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GALOIS GROUPS OF SCHUBERT PROBLEMS
VIA HOMOTOPY COMPUTATION

ANTON LEYKIN AND FRANK SOTTILE

Abstract. Numerical homotopy continuation of solutions to polynomial equa-
tions is the foundation for numerical algebraic geometry, whose development
has been driven by applications of mathematics. We use numerical homotopy
continuation to investigate the problem in pure mathematics of determining
Galois groups in the Schubert calculus. For example, we show by direct com-
putation that the Galois group of the Schubert problem of 3-planes in C8

meeting 15 fixed 5-planes non-trivially is the full symmetric group S6006.

Introduction

Numerical homotopy continuation [26] gives a method for finding all solutions
to a system of polynomials with finitely many solutions. Current parallel imple-
mentations [18] can solve systems with over 40 million solutions [19]. The emerging
field of numerical algebraic geometry [25, 26] uses numerical homotopy continuation
as a foundation for algorithms to study algebraic varieties. While numerical alge-
braic geometry was developed for applications of mathematics, we apply it in pure
mathematics, computing Galois groups of enumerative-geometric problems from
the Schubert calculus, called Schubert problems.

Along with [2], this is one of the first applications of numerical algebraic geometry
to a problem in pure mathematics.

Jordan introduced Galois groups of enumerative problems in 1870 [11] and Harris
laid their modern foundations in 1979 [8], showing that the algebraic Galois group is
equal to a geometric monodromy group. Byrnes [4, Section 5] used Harris’s theory
to prove that the general problem of placing poles with static output feedback in
linear systems theory was not solvable by radicals. He used numerical homotopy
continuation to show that a particular Galois group arising in pole placement was
the full symmetric group, S5. Underlying this calculation was a Schubert problem.
Vakil [32] applied his geometric Littlewood-Richardson rule [31] to study Galois
groups of Schubert problems and showed that many Schubert problems have Galois
group containing the alternating group.

A Schubert problem is simple if it involves no more than two Schubert conditions
of codimension more than 1. Simple Schubert problems are natural to study [28, 29]
and among all Schubert problems on a given Grassmannian, they have the largest

Received by the editor February 22, 2008 and, in revised form, June 14, 2008.
2000 Mathematics Subject Classification. Primary 14N15, 65H20.
Key words and phrases. Polynomial homotopy continuation, Schubert problem, Galois group.
The authors were supported by the Institute for Mathematics and its Applications and Sottile

by NSF grants CAREER DMS-0538734 and DMS-0701050.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

1749



1750 ANTON LEYKIN AND FRANK SOTTILE

intersection numbers, so they are the most challenging for direct computation. They
may also be formulated as complete intersections, which is a restriction imposed by
our software.

Numerical Theorem. The Galois group of the Schubert problem of 3-planes in
C8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S6006.

This is a numerical theorem, as our software does not certify its output. We have
computed Galois groups of scores of other simple Schubert problems, including
one on the Grassmannian of 4-planes in C8 having 8580 solutions and ones on
Grassmannians of 3-planes in C8 and in C9 having 10329 and 17589 solutions,
respectively. In every case, we find that the Galois group is the full symmetric
group. Table 2 in Section 3.2 records some of these calculations. Based on this
evidence, we conjecture that every simple Schubert problem on a Grassmannian
has Galois group equal to the full symmetric group.

Not all Schubert problems have Galois group equal to the full symmetric group.
Using an idea of Derksen, Vakil [32] gives some Schubert problems on Grassmanni-
ans whose Galois group is not the full symmetric group and Ruffo, et. al. [21] give
one on a particularly small flag manifold. None of these examples can be studied
with our software, which requires the Schubert problem to have a formulation as a
complete intersection.

Our software has two implementations in Maple which use homotopy continua-
tion to compute elements in the Galois groups and either Maple or GAP [6] to deter-
mine if these elements generate the full symmetric group. For the continuation, both
implementations use PHCpack [33] through its Maple interface PHCmaple [17], and
the second implementation may also call Bertini [1]. The advantages of Bertini are
that it can use arbitrary precision and it gives an independent verification of our
results.

Numerical techniques give insight into some mathematical properties that are far
beyond the reach of other methods. For example, Billey and Vakil [3] studied Galois
groups of Schubert problems using symbolic methods. The largest problem that
they treated (showing its Galois group is the full symmetric group) had 9 solutions
on the Grassmannian of 2-planes in C6, and they stated that the Schubert problem
on this Grassmannian having 14 solutions was computationally infeasible.

The largest simple Schubert problem which we have solved symbolically has 91
solutions [21, §5.3]. In contrast, numerical methods allow us to solve Schubert
problems with as many as 17589 solutions. These examples actually underestimate
the gap between the computational possibilities of symbolic and numeric methods,
because they were performed on serial machines.

