no constant depending on the Lamé parameters enters
into the upper bound for the error. However, by definition, it is an element-based
a posteriori error estimator. Using this type of estimator in combination with an
AFEM control-based refinement strategy [10, 25, 43], we have to refine not only
a marked element but also all elements in TT . This results from the proof of the
upper bound for ηT .

Thus, it is more attractive to work with an error estimator providing a more
local upper bound for its contributions. As is well known, the standard residual
type error estimator is a good choice from this point of view. Using this idea, we
define a second error estimator η̂ in terms of its edge contributions

η̂2 :=
∑

e∈E−
h

η̂2
e , η̂2

e :=
he

2µ
‖[σ(uh)]ne‖2

0;e +
h2

e

2µ
‖Π0f‖2

0;ωe
,

where E−
h denotes all edges not on ΓC . The natural definition of the jump on the

interior edges is extended, as in the last section, to the boundary edges by taking
into account the different boundary conditions on ΓN and ΓD. Here ωe is the union
of at most two elements such that ω̄e := T̄1∪ T̄2 for each interior edge e = ∂T1∩∂T2

and ωe = T for each boundary edge e = ∂T ∩∂Ω. Additionally, the data oscillation
term is defined by

ξ̂2 :=
∑

T∈Th

ξ̂2
T , ξ̂2

T :=
h2

T

2µ
‖f − Π0f‖2

0;T .

For the AFEM strategy, we consider a sequence of triangulations generated by
a special refinement strategy based on the error estimator η̂. Therefore, the lower
index h indicating the mesh-size is replaced by l standing for the actual refinement
step; e.g., Th is replaced by Tl. The refinement is carried out by bisection such that
all elements in Tl can be written as a union of elements in Tl+1.

Each marked edge, i.e., e ∈ Ml ⊆ El, is decomposed by the refinement into two
subedges of the same length and T ⊂ ωe is split into subtriangles such that an
interior vertex is obtained; see, e.g., [43].

As is standard for AFEM strategies, we use a bulk criterion to define the set Ml

of marked edges. More precisely, for θ ∈ (0, 1), we select edges such that

(6.35)
∑

e∈Ml

η̂2
e ≥ θη̂2

l .

Moreover, we require that

(6.36) ξ̂l+1 ≤ 1
2
ξ̂l.

If this is not fulfilled automatically by the next refinement step controlled by the
marked edges, additional elements are refined to satisfy (6.36). We note that for
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many contact problems, f = 0 or constant volume forces are considered, and thus
(6.36) is automatically guaranteed.

The error estimator η̂ is a standard residual type error estimator for a variational
equality. Moreover, no error term due to the contact boundary ΓC enters. Thus
it is well known that the local error estimator contribution η̂e, e ∈ Ml, can be
bounded by

η̂2
e ≤ C

(
‖ul+1 − ul‖2

a;ωe
+ h2

e‖f − Π0f‖2
0;ωe

)
;

see, e.g., [43] for the Laplace operator. Of crucial importance for the proof is that
e ∈ Ml is bisected in the next refinement step and that T ⊆ ωe is decomposed into
several subtriangles having one interior vertex. Then we can work with hierarchical
bubble functions having local support and follow the lines of [55].

Using the results of the previous sections, we find that η̂ also provides, up to
data oscillation terms, an upper bound for the discretization error. Theorem 3.6
yields ‖u−ul‖a ≤ C(ηl + ξ̂l); therefore it is sufficient to show ηl ≤ C(η̂l + ξ̂l). The
proof of the lower bound of the element contributions ηT guarantees that

η2
T ≤ C

⎛
⎝ ∑

e∈Ef
T

he‖ge − {Cε(uh)}ne‖2
0;e + η2

e

⎞
⎠ +

∑
e∈EC

T

he‖λh + σ(uh)n‖2
0;e.

The first term appears in the analysis of equilibrated flux-based error estimators
and can be bounded by the residual, and the third term is bounded in (3.28) in
terms of η̂ and ξ̂. Thus, we obtain

(6.37) ηl ≤ C(η̂l + ξ̂l),

and the upper bound follows.
In contrast to the conforming variational equality setting, no Galerkin orthogo-

nality holds for our inequality, and thus ‖u − ul‖2
a − ‖u − ul+1‖2

a is not equal to
‖ul+1 − ul‖2

a. To overcome this difficulty, we apply the techniques introduced in
[15] for the obstacle problem. The new idea of [15] is to consider the energy and
not the energy norm. Observing that for each triangulation Tl, we have ul ∈ K,
we can work with

(6.38) δl := J(ul) − J(u) ≥ 0 .

