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HIGH ORDER DISCRETIZATION SCHEMES

FOR THE CIR PROCESS: APPLICATION

TO AFFINE TERM STRUCTURE AND HESTON MODELS

AURÉLIEN ALFONSI

Abstract. This paper presents weak second and third order schemes for the
Cox-Ingersoll-Ross (CIR) process, without any restriction on its parameters.
At the same time, it gives a general recursive construction method for getting
weak second order schemes that extend the one introduced by Ninomiya and
Victoir. Combine both these results, this allows us to propose a second order
scheme for more general affine diffusions. Simulation examples are given to
illustrate the convergence of these schemes on CIR and Heston models.

Introduction

In this paper, we are interested in discretization schemes for the Cox-Ingersoll-
Ross process (CIR for short), and more generally for multidimensional diffusion
processes that contain a square root diffusion coefficient, such as in Affine Term
Structure and Heston models [11, 15]. Initially introduced in 1985 to model the
short interest rate [10], the CIR process is now widely used in finance because
it presents interesting qualitative features such as positivity and mean-reversion.
Moreover, it belongs to the class of affine models for which some standard expec-
tations are analytically or semi-analytically known. We will use in this paper the
following parametrization of the CIR process:

(0.1)

{
Xx

t = x+
∫ t

0
(a− kXx

s )ds+ σ
∫ t

0

√
Xx

s dWs, t ∈ [0, T ],
x ≥ 0

with parameters (a, k, σ) ∈ R
∗
+ ×R×R+. It is a nonnegative process. Moreover, if

x > 0 and 2a ≥ σ2, the process (Xt, t ≥ 0) is always positive. We will exclude the
trivial case σ = 0 and assume σ > 0 in the whole paper.

First, let us say that exact simulation methods exist for the CIR process (see
Glasserman [14]) and also for the Heston model (Broadie and Kaya [9]). With
respect to discretization schemes, the drawback of these exact simulation methods
is the computation time that they require. This is analysed in Alfonsi [1], Broadie
and Kaya [9], and Lord, Koekkoek and van Dijk [18]. What comes out is that exact
methods are competitive when one has to simulate the process just at one time (or
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a few times), for example to compute European options prices with a Monte-Carlo
algorithm. On the contrary, they are drastically too slow if one has to simulate the
process along a time-grid, which occurs when computing pathwise options prices.
At least for that reason, it is worth studying discretization schemes for square root
SDEs.

The main difficulty when discretizing the CIR process is located at 0, where the
square root is not Lipschitzian. Usual schemes such as the Euler scheme or the
Milstein scheme are in general not well defined. They can indeed lead to negative
values for which the square root is not defined. One has therefore to modify them or
to create ad-hoc schemes. Discretization schemes dedicated to square root diffusions
have thus been studied in recent years by Deelstra and Delbaen [12], Bossy, Diop
and Berkaoui ([13, 6, 5]), Alfonsi [1], Kahl and Schurz [17], Lord, Koekoek and
van Dijk [18] and recently Andersen [2]. A possible criterion to choose the scheme
may be its capacity to support large values of σ (we mean here σ2 � 4a). In
finance, such large values do not occur when the CIR diffusion is used to represent
the short interest rate. They are instead often observed when the CIR stands for
the default intensity in credit risk or the stock volatility such as in the Heston
model (see [8] and [2] for numerical examples in these three cases). Heuristically,
the larger σ is, the more the CIR process spends time in the neighbourhood of 0
where the square root is very sensitive. This is intuitively why most of the schemes
fail to be accurate for large σ. The QE scheme proposed by Andersen is in fact
the only one among those cited that is really well suited for these large values, but
no theoretical convergence result is given for this scheme. In another direction,
Ninomiya and Victoir [19] have recently proposed a general method to get weak
second order discretization schemes for a broad class of multidimensional SDEs. We
will present their method in detail in the first part. They apply it to the Heston
model and get encouraging results in that case, but once again it is restricted to
small values of σ, because their scheme may not be defined for σ2 > 4a.

The main contribution of this paper is to present very efficient schemes for general
affine diffusions, without any restriction on the parameters. More precisely, we
introduce second and third order discretization schemes for the CIR process that
support even large values of σ. We give theoretical results of convergence for these
schemes, analyzing the weak error. Moreover, we also present a simple recursive
method to construct second order schemes in a general framework that encompasses
affine diffusions. This method allows us to get a second order scheme for Affine
Term Structure Models (ATSM) and also a very efficient scheme for the Heston
model. Again, these schemes support large volatility coefficient values. The paper
is structured as follows.

The first part introduces notation and assumptions. It presents the analysis of
the weak error made by Talay and Tubaro [22] and then gives a recursive construc-
tion of second order schemes for multidimensional SDEs that extends the results of
Ninomiya and Victoir [19]. This method relies on the idea of scheme composition,
which dates back to Strang [20] in the field of ODEs. Let us emphasize here that
most of the results presented in this part are already known, but usually with C∞

SDE coefficients with uniformly bounded derivatives, which is not satisfied by CIR
and more general affine diffusions. The scope of this part is thus to give a rigorous
framework for the weak error analysis that embeds affine diffusions. The second
and third parts are respectively devoted to the construction of a weak second and
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third order discretization scheme for the CIR. In both cases, our solution consists in
switching schemes near the origin in order to keep nonnegativity. The fourth part
presents schemes for ATSM and Heston models, putting into practice the general
results of the first part. Simulation results are gathered in the last part for the
CIR process and for the Heston model. European, Asian and exotic options prices
are in particular computed. The numerical behaviour of these schemes is really
satisfactory.

1. Second order discretization schemes for SDEs

1.1. Assumptions on the SDE and notation. We consider a dW -dimensional
standard Brownian motion (Wt, t ≥ 0) and will denote in the sequel (Ft)t≥0 its
augmented associated filtration that satisfies the usual conditions. Let d ∈ N

∗, and
let D ⊂ R

d be a domain that we assume for sake of simplicity to be a product of
d intervals. Typically, we will consider D = R

d1
+ × R

d2 with d1 + d2 = d in this

paper. For any multi-index α = (α1, . . . , αd) ∈ N
d, we define ∂α = ∂α1

1 . . . ∂αd

d and

|α| =
∑d

l=1 αl. We introduce the following functional space:

C∞
pol(D) = {f ∈ C∞(D,R), ∀α ∈ N

d, ∃Cα > 0,eα ∈ N
∗, ∀x ∈ D,

|∂αf(x)| ≤ Cα(1 + ‖x‖eα)},

where ‖.‖ is a norm on R
d. We will say that (Cα, eα)α∈Nd is a good sequence for

f ∈ C∞
pol(D) if one has ∀x ∈ D, |∂αf(x)| ≤ Cα(1 + ‖x‖eα).

Assumptions. We assume that b : D → R
d and σ : D → Md×dW

(R) are such
that for 1 ≤ i, j ≤ d, the functions x ∈ D 
→ bi(x) and x ∈ D 
→ (σσ∗)i,j(x) are
in C∞

pol(D). For x ∈ D, we introduce the general Rd-valued SDE:

(1.1) t ≥ 0, Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dWs.

We assume that for any x ∈ D, there is a unique weak solution defined for t ≥ 0,
and therefore

P(∀t ≥ 0, Xx
t ∈ D) = 1.

It satisfies then the strong Markov property (Theorem 4.20, p. 322 in [16]). The
differential operator associated to the SDE is given by
(1.2)

f ∈ C2(D,R), Lf(x) =

d∑
i=1

bi(x)∂if(x) +
1

2

d∑
i=1

d∑
j=1

dW∑
k=1

σi,k(x)σj,k(x)∂i∂jf(x).

If f ∈ C∞
pol(D), thanks to the regularity assumptions made on b and σ, all the iterated

functions Lkf(x) are well defined on D and belong to C∞
pol(D) for any k ∈ N.

Definition 1.1. We will say (for short) that the operator L satisfies the required
assumptions on D if it is defined by (1.2) for some functions b(x) and σ(x) and
satisfies all the assumptions above.

Now, let us turn to discretization schemes for the SDE (1.1). Let us fix a time
horizon T > 0. We will consider in the whole paper the time interval [0, T ] and the
regular time discretization tni = iT/n for i = 0, 1, . . . , n.
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Definition 1.2. A family of transition probabilities (p̂x(t)(dz), t > 0, x ∈ D) on D

is such that p̂x(t) is a probability law on D for t > 0 and x ∈ D.
A discretization scheme with transition probabilities (p̂x(t)(dz), t > 0, x ∈ D) is

a sequence (X̂n
tni
, 0 ≤ i ≤ n) of D-valued random variables such that:

• for 0 ≤ i ≤ n, X̂n
tni

is an Ftni
-measurable random variable on D,

• the law of X̂n
tni+1

is given by E[f(X̂n
tni+1

)|Ftni
] =

∫
D
f(z)p̂X̂n

tni

(T/n)(dz) and

thus only depends on X̂n
tni

and T/n.

For convenience, we will denote, for t > 0 and x ∈ D, X̂x
t a random variable

distributed according to the probability law p̂x(t)(dz). The law of a discretization

scheme (X̂n
tni
, 0 ≤ i ≤ n) is thus entirely determined by its initial value and its

transition probabilities. Since the initial value is almost always taken equal to the
initial value of the SDE, we will identify with a slight abuse of language the scheme
(X̂n

tni
, 0 ≤ i ≤ n) with its transition probabilities (p̂x(t)(dz) or X̂

x
t ).