Current and (likely) future increases in computer power will come from multiple
core and distributed computing. This is a break with the past, when improvements
in computational power came from increasing the clock speed of single-processor
units. Symbolic algorithms have limited potential in this regime, as Gröbner basis
computation appears to be intrinsically serial and thus cannot be efficiently paral-
lelized. In contrast, numerical homotopy continuation is easily parallelized, since
its atomic tasks are independent. Thus methods based on numerical continuation
will reap the benefits of future parallel architectures. In addition, numerical algo-
rithms typically require less memory than symbolic algorithms. In particular, the
sizes of final and intermediate expressions in Gröbner basis computation not only
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may be large, but also are unpredictable. For these reasons, we feel that the future
of computing in algebraic geometry lies in numerical algorithms.

This paper is structured as follows. In Section 1, we describe the basic geometry
of Schubert problems and Harris’s theory of Galois groups. In Section 2, we explain
the use of homotopy continuation for simple Schubert problems. We present our
software and algorithms and discuss our results in Section 3, which include the
computation described in the Numerical Theorem. We describe future work in
Section 4.

1. Galois group computation of Schubert problems

The Schubert calculus [14] is a method to compute the number of solutions to
Schubert problems, which are a class of geometric problems involving linear sub-
spaces. The prototypical Schubert problem is the classical problem of four lines:
How many lines in space meet four given lines? To answer this, note that three
lines �1, �2, �3 lie on a unique doubly-ruled hyperboloid, depicted in Figure 1. These
three lines lie in one ruling, while the second ruling consists of the lines meeting the
given three lines. The fourth line �4 meets the hyperboloid in two points. Through
each of these points there is a line in the second ruling, and these are the two lines
m1 and m2 meeting our four given lines.

�1

�2

�3

�4

m1

m2

p
�

�
�

�
�

���

Figure 1. The two lines meeting four lines in space

The Galois group of this Schubert problem is the group of permutations which
are obtained by following the solutions over loops in the space of lines �1, . . . , �4.
Rotating �4 about the point p gives a loop which interchanges the two solution lines
m1 and m2, showing that the Galois group is S2, the full symmetric group on two
letters.

1.1. Schubert problems in the Grassmannian. A typical Schubert problem
asks for the linear subspaces of a fixed dimension (k-planes) in Cn that have spec-
ified positions (incidence conditions) with respect to some fixed, but otherwise
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general, linear subspaces. Each incidence condition defines a set of k-planes, called
a Schubert variety, and the solutions to the Schubert problem are the points of
intersection of the corresponding Schubert varieties. We describe this class of prob-
lems.

The Grassmannian G(k, n) is the set of k-planes in Cn. This is a complex man-
ifold of dimension k(n−k). The problem of four lines involves the four-dimensional
Grassmannian G(2, 4) as a line in (projective) 3-space corresponds to a 2-plane in
C4. The set of lines m meeting a fixed line � corresponds to the set of 2-planes M
of C4 whose intersection with a fixed 2-plane L is at least one-dimensional, and this
set of lines m is a Schubert variety. The problem of four lines asks for the points
common to four such Schubert varieties, one for each of the given lines �1, . . . , �4 in
projective 3-space.

The specified positions of k-planes in Schubert problems are in reference to flags
in Cn. A flag F• is a sequence of linear subspaces

F• : F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = C
n ,

where i = dim Fi. The possible positions are encoded by partitions. A partition λ
is a weakly decreasing sequence of integers

λ : (n−k) ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 .

Give a partition λ and a flag F•, the Schubert (sub)variety YλF• of G(k, n) is

(1.1) YλF• := {E ∈ G(k, n) | dimE ∩ Fn−k+i−λi
≥ i, i = 1, . . . , k} .

This has codimension |λ| := λ1 + · · · + λk in G(k, n). When λ = � := (1, 0, . . . , 0),

Y�F• = {E ∈ G(k, n) | dim E ∩ Fn−k ≥ 1} ,

as the other conditions are redundant. We call � a simple Schubert condition and
Y�F• a simple Schubert variety. It depends only upon Fn−k, so we also write
Y�Fn−k. All four Schubert varieties in the problem of four lines are simple.

A Schubert problem is a list (λ1, . . . , λm) of partitions with |λ1| + · · · + |λm| =
k(n−k). By Kleiman’s Transversality Theorem [13], if F 1

• , . . . , Fm
• are general, then

the intersection

(1.2) Yλ1F 1
• ∩ Yλ2F 2

• ∩ · · · ∩ YλmFm
•

is transverse and consists of finitely many k-planes. The number d(λ1, . . . , λm) of k-
planes may be computed using the algorithms in the Schubert calculus (see [14] or [5]
or the Introduction to [9]). The problem of four lines is an instance of the Schubert
problem (�, �, �, �) in G(2, 4) and our analysis shows that d(�, �, �, �) = 2.

We study Schubert problems in which all except possibly two Schubert conditions
are simple. A simple Schubert problem on G(k, n) is one of the form(

λ, µ, �, . . . , �︸ ︷︷ ︸
k(n−k)−|λ|−|µ|

)
,

where λ, µ are not necessarily equal to �. We speak of the simple Schubert problem
(λ, µ) on G(k, n) (the k(n − k) − |λ| − |µ| simple conditions � are understood).

