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CONVERGENCE OF AN ENGQUIST-OSHER SCHEME

FOR A MULTI-DIMENSIONAL TRIANGULAR SYSTEM

OF CONSERVATION LAWS

G. M. COCLITE, S. MISHRA, AND N. H. RISEBRO

Abstract. We consider a multi-dimensional triangular system of conservation
laws. This system arises as a model of three-phase flow in porous media and
includes multi-dimensional conservation laws with discontinuous coefficients
as a special case. The system is neither strictly hyperbolic nor symmetric.
We propose an Engquist-Osher type scheme for this system and show that the
approximate solutions generated by the scheme converge to a weak solution.
Numerical examples are also presented.

1. Introduction

In this paper, we consider the 2× 2 triangular system of conservation laws,

∂tu+ div (f(u)) = 0, x ∈ R
d, t > 0,(1.1)

∂tv + div (g(u, v)) = 0, x ∈ R
d, t > 0,(1.2)

with the initial condition

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R
d,

where u and v are the unknowns, with the initial values u0 and v0, and the flux
functions f = (f1, f2, . . . , fd) and g = (g1, g2, . . . , gd) are prescribed.

Note that the evolution of u is independent of v, but that the evolution of v
depends on u. Writing (1.1), (1.2) in quasilinear form results in

Ut +

d∑
i=1

AiUxi
= 0,

where U = {u, v} and the directional Jacobians are given by

Ai =

(
∂fi
∂u 0
∂gi
∂u

∂gi
∂v

)
.

Let A = {A1, A2, . . . , Ad} and let n be a unit vector in R
d. Then the matrix A · n

is lower triangular. Hence, systems of the form (1.1), (1.2) are called triangular
systems. Furthermore, the eigenvalues of the matrix A · n are real. Hence, the
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system is hyperbolic. Since the eigenvalues can coincide, the system is not strictly
hyperbolic. Non-strictly hyperbolic systems are complicated to deal with even in
the case of one space dimension.

In general, systems of conservation laws in several space dimensions are difficult
to study and few rigorous results have been obtained. See however the book by
Serre [2] for detailed references and theoretical results.

A special case of the above system occurs when we take f = 0. In this case,
the system reduces to a multi-dimensional scalar conservation law with a spatially
varying coefficient u (which can be discontinuous). Scalar conservation laws with
discontinuous coefficients arise in a wide variety of contexts including two-phase
flows in heterogeneous porous media, as models of clarifier-thickener units and in
traffic flow. In one spatial dimension such equations have been studied in several
papers. An incomplete list includes [1, 3, 7, 9, 15, 17, 20, 21] and other references
therein.

Scalar conservation laws with discontinuous coefficients in several space dimen-
sions have not been correspondingly widely studied and the theory is not as well-
developed as in the one-dimensional case. In [14], the authors considered a scalar
conservation law in two space dimensions with discontinuous coefficients and ob-
tained existence of weak solutions by showing that vanishing viscosity approxima-
tions converge. They used a modification of the compensated compactness approach
in order to obtain compactness of approximate solutions. In [19], the author was
able to treat a multi-dimensional scalar conservation law with discontinuous coef-
ficients in both space and time. The author showed existence of weak solutions by
proving compactness of approximations generated by smoothing the coefficients.
The compactness technique in [19] uses the tool of H-measures extensively. We
will adapt the compactness framework of [19] in this paper.

In one space dimension, the triangular system (1.1), (1.2) was considered in [13].
Existence of weak solutions was shown by constructing finite volume schemes and
showing that the approximate solutions generated by these schemes are compact
and converge to a weak solution. The compactness technique involved using discrete
entropy inequalities and the compensated compactness framework.

Triangular systems occur in a variety of applications. We are motivated partly
by a model of three-phase flow in porous media described briefly below.

A multi-dimensional three-phase flow model. Simulation of oil recovery processes
involves models of three-phase flow in porous media. The three phases of interest
are mostly oil, gas and water. Examples of three-phase flow include water flooding
in the presence of gas, gas flooding and water alternating gas injections into a
reservoir.

As a model, consider a homogeneous and isotropic porous medium. The phase
saturations are given by So, Sw and Sg for the oil, water and gas phases respectively.
Mass conservation for each phase gives the following continuity equations:

(1.3) φ(Sl)t + div (Ul) = ql, l = w, o, g,

where Ul is the phase flux of the l-th phase, ql is a source term and φ is the porosity
of the medium, henceforth assumed to be equal to one. The phase flux for each
phase is given by Darcy’s law (see [4]) as

Ul =
−Kkl
µl

(∇pl − ρlg̃),
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where K is the absolute permeability, kl, ρl, pl,and µl are the relative permeability,
density, pressure and viscosity of the l-th phase. The vector g̃ = {0, 0, g} represents
the gravitational force. The saturations satisfy the following condition:

So + Sg + Sw = 1.

This implies that the gas and water phase saturations can be used as the unknowns.
Furthermore, the phase pressures are also unknowns and have to be determined.
We use the phase formulation for pressures (see [4] for details) and assume that
the capillary pressures between the phases are zero. This assumption is valid when
the flow is convection dominated, i.e., when the total flow rate is very high, and
in this case we write p = pl for l = w, o, g. Then introducing the total flux
U = Uo +Ug +Uw, phase mobilities λl =

kl

µl
and total mobility λT = λo + λg + λw,

we obtain the following equations for the total flux and pressure:

(1.4)
U = −KλT

(
∇p− g̃

(
ρoλo + ρwλw + ρgλg

λT

))
,

div (U) = qo + qg + qw.

The above equation for the pressure is elliptic and gives the total flux. The resulting
equations for the phase saturations are given by

(1.5)
(Sg)t + F g(Sg, Sw, So)x +Gg(Sg, Sw, So)y +Hg(Sg, Sw, So)z = qg,

(Sw)t + Fw(Sg, Sw, So)x +Gw(Sg, Sw, So)y +Hw(Sg, Sw, So)z = qw.

Writing U =
{
u1, u2, u3

}
and assuming that the gravity acts in the z-direction,

then the fluxes are given by

(1.6)

F g =
λgu

1

λT
, Gg =

λgu
2

λT
,

Fw =
λwu

1

λT
, Gw =

λwu
2

λT
,

Hg =
λgu

3

λT
+K

λgλw

λT
(ρg − ρw)g +K

λgλo

λT
(ρg − ρo)g,

Hw =
λwu

3

λT
+K

λgλw

λT
(ρw − ρg)g +K

λwλo

λT
(ρw − ρo)g.

Hence, the coupled system of equations (1.4), (1.5) and (1.6) model three-phase
flow in a porous medium.This system couples an elliptic pressure equation with a
hyperbolic saturation equation. These two equations have very different properties,
and it is therefore common to use a spitting approach to obtain numerical solutions.
In brief, this consists in fixing the saturation and solving the pressure equation (1.4),
then fixing the pressure and solving the saturation equations (1.5) for a short time
interval ∆t, and repeating this process.

If we consider the saturation equations (1.5) with a given total flux U , the equa-
tions are a special case of a system of conservation laws in several space dimensions.