Definition 1.3. Let us denote by C∞
K (D,R) the set of the C∞ real-valued functions

with a compact support in D. Let x ∈ D. A discretization scheme (X̂n
tni
, 0 ≤ i ≤ n)

is a weak νth-order scheme for the SDE (Xx
t , t ∈ [0, T ]) if:

∀f ∈ C∞
K (D,R), ∃K > 0, |E(f(Xx

T ))− E(f(X̂n
tnn
))| ≤ K/nν .

The quantity E(f(Xx
T ))− E(f(X̂n

tnn
)) is called the weak error associated to f .

1.2. Analysis of the weak error. In this section, we develop in our setting the
weak error analysis of Talay and Tubaro [22]. For that purpose, we introduce the
following definitions.

Definition 1.4. A discretization scheme (X̂n
tni
, 0 ≤ i ≤ n) has uniformly bounded

moments if one has

∃n0 ∈ N
∗, ∀q ∈ N

∗, sup
n≥n0,0≤i≤n

E[‖X̂n
tni
‖q] < ∞.

Proposition 1.5. Let us suppose that there is η > 0 such that for t ∈ (0, η),

(1.3) ∀q ∈ N
∗, ∃Cq > 0, ∀x ∈ D, E[‖X̂x

t ‖q] ≤ ‖x‖q(1 + Cqt) + Cqt.

Then, the discretization scheme has uniformly bounded moments.

Proof. If n > T/η, we have clearly E[‖X̂n
tni+1

‖q] ≤ (1 + CqT/n)E[‖X̂n
tni
‖q] + CqT/n

and thus E[‖X̂n
tni
‖q] ≤ ui where u0 = ‖X̂n

tn0
‖q and ui+1 = (1 + CqT/n)ui + CqT/n.

Since ui = (1 + CqT/n)
iu0 − 1 ≤ ‖X̂n

tn0
‖qeCqT , we get the desired result. �

Definition 1.6. Let us consider a mapping f ∈ C∞
pol(D) 
→ Rf such that Rf :

R
∗
+ ×D → R. It is a remainder of order ν ∈ N if for any function f ∈ C∞

pol(D) with

a good sequence (Cα, eα)α∈Nd , there exist positive constants C, E, and η depending
only on (Cα, eα)α∈Nd such that

∀t ∈ (0, η), ∀x ∈ D, |Rf(t, x)| ≤ Ctν(1 + ‖x‖E).

The upper bound of a remainder is thus assumed to be the same for two functions
that have the same good sequence. To get upper bounds, we will say in the following
with a slight abuse of language that a constant depends on a good sequence of f
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when this constant can be chosen only with a good sequence of f , independently
from f itself. From the definition, we get the following straightforward properties.

Proposition 1.7. Let ν ∈ N, and let R1 and R2 be remainders of order ν. Then,
R1 + R2 and µR1 (with µ ∈ R) are remainders of order ν. If ν′ ≤ ν, then R1 is
also a remainder of order ν′.

Definition 1.8. For any scheme (p̂x(t)(dz), t > 0, x ∈ D) we define

∀f ∈ C∞, R
p̂(t)
ν+1f(x) = E[f(X̂x

t )]−
[
f(x) +

ν∑
k=1

1

k!
tkLkf(x)

]

as soon as E[|f(X̂x
t )|] < ∞.

We will say that p̂x(t)(dz) is a potential weak νth-order scheme for the operator L

if R
p̂(t)
ν+1f(x) is defined for f ∈ C∞

pol(D) and t > 0 and is a remainder of order ν + 1.

Thanks to the previous proposition, a potential weak νth-order scheme X̂x
t for

the operator L is also a potential weak ν′th-order scheme for the operator L when
ν′ ≤ ν. In particular taking ν′ = 0, there are constants C ,E , η > 0 that depend
only on a good sequence of f ∈ C∞

pol(D) such that

(1.4) ∀t ∈ (0, η), |E[f(X̂x
t )]| ≤ C(1 + ‖x‖E).

Now, we state the following key result, which is a direct consequence of the weak
error analysis proposed by Talay and Tubaro [22]. Its proof is left to Appendix A.

Theorem 1.9. Let us consider an operator L that satisfies the required assumptions
on D and a discretization scheme (X̂n

tni
, 0 ≤ i ≤ n) with transition probabilities

p̂x(t)(dz) on D that starts from X̂n
tn0

= x ∈ D. We assume that

(1) the scheme has uniformly bounded moments and is a potential weak νth-
order discretization scheme for the operator L;

(2) f : D → R is a function such that u(t, x) = E[f(Xx
T−t)] is defined on

[0, T ] × D, is C∞, solves ∀t ∈ [0, T ], ∀x ∈ D, ∂tu(t, x) = −Lu(t, x), and
satisfies:

(1.5)

∀l ∈ N, α ∈ N
d, ∃Cl,α, el,α > 0, ∀x ∈ D, t ∈ [0, T ], |∂l

t∂αu(t, x)| ≤ Cl,α(1 + ‖x‖el,α).
Then, there is K > 0, n0 ∈ N, such that |E[f(X̂n

tnn
)]−E[f(Xx

T )]| ≤ K/nν for n ≥ n0.

In this statement, the first assumption (1) concerns the discretization scheme and
the second assumption (2) mainly relies on the test function f and the diffusion
coefficients b and σ. When D = R

d, f ∈ C∞
pol(D), b and σ are C∞ with bounded

derivatives, Talay [21] has shown that the second point is automatically satisfied.
In that case, a potential weak νth-order scheme leads indeed to a weak error of
order ν.

We now state two propositions that allow us to easily extend potential weak
νth-order schemes, when a coordinate is simply a function of the time and of the
other coordinates. Besides, we check that exact schemes are indeed potential weak
νth-order schemes for any ν. Their proof is left to Appendix A.

Proposition 1.10. If X̂x
t is a potential weak νth-order scheme for the operator L

on D, then (X̂x
t , t) is a potential weak νth-order scheme for the operator L + ∂t

on D× R+.
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Proposition 1.11. Let h ∈ C∞
pol(D). We define the operator Lh for f ∈ C∞

pol(D×R)

by Lhf(x) = Lf̃(x), where f̃(x) = f(x, h(x)). If X̂x
t is a potential weak νth-order

scheme for the operator L, then (X̂x
t , h(X̂

x
t )) is a potential weak νth-order scheme

for the operator Lh.

Proposition 1.12. Let b : D → R
d and σ : D → Md×dW

(R) such that ‖b(x)‖ +
‖σ(x)‖ ≤ C(1 + ‖x‖) for some C > 0, and assume that the associated operator L
satisfies the required assumption on D. Then, for any ν ∈ N, the exact scheme is a
potential weak νth-order scheme for L.

1.3. Composition of discretization schemes. In this section, we will introduce
the notion of composition of discretization schemes via their transition probabilities.

Definition 1.13. Let us consider two transition probabilities p̂1x(t)(dz) and
p̂2x(t)(dz) on D. Then, we define the composition p̂2(t2) ◦ p̂1x(t1)(dz) simply as

p̂2(t2) ◦ p̂1x(t1)(dz) =
∫
D

p̂1y(t2)(dz)p̂
1
x(t1)(dy).

This amounts to first using the scheme 1 with a time step t1 and then the scheme 2

with a time step t2 with independent samples. We name X̂2◦1,x
t2,t1 = X̂

2,X̂1,x
t1

t2 a random

variable with the law p̂2(t2) ◦ p̂1x(t1)(dz).
More generally, if one has m transition probabilities p̂1x, . . . , p̂

m
x on D, we define

p̂m(tm) ◦ · · · ◦ p̂1x(t1)(dz) as the composition of p̂m−1(tm−1) ◦ · · · ◦ p̂1x(t1)(dz) and
then p̂mx (tm).

Remark 1.14. The criterion (1.3) that ensures the uniform boundedness of the
moments is easy to use with the scheme composition. Indeed, let us fix λ1, λ2 >
0. One checks easily that if p̂1x(t)(dz) and p̂2x(t)(dz) satisfy (1.3), then p̂2(λ2t) ◦
p̂1x(λ1t)(dz) also satisfies (1.3) and thus has uniformly bounded moments.

Proposition 1.15. Let L1 and L2 be two operators that satisfy the required assump-
tions on D, and assume that p̂1x(t)(dz) and p̂2x(t)(dz) are respectively potential weak
νth-order discretization schemes on D for these operators. Then, for λ1, λ2 > 0,
p̂2(λ2t) ◦ p̂1x(λ1t)(dz) is such that for f ∈ C∞

pol(D):

E[f(X̂2◦1,x
λ2t,λ1t

)] =
∑

l1+l2≤ν

λl1
1 λ

l2
2

l1!l2!
tl1+l2Ll1

1 L
l2
2 f(x) +Rp̂2(λ2t)◦p̂1(λ1t)f(x),

where Rp̂2(λ2t)◦p̂1(λ1t)f(x) is a remainder of order ν + 1.

The proof is left to Appendix A. Thanks to that result, one can think of a
potential scheme of order ν with a time step t as an operator I+tL+· · ·+ tν

ν!L
ν+rem

on f where rem is a remainder of order ν + 1. The composition of two schemes
is thus simply the composition of their operators (in the reverse order) because∑

l1+l2≤ν
λ
l1
1 λ

l2
2

l1!l2!
tl1+l2Ll1

1 L
l2
2 f(x) = [I + λ1tL1 + · · · + (λ1t)

ν

ν! Lν
1 ][I + λ2tL2 + · · · +

(λ2t)
ν

ν! Lν
2 ]f(x). We deduce also the following result.