The primary reason for limiting our study to simple Schubert problems in this
paper is that these are Schubert problems that are complete intersections, and the
off-the-shelf software that we use restricts us to complete intersections.
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1.2. Galois groups of Schubert problems. According to Harris [8], Jordan [11]
showed how intrinsic structures of some enumerative problems could be understood
in terms of Galois theory. Harris took the opposite approach: computing Galois
groups of enumerative problems to expose the intrinsic structure of an enumerative
problem. He showed that many enumerative problems have Galois group equal to
the full symmetric group, demonstrating that these problems had no underlying
structures.

Harris’ theory relating Galois groups to monodromy groups begins with a map
f : U → V of degree d between irreducible complex algebraic varieties U and V .
The function field C(U) of U is a degree d extension of the function field C(V ) of V .
These fields may be embedded into the field K of germs of meromorphic functions
on a disc around a regular value v ∈ V of f . If L ⊂ K is the normalization in K of
the extension C(U)/C(V ), then the Galois group G = Gal(L/C(V )) acts faithfully
on the d points f−1(v), and this gives an embedding G ↪→ Sd, where Sd is the
symmetric group of the fiber f−1(v).

Replacing U and V by Zariski open subsets if necessary, we may assume that
the map f : U → V is a degree d covering. A loop in V based at v has d lifts to U ,
one for each point in the fiber f−1(v). Associating a point in the fiber f−1(v) to
the endpoint of the corresponding lift gives a permutation in Sd. This defines the
usual permutation action of the fundamental group of V on the fiber f−1(v). The
monodromy group of the map f : U → V is the image of the fundamental group of
V in Sd.

Proposition 1.1 (Harris [8]). For a map f : U → V as above, the monodromy
group equals the Galois group.

Given a Schubert problem (λ1, . . . , λm) on G(k, n), let V be the space of m-tuples
(F 1

• , . . . , Fm
• ) of flags, a product of flag manifolds. Define U to be the incidence

variety

(1.3) U := {(H, F 1
• , . . . , Fm

• ) ∈ G(k, n) × V | H ∈ YλiF i
• for i = 1, . . . , m} .

The fiber of U over a point H ∈ G(k, n) is a product of the Schubert subvarieties

{F i
• | H ∈ YλiF i

•}, i = 1, . . . , m,

of the flag manifold. Each of these is irreducible, and so U is irreducible. Let
f : U → V be the other projection. Given v = (F 1

• , . . . , Fm
• ) ∈ V , the fiber f−1(v)

is the intersection (1.2). When v is general, this has d = d(λ1, . . . , λm) points,
so that the map f has degree d. The Galois group of the Schubert problem is
the Galois group of the extension C(U)/C(V ). By Proposition 1.1, this is the
monodromy group of the map f : U → V .

The point of this paper is that these monodromy groups may be computed using
numerical homotopy continuation. For this, we first compute the points in a single
fiber f−1(v). Then, given a loop ϕ : [0, 1] → V based at v (ϕ(0) = ϕ(1) = v),
we numerically follow the points in the fibers f−1(ϕ(t)) as t runs from 0 to 1.
This computes the lifts of ϕ and thus the associated monodromy permutation.
Computing sufficiently many of these monodromy permutations will enable us to
recover the Galois group. While this gives the idea behind our method, we postpone
more details until Section 3.1.
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2. Homotopy continuation of simple Schubert problems

Homotopy continuation is a numerical method for computing all solutions to a
system of polynomials given the solutions to a similar system. We use it to find all
solutions to a simple Schubert problem and to compute elements of the monodromy
group. We first describe the method of numerical homotopy continuation, then
discuss polynomial formulations of Schubert problems, and finally explain the Pieri
homotopy algorithm [9, 10] for finding all solutions to simple Schubert problems.

2.1. Homotopy continuation of polynomial systems. Suppose that we want
to find all solutions to a 0-dimensional target system of polynomial equations

(2.1) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fN (x1, . . . , xn) = 0 ,

written as F (x) = 0. Numerical homotopy continuation finds these solutions if we
have a homotopy, which is a system H(x, t) of polynomials in n+1 variables such
that

(1) the systems H(x, 1) = 0 and F (x) = 0 both have the same solutions;
(2) we know all solutions to the start system H(x, 0) = 0;
(3) the components of the variety defined by H(x, t) = 0 include curves whose

projection to C (via the second coordinate t) is dominant;
(4) the solutions to the system H(x, t) = 0, where t ∈ [0, 1), occur at smooth

points of curves from (3) in the variety H(x, t) = 0.
Given this, we restrict the variety H(x, t) = 0 to t ∈ [0, 1] and obtain finitely

many real arcs in Cn × [0, 1] which connect (possibly singular) solutions of the
target system H(x, 1) = 0 to solutions of the start system H(x, 0) = 0. We then
numerically trace each arc from t = 0 to t = 1, obtaining all isolated solutions to
the target system.

The homotopy is optimal if every solution at t = 0 is connected to a unique
solution at t = 1 along an arc. This is illustrated in Figure 2. For simple Schubert
problems, the Pieri homotopy algorithm is optimal.