Despite this simplification, this system is quite complicated, both theoretically
and computationally. Even in one space dimension, the above system is not nec-
essarily hyperbolic and can contain elliptic regions. Therefore, as a further simpli-
fication, the following “reduced” model was proposed in [11] and was analysed in
[13] in the one-dimensional case. This simplification is based on the observation
that in many situations the mobility of the gas phase is much larger than that of
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the other phases. This means that the flux of gas is largely independent of whether
the other phase is oil or water. As a consequence, we can make the approximations

F g(Sg, Sw, So) = F̃ (Sg, 1− Sg) = F̂ (Sg),

Gg(Sg, Sw, So) = G̃(Sg, 1− Sg) = Ĝ(Sg),

Hg(Sg, Sw, So) = H̃(Sg, 1− Sg) = Ĥ(Sg).

Assuming this, the system (1.5) reduces to the following system. The resulting
equations for the phase saturations are given by

(1.7)
(Sg)t + F̂ (Sg)x + Ĝ(Sg)y + Ĥ(Sg)z = qg,

(Sw)t + Fw(Sg, Sw, So)x +Gw(Sg, Sw, So)y +Hw(Sg, Sw, So)z = qw.

The above equation is a special case of the multi-dimensional triangular system
(1.1), (1.2).

It is to be emphasized that although the assumption of independence of the
gas phase is not valid for all fractional flow functions, there exists a large class of
fractional flow functions for which this assumption appears to be reasonable. In
view of the fact that this assumption makes the model simpler and much more
tractable, we can use this “reduced” model in several situations. Nevertheless, we
point out that a careful numerical study of this model (1.7) as an approximation
to the full three-phase flow model needs to be carried out. An essential ingredient
for this program is the development of efficient numerical schemes for (1.5) as well
as for (1.7). We emphasize that the full three-phase flow model also includes the
elliptic equation for the pressure. In this paper we concentrate on the saturation
equations in the presence of a given total flux. In one space dimension, the pressure
can be easily eliminated and the full model consists of the saturation equations only.

Our aim in this paper is to design an efficient numerical scheme to approximate
solutions of the triangular system (1.1) and (1.2). We propose to use an adaptation
of the Engquist-Osher scheme based on a staggered grid. The resulting approxi-
mate solutions are shown to converge to a weak solution of the triangular system.
The proof of convergence is based on the framework developed in [19] and uses
entropy inequalities extensively. We present some numerical experiments in order
to demonstrate the robustness of the scheme. This numerical scheme can be used
as the hyperbolic solver for three-phase flow models in several space dimensions,
and can be coupled with a suitable elliptic solver for the pressure in order to design
numerical codes for reservoir simulation.

In [5] we studied the same triangular system as in this paper, but as a limit of
viscous regularizations. The basic compactness tools used in [5] were the same as
in this paper, but obtaining the bounds necessary to use these compactness tools
is much harder for a difference scheme than for the viscous approximations.

The rest of this paper is organized as follows: In Section 2, we present the
mathematical framework used in this paper. The Engquist-Osher type scheme is
proposed and analysed in Section 3 and numerical experiments are reported in
Section 4.
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2. Mathematical framework

We start with the assumptions on the data and the flux functions,

(H.1) f ∈ C1([−M,M ];Rd), g ∈ C2([−M,M ]2;Rd);
(H.2) ∂vg(u,±M) = 0 for all u;
(H.3) ∂2

uug(·, v) is Lipschitz continuous for v ∈ [−M,M ];
(H.4) g(u, ·) is genuinely non-linear for all u; i.e., for any unit vector n, the map

v ∈ [−M,M ] �→ g(u, v) · n is not affine on any non-trivial interval for all u
and n ∈ R

d, |n| = 1;
(H.5) u0 and v0 are in L∞(Rd) ∩ L1(Rd) ∩BV (Rd)

for some positive constant M .
As mentioned, we deal with weak solutions of (1.1) and (1.2) defined below.

Definition 2.1. We call the pair (u, v) a weak solution of the Cauchy problem
(1.1), (1.2) if

(D.1) u and v are in L∞(Rd × R
+);

(D.2) u and v satisfy (1.1), (1.2) in the sense of distributions on R
d × R

+, i.e.,
the following identities,∫
Rd×R+

(u∂tϕ+ f(u)div (ϕ)) dxdydt+

∫
Rd

u0(x, y)ϕ(x, y, 0)dxdy = 0,∫
Rd×R+

(v∂tϕ+ g(u, v)div (ϕ)) dxdydt+

∫
Rd

v0(x, y)ϕ(x, y, 0)dxdy = 0,

hold for each test function ϕ smooth with compact support in R
d × R

+;
(D.3) for each constant k ∈ R the inequality

∂t |u− k|+ div (sign (u− k) (f(u)− f(k))) ≤ 0

holds in the sense of distributions on R
d × R

+.

As stated in the introduction, we will propose an Engquist-Osher type scheme
in order to approximate the triangular system numerically. The convergence proof
for the scheme is based on the following crucial lemma, which is an easy adaptation
of a result by Panov [19, Theorem 5]. We call (η,q) a convex entropy/entropy flux
pair for (1.2) if η is a convex function of v and

∂vq(u, v) = η′(v)∂vg(u, v).

In particular, we have the Kružkov entropy/entropy flux pairs

η0(v) = |v − k| , q0(u, v) = sign (v − k) (g(u, v)− g(u, k)) ,

where k is an arbitrary constant.

Lemma 2.2. Let u be the unique entropy solution of the Cauchy problem for the
single conservation law (1.1), and let {vν}ν>0 be a family of functions defined on

R
d × R

+. If {vν} is bounded in L∞(Rd × R
+), and

{∂tη0 (vν) + div (q0 (u, vν))}ν>0

lies in a compact set of H−1
loc (R

d × R
+) for all constants k, then there exists a

sequence {νn}n∈N
, νn → 0 and a function v ∈ L∞(Rd × R

+) such that

vνn
→ v a.e. and in Lp

loc(R
d × R

+), 1 ≤ p < ∞.

We also need the following useful technical lemma.
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Lemma 2.3 (see [18]). Let Ω be a bounded open subset of Rd, d ≥ 2. Suppose that
the sequence {Ln}n∈N

of distributions is bounded in W−1,∞(Ω). Suppose also that

Ln = L1,n + L2,n,

where {L1,n}n∈N
is in a compact subset of H−1

loc (Ω) and {L2,n}n∈N
is in a bounded

subset of Mloc(Ω). Then {Ln}n∈N
is in a compact subset of H−1

loc (Ω).

Throughout the paper, we use the notation CX to indicate a constant depending
on the quantity X (only).

3. The Engquist-Osher method

Now we shall analyze the Engquist-Osher method for (1.1) and (1.2). In order
to simplify the notation, we restrict ourselves to two spatial dimensions, i.e., d = 2,
but the generalization to arbitrary d is straightforward. In this case,

f(u) = (f1(u), f2(u)) and g(u, v) = (g1(u, v), g2(u, v)) .