Corollary 1.16. Let us assume that p̂1x(t)(dz) and p̂2x(t)(dz) are potential weak νth-
order discretization schemes on D for the operators L1 and L2. If L1L2 = L2L1,
then p̂2(t)◦p̂1x(t)(dz) is a potential weak νth-order discretization scheme for L1+L2.
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1.4. The Ninomiya-Victoir discretization scheme revisited. In this section,
we extend in our framework the idea of the Ninomiya-Victoir scheme.

Theorem 1.17. Let L1, . . . , Lm be m operators that satisfy the required assumption
on D. Let us consider p̂1x, . . . , p̂

m
x to be m potential second order discretization

schemes on D for the operators L1, . . . , Lm. Then, the transition probabilities

p̂m(t/2) ◦ · · · ◦ p̂2(t/2) ◦ p̂1(t) ◦ p̂2(t/2) ◦ · · · ◦ p̂mx (t/2),(1.6)

1

2

(
p̂m(t) ◦ · · · ◦ p̂2(t) ◦ p̂1x(t) + p̂1(t) ◦ p̂2(t) ◦ · · · ◦ p̂mx (t)

)
(1.7)

are potential second order discretization schemes for the operator ΣL = L1 + L2 +
· · ·+ Lm.

Proof. Thanks to Proposition 1.15, the following expansions are justified. The first

scheme gives: (I+ t
2Lm+ t2

8 L
2
m+rem)×· · ·×(I+ t

2L2+
t2

8 L
2
2+rem)(I+tL1+

t2

2 L
2
1+

rem)(I+ t
2L2+

t2

8 L
2
2+rem)×· · ·×(I+ t

2L2+
t2

8 L
2
m+rem) = I+tΣL+ t2

2 ΣL
2+rem

where rem denotes a remainder of order 3. In the same manner, (I + tL1 +
t2

2 L
2
1 +

rem)×· · ·×(I+tLm+ t2

2 L
2
m+rem) = I+tL+ t2

2 (
∑m

j=1 L
2
j+2

∑
j<k LjLk)+rem and

therefore the second scheme is also a potential second order discretization scheme
for ΣL. �

Let us discuss now which of the two schemes is the more efficient for computa-
tional purposes. If we suppose that each transition requires one sample, the first
one requires a priori 2m− 1 samples for each step while the second one only m+1
(m for the schemes themselves and 1 to draw an independent Bernoulli random
variable of parameter 1/2). Since 2m − 1 ≥ m + 1 for m ≥ 2, the second one is
therefore a priori more efficient. There is however an exception when one of the
schemes is deterministic. For example, let us assume that p̂2x(t) is a Dirac mass
measure. Then, p̂2(t/2) ◦ p̂1(t) ◦ p̂2x(t/2) requires only one sample while the scheme
1
2

(
p̂2(t) ◦ p̂1x(t) + p̂1(t) ◦ p̂2x(t)

)
needs two samples.

Theorem 1.18 (Ninomiya-Victoir). Let us consider the operator L defined by (1.2)
that satisfies the required assumptions on D. Let us assume that σ(x) is such that
the operators

V0f(x) =
d∑

i=1

bi(x)∂if(x)−
1

2

d∑
i,j=1

dW∑
k=1

∂jσi,kσj,k∂if(x),

Vkf(x) =
d∑

i=1

σi,k(x)∂if for k = 1, . . . , dW

are well defined on D and assume that V0 and 1
2V

2
k (for k = 1, . . . , dW ) satisfy the

required assumptions on the same domain D. Then, we have

L = V0 +
1

2

dW∑
k=1

V 2
k .

Defining vk : D → R
d as Vkf(x) =: vk(x).∇f for k = 0, . . . , dW , we assume that

∃K > 0, ‖vk(x)‖ ≤ K(1 + ‖x‖) and that X0(t, x) (resp. Xk(t, x), k = 1, . . . , dW ) is
a D-valued solution to the ODE

dX0(t, x)

dt
= v0(X0(t, x)), t ≥ 0 (resp.

dXk(t, x)

dt
= vk(Xk(t, x)), t ∈ R)
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that starts from x ∈ D at t = 0. Let us denote p̂0x(t)(dz) (resp. p̂kx(t)(dz)) the law
of X0(t, x) (resp. Xk(

√
tN, x), where N ∼ N (0, 1), for k = 1, . . . , dW ).

Then, for any ν ∈ N
∗, p̂0x(t)(dz) (resp. p̂

k
x(t)(dz)) is a potential νth-order scheme

on D for V0 (resp. 1
2V

2
k ). Moreover

1

2

(
p̂0(t/2) ◦ p̂m(t) ◦ · · · ◦ p̂1(t) ◦ p̂0x(t/2) + p̂0(t/2) ◦ p̂1(t) ◦ · · · ◦ p̂m(t) ◦ p̂0x(t/2)

)
is well defined and is a potential second order scheme on D for L.

This result is proven in Appendix A. A close look at the proof and espe-
cially (A.2) shows that Xk(

√
tY, x) is a potential νth-order scheme for 1

2V
2
k as

soon as Y has uniformly bounded moments and E[Y q] = E[Nq] for q ≤ 2ν + 1.
This gives the following corollary.

Corollary 1.19. Let Y be a random variable with finite moments of any order such
that E[Y q] = E[Nq] for q ≤ 5 with N ∼ N (0, 1). Let us consider the framework of
Theorem 1.18 but define p̂kx(t)(dz) to be the law of Xk(

√
tY, x) for k = 1, . . . , dW .

Then, p̂kx(t)(dz) is a potential second order scheme on D for 1
2V

2
k . Moreover,

(1.8)
1

2

(
p̂0(t/2) ◦ p̂m(t) ◦ · · · ◦ p̂1(t) ◦ p̂0x(t/2) + p̂0(t/2) ◦ p̂1(t) ◦ · · · ◦ p̂m(t) ◦ p̂0x(t/2)

)
is well defined and is a potential second order scheme on D for L.

As an aside, we notice that when Y is chosen to be a discrete r.v. (such as in
Example 2.3 later), the simulation of the scheme amounts to sampling a discrete
variable (a Bernoulli variable and dW independent samples of Y ) and can easily be
done with only one sample of a uniform random variable on [0, 1].

Now, we would like to give a rather general method for splitting in two the
operator L. Of course, a recursive application of this method allows us to split L
as the sum of many operators. Let us consider I ⊂ {1, . . . , dW } and denote by W I

t

the R
dW -valued process such that (W I

t )i = (Wt)i if i ∈ I, and (W I
t )i = 0 if i �∈ I.

Let us assume that bI(x) and bI
c

(x) are such that bI(x) + bI
c

(x) = b(x). Then, it
is easy to see that L = LI + LIc

, where LI (resp. LIc

) is the operator associated
to the SDE:

dXI
t = bI(XI

t )dt+ σ(XI
t )dW

I
t (resp. dXIc

t = bI
c

(XIc

t )dt+ σ(XIc

t )dW Ic

t ).

The splitting of L proposed by Ninomiya and Victoir is easily obtained if one
writes the SDE of (Xt, t ≥ 0) with the Stratonovitch integral. The operator V0 is

associated to the ODE dX∅
t = v0(X

∅
t )dt and for k = 1, . . . , dW , 1

2V
2
k is associated to

dX
{k}
t = σ(X

{k}
t ) �dW

{k}
t = vk(X

{k}
t ) �d(Wt)k, where � denotes the Stratonovitch

integral. This splitting has the main advantage of reducing the problem to the
resolution of ODEs instead of SDEs. The laws of X0(t, x) and Xk(

√
tN, x) give

exact schemes for their associated SDEs. If one has exact or very accurate methods
for integrating the ordinary differential equations (such as a Runge-Kutta method),
one can easily get a weak second order scheme. Typically, the numerical integration
should be accurate up to t3 for X0(t, x) and up to t6 for Xk(t, x) to get a remainder
of order 3 and thus a potential second order scheme.
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2. A second order scheme for the CIR process

In this section, we focus on the discretization scheme for the CIR process (0.1)
and have thus dW = 1 and D = R+. We introduce its operator

f ∈ C2(R+,R), LCIRf(x) = (a− kx)∂xf(x) +
1

2
σ2x∂2

xf(x),

which satisfies the required assumptions on D. The main result of this section is the
construction of a second order scheme for the CIR process without any restrictions
on the CIR parameters (a, k, σ) ∈ R

∗
+ × R × R

∗
+. When σ2 ≤ 4a, the scheme of

Ninomiya and Victoir is well defined and gives a second order scheme. For σ2 > 4a,
this scheme is no longer defined when the scheme comes near 0. Our solution
consists in keeping the nonnegativity of the discretization scheme, taking different
schemes whether the discretization is in a neighbourhood of 0 or not.

2.1. Ninomiya-Victoir’s scheme for the CIR. We split the operator LCIR

according to Theorem 1.18, and we get LCIR = V CIR
0 + 1

2 (V
CIR
1 )2 with

V CIR
0 f(x) = (a− kx− σ2

4
)f ′(x) and V CIR

1 f(x) = σ
√
xf ′(x).

In that case, we can solve explicitly the ODEs associated to V CIR
0 and V CIR

1 .
Defining

ψk(t) =
1− e−kt

k
= t, k �= 0 and ψ0(t) = t,

we get for x ≥ 0:

XCIR
0 (t, x) = xe−kt + (a− σ2/4)ψk(t), XCIR

1 (t, x) = ((
√
x+

σ

2
t)+)2.