0 1

t

optimal
0 1

not optimal

t

0 1
not optimal

t

Figure 2. Optimal and non-optimal homotopies

Remark 2.1. Homotopy continuation software often constructs a homotopy as fol-
lows. Let F (x) be the target system (2.1) and suppose we have solutions to a start
system G(x). Then for a number γ ∈ C with |γ| = 1 define the linear homotopy

H(x, t) := γtF (x) + (1 − t)G(x) .
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Then H(x, t) satisfies the definition of a homotopy for all but finitely many γ. The
software detects the probability 0 event that H(x, t) does not satisfy the definition
when it encounters a singularity, and then it recreates the homotopy with a different
number γ.

Path-following algorithms use predictor-corrector methods, which are conceptu-
ally simple for square systems, where the number of equations equals the number
of variables.

Given a point (x(0), t(0)) on an arc such that t(0) ∈ [0, 1), the n × n matrix

Hx :=
(

∂Hi

∂xj

)n

i,j=1

is regular at (x(0), t(0)), which follows from the definition of the homotopy. Let
Ht := (∂H1/∂t, . . . , ∂Hn/∂t)T . Given ∆t, we set

∆x := −∆t Hx(x(0), t(0))−1 Ht(x(0), t(0)) .

For t(1) = t(0)+∆t, the point (x′, t(1)) = (x(0)+∆x, t(1)) is an approximation to the
point (x(1), t(1)) on the same arc. This constitutes a first order predictor step. A
corrector step uses the multivariate Newton method for the system H(x, t(1)) = 0,
refining the approximate solution x′ to a solution x(1). In practice, the points
x(0) and x(1) are numerical (approximate) solutions, and both the prediction and
correction steps require that detHx �= 0 at every point where the computation of
the Jacobian matrix Hx is done.

When the system is not square, additional strategies must be employed to enable
the path-following. Fortunately, simple Schubert problems are exactly the class
of Schubert problems for which we have an optimal square homotopy (the Pieri
homotopy).

Cheater homotopies [20] are optimal homotopies constructed from families of
polynomial systems. For example, given a Schubert problem (λ1, . . . , λm), let V
be the space of all m-tuples (F 1

• , . . . , Fm
• ) of flags. The total space of the Schubert

problem

U := {(H, F 1
• , . . . , Fm

• ) ∈ G(k, n) × V | H ∈ YλiF i
• for i = 1, . . . , m}

is defined by equations (see Section 2.2) depending upon the point (F 1
• , . . . , Fm

• ) ∈
V . If ϕ : C → V is an embedding of C into V in which ϕ(0) and ϕ(1) are general
m-tuples of flags and we write ϕ(t) = (F 1

• (t), . . . , Fm
• (t)), then

ϕ∗U = {(H, F 1
• (t), . . . , Fm

• (t)) | H ∈ YλiF i
•(t) for i = 1, . . . , m} .

This is defined by a system H(x, t) = 0, which gives an optimal homotopy. We use
this particular cheater homotopy to compute permutations in monodromy groups,
called monodromy permutations. We give more details in Section 3.1.

There, we describe the Pieri homotopy algorithm, which is a cheater homotopy
where only one flag in ϕ(t) actually moves and the others remain fixed. The moving
flag is in general position when t = 1, but in a particular special position when t = 0,
so that the Schubert problem becomes a union of other Schubert problems (whose
solutions were previously computed and thus are known).
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2.2. Equations for Schubert problems. Polynomial homotopy continuation
methods require that our geometric problems are modeled by a system of poly-
nomial equations. For efficiency, the number of variables should be minimized. We
describe equations for Schubert varieties and then model Schubert problems by sys-
tems of equations which minimize the number of variables, stated in Proposition 2.2
below.

Represent a k-plane in Cn as the row space of a k by n matrix E with full rank
and a flag by an invertible n by n matrix F• of constants, where the i-dimensional
subspace in the flag is the row space of the first i rows Fi of the matrix. The
condition from (1.1) that dimE ∩ Fn−k+i−λi

≥ i is

(2.2) rank
[

E
Fn−k+i−λi

]
≤ n − λi ,

which is given by the vanishing of the determinants of all n+1−λi by n+1−λi

submatrices of the n+i−λi by n matrix in (2.2). When λi = 0 the condition (2.2)
is empty.

Write E(E, F•, λ) for the system consisting of these
∑

i

(
n+i−λi

n+1−λi

)(
n

n+1−λi

)
equa-

tions. The codimension |λ| equals the number of equations only when λ = �. In
that case, E(E, F•, �) consists of the single equation

(2.3) det
[

E
Fn−k

]
= 0 .

Since any two flags in general position are conjugate under a linear transforma-
tion, we always assume that two flags in (1.2) are fixed. Let the flag F• be defined
by setting Fi to be the span of en, en−1, . . . , en+1−i, where e1, . . . , en form the stan-
dard basis for Cn. The Schubert variety YλF• has an open subset isomorphic to
Ck(n−k)−|λ| consisting of k-planes that are the row space of an echelon matrix of
the form ⎡

⎢⎢⎣
0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗

...
...

. . .
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗

⎤
⎥⎥⎦ ,

where 1 + λk, 2 + λk−1, . . . , k + λ1 are the columns with 1s and ∗ represents some
number.