We shall use a staggered version of the Engquist-Osher scheme, in which u and v
are discretized on grids which are staggered and rotated with respect to each other.
Set

f̃ =
1√
2

(
1 −1
1 1

)
f and x̃ =

1√
2

(
1 −1
1 1

)
x.

Then we observe that u is (also) the entropy solution of

(3.1) ∂tu+ d̃iv(f̃) = 0, u(x̃, 0) = u0(x̃),

where d̃ivf̃ = (∂x̃, ∂ỹ) · f̃ . We shall consider discrete versions of (3.1) and (1.2).
For a scalar function f�(u), the Engquist-Osher flux is defined as

fEO
� (a, b) =

∫ a

0

(f ′
�(s) ∨ 0) ds+

∫ b

0

(f ′
�(s) ∧ 0) ds+ f�(0),

where we use the notation (a ∧ b) = min {a, b} and (a ∨ b) = max {a, b}.
We use the same grid spacing in both directions ∆x = ∆y = h > 0 and a

uniform time step ∆t > 0. Set xi = ih and yj = jh for integers i and j, and
xi+1/2 = xi + h/2, yj+1/2 = yj + h/2 and tn = n∆t. Let the squares Ii,j+1/2 and
Ii+1/2,j be defined by

Ii,j+1/2 =
{
(x, y)

∣∣ |x− xi|+
∣∣y − yj+1/2

∣∣ < h/2
}
,

Ii+1/2,j =
{
(x, y)

∣∣ ∣∣x− xi+1/2

∣∣+ |y − yj | < h/2
}
.

For later use, we also define the cells

Ii,j =
{
(x, y)

∣∣ (|x− xi| ∨ |y − yj |) < h/2
}
.
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With λ = ∆t/h, the Engquist-Osher scheme for (3.1) reads

(3.2)

un+1
i,j+1/2 = un

i,j+1/2 −
√
2λ

(
f̃EO
1

(
un
i,j+1/2, u

n
i+1/2,j

)
− f̃EO

1

(
un
i−1/2,j+1, u

n
i,j+1/2

)
+ f̃EO

2

(
un
i,j+1/2, u

n
i+1/2,j+1

)
− f̃EO

2

(
un
i−1/2,j , u

n
i,j+1/2

))
,

un+1
i+1/2,j = un

i+1/2,j −
√
2λ

(
f̃EO
1

(
un
i+1/2,j , u

n
i+1,j−1/2

)
− f̃EO

1

(
un
i,j+1/2, u

n
i+1/2,j

)
+ f̃EO

2

(
un
i+1/2,j , u

n
i+1,j+1/2

)
− f̃EO

2

(
un
i,j−1/2, u

n
i+1/2,j

))
,

for integers i and j and n ≥ 0. The scheme is initiated by setting

u0
i,j+1/2 =

2

h2

∫∫
Ii,j+1/2

u0(x) dx, u0
i+1/2,j =

2

h2

∫∫
Ii+1/2,j

u0(x) dx.

The relation between h and ∆t is such that the CFL-condition

(3.3) 4
√
2λ‖f̃ ′‖L∞ ≤ 1

holds. Let uh be defined as the piecewise constant function

uh(x, y, t) =

{
un
i+1/2,j , for (x, y) ∈ Ii+1/2,j

un
i,j+1/2, for (x, y) ∈ Ii,j+1/2,

for t ∈ [tn, tn+1), n ≥ 0.

We have that limh→0 uh is the unique entropy solution of (1.1). We list some useful
properties of uh in the next lemma [10].

Lemma 3.1. Assume that the CFL condition (3.3) holds. Then for each h > 0 we
have that

(a) −M ≤ uh(x, y, t) ≤ M , for all (x, y) and t ≥ 0.
(b) For n ≥ 0 the functions

n �→ h2

2

∑
i,j

∣∣∣un
i+1/2,j

∣∣∣+ ∣∣∣un
i,j+1/2

∣∣∣ ,
n �→

∑
i,j

∣∣∣un
i,j+1/2 − un

i−1/2,j

∣∣∣+ ∣∣∣un
i+1/2,j − un

i,j−1/2

∣∣∣ ,
n �→

∑
i,j

∣∣∣un+1
i+1/2,j − un

i+1/2,j

∣∣∣+ ∣∣∣un+1
i,j+1/2 − un

i,j+1/2

∣∣∣
are non-increasing. In particular this means that the family {uh}h>0 is

(uniformly in h) bounded in L∞(R+;L1(R2)) ∩BV (R2 × R
+).

(c) The sequence {uh}h>0 converges to the unique entropy solution u of the
conservation law (1.1), i.e.,

(3.4) uh → u a.e. and in Lp
loc(R

2 × R
+), 1 ≤ p < ∞.
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When we formulate the Engquist-Osher scheme for v, we need EO-fluxes for
functions of two variables g�(u, v). We define this as

gEO
� (u, a, b) =

∫ a

0

(∂vg�(u, s) ∨ 0) ds+

∫ b

0

(∂vg�(u, s) ∧ 0) ds+ g�(u, 0);

i.e., the first variable is regarded as a parameter. The EO-flux is Lipschitz contin-
uous in all variables and has the useful monotonicity properties,

∂ag
EO
� (u, a, b) ≥ 0, ∂bg

EO
� (u, a, b) ≤ 0,

and satisfies the bounds∣∣∂agEO
� (u, a, b)

∣∣ ≤ ‖∂vg�‖L∞ ,
∣∣∂bgEO

� (u, a, b)
∣∣ ≤ ‖∂vg�‖L∞ .

The Engquist-Osher scheme corresponding to (1.2) reads
(3.5)

vn+1
i,j = vni,j − λ

(
gEO
1

(
un
i+1/2,j , v

n
i,j , v

n
i+1,j

)
− gEO

1

(
un
i−1/2,j , v

n
i−1,j , v

n
i,j

)
+ gEO

2

(
un
j+1/2,i, v

n
i,j , v

n
i,j+1

)
− gEO

2

(
un
j−1/2,i, v

n
i,j−1, v

n
i,j

))
,

with initial values

(3.6) v0i,j =
1

h2

∫∫
Ii,j

v0(x) dx.

The reason for using this “staggered” scheme is that we want to have u constant
across discontinuities in v. This enables the use of simple scalar numerical flux
functions such as the Engquist-Osher flux. Figure 1 shows the location of the
discrete variables and the grids used for u and v. We shall prove the following
convergence result.

Figure 1. The locations of the grid cells for u and v.
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Theorem 3.2. If the CFL-condition

(3.7) λ ≤ min

{
1

4
√
2‖f̃ ′‖L∞

,
1

4 ‖∂vg‖L∞

}
holds, then the scheme (3.2)-(3.5) produces a sequence which converges to a weak
solution of the Cauchy problem (1.1)-(1.2) in Lp

loc(R
2 × R

+), 1 ≤ p < ∞.

Proof. The theorem follows from Lemmas 2.2, 3.4 and 3.5. �

If the CFL-condition

(3.8) 4λ ‖∂vg‖L∞ ≤ 1

holds, the scheme is monotone in the sense described below. We define the piecewise
constant functions

vn(x) = vni,j for x ∈ Ii,j and vh(x, t) = vn(x) for t ∈ [tn, tn+1).