We have 1
2 (V

CIR
1 )2f(x) = σ2

4 f ′(x) + 1
2σ

2xf ′′(x). It is easy to see that the assump-

tions of Theorem 1.18 are satisfied for 1
2 (V

CIR
1 )2 and for V CIR

0 when σ2 ≤ 4a.

When σ2 > 4a, V0 no longer satisfies the required assumptions on R+: we do not
have ∀x ∈ R+, ∀t ≥ 0, X0(t, x) ∈ R+. Thus, the Ninomiya-Victoir scheme is not
well defined in that case for small values of x. Last, let us remark here that Ni-
nomiya and Victoir consider X̃CIR

1 (t, x) = (
√
x+ σ

2 t)
2 instead of XCIR

1 (t, x), which

does not satisfy
dX̃CIR

1 (t,x)
dt = σ

√
X̃CIR

1 (t, x) when
√
x + σ

2 t < 0. However, a close

look at the proof of Theorem 1.18 convinces us that a similar expansion as (A.2)

holds for E[f(X̃CIR
1 (

√
tN, x))] (N ∼ N (0, 1)), and therefore X̃CIR

1 (
√
tN, x) defines

as XCIR
1 (

√
tN, x) a potential ν-th order scheme for 1

2 (V
CIR
1 )2. We thus get the

following result.

Proposition 2.1. When σ2 ≤ 4a, the Ninomiya-Victoir scheme for the CIR pro-
cess X̂x

t = ϕ(x, t,
√
tN) where N ∼ N (0, 1) is written as

(2.1)

ϕ(x, t, w) = e−
kt
2

(√
(a− σ2/4)ψk(t/2) + e−

kt
2 x+

σ

2
w

)2

+ (a− σ2/4)ψk(t/2).

It is well defined and is a potential second order scheme for LCIR.

When σ2 > 4a, the idea that we use here is to consider different schemes whether
we are or are not in a neighborhood of 0, similarly as the QE scheme presented
by Andersen [2]. Away from 0, it is natural to take the Ninomiya-Victoir scheme,
provided that it is well defined and keeps nonnegativity. Unfortunately, since the
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standard Gaussian variable has a positive density over R, there is still a positive
probability for which the scheme leads to negative values. However, thanks to
Corollary 1.19, we can replace the standard Gaussian by any random variable Y
with bounded moments that matches the five first moments: this does not degrade
the order of convergence of the scheme. Thus, choosing a bounded variable, we are
then able to control the sign of the discretization scheme thanks to the following
proposition.

Proposition 2.2. Assume σ2 > 4a and let A > 0. Then,

XCIR
0 (t/2, XCIR

1 (
√
ty,XCIR

0 (t/2, x)))

is well defined and nonnegative for y ∈ [−A,A] if and only if

x ≥ e
kt
2

⎛
⎝(

σ2

4
− a)ψk(t/2) +

[√
e

kt
2 [(

σ2

4
− a)ψk(t/2)] +

σ

2
A
√
t

]2⎞⎠ .

In that case, XCIR
0 (t/2, XCIR

1 (
√
ty,XCIR

0 (t/2, x))) = ϕ(x, t,
√
ty).

The proof is easy to check if one observes that XCIR
0 is increasing w.r.t. x and

XCIR
1 (

√
ty, x) is increasing w.r.t. x and y on {XCIR

1 (
√
ty, x) > 0}. One then has to

just compute the reciprocal image on 0 when y = −A. Let us turn to a practical
example.

Example 2.3. A suitable bounded variable that fits the five first moments of a
standard Gaussian variable is Y such that P(Y =

√
3) = 1

6 , P(Y = −
√
3) = 1

6 , and
P(Y = 0) = 2/3. If we set

K2(t) = 1{σ2>4a}e
kt
2

⎛
⎝(

σ2

4
− a)ψk(t/2) +

[√
e

kt
2 [(

σ2

4
− a)ψk(t/2)] +

σ

2

√
3t

]2⎞⎠ ,

we have, for x ≥ K2(t), X
CIR
0 (t/2, XCIR

1 (
√
tY,XCIR

0 (t/2, x)) ≥ 0 and K2(t) ∼
t→0

[ 12 (
σ2

4 − a) + (
√

1
2 (

σ2

4 − a) + σ
2

√
3)2]t for σ2 > 4a.

From now on, we have a threshold above which the composition scheme is well
defined and positive. Similarly as in Theorem 1.18, we are able to prove that it
defines a potential second order scheme above this threshold. This is stated in the
following proposition.

Proposition 2.4. Let Y and K2(t) be defined as in Example 2.3. Then, for any f ∈
C∞
pol(R+), there are positive constants η, C and E that depend on a good sequence

of f such that ∀t ∈ (0, η), ∀x ≥ K2(t),
(2.2)∣∣∣∣E[f(ϕ(x, t,√tY ))]−

(
f(x) + tLCIRf(x) +

t2

2
(LCIR)2f(x)

)∣∣∣∣ ≤ Ct3(1 + |x|E).

Remark 2.5. Looking for a scheme that, given X̂x
t = φ(x, t,

√
tN) withN ∼ N (0, 1),

yields φ(x, t, w) =
∑

l+2l′≤4

φl,l′(x)

l!l′! wltl
′
, we can get by Taylor expansions necessary

conditions for obtaining a second order scheme for the CIR process. In particular,
a necessary condition is

σ(a− 3kx− σ2/4)

2
√
x

= 2φ1,1(x) + φ3,0(x),
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which implies that φ1,1 or φ3,0 explodes in a neighborhood of 0 when σ2 �= 4a.
Due to this explosion, it is rather hard to control and get an upper bound on

the remainder |E[f(φ(x, t,
√
tN))] −

(
f(x) + tLCIRf(x) + t2

2 (L
CIR)2f(x)

)
|. The

splitting introduced by Ninomiya and Victoir amounts to integrating the CIR when
σ2 = 4a and is thus the right splitting to get around that difficulty.

2.2. A potential second order scheme in a neighbourhood of 0. From now
on, we turn to the simulation of the CIR near 0, namely on [0,K2(t)]. Near the
origin, as soon as σ2 > 4a, it does not seem possible to find even a first order
scheme of the form X̂x

t = ϕ(x, t,
√
tY ) with Y matching the two first moments of

a standard Gaussian variable and that ensures nonnegativity. We therefore have
to consider a different kind of scheme when the discretization approaches 0 to keep
nonnegativity, as is also done in Andersen [2]. Let us give at least two reasons for
which it is really important to preserve nonnegativity. First, the CIR diffusion itself
is nonnegative and it seems natural and preferable that its approximation have the
same property. Second, keeping the nonnegativity ensures that the scheme is well
defined, or, more exactly, it avoids defining a discretization scheme in the negative
values. Beyond the fact that it sounds strange to discretize a process where it is
not defined, it is not clear how to do so and then control the weak error to get a
second order scheme (see remark below).

Remark 2.6. Defining a discretization scheme for negative values roughly amounts
to extending the CIR process (Xx

t , t ≥ 0) for x < 0 and finding a scheme on the
domain D = R for this extension. This approach has already been considered in
the literature. For example, Deelstra and Delbaen [12] (resp. Lord et al. [18])

have chosen dXx
t = (a− kXx

t )dt+ σ
√
(Xx

t )
+dWt (resp. dX

x
t = (a− k(Xx

t )
+)dt+

σ
√
(Xx

t )
+dWt), which boils down to extending LCIR by LCIRf(x) = (a− kx)f ′(x)

(resp. LCIRf(x) = af ′(x)) on x < 0. Keeping in mind the Talay and Tubaro
method to control the weak error, it is required to have regularity assumptions
on the function u : (t, x) ∈ R+ × R 
→ E[f(Xx

t )]. Since ∂k
t u = (−LCIR)ku, one

should at least extend the CIR on R− to get spatially continuous iterated opera-
tors (LCIR)k, which seems not obvious. For example, for the extension taken by
Deelstra and Delbaen, we have (LCIR)2f(0+) = −akf ′(0) + a(a+ σ2/2)f ′′(0) and
(LCIR)2f(0−) = −akf ′(0) + a2f ′′(0).

To approximate the CIR near 0 and keep nonnegativity, we decide here to take
a discrete random variable that matches the two first moments. Namely, we are
looking for X̂x

t that takes two possible values 0 ≤ x−(t, x) < x+(t, x) with respective
probabilities 1− π(t, x) and π(t, x) such that

(2.3)

{
π(t, x)x+(t, x) + (1− π(t, x))x−(t, x) = ũ1(t, x),

π(t, x)x+(t, x)
2 + (1− π(t, x))x−(t, x)

2 = ũ2(t, x),

where ũq(t, x) = E((Xx
t )

q) for q ∈ N. Some calculations give:
(2.4)

ũ1(t, x) = xe−kt + aψk(t) and ũ2(t, x) = ũ1(t, x)
2 + σ2ψk(t)[aψk(t)/2 + xe−kt].

Let us define γ±(t, x) =
x±(t,x)
ũ1(t,x)

. The equations to solve can be written as

(2.5)

{
π(t, x)γ+(t, x) + (1− π(t, x))γ−(t, x) = 1,

π(t, x)γ+(t, x)
2 + (1− π(t, x))γ−(t, x)

2 = ũ2(t,x)
ũ1(t,x)2

.
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We arbitrarily take γ+(t, x) = 1/(2π(t, x)) and γ−(t, x) = 1/(2(1 − π(t, x))),
which ensures the first equation and the positivity of the random variable when
π(t, x) ∈ (0, 1). Thus one has from the last equation

π2(t, x)− π(t, x) + ũ1(t, x)
2/(4ũ2(t, x)) = 0.