To further reduce the number of variables, let the flag F ′
• be defined by setting F ′

i

to be the span of e1, . . . , ei. The skew Schubert variety [30] (or Richardson variety),

Yλ,µ := YλF• ∩ YµF ′
•,

has an open subset parameterized by matrices of the form

Eλ,µ :=

⎡
⎣ 0 1 ∗ · · · · · · · · · ∗ 0 · · · 0...

. . . . . . ∗ · · · · · · · · · ∗ . . .
...

0 · · · 0 1 ∗ · · · · · · · · · ∗ 0

⎤
⎦

whose entries ai,j are⎧⎨
⎩

1 if j = i + λk+1−i ,
∗ if i + λk+1−i < j ≤ n − k + i − µi ,
0 otherwise .
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This parameterization is one-to-one if the product of the rightmost entries is non-
zero,

0 �=
k∏

i=1

ai, n−k+i−µi
.

On the left below is E�,� in G(2, 4) and on the right is E210,110 in G(3, 7):

(2.4)
[
1 x 0 0
0 0 1 y

]
,

⎡
⎣1 a b c 0 0 0

0 0 1 d e 0 0
0 0 0 0 1 f g

⎤
⎦ .

Given a Schubert problem λ, µ, ν1, . . . , νm, we will always take two of the flags
to be these coordinate flags F• and F ′

•, and consider intersections of the form

Yλ,µ ∩ Yν1F 1
• ∩ · · · ∩ YνmFm

• ,

where the flags F 1
• , . . . , Fm

• are general. By Kleiman’s transversality theorem, all
intersections will lie in the subset of Yλ,µ that is parameterized by matrices from
Eλ,µ, and thus are solutions to the system of equations given by

E(Eλ,µ, F 1
• , ν1), . . . , E(Eλ,µ, Fm

• , νm) .

This system is not necessarily square unless it is a simple Schubert problem.
Since the homotopy continuation software we use is for square systems of polyno-
mials, we restrict ourselves to simple Schubert problems. Write G for the n−k by
n matrix Fn−k. Then E(Eλ,µ, F•, �) is a single equation (2.3) that depends only
on G.

Proposition 2.2. A simple Schubert problem (λ, µ) on G(k, n) is given by m :=
k(n − k) − |λ| − |µ| matrices G1, . . . , Gm each of size n−k by n, and the solutions
are modeled by the system of equations

(2.5) det
[
Eλ,µ

G1

]
= det

[
Eλ,µ

G2

]
= · · · = det

[
Eλ,µ

Gm

]
= 0 .

For example, the simple Schubert problem �, � on G(2, 4) is modeled by

(2.6) det

⎡
⎢⎢⎣

1 x 0 0
0 0 1 y

g11 g12 g13 g14

g21 g22 g23 g24

⎤
⎥⎥⎦ = det

⎡
⎢⎢⎣

1 x 0 0
0 0 1 y

g′11 g′12 g′13 g′14
g′21 g′22 g′23 g′24

⎤
⎥⎥⎦ = 0 ,

where G1 = (gij) and G2 = (g′ij) are matrices of constants.

2.3. Pieri homotopy algorithm. We describe the simplified version of the Pieri
homotopy algorithm [9, 10] that we use. The Pieri homotopy algorithm finds all
solutions to those Schubert problems where all except possibly two partitions con-
sist of a single part, (a, 0, . . . , 0). It is based on subtle geometric degenerations
constructed in [27]. Both the algorithm and the degenerations enjoy a dramatic
simplification for simple Schubert problems. The degenerations for these simple
Schubert problems were introduced by Schubert [22, 23].

Example 2.3. Consider the simple Schubert problem (λ, µ) = (210, 110) in G(3, 7).
Begin with local coordinates (2.4) for E210,110:

E := E210,110 =

⎡
⎣1 a b c 0 0 0

0 0 1 d e 0 0
0 0 0 0 1 f g

⎤
⎦ .
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There are four columns, 1, 2, 3, and 6 not of the form n+i−k−µi. Let G be a
general 4-plane represented by a matrix in which these columns form an identity
matrix:

(2.7) G :=

⎡
⎢⎢⎣

1 0 0 ∗ ∗ 0 ∗
0 1 0 ∗ ∗ 0 ∗
0 0 1 ∗ ∗ 0 ∗
0 0 0 ∗ ∗ 1 ∗

⎤
⎥⎥⎦ .

Let G(t) be this matrix with each entry ∗ scaled by t. Then

(2.8) det
[

E
G(t)

]
= ceg + t(∗c + · · ·+ ∗cef) + t2(∗+ · · ·+ ∗bef) + t3(∗f + ∗af) ,

where each ∗ again represents a fixed number.
When t = 0, the expression (2.8) becomes ceg. Let us investigate the conse-

quences of ceg = 0. If we set c = 0 in E210,110, we get E210,210 and if we set g = 0,
we get E210,111,

E210,210 =

⎡
⎣1 a b 0 0 0 0
0 0 1 d e 0 0
0 0 0 0 1 f g

⎤
⎦ , E210,111 =

⎡
⎣1 a b c 0 0 0

0 0 1 d e 0 0
0 0 0 0 1 f 0

⎤
⎦ .