The variational inequality is equivalent to a constrained minimization problem, i.e.,
J(u) ≤ J(v), v ∈ K, and in terms of Kl ⊂ Kl+1, we have

0 ≤ δl+1 ≤ δl .

The following theorem shows that a stronger result can be obtained.

Theorem 6.1. There exist constants ρ1, ρ2 < 1 and cξ, Cξ < ∞ such that

δl+1 ≤ ρ1δl + cξ ξ̂
2
l ,

δl+1 + Cξ ξ̂
2
l+1 ≤ ρ2(δl + Cξ ξ̂

2
l ) .

Proof. The proof follows the lines of [15] and is straightforward. For the convenience
of the reader, we outline the basic steps. We observe that −b(u, λl+1) does not have
to be greater than or equal to zero, but that we have −b(ul, λl+1) ≥ 0. Then, the
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complementary condition on level l +1, the bulk criterion (6.35), Corollary 3.8 and
(6.37) yield

δl − δl+1 = J(ul) − J(ul+1) =
1
2
‖ul − ul+1‖2

a − b(ul, λl+1)

≥ 1
2
‖ul − ul+1‖2

a ≥ C
∑

e∈Ml

‖ul − ul+1‖2
a;ωe

≥
∑

e∈Ml

(Cη̂2
e − ch2

e‖f − Π0f‖2
0;ωe

)

≥ (Cη̂2 − cξ̂2
l ) ≥ (Cδl − cξ̂2

l ) ,

and thus δl+1 ≤ (1−C)δl + cξ̂2
l . Moreover, the bulk criteria for the data oscillation

term give ξ̂2
l+1 ≤ 1

2 ξ̂2
l and thus δl+1+3cξ ξ̂

2
l+1 ≤ ρ1δl+cξ ξ̂

2
l +3cξ ξ̂

2
l+1 ≤ ρ1δl+ 5

2cξ ξ̂
2
l ≤

ρ2(δl + 3cξ ξ̂
2
l ). �

Remark 6.2. We observe that ξ̂l = 0 for a constant f . In that case, the energy term
δl is a strictly decreasing function with respect to the refinement level l. Moreover,
we do not have to create inner nodes in the elements.

7. Numerical results for AFEM strategy

In this section, we use the AFEM strategy introduced in Section 6 on Examples
2 and 3 of Section 4. We use a repeated newest vertex bisection to ensure that an
inner point is created for adjacent elements of marked edges. For details about the
mesh-refinement process, we refer to [43]. As a factor in the bulk criterion (6.35),
we choose θ = 0.3. Additionally, we compare the influence of different refinement
strategies on the estimated error and the energy decay and the two error estimators
η, η̂ with an approximated error obtained by an extrapolation technique.

7.1. Square on a circle. We use the same problem setting as depicted in Figure
10 and the same material parameters.
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Figure 17. Square on circle (AFEM): Energy reduction and es-
timated factor ρ1.

In the left picture of Figure 17, the energy reduction is plotted. To compute
δl, the exact energy J(u) is approximated using an extrapolation technique. We
see that the energy decay is of order O(h2). The factor ρ1 in Theorem 6.1 can be
estimated by δl+1/δl; see the right picture in Figure 17. Here, we obtain a mean
value of 0.56; moreover, ρ1 is bounded by 0.94. We note that we do not consider
volume forces in this example, hence ξ̂ = 0, and we neglect additional terms arising
from the nonhomogeneous Neumann boundary conditions.
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7.2. Square on a triangle. We use the same material parameters and problem
setting as given in Figure 13. The energy reduction using the AFEM strategy is
depicted in Figure 18.
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Figure 18. Square on triangle (AFEM): Energy reduction for α = π/6, π/4, π/3.