We can write (3.5) as

vn+1
i,j = Fn

i,j

(
vni,j , v

n
i−1,j , v

n
i+1,j , v

n
i,j−1, v

n
i,j+1

)
or vn+1 = Fn (vn) ,

and it is easy to see that the CFL-condition (3.8) implies that Fn
i,j is non-decreasing

in all arguments. Furthermore, by Assumption (H.2),

Fn
i,j(±M,±M,±M,±M,±M) = ±M.

Thus if vn(x) ∈ [−M,M ], then also vn+1 ∈ [−M,M ]. At this point we recall the
useful result by Crandall and Tartar.

Lemma 3.3 (Crandall and Tartar [6]). Let (Ω, µ) be some measure space and let
D be a subset of L1(Ω) such that if u and v are in D, then so is (u ∨ v). Let T be
a map D �→ D such that∫

Ω

T (u) dµ =

∫
Ω

u dµ for all u ∈ D.

Then the following statements, valid for all u and v in D, are equivalent:

(i) If u ≤ v, then T (u) ≤ T (v).
(ii)
∫
Ω
((T (u)− T (v)) ∨ 0) dµ ≤

∫
Ω
((u− v) ∨ 0) dµ.

(iii)
∫
Ω
|T (u)− T (v)| dµ ≤

∫
Ω
|u− v| dµ.

We can use this lemma for the mapping v �→ Fn(v), where D is the subset of
L1(R2) consisting of functions that are constant on Ii,j . Then the monotonicity of
Fn
i,j implies that if v and ṽ are in D, then we have

ṽ ≤ v ⇒ Fn(ṽ) ≤ Fn(v).

By (iii) we then find

h2
∑
i,j

∣∣Fn
i,j(v

n)− Fn
i,j(0)

∣∣ ≤ h2
∑
i,j

∣∣vni,j∣∣
or

(3.9) h2
∑
i,j

∣∣vn+1
i,j

∣∣ ≤ h2
∑
i,j

∣∣vni,j∣∣+ C∆t |u0|BV (R2) ,

where C is a constant depending on g, but not on ∆t.
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Next, to save space and typing efforts, we introduce the notation I = (i, j),
e1 = (1, 0), e2 = (0, 1) and

D�αI = αI+e� − αI .

Furthermore, we shall apply D� to functions of the variables “u” and “v”. Let Du
i

be the difference only in the u variable and Dv
i only in the v variable, so that

Du
� α (uI , vI , wI) = α (uI+e� , vI , wI)− α (uI , vI , wI) ,

Dv
�α (uI , vI−e� , vI) = α (uI , vI , vI+e�)− α (uI , vI−e� , vI) ,

D�α (uI , vI) = Du
� α (uI , vI) +Dv

�α (uI+e� , vI)

= Dv
�α (uI , vI) +Du

� α (uI , vI+e�) .

We can also use (iii) with u = vnI and v = vn−1
I to conclude that

h2
∑
I

∣∣vn+1
I − vnI

∣∣ ≤ h2
∑
I

∣∣vnI − vn−1
I

∣∣
≤ h2

∑
I

∣∣v1I − v0I
∣∣

≤ h2λ
∑
I

∑
�

∣∣∣D�g
EO
�

(
u0
I−e�/2

, v0I−e�
, v0I

)∣∣∣
≤ C∆t

if v0 and u0 are of bounded variation.1 This leads to a bound on the discrete
divergence of the numerical flux,

(3.10) h2
∑
I

∣∣∣∣∣∑
�

1

h
D�g

EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)∣∣∣∣∣ ≤ C.

Using the “D�” notation we can write (3.5) as

vn+1
I = vnI − λ

∑
�

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)(3.11)

= vnI − λ
∑
�

Dv
� g

EO
�

(
un
I+e�/2

, vnI−e�/2
, vnI

)
︸ ︷︷ ︸

wn
I

−λ
∑
�

Du
� g

EO
�

(
un
I−e�

, vnI−e�
, vnI
)
.

Let η be a convex entropy, and let qEO
� (u, a, b) denote the associated numerical

entropy flux

qEO
� (u, a, b) =

∫ a

0

η′(s) (∂vg�(u, s) ∨ 0) ds+

∫ b

0

η′(s) (∂vg�(u, s) ∧ 0) ds.

Since the scheme is monotone we get

(3.12) η (wn
I ) ≤ η (vnI )− λ

∑
�

Dv
� q

EO
�

(
un
I+e�/2

, vnI−e�
, vnI

)
,

while by the convexity of η and the definition of wn
I , see (3.11),

(3.13) η (wn
I ) ≥ η

(
vn+1
I

)
+ η′
(
vn+1
I

)
λ
∑
�

Du
� g

EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
.

1This is only a sufficient condition. We just need to assume that the initial discrete divergence

is bounded, i.e.,
∑

I

∣∣∣∑� D�g
EO
�,I (u0

I−e�/2
, v0I−e�

, v0I )
∣∣∣ ≤ C.
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Using (3.11), (3.12) and (3.13), we arrive at the following estimate:

η
(
vn+1
I

)
≤ η (vnI )− λ

∑
�

D�q
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
− λ
∑
�

Du
�

(
η′
(
vn+1
I

)
gEO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
−qEO

�

(
un
I−e�/2

, vnI−e�
, vnI

))
.(3.14)

Since vh is bounded, and both gEO
� and qEO

� are Lipschitz continuous, and uh is of
bounded variation we get the bound for non-negative η:

(3.15) ‖η(vh(·, t))‖L1(R2) ≤ ‖η(v0)‖L1(R2) + Ct |u0|BV (R2) ,

for some constant C which does not depend on h. Choosing η(v) = v2 we get the
L2 estimate

(3.16) ‖vh(·, t)‖2L2(R2) ≤ ‖v0‖2L2(R2) + Ct |u0|BV (R2) .

We can actually get a stronger estimate by multiplying the scheme (3.11) by
η′(vn+1

I ) and using the Taylor expansion

η′
(
vn+1
I

) (
vn+1
I − vnI

)
= η
(
vn+1
I

)
− η (vnI ) +

1

2
η′′
(
ξ
n+1/2
I

) (
vn+1
I − vnI

)2
,

where ξ
n+1/2
I is an intermediate value. Doing this gives

(3.17)

η
(
vn+1
I

)
− η (vnI )+

1

2
η′′
(
ξ
n+1/2
I

) (
vn+1
I − vnI

)2
= −λη′

(
vn+1
I

)∑
�

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
= −λη′ (vnI )

∑
�

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
− λ
(
η′
(
vn+1
I

)
− η′ (vnI )

)∑
�

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
.

We follow [16] and define

g−(u, v) =

∫ v

0

(∂vg(u, s) ∧ 0) ds, g+(u, v) =

∫ v

0

(∂vg(u, s) ∨ 0) ds,

and introduce the functions

G±
� (u, v) =

∫ v

0

η′(s)∂vg
±
� (u, s) ds.