(If e = 0, then the row operation R1 ← R1 − cR2 gives a matrix with c = 0, which
lies in E210,210.) This computation in local coordinates shows that

Y210,110 ∩ Y�G(0) = Y210,210 ∪ Y210,110 .

Now suppose that we have general 4 by 7 matrices G1, . . . , G6, G7, and we wish
to solve the instance of the simple Schubert problem (210, 110):

(2.9) det
[

E
G1

]
= · · · = det

[
E
G6

]
= det

[
E
G7

]
= 0 ,

where G7 is the matrix (2.7). Replacing G7 by G(t) gives a homotopy of 7 equations
in the coordinates a, . . . , g, where 6 equations are fixed (2.9) and one depends
on t (2.8). When t = 0, the latter becomes ceg = 0 and the system splits into
subsystems on E210,210 and E210,111 involving the matrices G1, . . . , G6. Numerical
continuation along this homotopy uses solutions to these smaller problems to obtain
solutions to the system (2.9).

Write λ � ν if the components of the vector ν − λ are either 0 or 1, with exactly
one 1. For example, 110 � 210 and 110 � 111. Given partitions λ, µ, define the
(n−k)-plane

Gµ := {ei | i �∈ {n−k+j−µj , for j = 1, . . . , k}} .

Then if the non-zero entries of the matrix Eλ,µ are ai,j , we have

(2.10) det
[
Eλ,µ

Gµ

]
=

k∏
i=1

ai,n−k+i−µi
,

which is the product of the rightmost non-zero entries in the rows of Eλ,µ. This
determinant defines the charts Eλ,ν for µ � ν. A child problem for the simple
Schubert problem (λ, µ) is one of the form (λ, ν) with µ � ν.

The Pieri homotopy algorithm finds all solutions to a simple Schubert problem
(λ, µ) with fixed (but general) (n−k)-planes G1, . . . , Gm, where m + |λ| + |µ| =
k(n−k). We assume that we are given all solutions to all child problems (λ, ν) with
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µ � ν and the (n−k)-planes are G1, . . . , Gm−1. If we let Gm(t) be a 1-parameter
family of (n−k)-planes with Gm(1) = Gm and Gm(0) = Gµ, then we obtain a
homotopy

det
[
Eλ,µ

G1

]
= · · · = det

[
Eλ,µ

Gm−1

]
= det

[
Eλ,µ

Gm(t)

]
= 0 .

When t = 0, this is the disjunction of child problems and when t = 1, it is the
problem we wish to solve.

This method recursively finds solutions to parent problems given solutions to
their child problems. The depth of this recursion equals the dimension of the
skew Schubert variety corresponding to the simple Schubert problem we wish to
solve, i.e., the number of variables in the corresponding equations. The base case
of this recursion is when |λ| + |µ| = k(n−k), for then Eλ,µ is empty unless λi +
µk+1−i = n−k for i = 1, . . . , k, and in that case, Eλ,µ gives the k-plane spanned by
{ei+λi

| i = 1, . . . , k}.
These homotopies are optimal. This is because they only follow solutions to the

given Schubert problem and because the number d(λ, µ) of solutions to a simple
Schubert problem satisfies the same recursion as the number of paths that are
followed. Namely, if |λ|+ |µ| = k(n−k), then d(λ, µ) = 0 unless λi +µk+1−i = n−k
for i − 1, . . . , k, and then it equals 1. If |λ| + |µ| < k(n−k), then

d(λ, µ) =
∑
µ�ν

d(λ, ν) .

Remark 2.4. We do not quite use the homotopy we just described, as the equations
involving t will in general have degree in t at least the minimum of k and n−k.
Instead, we use the convex combination of the equations

(2.11) γt det
[
Eλ,µ

Gm

]
+ (1 − t) det

[
Eλ,µ

Gµ

]
= 0 .

Here, γ ∈ C has norm 1, |γ| = 1. This has degree 1 in the homotopy parameter t.
Doing this, the intermediate solutions will not necessarily be solutions to the

Schubert problem, so we need to argue that this homotopy will remain optimal.
For this, we appeal a little to the geometry of the Grassmannian. The equations we
use define hyperplane sections of the Grassmannian in its Plücker embedding, and
the number of solutions d(λ, µ) to the Schubert problem turns out to be the degree
of the variety Yλ,µ. Thus, replacing a family of hyperplanes defined by Schubert
conditions (as in the Pieri homotopy) by an arbitrary pencil of hyperplanes (2.11)
will still give an optimal homotopy between solutions to the child problems and
solutions to their parent problem.

3. Description of software

We divide the computation of the Galois group of a Schubert problem into three
tasks.

(1) Compute the solutions of a general instance of the problem, called a master
set.

(2) Use cheater homotopies to compute monodromy permutations of the master
set.

(3) Determine the group generated by the monodromy permutations.