The discriminant is ∆(t, x) = 1 − ũ1(t, x)
2/ũ2(t, x) ∈ [0, 1], and since we want

γ+ > γ−, we take

(2.6) π(t, x) =
1−

√
∆(t, x)

2
.

We thus have 0 ≤ π(t, x) ≤ 1/2. Besides, we have ũ2(t, x)/ũ1(t, x)
2 ≤ 1 + σ2/a

because ũ1(t, x)
2 ≥ max(a2( 1−e−kt

k )2, 2a 1−e−kt

k xe−kt). Therefore, ∆(t, x) ≤ 1 −
1/(1 + σ2/a) and we get 0 < πmin = (1 −

√
1− 1/(1 + σ2/a))/2 ≤ π(t, x) ≤ 1/2.

Since K2(t) ∼
t→0

[ 12 (
σ2

4 − a) + (
√

1
2 (

σ2

4 − a) + σ
2

√
3)2]t, there is a constant C > 0

that depends on the CIR parameters such that ũ1(t, x) ≤ Ct for x ∈ [0,K2(t)] and

t ≤ 1. Therefore 0 ≤ X̂x
t ≤ C

2πmin
t and

(2.7) ∀t ∈ (0, 1), ∀x ∈ [0,K2(t)], ∀q ∈ N, E[(X̂x
t )

q] ≤
(

C

2πmin

)q

tq.

Proposition 2.7. Let U ∼ U([0, 1]). The scheme X̂x
t = 1{U≤π(t,x)}

ũ1(t,x)
2π(t,x) +

1{U>π(t,x)}
ũ1(t,x)

2(1−π(t,x)) is a potential second order scheme on x ∈ [0,K2(t)]: for any

f ∈ C∞
pol(R+), there are positive constants C and η that depend on a good sequence

of f s.t.

∀t ∈ (0, η), ∀x ∈ [0,K2(t)], |E[f(X̂x
t )]− f(x)− tLCIRf(x)− t2

2
(LCIR)2f(x)| ≤ Ct3.

Proof. Let us consider a function f ∈ C∞
pol(R+). From Proposition 1.12, the exact

scheme is a potential second order scheme; i.e. there exist positive constants C, E, η
depending on a good sequence of f ∈ C∞

pol(R+) s.t.

∀x ≥ 0, ∀t ∈ (0, η), |E[f(Xx
t )]−f(x)− tLCIRf(x)− t2

2
(LCIR)2f(x)| ≤ Ct3(1+xE).

It is therefore sufficient to check that one has ∀x ∈ [0,Kt], |E(f(X̂x
t ))−E(f(Xx

t ))| ≤
Ct3 for a constant C that depends on a good sequence of f . We make a Taylor
expansion of f up to order 3:

x ≥ 0, f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

∫ x

0

(x− y)2

2
f (3)(y)dy.

Since X̂x
t matches the two first moments and |f (3)(y)| ≤ C3(1 + |y|q), we get

|E(f(X̂x
t ))−E(f(Xx

t ))| ≤ C3E[(X̂
x
t )

3+(X̂x
t )

q+3+(Xx
t )

3+(Xx
t )

q+3]. We have shown

in (2.7) that E[(X̂x
t )

q] ≤
(

C
2πmin

)q
tq for q ∈ N and t ∈ (0, 1). We have

dũq(t,x)
dt =

[aq + 1
2q(q − 1)σ2]ũq−1(t, x) − kqũq(t, x) , and we can prove by induction using

Gronwall’s lemma that ∃Kq > 0, ∀x ∈ [0,K2(t)],E[(X
x
t )

q] ≤ Kqt
q. Therefore, there

is a constant K > 0 such that ∀t ≤ 1,E[(X̂x
t )

3+(X̂x
t )

q+3+(Xx
t )

3+(Xx
t )

q+3] ≤ Kt3.

We finally get ∀t ∈ (0, 1), |E[f(X̂x
t )]−f(x)− tLCIRf(x)− t2

2 (L
CIR)2f(x)| ≤ C3Kt3.

Last, we observe that C3K depends on f only through C3 and q and thus just
depends on a good sequence of f . �
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2.3. The second order scheme.

Theorem 2.8. Let Y and K2(t) be defined as in Example 2.3, ϕ be the function de-
fined in (2.1), and let ũ1(t, x) and π(t, x) be the quantities defined in (2.4) and (2.6).
Let us define for t > 0, p̂x(t)(dz) the law of ϕ(x, t,

√
tY ) for x ≥ K2(t) and

p̂x(t)(dz) = π(t, x)δ ũ1(t,x)
2π(t,x)

(dz) + (1− π(t, x))δ ũ1(t,x)
2(1−π(t,x))

(dz) for 0 ≤ x < K2(t). The

scheme (X̂n
tni
, 0 ≤ i ≤ n) associated to the transition probabilities (p̂x(t)(dz), t > 0)

and starting from X̂n
tn0

= x ∈ R+ is well defined and nonnegative. It is a second
order scheme:

∀f ∈ C∞
pol(R+), ∃K > 0, ∀n ∈ N

∗, |E[f(X̂n
tnn
)]− E[f(Xx

T )]| ≤ K/n2.

The main advance made here with respect to the scheme proposed by Ninomiya
and Victoir is that we have a well-defined second order scheme, without restriction
on the parameters. To get this result, we first need the following technical result
stated in [1].

Proposition 2.9. Let us assume that f ∈ C∞
pol(R+). Then, u(t, x) = E[f(Xx

T−t)]

is C∞, solves ∂tu(t, x) = −LCIRu(t, x) on (t, x) ∈ [0, T ] × R+ and its derivatives
satisfy

(2.8) ∀l, α ∈ N, ∃Cl,α, el,α > 0, ∀x ∈ R+, t ∈ [0, T ], |∂l
t∂αu(t, x)| ≤ Cl,α(1 + xel,α).

Proof of Theorem 2.8. The fact that the scheme is well defined is clear since the
domain R+ is preserved by the schemes. The uniform boundedness of the moments
is ensured by (2.7), Proposition 1.5 and Remark 1.14 since for each q, there is
Cq > 0 s.t.

∀x ≥ 0,max(E[XCIR
1 (

√
tY, x)q], XCIR

0 (t, x)q) ≤ xq(1 + Cqt) + Cqt.

Finally, p̂x(t) defines a potential scheme of order 2 thanks to Propositions 2.4
and 2.7. Point (1) of Theorem 1.9 is thus satisfied, and the second point is given
by Proposition 2.9, which concludes the proof. �

3. A third order scheme for the CIR process

In this section, we present a third order scheme for the CIR diffusion using the
same technique as for the second order scheme. This enlightens the key ingredients
for getting a ν-th order scheme for the CIR. Roughly speaking, it is sufficient to
have on the one hand a potential ν-order scheme for x ≥ Kν(t) that preserves
nonnegativity with a threshold satisfying Kν(t) =

t→0
O(t) and, on the other hand,

to sample under that threshold a nonnegative random variable that matches the ν
first moments of the CIR process.

3.1. A third order scheme away from a neighbourhood of 0. Our construc-
tion will rely on the following remark. Let us assume that L1 and L2 are operators
such that L1L2 = L2L1 + L2

3 for some operator L3. Let Si(t) denote the formal

series Si(t) = I + tLi +
t2

2 L
2
i +

t3

6 L
3
i + . . . , where the dots represent the terms of

order 4 and greater. Then, we have

1

6

∑
ε∈{−1,1}

[S2(t)S1(t)S3(εt) + S2(t)S3(εt)S1(t) + S3(εt)S2(t)S1(t)]

= I + t(L1 + L2) +
t2

2
(L1 + L2)

2 +
t3

6
(L1 + L2)

3 + . . . .(3.1)
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Indeed, it is easy to check the first order term. The second (resp. third) order

term is t2

2 (L
2
1 + L2

2 + 2L2L1 + L2
3) (resp.

t3

6 (L
3
1 + L3

2 + 3L2L
2
1 + 3L2

2L1 + 2L2
3L1 +

2L2L
2
3 + L1L

2
3 + L2

3L2)), and since L2
3 = L1L2 − L2L1, it is equal to

t2

2 (L1 + L2)
2

(resp. t3

6 (L1 + L2)
3). Thanks to the results stated in Section 1 and especially

Proposition 1.15, if one has potential third order schemes p̂ix(t) for Li, i ∈ {1, 2, 3},
then
(3.2)

1

6

⎛
⎝ ∑

ε∈{−1,1}
p̂3(εt) ◦ p̂1(t) ◦ p̂2x(t) + p̂1(t) ◦ p̂3(εt) ◦ p̂2x(t) + p̂1(t) ◦ p̂2(t) ◦ p̂3x(εt)

⎞
⎠

is a potential third order scheme for L1 + L2. This construction requires also L3

to be a first order operator, because it has to be approximated for negative times
when ε = −1.

We are going to illustrate this method on the CIR. We know from Theorem 1.18
that XCIR

0 (t, x) and XCIR
1 (

√
tN, x) are potential third order schemes for V CIR

0

and 1
2 (V

CIR
1 )2. Looking at its proof, we easily get that XCIR

1 (
√
tY, x) is a potential

third order scheme for 1
2 (V

CIR
1 )2 for any random variable Y with bounded moments

that matches the seven first moments of N (0, 1). As in the second order case, we
consider a random variable Y that is bounded in order to control the sign of the
discretization scheme.

Example 3.1. A suitable bounded variable that fits the seven first moments

of a standard Gaussian variable is Y such that P(Y =
√
3 +

√
6) = P(Y =

−
√
3 +

√
6) =

√
6−2
4
√
6
, and P(Y =

√
3−

√
6) = P(Y = −

√
3−

√
6) = 1

2 −
√
6−2
4
√
6
.