Integration by parts gives

(3.18)

G±
� (u, b)− G±

� (u, a) = η′(b)
(
g±� (u, b)− g±� (u, a)

)
−
∫ b

a

η′′(s)
(
g±� (u, s)− g±� (u, a)

)
ds.
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Therefore,

η′ (vnI )D
v
� g

−
�

(
un
I−e�/2

, vnI

)
= D�G−

�

(
un
I−e�/2

, vnI

)
−Du

� G−
�

(
un
I−e�/2

, vnI+e�

)
−
∫ vn

I

vn
I+e�

η′′(s)
(
g−�

(
un
I−e�/2

, s
)
−g−�

(
un
I−e�/2

, vnI+e�

))
ds,

η′ (vnI )D
v
� g

+
�

(
un
I−e�/2

, vnI−e�

)
= D�G+

�

(
un
I−e�/2

, vnI−e�

)
−Du

� G+
�

(
un
I−e�/2

, vnI

)
+

∫ vn
I

vn
I−e�

η′′(s)
(
g+�

(
un
I−e�/2

, s
)
−g+1

(
un
I−e�/2

, vnI−e�

))
ds.

Hence,

η′ (vnI )D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
= D�q

EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
−Du

�

(
η′ (vnI ) g

EO
�

(
un
I−e�/2

, vnI , v
n
I+e�

)
− qEO

�

(
un
I−e�/2

, vnI , v
n
I+e�

))
−
∫ vn

I

vn
I+e�

η′′(s)
(
g−�

(
un
I−e�/2

, s
)
− g−�

(
un
I−e�/2

, vnI+e�

))
ds︸ ︷︷ ︸

Θ−
I,�

+

∫ vn
I

vn
I−e�

η′′(s)
(
g+�

(
un
I−e�/2

, s
)
− g+1

(
un
I−e�/2

, vnI−e�

))
ds︸ ︷︷ ︸

Θ+
I,�

.

Since g−� is decreasing in v, and g+� is increasing in v, Θ−
I,�,Θ

+
I,� ≥ 0. Thus (3.17)

can be written as

(3.19)

η
(
vn+1
I

)
−η (vnI ) +

1

2
η′′
(
ξ
n+1/2
I

) (
vn+1
I − vnI

)2
+ λ
∑
�

(
Θ+

I,� +Θ−
I,�

)
= −λ

∑
�

D�q
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
− λ
(
η′
(
vn+1
I

)
− η′ (vnI )

)∑
�

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
− λ
∑
�

Du
�

(
η′ (vnI ) g

EO
�

(
un
I−e�/2

, vnI , v
n
I+e�

)
−qEO

�

(
un
I−e�/2

, vnI , v
n
I+e�

))
.

Now we can multiply this by h2, sum over n ∈ {0, . . . , N − 1} and I ∈ Z
2, and use

the divergence bound (3.10) and the fact that uh has bounded variation to get
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(3.20)

h2
∑
I

η
(
vNI
)
+

1

2
h2
∑
n,I

η′′
(
ξ
n+1/2
I

) (
vn+1
I − vnI

)2
+ h2λ

∑
n,I

∑
�

(
Θ+

I,� +Θ−
I,�

)

≤ h2
∑
I

η
(
v0I
)
+2 ‖η′‖L∞ h2∆t

∑
n,I

1

h

∣∣∣∣∣∑
�

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)∣∣∣∣∣
+ Ch2∆t

∑
n,I

∑
�

1

h

∣∣∣un
I+e�/2

− un
I−e�/2

∣∣∣
≤ h2

∑
I

η
(
v0I
)
+ Cη′

where the constant Cη′ depends on the initial variation of uh and the initial diver-
gence bound on g; cf. (3.10).

To get the L2 bound, choose η(v) = v2. Then by an easy lemma in [8],

Θ−
I,� ≥

1

‖∂vg‖L∞

(
Dv

� g
−
�

(
un
I−e�/2

, vnI

))2
,

Θ+
I,� ≥

1

‖∂vg‖L∞

(
Dv

� g
+
�

(
un
I−e�/2

, vnI−e�

))2
.

Therefore,
(3.21)

h2
∑
I

(
vNI
)2

+ h2
∑
n,I

(
vn+1
I − vnI

)2
+

λ

‖∂vg‖L∞
h2
∑
n,I

∑
�

(
Dv

� g
−
�

(
un
I−e�/2

, vnI

))2
+
(
Dv

� g
+
�

(
un
I−e�/2

, vnI−e�

))2
≤ h2

∑
I

(
v0I
)2

+ CtN .

This has two immediate consequences. Firstly, since

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
= Dv

� g
−
�

(
un
I+e�/2

, vnI

)
+Dv

� g
+
�

(
un
I+e�/2

, vnI−e�

)
+Du

� g
EO
�

(
un
I−e�/2

, vnI , v
n
I+e�

)
,

we get (
D�g

EO
�

(
un
I−e�/2

, vnI−e�
, vnI

))2
≤ 4
(
Dv

� g
−
�

(
un
I+e�/2

, vnI

))2
+ 4
(
Dv

� g
+
�

(
un
I+e�/2

, vnI−e�

))2
+ 2
(
Du

� g
EO
�

(
un
I−e�/2

, vnI , v
n
I+e�

))2
.

Therefore,

(3.22) ∆th2
∑
n,I

∑
�

(
D�g

EO
�

(
un
I−e�/2

, vnI−e�
, vnI

))2
≤ CtNh,



84 G. M. COCLITE, S. MISHRA, AND N. H. RISEBRO

where Ct is a finite constant depending on t but not on h. Secondly, this gives an
estimate for the “time variation” of vh,

(3.23) ∆th2
∑
I,n

(
vn+1
I − vnI

)2 ≤ CtNh.

We can also bound the variation of the entropy flux. To do this note that

q�(u, v) = G+
� (u, v) + G−

� (u, v),

and by (3.18) and the monotonicity of g±� ,∣∣G±
� (u, b)− G±

� (u, a)
∣∣ ≤ |η′(b)|

∣∣g±� (u, b)− g±� (u, a)
∣∣

+

∣∣∣∣∣
∫ b

a

η′′(s) ds

∣∣∣∣∣ ∣∣g±� (u, b)− g±� (u, a)
∣∣

≤ 3 ‖η′‖L∞

∣∣g±� (u, b)− g±� (u, a)
∣∣ .

Thus

|q�(u, b)− q�(u, a)| ≤ 3 ‖η′‖L∞

(∣∣g+� (u, b)− g+� (u, a)
∣∣+ ∣∣g−� (u, b)− g−� (u, a)

∣∣) .
Then we arrive at the estimate

(3.24) ∆th2
∑
I,n

∑
�

(
D�q�

(
un
I−e�/2

, vnI

))2
≤ CtNh.

Next, let {wh}h>0 be a sequence of piecewise constant functions

wh(x, t) = wn
I =

1

4

∑
�

(
un
I+e�/2

+ un
I−e�/2

)
for x ∈ Ii,j and t ∈ [tn, tn+1).

Then wh is of bounded variation, i.e.,

|wh(·, t)|BV (R2) ≤ C for all h > 0 and for all t ≥ 0.