1760 ANTON LEYKIN AND FRANK SOTTILE

The first task may be accomplished by the brute-force application of a poly-
nomial system solver. This is, however, inefficient. In Table 1, we compare the
number of solutions to simple Schubert problems with λ = µ = � to the number
of homotopy paths followed in polyhedral homotopies (as in the black-box solver
of PHCpack). This is the volume of the associated Newton polytope and was com-
puted with Polymake [7]. This shows that the Pieri homotopy algorithm is an
efficient alternative.

Table 1. Inefficiency of polyhedral homotopy for simple Schubert problems

k, n 2,6 2,7 2,8 2,9 2,10 2,11 3,6 3,7 3,8 4,6 4,7 5,7

solutions 14 42 132 429 1430 4862 42 462 6006 14 462 42

paths 18 67 248 919 3426 12843 130 3004 74645 42 7156 364

Subsection 3.1 discusses the second task.
The theory for the third task is beyond the scope of this paper. Based on

preliminary computations, we conjectured that the Galois group is always the full
symmetric group, and therefore we only check this. The fastest routine we have
found to accomplish this is the isNaturalSymmetricGroup function of GAP [6].

In Section 3.2, we discuss implementations of our algorithm. Implementations
and documentation of our computations are available at our website [16].

3.1. Computing monodromy permutations. Suppose that we have a master
set of solutions to the simple Schubert problem (λ, µ) on G(k, n), which is modeled
by the system of equations

(3.1) det
[
Eλ,µ

G1

]
= det

[
Eλ,µ

G2

]
= · · · = det

[
Eλ,µ

Gm

]
= 0 ,

where G1, . . . , Gm are fixed (n−k)-planes. We follow these solutions along loops in
the space of m-tuples of (n−k)-planes to compute monodromy permutations.

The off-the-shelf homotopy continuation software we use requires that the equa-
tions are linear in the homotopy parameter t, and so we follow piecewise linear
loops. For these, we fix all of the Gi except Gm, and exploit the linearity of the
determinant in the row vectors g1, . . . , gn−k of Gm. If g′i is a vector not in Gm and
we replace the row gi by the convex combination (1−t)gi +tg′i, obtaining the pencil
of planes Gm(t), then

det
[

Eλ,µ

Gm(t)

]
= (1 − t) det

[
Eλ,µ

Gm

]
+ t det

[
Eλ,µ

Gm(1)

]

= (1 − t)F (g1, . . . , gm) + tF (g1, . . . , g
′
i, . . . , gm) .

Replacing the equation in (3.1) involving Gm with this equation gives a linear
homotopy between the system (3.1) and one with Gm(1) in place of Gm.

Given a different (n−k)-plane G′
m spanned by g′1, . . . , g

′
n−k, we use these vectors

to generate loops along which we can compute monodromy permutations. Suppose
for illustration that n−k = 3 and the vectors are [a, b, c] for Gm and [a′, b′, c′] for



GALOIS GROUPS OF SCHUBERT PROBLEMS 1761

G′
m. The different pencils that we may create correspond to the edges of a cube.

[a′, b′, c′]
���

���
[a′, b′, c] [a, b′, c′][a′, b, c′]

��
��

��
��

����

����

[a′, b, c] [a, b, c′][a, b′, c]

���
���

[a, b, c]

Our software offers 3 strategies to generate loops.
• long loop goes from a vertex of the cube to its opposite vertex and back,

[a, b, c] → [a′, b, c] → [a′, b′, c] → [a′, b′, c′] →
→ [a, b′, c′] → [a, b, c′] → [a, b, c] .

• short loop uses only a square,

[a, b, c] → [a′, b, c] → [a′, b′, c] → [a, b′, c] → [a, b, c] .

• half loop makes use of just one edge,

[a, b, c] 1→ [a′, b, c]
γ→ [a, b, c] ,

where the second homotopy is modified via a random number γ ∈ C,

Hγ := (1 − t)F (a′, b, c) + γtF (a, b, c) .

While we do not offer a proof that these loops will suffice to find all non-trivial
permutations, we remark that they do suffice in the examples we considered.

Example 3.1. Suppose that we have the simple Schubert problem (�, �) on
G(2, 4) as given by (2.6) with

G1 =
[
−55 − 8i 17 + 15i 40 + 99i −17 − 38i
−67 + 25i −82 − 55i −99 − 80i −21 − 85i

]
,

G2 =
[

66 + 53i −73 − 14i 85 + 5i 67 + 16i
−53 − 85i 36 − 25i 2 + 81i −58 + 35i

]
.

Its solutions m1 and m2 are

m1 :=
[
1 −0.23714 − .0028980i 0 0
0 0 1 −.51680 − .10520i

]
,

m2 :=
[
1 .97009 + 1.2705i 0 0
0 0 1 .44336 + .38248i

]
.

The short loop strategy with

G′ =
[

33 − 84i 21 − i 59 + 94i −94 + 89i
−15 − 19i 29i 79 + 51i 89 + 3i

]

creates a non-trivial monodromy permutation. The paths followed during the ho-
motopies are drawn in Figure 3, where the large circles are the values taken at the
endpoints of the different homotopies.
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1

i

m1

m2

First coordinate in position 1, 2

−1

i

2i

m1

m2

Second coordinate in position 2, 4

Figure 3. Paths tracked in Example 3.1

3.2. Implementation. We have two Maple implementations of our algorithms
using the package PHCmaple [17] to interface with PHCpack [33], which performs
the numerical polynomial homotopy continuation. PHCmaple produced the graphic
of Figure 3. The second implementation may alternatively call Bertini [1].