This can easily be obtained thanks to Lemma 3.5 by matching the moments of N2

where N ∼ N (0, 1).

We first focus on the particular case k = 0, where we simply have

(3.3)
1

2

(
V CIR
0 (V CIR

1 )2 − (V CIR
1 )2V CIR

0

)
=

σ2

2

(
a− σ2

4

)
∂2
x.

Let us define

(3.4) X̃(t, x) = x+ t
σ√
2

√∣∣∣∣a− σ2

4

∣∣∣∣,
the solution to the ODE associated to the operator L̃ = σ√

2

√∣∣a− σ2

4

∣∣∂x. We are

then exactly in the framework described above with L1 = V CIR
0 , L2 = 1

2 (V
CIR
1 )2

(resp. L1 = 1
2 (V

CIR
1 )2, L2 = V CIR

0 ) and L3 = L̃ when σ2 ≤ 4a (resp. σ2 > 4a). We
just have to find conditions similar to those given in Proposition 2.2 that ensure
that all the compositions in (3.2) are well defined.

Proposition 3.2. Assume k = 0 and let A > 0.

• If σ2 ≤ 4a, then the compositions

X̃(εt,XCIR
0 (t,XCIR

1 (
√
ty, x))), XCIR

0 (t, X̃(εt,XCIR
1 (

√
ty, x)))

and

XCIR
0 (t,XCIR

1 (
√
ty, X̃(εt, x)))
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are well defined and nonnegative for any y ∈ [−A,A], ε ∈ {−1, 1} if and
only if⎧⎪⎪⎨

⎪⎪⎩
x ≥ t σ√

2

√
a− σ2/4 when σ2 ≤ 4

3a,

x ≥ tmax

⎛
⎝ σ√

2

√
a− σ2

4 ,

(√
σ2

4 − a+ σ√
2

√
a− σ2

4 + σ
2A

)2
⎞
⎠ for 4

3a < σ2 < 4a,

and without any restriction on x ≥ 0 when σ2 = 4a.
• If σ2 > 4a, then the compositions

X̃(εt,XCIR
1 (

√
ty,XCIR

0 (t, x))), XCIR
1 (

√
ty, X̃(εt,XCIR

0 (t, x)))

and

XCIR
1 (

√
ty,XCIR

0 (t, X̃(εt, x)))

are well defined and nonnegative for any y ∈ [−A,A], ε ∈ {−1, 1} if and
only if

x ≥ t

⎡
⎢⎣σ2

4
− a+

⎛
⎝
√

σ√
2

√
σ2

4
− a+

σ

2
A

⎞
⎠

2
⎤
⎥⎦ .

The proof is given in Appendix A. Let us observe that, when A ≥
√
2,

4a/3 < σ2 < 4a,
σ√
2

√
a− σ2

4
≤ σ2

2
≤

⎛
⎝
√

σ2

4
− a+

σ√
2

√
a− σ2

4
+

σ

2
A

⎞
⎠

2

.

Proposition 3.3. Let ε and ζ be respectively independent uniform r.v. on {−1, 1}
and {1, 2, 3}, and let Y be sampled independently according to Example 3.1. Let

K3(t) = ψ−k(t)

⎡
⎣1{4a/3<σ2<4a}

⎛
⎝
√

σ2

4
− a+

σ√
2

√
a− σ2

4
+

σ

2

√
3 +

√
6

⎞
⎠

2

+1{σ2≤4a/3}
σ√
2

√
a− σ2

4
+ 1{4a<σ2}

⎡
⎣σ2

4
− a+

⎛
⎝
√

σ√
2

√
σ2

4
− a+

σ

2

√
3 +

√
6

⎞
⎠

2⎤
⎦
⎤
⎦ .

(3.5)

For σ2 ≤ 4a (resp. σ2 > 4a), the scheme

X̂x,k=0
t =(3.6) ⎧⎪⎨
⎪⎩
X̃(εt,XCIR

0 (t,XCIR
1 (

√
tY, x))) (resp. X̃(εt,XCIR

1 (
√
tY,XCIR

0 (t, x)))) if ζ = 1,

XCIR
0 (t, X̃(εt,XCIR

1 (
√
tY, x))) (resp. XCIR

1 (
√
tY, X̃(εt,XCIR

0 (t, x)))) if ζ = 2,

XCIR
0 (t,XCIR

1 (
√
tY, X̃(εt, x))) (resp. XCIR

1 (
√
tY,XCIR

0 (t, X̃(εt, x)))) if ζ = 3

is well defined and nonnegative for t ≥ 0 and x ≥ K3(t)t/ψ−k(t). Then, for
x ≥ K3(t), the scheme

(3.7) X̂x
t = e−ktX̂x,k=0

ψ−k(t)



224 AURÉLIEN ALFONSI

is a potential third order scheme, i.e. for any f ∈ C∞
pol(R+), there are positive

constants η, C and E that depend on a good sequence of f such that ∀t ∈ (0, η), ∀x ≥
K3(t), ∣∣∣∣E[f(X̂x

t )]−
(
f(x) + tLCIRf(x) +

t2

2
(LCIR)2f(x) +

t3

6
(LCIR)3f(x)

)∣∣∣∣
≤ Ct4(1 + |x|E).

(3.8)

Here, for the sake of clarity, we have written the scheme using three random
variables ε, ζ and Y . Since these variables are discrete and independent, the scheme
just requires us to sample only one random variable (ε, ζ, Y ) that takes 24 values.

Proof. The fact that X̂x,k=0
t is well defined is a direct consequence of Proposi-

tion 3.2. When k = 0, (3.8) comes from (3.1) and Proposition 1.15. When k �= 0,

since X̂x,k=0
t is a potential third order scheme for LCIR

k=0 and since the multiplication
by e−kt is the exact scheme associated to Λ = −kx∂x, it is sufficient by Proposi-

tion 1.15 to check that (I+ψ−k(t)L
CIR
k=0+

ψ−k(t)
2

2 (LCIR
k=0)

2+ ψ−k(t)
3

6 (LCIR
k=0)

3+. . . )(I+

tΛ+ t2

2 Λ
2 + t3

6 Λ
3 + . . . ) = (I + tLCIR + t2

2 (L
CIR)2 + t3

6 (L
CIR)3 + . . . ), where LCIR

k=0

denotes the operator associated to the CIR diffusion when k = 0. This can be done

by some calculations using that ψ−k(t) = t + k
2 t

2 + k2

6 t3 + . . . , LCIR = LCIR
k=0 + Λ

and LCIR
k=0Λ− ΛLCIR

k=0 = −kLCIR
k=0 . �

Remark 3.4. When k ∈ R, one has 1
2

(
V CIR
0 (V CIR

1 )2 − (V CIR
1 )2V CIR

0

)
= σ2

2 (a− σ2

4 +

kx)∂2
x +

σ2

4 k∂x = sign(a− σ2

4 + kx)× ( σ√
2

√
|a− σ2

4 + kx|∂x)2. Unless a− σ2

4 + kx

does not change sign on x ≥ 0, it is not clear how to apply directly the method (3.2),

mainly because the sets {a − σ2

4 + kx ≥ 0} and {a − σ2

4 + kx ≤ 0} are then no

longer stable for the schemes XCIR
0 (t, x) and XCIR

1 (
√
tY, x). To avoid that difficulty

and to extend the third order scheme when k �= 0, we have used here instead the

identity (Xx
t , t ≥ 0)

law
= (e−ktXx,k=0

ψ−k(t)
, t ≥ 0) between the CIR process and the CIR

process with the same parameters but k = 0.

3.2. A potential third order scheme in a neighbourhood of 0. On x ∈
[0,K3(t)], we will approximate the CIR with a discrete random variable that
matches the three first moments of the CIR. We will use the following lemma.

Lemma 3.5. Let us consider a (nonconstant) random variable X such that for i ∈
{1, 2, 3}, E[|X|i] < ∞, and set mi = E[Xi]. Let s = m3−m1m2

m2−m2
1

and p =
m1m3−m2

2

m2−m2
1

.

Then, ∆ = s2 − 4p > 0 and defining x± = s±
√
∆

2 and π = m1−x−
x+−x−

, the random

variable defined by

x+1{U≤π} + x−1{U>π} with U ∼ U([0, 1])
matches the three first moments of X. Moreover, it is nonnegative if X ≥ 0.

Proof. We look for a random variable taking two values x− < x+ such that πxi
+ +

(1− π)xi
− = mi for i ∈ {1, 2, 3}. Some calculations show that this is equivalent to

the following system:

π =
m1 − x−
x+ − x−

, s =
m3 −m1m2

m2 −m2
1

, p =
m1m3 −m2

2

m2 −m2
1

,
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where s = x1 + x+ and p = x−x+. We thus consider the polynomial function
P (x) = x2 − sx + p. Introducing the cumulants κi = E((X − m1)

i), we check
that its discriminant ∆ = (4κ3

2 + κ2
3)/κ2 > 0. Since P (m1) = −κ2 < 0, we

get that m1 ∈ (x−, x+) and thus π ∈ (0, 1). Finally, when X is nonnegative,
the Cauchy-Schwarz inequality gives that s and p are nonnegative and therefore
x+ ≥ x− ≥ 0. �

Some calculations give the following formula for the third moment of the CIR:
(3.9)

ũ3(t, x) = ũ1(t, x)ũ2(t, x) + σ2ψk(t)[2x
2e−2kt + ψk(t)(a+

σ2

2
)(3xe−kt + aψk(t))].