Lemma 3.4. Let (η0,q0) be the Kružkov entropy/entropy flux pair, i.e.,

η0(v) = |v − k| , q0,�(u, v) = sign (v − k) (g� (u, v)− g�(u, k)) ,

where k is a constant. Then the sequence

{∂tη0 (vh) + div (q0(wh, vh))}h
is compact in H−1

loc (R
2 × R

+).

Proof. It will be convenient to work with smooth entropies, rather than η0. There-
fore, we let ηh be a smooth convex approximation to η0, so that ηh(0) = 0 and
|η′h| ≤ 1, and we have that

‖ηh − η0‖L∞ ≤ h.

Let qh be the entropy flux corresponding to ηh. Then we also have that

‖qh − q0‖L∞ → 0 as h → 0.

Let ϕ be a function in C1
0 (R

2 × R
+). We use the notation 
̂ = 3− 
. Set

〈L, ϕ〉 = 〈∂tη0(vh) + div (q0(wh, vh)) , ϕ〉
= 〈Lh, ϕ〉+ 〈L − Lh, ϕ〉,

where
〈Lh, ϕ〉 = 〈∂tηh (vh) + div (q0(wh, vh)) , ϕ〉.
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Now

|〈L − Lh, ϕ〉| ≤
∫
R2×R+

|ηh (vh)− η0 (vh)| |ϕt| dxdt

≤ C ‖∂tϕ‖L2(R2×R+) ‖ηh − η0‖L∞ → 0 as h → 0,

where the constant C is independent of h but will depend on the support of ϕ.
Thus L − Lh is compact in H−1

loc (R
2 × R

+).
Now

〈Lh, ϕ〉 = 〈ηh (vh)t + div (q0(wh, vh)) , ϕ〉

=
∑
n≥0

∑
I

(
ηh
(
vn+1
I

)
− ηh (v

n
I )
) ∫

II

ϕ(x1, x2, t
n+1) dx

+
∑
n≥0

∑
I

∑
�

D�q0,� (w
n
I , v

n
I )

∫ tn+1

tn

∫ xI+e�̂/2

xI−e�̂/2

ϕ(xI+e�/2, x�̂, t) dx�̂dt.

Set

(3.25) ϕn
I =

1

∆th2

∫
In
I

ϕ(x, t) dxdt,

where

(3.26) In
I = II × [tn, tn+1).

We wish to replace the integrals in the definition of Lh by h2ϕn
I and h∆tϕn

I ,
respectively. The error we make in doing this in the first integral is∣∣∣ ∑

n≥0,I

(
ηh
(
vn+1
I

)
− ηh (v

n
I )
)(∫

II

ϕ(x, tn+1) dx− h2ϕn
I

)∣∣∣
≤ ‖η′h‖L∞

∑
n,I

∣∣vn+1
I − vnI

∣∣ 1

∆t

∫
In
I

∣∣ϕ(x, tn+1)− ϕ(x, t)
∣∣ dxdt

≤
∑
n,I

∣∣vn+1
I − vnI

∣∣ 1

∆t

∫
In
I

∫ tn+1

t

|∂tϕ(x, s)| ds dxdt

≤
∑
n,I

∣∣vn+1
I − vnI

∣∣ 1

∆t

∫
II

∫ tn+1

tn

√
tn+1 − t

(∫ tn+1

tn
|∂tϕ(x, s)|2 ds

)1/2

dxdt

≤ 2

3

∑
n,I

∣∣vn+1
I − vnI

∣∣√∆t

∫
II

(∫ tn+1

tn
|∂tϕ(x, s)|2 ds

)1/2

dx

≤ 2

3

∑
n,I

∣∣vn+1
I − vnI

∣∣h√∆t

(∫
In
I

(∂tϕ(x, t))
2
dxdt

)1/2

≤ 2

3

⎛⎝h2∆t
∑
n,I

(
vn+1
I − vnI

)2⎞⎠1/2⎛⎝∑
n,I

∫
In
I

(∂tϕ(x, t))
2 dxdt

⎞⎠1/2

≤ 2

3
λ
√
CTh ‖ϕ‖H1(R2×R+) ,(3.27)
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by (3.23), where T is such that ϕ(x, t) = 0 for t > T . Next we observe that

∑
�

∣∣∣q0,�(un
I−e�/2

, a)− q0,�(w
n
I , a)
∣∣∣

≤ ‖∂uq0‖L∞

4

∑
�

∣∣∣un
I−e�/2

− un
I+e�/2

∣∣∣+ ∣∣∣un
I−e�/2

− un
I+e�̂/2

∣∣∣+ ∣∣∣un
I−e�/2

− un
I−e�̂/2

∣∣∣ .
Therefore, the functional L1, defined by

〈L1, ϕ〉 =
∑
n≥0

∑
I

∑
�

D�

(
q0,� (w

n
I , v

n
I )− q0,�

(
un
I−e�/2

, vnI

))

×
∫ tn+1

tn

∫ xI+e�̂/2

xI−e�̂/2

ϕ(xI−e�/2, x�̂, t) dx�̂dt

= −
∑
n≥0

∑
I

∑
�

(
q0,� (w

n
I , v

n
I )− q0,�

(
un
I−e�/2

, vnI

))∫
In
I

∂xl
ϕdxdt

≤
∑
n,I

∑
�

∣∣∣q0,� (wn
I , v

n
I )− q0,�

(
un
I−e�/2

, vnI

)∣∣∣h√∆t

×
(∫

In
I

(∂x�
ϕ)2 dx

)1/2

≤

⎛⎝∑
n,I

∑
�

(
q0,� (w

n
I , v

n
I )− q0,�

(
un
I−e�/2

, vnI

))2⎞⎠1/2

‖ϕ‖H1(R2×R+)

≤
√
CT |uh(·, 0)|BV (R2) h ‖ϕ‖H1(R2×R+) ,

for some constant C that does not depend on h. Hence, we can replaceD�q0,�(w
n
I , v

n
I )

by D�q0,�(u
n
I−e�/2

, vnI ) in the second part of Lh, making an error which tends to

zero in H−1
loc (R

2 × R
+). Similarly to deriving (3.27), by using (3.24), we get the

bound
(3.28)∣∣∣∑

n,I

∑
�

D�q0,�

(
un
I−e�/2

, vnI

)(∫ tn+1

tn

∫ xI+e�̂/2

xI−e�̂/2

ϕ(xI+e�/2, x�̂, t) dx�̂dt−∆thϕn
I

)∣∣∣
≤ C̃T

√
h ‖ϕ‖H1(R2×R+) .