Our prototype implementation was carried out entirely in Maple to take advan-
tage of Maple packages to generate the equations and to manage the monodromy
group, while using the black-box solver in PHCpack to compute the master sets
of solutions. The largest problem this implementation could treat was the simple
Schubert problem (210, 200) on G(3, 7); it showed that the Galois group is the full
symmetric group S91. Previously, the largest Schubert problem whose Galois group
was proven to be the full symmetric group was the simple Schubert problem (20, 10)
on G(2, 6) with 9 solutions [3].

Our second implementation also uses Maple and either PHCpack or Bertini.
However, it relies on the Pieri homotopy algorithm to compute master sets of so-
lutions and GAP to manage the monodromy groups, removing the two main com-
putational bottlenecks of the prototype. The largest problems this implementation
has treated are (2100, �) in G(4, 8) with 8580 solutions, (210, 210) in G(3, 8) with
10329 solutions and (210, 200) on G(3, 9) with 17589 solutions. It showed that all
of these have Galois group equal to the full symmetric group. The computation
for the problem (�, �) on G(3, 8) with 6006 solutions is the basis of the Numerical
Theorem.

We computed Galois groups of the simple Schubert problems (�, �) on all small
Grassmannians, using the short loop strategy. They were run on several different
computers, including an AMD Athlon 64 Dual Core Processor 4600+ with CPU
clock speed of 2400 MHz and 1 GB of memory whose timings (using PHCpack) are
reported in Table 2. These reported times are not CPU times, but actual elapsed
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Table 2. Timings of Galois group computations

k, n 2,4 2,5 2,6 2,7 2,8 2,9 2,10
solutions 2 5 14 42 132 429 1430

time 12s 27s 19s 51s 4.2m 20.5m 2.6h
permutations 4 6 5 6 7 4 7

k, n 3,5 3,6 3,7 3,8 3,9 4,6 4,7 4,8
solutions 5 42 462 6006 17589 14 462 8580

time 12s 35s 17.9m 18.6h 78.2h 15s 23.5m 44.5h
permutations 4 4 5 6 7 5 5 7

s := seconds, m := minutes, h := hours

(wall clock) times, and so may exceed CPU time by 10 to 20 %. We also record the
number of permutations we needed to compute. The entry in G(3, 9) is the Schubert
problem (210, 200) and the entry in G(4, 8) is the Schubert problem (2100, �).

We ran some of these computations Bertini. It was unable to compute examples
in more than 10 variables, and was markedly slower for the largest computations it
completed, on G(2, 8), G(3, 7), and G(4, 7). On the other hand, Bertini provided
an independent verification that the Galois groups were indeed the full symmetric
groups. We remark that Bertini is new software and its efficiency will likely improve.

4. Conclusions and future work

This paper demonstrates the feasibility of homotopy continuation as a tool to
study the Galois groups of enumerative problems. It also implicitly provides sev-
eral challenges to the numerical homotopy community. Perhaps the most serious is
the current lack of certifiability of computations in numerical homotopy software.
While numerical methods will increasingly outperform symbolic algorithms in al-
gebraic geometry, they are currently inferior in that their results do not come with
certification. Certificates for numerical computations do exist in theory, for example
in Shub and Smale’s [24] alpha-theory, and there is a need for their implementa-
tion. In fact, even more reliable numerical techniques, such as the interval step
control proposed in [12], are sidestepped by homotopy continuation software devel-
opers mostly due to the perceived complexity of implementation and the expected
slower performance in comparison with heuristic methods. Robust, off-the-shelf
software to handle polynomial systems that are not complete intersections is also
needed to deal with ideals in algebraic geometry, which are typically not complete
intersections.

Two further theoretical problems are not addressed in this paper. While the sam-
pling of the fundamental group of the base space provided by the loop-generating
heuristics of subsection 3.1 generate the Galois group in the examples we considered,
a better understanding of the topology of a complement of an algebraic variety in
a Grassmannian is needed to prove that this sampling is always sufficient. Second,
we do not know how to certify that the computed set of permutations generates
the whole Galois group, if it is not the full symmetric group.

The tools that we use could be applied more systematically to other problems in
enumerative geometry. To this end, we plan a comprehensive project exploring the
limit of computability of Galois groups of Schubert problems along several fronts.



1764 ANTON LEYKIN AND FRANK SOTTILE

This will involve the software and algorithms described here, perhaps also incorpo-
rating HOM4PS [15]. We will also write parallel software implementing algorithms
to compute Galois groups of Schubert problems that are not compete intersections,
as well as pushing the limits of the symbolic methods of Billey and Vakil [3] and of
Vakil’s combinatorial algorithm [32]. This will be a large and distributed compu-
tation as in [21] which should give a catalog of the Galois groups of several tens of
thousands of Schubert problems.
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