Let us denote from now on and until the end of Section 3 π(t, x), x+(t, x)
and x−(t, x) to be the parameters of the discrete random variables matching the

three moments ũ1(t, x), ũ2(t, x) and ũ3(t, x) given by Lemma 3.5. Let X̂x
t =

x+(t, x)1{U≤π(t,x)} + x−1{U>π(t,x)} with U ∼ U([0, 1]). By Lemma 3.5, we ob-
tain from (2.4) and (3.9) that for t ≥ 0 and 0 ≤ x ≤ K3(t),

x+(t, x) + x−(t, x) =
2x2e−2kt + ψk(t)(a+

σ2

2 )(3xe−kt + aψk(t))

aψk(t)/2 + xe−kt

≤ 4e−2kt

a

K3(t)
2

ψk(t)
+ (2 + σ2/a)(3K3(t)e

−kt + aψk(t)) =
t→0

O(t).

Thus, we get a result analogous to (2.7); i.e., there is a constant C > 0 such that

∀t ∈ (0, 1), ∀x ∈ [0,K3(t)], ∀q ∈ N, E[(X̂x
t )

q] ≤ Cqtq,

and we can show the following result exactly as in Proposition 2.7, just doing a
Taylor expansion one order further.

Proposition 3.6. The scheme X̂x
t = 1{U≤π(t,x)}x+(t, x) + 1{U>π(t,x)}x−(t, x) is

a potential third order scheme on x ∈ [0,K3(t)]: for any f ∈ C∞
pol(R+), there are

positive constants C and η that depend on a good sequence of f s.t. for t ∈ (0, η)
and x ∈ [0,K3(t)],

|E[f(X̂x
t )]− f(x)− tLCIRf(x)− t2

2
(LCIR)2f(x)− t3

6
(LCIR)3f(x)| ≤ Ct4.

3.3. The third order scheme. As for the second order scheme, Propositions 3.3,
3.6 and 2.9 give easily, thanks to Theorem 1.9, the following result.

Theorem 3.7. Let K3(t) be defined as in (3.5), X̂x
t the scheme defined in Propo-

sition 3.3 (resp. Proposition 3.6) for x ≥ K3(t) (resp. x < K3(t)) and p̂x(t)(dz)

the law of X̂x
t . Then, p̂x(t)(dz) is a potential third order scheme for LCIR on R+.

Moreover, the scheme (X̂n
tni
, 0 ≤ i ≤ n) associated to the transition probabilities

(p̂x(t)(dz), t > 0) and starting from X̂n
tn0

= x ∈ R+ is a third order scheme:

∀f ∈ C∞
pol(R+), ∃K > 0, ∀n ∈ N

∗, |E[f(X̂n
tnn
)]− E[f(Xx

T )]| ≤ K/n3.

4. Application to affine term structure models

4.1. A second order scheme for general affine diffusions. In this section, we
deal with the discretization of general affine diffusions (Xt, t ≥ 0). These diffusions
are written in their general form as

(4.1) dXt = (A−KXt)dt+Σ
√
DtdWt,
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where A ∈ R
d, K,Σ ∈ R

d×d, Dt is a diagonal matrix such that (Dt)ii = γi0 +∑d
j=1 γij(Xt)j , and (Wt, t ≥ 0) is a standard d-dimensional Brownian motion. We

consider here the following canonical parametrization that ensures that the process
is well defined on the domain D = R

d′

+ × R
d−d′

:

(1) A,X0 ∈ D, Σ = Id,
(2) (Kij)1≤i≤d′,d′+1≤j≤d = 0 and Kij ≤ 0 for 1 ≤ i, j ≤ d′, i �= j,
(3) for 1 ≤ i ≤ d′, γii ≥ 0 and γij = 0 for j �= i,
(4) for m+ 1 ≤ i ≤ d, γij ≥ 0 for 0 ≤ j ≤ d′ and γij = 0 for d′ + 1 ≤ j ≤ d.

Then, more general admissible affine diffusions can be obtained from these canon-
ical affine processes by affine transformations, diffusion rescaling and Brownian
rotation. We refer to [11] for further details. However, for simulation purposes, it
is therefore sufficient to be able to generate paths of affine processes that satisfy
the four properties above. In that case, the associated operator is given by

f ∈ C∞
pol(D), Lf = LAf + LBf + LCf, with(4.2)

LAf =
d′∑
i=1

(
(Ai −Kiixi)∂if +

γii
2
xi∂

2
i f
)
, LBf = −

d∑
i=1

d∑
j=1

K̃ijxj∂if,

LCf =
d∑

i=d′+1

⎛
⎝Ai∂if +

1

2
(γi0 +

d′∑
j=1

γijxj)∂
2
i f

⎞
⎠ ,

where K̃ij = 0 if 1 ≤ i = j ≤ d′, and K̃ij = Kij otherwise. We have already
written the splitting that we use here to get a potential second order scheme. First,
LA is the operator associated with d′ independent CIR processes and one gets
from Theorem 2.8 (or even Theorem 3.7) a second order scheme for LA, taking
d′ independent samples. We denote such a scheme by p̂Ax (t). Let p̂Bx (t) be the

Dirac mass in exp(−K̃t)x: this solves exactly the ODE associated to LB. Finally,
the SDE associated to LC can also be solved exactly and for x = (x1, . . . , xd)

′,
we denote by p̂Cx (t) the law of (x1(t), . . . , xd(t))

′ with xi(t) = xi for i ≤ d′ and

xi(t) = xi + Ait +
√
γi0 +

∑d′

j=1 γijxj × (Wt)i for i > d′. We draw attention to

the fact that the domain D is stable for the schemes p̂Ax (t), p̂
B
x (t) and p̂Cx (t) for any

t > 0. We can thus compose them and from Proposition 1.12 and Theorem 1.17,
we get the following result.

Proposition 4.1. The scheme 1
2 p̂

B(t/2)◦p̂A(t)◦p̂C(t)◦p̂Bx (t/2)+ 1
2 p̂

B(t/2)◦p̂C(t)◦
p̂A(t) ◦ p̂Bx (t/2) is a potential second order scheme for the operator defined in (4.2)
on D.

Let us add that we can prove using Remark 1.14 that this scheme has uniformly
bounded moments. Therefore, it just lacks controls such as (1.5) to get from Theo-
rem 1.9 a second order scheme. Since (1.5) holds for CIR and Vasicek processes, we
may hope that it holds also for more general affine processes, but we do not tackle
this technical point in this paper.

4.2. An efficient scheme for the Heston model. In this part, we are going to
apply the ideas developed in Section 1 to the Heston model [15]. This approach
has already been used by Ninomiya and Victoir [19], but the difference here is that
we have at our disposal a second order scheme for the CIR, without restriction



HIGH ORDER DISCRETIZATION SCHEMES FOR THE CIR PROCESS 227

on its parameters. Thus, we will use a different splitting of the Heston SDE that
allows us to use our CIR discretization directly. Before going into the details, let us
mention that the Heston model (considered with a log-transformation of the stock
price) belongs to the Affine Term Structure Models. We could therefore easily get
a scheme from the general one given in Proposition 4.1 for affine diffusions. Due to
the importance of the Heston model in finance, we prefer however to give directly
the scheme that we consider in that case.

Let W and Z be two independent Brownian motions. We would like to discretize
the following SDE:

(4.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X1

t = X1
0 +

∫ t

0
(a− kX1

s )ds+ σ
∫ t

0

√
X1

sdWs,

X2
t =

∫ t

0
X1

sds,

X3
t = X3

0 +
∫ t

0
rX3

sds+
∫ t

0

√
X1

sX
3
s (ρdWs +

√
1− ρ2dZs),

X4
t =

∫ t

0
X3

sds,

with X1
0 ≥ 0, X3

0 > 0, r ∈ R, ρ ∈ [−1, 1] and (a, k, σ) ∈ R
∗
+×R×R

∗
+. The processes

X1 and X3 are respectively the volatility process and the stock process, and X2

and X4 their respective integrals. From a financial point of view, it is common
to assume moreover that r > 0, k > 0 and ρ ≤ 0, but these assumptions are not
required for what follows.

First, we have to say that there is no hope that the theory developed in Section 1
works for the Heston model. Indeed, that theory is thought to work only when the
discretization scheme has uniformly bounded moments. Since the discretization
scheme is supposed to stick rather closely to the SDE, this roughly amounts to
assuming that the SDE has uniformly bounded moments, which holds when the
drift b(x) and the volatility function σ(x) have a sublinear growth. In the Heston
model the diffusion coefficient σ(x) does not have a sublinear growth, and it is
proved indeed that the moments explode in a finite time (see Andersen and Piter-
barg [3] for details). Therefore, the framework developed in this paper is not well
suited to getting a rigorous estimate of the weak error within the Heston model.
However, it is not meaningless to apply the results stated in Section 1 to the Heston
model. The recursive construction of a second order scheme is a way to cancel many
biased terms of order 1 and to really improve the convergence as will be observed
in the simulation part.

We will then apply the results of Section 1 in a nonrigorous manner. To do so,
we split the operator of the SDE (4.3) L = LW +LZ , where the two operators LW

and LZ are associated to the following respective SDEs:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dX1

t = (a− kX1
t )dt+ σ

√
X1

t dWt,

dX2
t = X1

t dt,

dX3
t = (r − 1

2 (1− ρ2)X1
t )X

3
t dt+ ρ

√
X1

t X
3
t dWt,

dX4
t = X3

t dt,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dX1

t = 0,

dX2
t = 0,

dX3
t =

√
(1− ρ2)X1

t X
3
t � dZt,

dX4
t = 0.
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Here, � denotes the Stratonovitch integral. The second SDE is easy to integrate
exactly and we denote by p̂Zt (x) the exact scheme. For x = (x1, x2, x3, x4)

′ ∈ R
4,

p̂Zx (t) is simply the law of

(x1, x2, x3 exp(
√
tx1(1− ρ2)N), x4)

′ , where N ∼ N (0, 1).