Summing up the discussion so far, we have established that

〈L, ϕ〉 = h2∆t
∑
n,I

[
1

∆t

(
ηh
(
vn+1
I

)
− ηh (v

n
I )
)
+

1

h

∑
�

D�q0,�

(
un
I−e�/2

, vnI

)]
ϕn
I

+ terms which are compact in H−1
loc (R

2 × R
+).
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By using the “scheme for η”, (3.19), we find that the term in square brackets above
can be written as

[· · · ] = − 1

∆t

1

2
η′′h

(
ξ
n+1/2
I

) (
vn+1
I − vnI

)2 − 1

h

∑
�

(
Θ−

I,� +Θ+
I,�

)
︸ ︷︷ ︸

An
I

− 1

h

(
η′
(
vn+1
I

)
− η′ (vnI )

)∑
�

D�g
EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
︸ ︷︷ ︸

Bn
I

− 1

h

∑
�

Du
�

(
η′ (vnI ) g

EO
�

(
un
I−e�/2

, vnI , v
n
I+e�

)
− qEO

�

(
un
I−e�/2

, vnI , v
n
I+e�

))
︸ ︷︷ ︸

Cn
I

− 1

h

∑
�

D�

(
qEO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
− q0,�

(
un
I−e�/2

, vnI

))
︸ ︷︷ ︸

Dn
I

.

Thus we can write

〈L, ϕ〉 = 〈A, ϕ〉+ 〈B, ϕ〉+ 〈C, ϕ〉+ 〈D, ϕ〉+ compact terms

with
〈A, ϕ〉 = h2∆t

∑
n,I

An
Iϕ

n
I , 〈B, ϕ〉 = h2∆t

∑
n,I

Bn
I ϕ

n
I ,

〈C, ϕ〉 = h2∆t
∑
n,I

Cn
I ϕ

n
I and 〈D, ϕ〉 = h2∆t

∑
n,I

Dn
I ϕ

n
I .

By (3.20),

〈A, ϕ〉 ≤ ‖ϕ‖L∞(R2×R)

⎛⎝h2

2

∑
n,I

η′′h

(
ξ
n+1/2
I

)(
vn+1
I − vnI

)2
+h∆t

∑
n,I

∑
�

(
Θ−

I,�+Θ+
I,�

)⎞⎠
≤ CT ‖ϕ‖L∞(R2×R+) .

Therefore, A ∈ Mloc(R
2 × R

+). By the divergence bound on the numerical flux
(3.10) and the BV bound on uh,

(3.29) |〈B + C, ϕ〉| ≤ C ‖ϕ‖L∞(R2×R+) ;

thus also B + C ∈ Mloc(R
2 × R

+).
To estimate D we start by observing that for ε > 0,

qEO
ε,� (u, a, b)− qε,�(u, b) = qEO

ε,� (u, a, b)− qEO
ε,� (b, b)

=

∫ a

b

η′ε(s)∂vg
− (u, s) ds

= η′ε(a)
(
g−(u, a)− g−(u, b)

)
−
∫ a

b

η′′ε (s)
(
g−(u, s)− g−(u, a)

)
ds.

As before, by using the monotonicity of g− we get∣∣qEO
ε,� (u, a, b)− qε,�(u, b)

∣∣ ≤ 3 ‖η′ε‖L∞

∣∣g−(u, a)− g−(u, b)
∣∣ ≤ 3

∣∣g−(u, a)− g−(u, b)
∣∣ .
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Sending ε to zero gives

(3.30)
∣∣qEO

0,� (u, a, b)− q0,�(u, b)
∣∣ ≤ 3

∣∣g−(u, a)− g−(u, b)
∣∣ .

Next, by a partial summation,∣∣∣h2∆t
∑
n,I

Dn
I ϕ

n
I

∣∣∣ = ∣∣∣h2∆t
∑
n,I

∑
�

(
gEO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
−q0,�

(
un
I−e�/2

, vnI

)) 1

h
D�ϕ

n
I−e�

∣∣∣
≤ 3
∑
�

h2∆t
∑
n,I

∣∣∣Dv
� g

−
(
un
I−e�/2

, vnI−e�

)∣∣∣ 1
h
|D�ϕ

n
I |

≤ 3
∑
�

√
h2∆t

∑
n,I

(
Dv

� g
−
(
un
I−e�/2

, vnI−e�

))2√√√√h2∆t
∑
n,I

(
1

h
|D�ϕn

I |
)2

.

Using the bound (3.21) (for g−) we find that

|〈C, ϕ〉| ≤ CT

√
h
∑
�

‖∂x�
ϕ‖L2(R2×R+) .

Therefore, D is compact in H−1
loc (R

2 × R
+).

Hence we have established that L is compact in H−1
loc (R

2 × R
+). �

Since uh converges strongly in Lp to u, and uh is of bounded variation, also wh

will converge strongly to u in Lp for any p ∈ [1,∞). In particular this implies

|〈div (q0(wh, vh)− q(u, vh)) , ϕ〉| ≤ C ‖wh − u‖L2(R2×R+) ‖ϕ‖H1(R2×R+) → 0,

as h → 0. Thus the sequence

{∂tη0(vh) + div (q0(u, vh))}h>0

is compact in H−1
loc (R

2). Therefore, by Lemma 2.2 there exists a subsequence {vh}
(which we do not relabel) and a function v ∈ L∞(R2 × R

+) such that

(3.31) vh → v a.e. and in Lp
loc(R

2 × R
+), for any p ∈ [1,∞).

Lemma 3.5. Let u and v be the maps defined in (3.4) and (3.31), respectively.
The pair (u, v) is a weak solution of the Cauchy problem (1.1)-(1.2) in the sense of
Definition 2.1.

Proof. Recalling Lemma 3.1 we only have to verify that v is a weak solution of the
conservation law (1.2), i.e., that the second equation in Definition 2.1 holds.

Define

Dtv
n
I = vn+1

I − vnI .

With this notation the scheme for v, (3.11), can be written as

1

∆t
Dtv

n
I +
∑
�

1

h
D�g

EO
�

(
un
I−e�/2

, vnI−e�
, vnI

)
= 0.
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Let ϕ ∈ C∞
0 (R2×R

+
0 ) be a test function and let ϕn

I be defined by (3.26). Multiplying
the above by h2∆tϕn

I and doing a partial summation, we find that

0 = h2
∑
I

v0Iϕ
0
I︸ ︷︷ ︸

I0

+h2∆t
∑

n≥1,I

vnI
1

∆t
Dtϕ

n−1
I︸ ︷︷ ︸

I1

+ h2∆t
∑
n,I

∑
�

gEO
�

(
un
I+e�/2

, vnI , v
n
I+e�

) 1

h
D�ϕ

n
I︸ ︷︷ ︸

I2

.

Now

I0 =

∫
R2

vh(x, 0)ϕ(x, 0) dx+
∑
I

v0I

∫
II

∫ ∆t

0

ϕ(x, s)− ϕ(x, 0)

∆t
dsdx︸ ︷︷ ︸

I0,1

.

The term I0,1 can be estimated by observing that

|I0,1| ≤
∑
I

∣∣v0I ∣∣ ∫
II

∫ ∆t

0

1

∆t

∫ s

0

∂tϕ(x, τ ) dτdsdx

≤
∑
I

∣∣v0I ∣∣ ∫
II

‖∂tϕ‖L∞

∆t

∫ ∆t

0

s dsdx

≤ ‖∂tϕ‖L∞ ∆t

2
‖v0‖L1(R2) → 0 as ∆t → 0.