In Figure 19, the estimated reduction factor ρ1 is depicted. We get a mean value
of 0.72 and maximum of 0.93 for α = π/6, mean value of 0.73 and maximum of
0.95 for α = π/4 and a mean value of 0.77 and maximum of 0.96 for α = π/3. In
all our numerical results, we observe that ρ1 is oscillating. This can be explained
by the “staircase” decrease of the energy differences.
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Figure 19. Square on triangle (AFEM): Estimated reduction fac-
tor ρ1 for α = π/6, π/4, π/3.

7.3. Comparison of the refinement strategies. Now we compare the effect of
different refinement strategies on the estimated errors and the energy decay. To do
so, we chose Example 2 and Example 3 with α = π/3.

Depending on the error estimator, the mesh is refined with respect to edges
or elements; see Figure 20. We use the residual-based error estimator η̂e which
results in an edge-based refinement and the error estimators ηT and (η2

T + η2
e)1/2

which result in an element-based refinement. For the third error estimator, the
corresponding part of ηC is added to boundary elements, which is motivated by
Theorem 3.5. We note that if Assumption 3.1 is not fulfilled for an edge, the
corresponding element is marked for refinement. Additionally for each refinement
strategy, we use a mesh refinement which leads to an inner point after refinement;
see Figure 20 (b).

(a) (b)

Figure 20. Refinement strategies for edge- and element-based es-
timators (a) without and (b) with the inner-node property.
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In Figures 21 and 22 the results for Example 2 are given. Here, mesh-sequences
generated by different error estimators are compared. On the left side, the energy
reduction is given, the value of the error estimator η is plotted in the middle and
η̂ is plotted on the right side. Only small differences are observed for the differ-
ent techniques. We observe that the refinement strategies producing inner nodes
perform slightly worse than the others. This can be explained by the more locally
refined meshes obtained by the refinement strategies without the inner-node prop-
erty. Comparing the estimators ηT and (η2

T + η2
e)1/2, we see different behavior in

the beginning which can be explained by the fact that η is not able to estimate the
error correctly in this range. Comparing the error estimated by η and η̂, we see
that η is smaller than the residual estimator η̂. Asymptotically, however, all error
estimators and refinement strategies perform equally well.
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Figure 21. Square on circle: Comparison of different error esti-
mators, refinement strategy (a). Left: energy decay, middle: η̂,
right: η.
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Figure 22. Square on circle: Comparison of different error esti-
mators, refinement strategy (b). Left: energy decay, middle: η̂,
right: η.

The results for Example 3 are depicted in Figures 23 and 24. Again, we see only
small differences between the different strategies.

7.4. Comparison of the error estimators. As we have seen, the influence of the
type of refinement on the quantitative and qualitative error and energy decay can
be neglected. However, one observes differences between the quantitative values of
our error estimators. Therefore, we compare the different error estimators with a
higher order error approximation. This approximation is obtained by considering
‖u−ul‖2

a = (‖u‖2
a −‖ul‖2

a) + 2b(ul, λ), where the first term is approximated using
extrapolation techniques and the second term by b(ul, λlmax). As error estimators,
we consider η̂, η and η+ηC , which corresponds to the upper bound in Theorem 3.5.
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In Figure 25, the results for Example 2 are given. Here, we only consider meshes
that fulfill Assumption 3.1. We see that η̂ yields an upper bound, but the error is
overestimated with a factor of approximately 5. For the estimator η, we see that
for small meshes the error is even underestimated. η + ηC however gives a good
upper bound for the error with a factor of approximately two. Similar results hold
for Example 3; see Figure 26. We remark that, due to the singularity, the term ηC

has here a greater influence; see also Figure 16. In all our numerical results, η and
η + ηcontact

C give the best bound.
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Figure 23. Square on triangle: Comparison of different error es-
timators, refinement strategy (a). Left: energy decay, middle: η̂,
right: η.

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

# elements

ap
pr

. e
ne

rg
y 

di
ffe

re
nc

e 
δ

energy reduction

edge
η
η + η

C

O(h2)

10
1

10
2

10
3

10
4

10
−1

10
0

# elements

ap
pr

. e
rr

or
 (

ed
ge

)

estimated error

edge
η
η + η

C

O(h)

10
1

10
2

10
3

10
4

10
−1

10
0

# elements

ap
pr

. e
rr

or
 η

estimated error

edge
η
η + η

C

O(h)

Figure 24. Square on triangle: Comparison of different error es-
timators, refinement strategy (b). Left: energy decay, middle: η̂,
right: η.
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