Using this and the bounded convergence theorem,

(3.32) lim
h→0

I0 =

∫
R2

v0(x)ϕ(x, 0) dx.

Similarly to the estimate on I0, we can write I1 as

I1 =

∫ ∞

∆t

∫
R2

vh(x, t)∂tϕ(x, t) dxdt+
∑

n≥1,I

vnI

∫
In
I

∫ t

t−∆t

∂tϕ(x, s)− ∂tϕ(x, t)

∆t
dsdxdt︸ ︷︷ ︸

I1,1

,

where I1,1 can be bounded as

|I1,1| ≤ ∆t ‖∂ttϕ‖L∞ ‖vh(·, t)‖L1(R) → 0 as ∆t → 0.
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Therefore,

(3.33) lim
h→0

I1 =

∫ ∞

0

∫
R2

v∂tϕdxdt.

The term I2 is slightly more complicated. Writing I2 =
∑

� I
�
2 we get

I�2 =

∫ ∞

0

∫
R2

g (wh, vh) ∂x�
ϕdxdt

−
∑
n,I

g (wn
I , v

n
I )

∫
In
I

∫ h

0

∂x�
ϕ (x, t)− ∂x�

ϕ (x+ xe�)

h
dxdxdt︸ ︷︷ ︸

I�
2,1

− h2∆t
∑
n,I

(
g (wn

I , v
n
I )− g

(
un
I+e�/2

, vnI

)) 1

h
D�ϕ

n
I︸ ︷︷ ︸

I�
2,2

− h2∆t
∑
n,I

(
gEO
�

(
un
I+e�/2

, vnI , v
n
I

)
− gEO

�

(
un
I+e�/2

, vnI , v
n
I+e�

)) 1

h
D�ϕ

n
I .︸ ︷︷ ︸

I�
2,3

The term I�2,1 can be estimated as I1,1,

(3.34)
∣∣I�2,1∣∣ ≤ h ‖∂x�x�

ϕ‖L∞ ‖g(wh, vh)‖L1([−M,M ]2×[0,T ]) → 0 as h → 0,

where M and T are such that ϕ(x, t) = 0 for t > T and |x| > M . Since uh and wh

are of bounded variation,

(3.35)
∣∣I�2,2∣∣ ≤ C |u0|BV (R2) ‖∂x�

ϕ‖L∞ h → 0 as h → 0,

for some constant C which is independent of h. For the final term we use (3.21)
and write∣∣I�2,3∣∣ = h2∆t

∑
n,I

Dv
� g

+
�

(
un
I+e�/2

, vnI

) 1

h
D�ϕ

n
I

≤

⎛⎝h2∆t
∑
n,I

(
Dv

� g
+
�

(
un
I+e�/2

, vnI

))2⎞⎠1/2⎛⎝h2∆t
∑
n,I

(
D�ϕ

n
I

h

)2
⎞⎠1/2

≤
√
CTh ‖∂xϕ‖L2(R2×R+) → 0 as h → 0.(3.36)

Collecting the bounds (3.34), (3.35) and (3.36) and using the strong convergence
of wh and vh we find that

(3.37) lim
h→0

I2 =

∫ ∞

0

∫
R2

g(u, v)div (ϕ) dxdt.

Having the limits (3.32), (3.33) and (3.37) we observe that the limit v is a weak
solution. �
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4. Numerical examples

We close this paper by demonstrating how this scheme works in practice. In the
first example we approximate solutions of the equation

∂tu+ ∂x(
1

2

(
u2
)
) + ∂y(

1

2
u) = 0,(4.1)

∂tv + ∂x (uv(1− v)) + ∂y (v(v + u)) = 0,(4.2)

with initial data

(4.3) u(x, y, 0) = 2e−4(x2+y2) − 1 and v(x, y, 0) =
1

2
(1− sin(πx)) ,

for (x, y) ∈ [−1, 1]2 and periodically extended outside this square. In Figure 2 we
show the approximations uh and vh for t = 0.5 computed on a grid with h = 1/128.
The v variable is depicted as a colored plot, and u as superposed contours.

Figure 2. The approximate solution of (4.1)-(4.3) at t = 1/2.

As a second example, we use a system of equations based on a model of three-
phase flow in porous media as mentioned in the introduction. Assume that the
porous medium is two-dimensional and that gravity acts in the y-direction. Since we
are concerned with the saturation equations, instead of letting the Darcy velocity be
defined as the solution of the elliptic equation (1.4), we fix a velocity field U = (1, 0).
This is supposed to mimic the situation where we are injecting at the left boundary
and extracting along the right boundary. Let u and v denote the gas and water
saturations, respectively. In this setting, the equations (1.5) take the form

(4.4)
∂tu+ ∂xf1 (u, v) + ∂yf2 (u, v) = 0,

∂tv + ∂xg1 (u, v) + ∂yg2(u, v) = 0,
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where

f1(u, v) =
λg(u)

λT(u, v)
,

f2(u, v) = k
λg(u)

λT(u, v)
(λw(v) (ρg − ρw) + λo(1− u− v) (ρg − ρo)) ,

g1(u, v) =
λw(v)

λT(u, v)
,

g2(u, v) = k
λw(v)

λT(u, v)
(λg(u) (ρw − ρg) + λo(1− u− v) (ρw − ρo)) ,

where

λg(u) =
u2

νg
, λw(v) =

v2

νw
, λo(u) =

w2

νo
, and λT = λg + λw + λo.

The model (4.4) is not a triangular model, but often the viscosity of the gaseous
phase is much smaller than the viscosities of oil and water. Thus, “from the gas’
point of view”, oil and water are very similar, or fi(u, v) ≈ fi(u, (1−u)/2). Hence,
setting v = (1− u)/2 in the first equation in (4.4) should be a reasonable approxi-
mation. This yields the triangular model (1.7). In the second example we therefore
use (4.4) with fi(u, v) replaced by fi(u, (1− u)/2), with the parameter values

νg = 1, νw = 80, νo = 100,

ρg = 0.05, ρw = 1.00, ρo = 0.85, and k = 500.

We used the computational domain (x, y) ∈ [0, 1]2, and the initial values are

(4.5) u(x, 0) =

{
0 if x < 0.1,

ey−1 otherwise,
v(x, 0) =

{
1 if x < 0.1,

0 otherwise.

The system (4.4) with these initial values can be viewed as a simplistic model of
water injection in a porous medium filled with oil and gas, where most of the lighter
gas is on top of the oil. Recall that the velocity in (4.4) is fixed. Nevertheless, if
one uses a sequential method to solve the full system, the hyperbolic part of the
model will be of the type (4.4).

In Figure 3 we show the time evolution of the three phases for t ∈ [0, 0.4].
We have computed the approximate solution using h = 1/128 and the boundary
conditions

u(0, y, t) = 0, v(0, y, t) = 1, f = g = 0 for y = 0 and y = 1,

∂xu = ∂xv = 0 on x = 1.
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Figure 3. The saturations at t = 0 (top), t = 0.2 (middle) and t =
0.4 (bottom). Left column: gas (u), middle column: oil (1−u−v),
right column: water (v).
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