Concerning the first SDE, we use the second or the third order scheme described
in this paper for the CIR. To discretize X2

t , we then use the construction (1.6)
of Theorem 1.17 with the exact scheme for x2∂1, which amounts to using the
trapezoidal rule. Then, we observe that X3 can be integrated exactly in functions
of the increments of X1 and X2:

X3
t = X3

0 exp

[
(r − ρ

σ
a)t+ [

ρ

σ
k − 1

2
](X2

t −X2
0 ) +

ρ

σ
(X1

t −X1
0 )

]
,

and we use this formula with the increments of the discretization. Finally, we
discretize X4 like X2 using the trapezoidal scheme. To sum up, let X̂CIR

x1
(t) denote

a random variable sampled using either the second or the third order scheme for
the CIR given in Theorems 2.8 and 3.7, with a time step t > 0 and starting from
x1 ≥ 0. Here, we consider for LW the scheme p̂Wx (t) defined as the law of

(4.4)

⎛
⎜⎜⎜⎝

X̂CIR
x1

(t)

x2 +
x1+X̂CIR

x1
(t)

2 t
x3ξx1

(t)

x4 + x3
1+ξx1

(t)

2 t

⎞
⎟⎟⎟⎠ ,

where ξx1
(t) = exp

[
(r − ρ

σa)t+ ( ρσk − 1
2 )

x1+X̂CIR
x1

(t)

2 t+ ρ
σ (X̂

CIR
x1

(t)− x1)

]
.

Then, to approximate the diffusion (4.3), we finally consider the scheme

(4.5) p̂x(t) =
1

2
(p̂W (t) ◦ p̂Zx (t) + p̂Z(t) ◦ p̂Wx (t)).

5. Simulation results

5.1. Simulations for the CIR process. In this section, we want to illustrate
the convergence of our second and third order schemes for the CIR presented in
Sections 2 and 3. In particular, we will consider an example with parameters such
that σ2 � 4a, for which few existing discretization schemes are accurate as has
been mentioned in the introduction. We will consider different schemes. Schemes 1
and 2 are respectively the second and the third order schemes that we recommend.
Their simulations are plotted as the solid line in Figure 1. We consider also three
distortions of the second order scheme that illustrate the importance of the choice
of K2(t), the threshold around which we switch between the schemes given by
Propositions 2.4 and 2.7. First, a look at the proof of Theorem 2.8 shows that
any other threshold K̃(t) greater than K2(t) s.t. K̃(t) =

t→0
O(t) would have led to

another second order scheme. Instead, if one takes a threshold smaller than K2(t)
forcing nonnegativity by taking positive parts, it is not clear mathematically that
we get a second order scheme. We can however wonder if this is just a mathematical
restriction or if it leads indeed to a worse scheme. We thus consider the following
schemes:

(3) second order scheme of Theorem 2.8, with switching threshold 3K2(t)/2,
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2

Figure 1. E(exp(−X̂n
tnn
)) as a function of 1/n with x0 = 3/2, k = 1/2,

a = 1/2 and σ = 0.8 (left) and x0 = 0.3, k = 0.1, a = 0.04 and σ = 2

(right). The width of each point gives the precision up to two standard

deviations.

(4) second order scheme of Theorem 2.8, with switching threshold K2(t)/2,
forcing nonnegativity with positive parts.

Finally, the way to obtainK2(t) is closely linked with the support of Y , the moment-
matching random variable that we have chosen for N . Taking a bounded random
variable was important for proving the convergence of our scheme, but once again,
we can wonder if it is of numerical importance and we consider the following scheme:

(5) second order scheme of Theorem 2.8, withN ∼ N (0, 1) instead of Y , forcing
nonnegativity with positive parts.

In Figure 1, we have set T = 1 and plotted the values of E(exp(−X̂n
tnn
)) as a

function of the time step 1/n for two choices of the parameters: σ2 < 4a (left) and
σ2 � 4a (right). The first set of parameters is such that σ2 < 4a, and the schemes
are most of the time largely above the switching threshold, which explains why we
observe no differences between the schemes 1, 3 and 4. For the same reason, the
scheme 5 also has a qualitatively quadratic convergence and is even slightly better
than scheme 1. Finally, the third order scheme 2 converges here much better than
the other schemes, giving in that case a five digit precision from n = 5.

The second set of parameters such that σ2 � 4a is more interesting to discuss
the choice of the threshold, because the schemes are often around its value. First,
we observe that the convergence of the schemes 1 and 2 is compatible with the
theoretical results, and the third order scheme 2 converges more quickly to the right
value than the second order scheme 1. Then, the scheme 3 converges as expected
with a quadratic speed. Nonetheless, with respect to scheme 1, the convergence
has been slightly downgraded with the increasing of the threshold. Thus, even if
theoretically any switching threshold K̃(t) greater than K2(t) s.t. K̃(t) =

t→0
O(t)

gives a second order scheme, it seems better to take the smallest one possible as
in scheme 1. The erratic behaviour of scheme 4 is sufficient to convince us that
our choice of K2(t) is not just a convenient choice for the proofs, but has a real
impact on the convergence. Finally, the convergence of scheme 5 is also worse when
the time-step gets smaller than the schemes 1 and 3 for the following reason. The
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Table 1

x0 = 3/2, k = 1/2, a = 1/2 and σ = 0.8:

n 1 2 3 4 5 7 10

E(exp(−X̂n
tnn
)) 0.3864 0.36836 0.35924 0.35442 0.35151 0.34822 0.3458

x0 = 0.3, k = 0.1, a = 0.04, and σ = 2:
n 5 7 10 14 20 30 50

E(exp(−X̂n
tnn
)) 0.80636 0.82799 0.84635 0.85974 0.8704 0.87883 0.88522

threshold K2(t) has been calculated for a random variable Y that takes value in

[−
√
3,
√
3], which is of course not satisfied by a standard Gaussian variable.

To illustrate that most of the usual schemes are not accurate for large values
of σ, we have also calculated the same expectations with the Full Truncation scheme
proposed by Lord et al. [18]. This scheme is defined by X̂x

t = x + (a − kx+)t +

σ
√
x+Wt. We give the values obtained separately in Table 1, because they are

outside of Figure 1. It is important to notice here that for the second set of
parameters, the number of samples needed for the Monte-Carlo method to get a
precision up to four digits is about 108. Therefore, when σ2 � 4a, the choice of the
scheme is really crucial for making calculations within limited time or computational
means. Of course, this holds also for the Heston model.

5.2. Simulations for the Heston model. In this section, we want to test the
scheme (4.5) given in Section 4.2 to price claims under the Heston model. More
precisely, we will denote scheme 1 (resp. 2) as the scheme that uses the second
(resp. third) order scheme for the nested CIR in (4.4). As explained in Section 4.2,
we may hope at best that both these schemes have a second order of convergence
since they are constructed from the result of Theorem 1.17. Nonetheless, we would
like to see numerically if there is some interest in using the third order scheme for
the CIR instead of the second order one. Finally, for comparison, we introduce the
following scheme, which coincides for the first and the third coordinates with the
one suggested by Lord et al. [18]:

X̂x
t =

⎛
⎜⎜⎜⎜⎜⎝

x1 + (a− kx+
1 )t+ σ

√
x+
1 Wt

x2 + x1t

x3 exp

(
(r − x+

1 /2)t+
√
x+
1 (ρWt +

√
1− ρ2Zt)

)
x4 + x3t

⎞
⎟⎟⎟⎟⎟⎠ .

This is scheme 3.
In all of the simulations, we have fixed T = 1. To test the schemes, we have

calculated European put prices for different strikes with rather high values of σ
in Figure 2 and Figure 3. It is hard to say qualitatively from the curves that the
convergence is indeed quadratic for schemes 1 and 2. Nonetheless in the European
put case we can compare the value obtained with the exact value. For example
in Figure 2, for a time step 1/50 and for each strike, the exact value is in the
two standard deviations window of which the width is between 0.5 × 10−3 and
1.5 × 10−3 according to the strike value. Therefore, the bias is not much greater
than (1/50)2 = 0.4 × 10−3 and the convergence quality is not far from being that
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)3)

+] as a function of 1/n with X1
0 =

0.04, k = 0.5, a = 0.02, σ = 0.4, r = 0.02, X3
0 = 100 and ρ = −0.5.

The point width gives a 95% confidence interval.
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0 = 100 and ρ = −0.8.

The point width gives a 95% confidence interval.

of a true second order scheme. In comparison, scheme 3 has in that case a rather
linear convergence and is still far from the exact value for n = 50. Finally, we
observe that schemes 1 and 2 give similar convergence orders. In Figure 2 where σ
is not that big, the difference between the schemes is not really significant. Instead,
in Figure 3, when the volatility of the volatility is really high (σ2 � 4a), the use of
the third order scheme for the CIR in scheme 2 allows us to reduce the bias with
respect to scheme 1.

We have also plotted in Figure 4 the prices of an Asian put and of an exotic
option that gives the right to earn the difference between the average stock and the
stock when the realized variance is above a certain level. We have chosen here a
rather low value of σ (σ2 < 4a). Thus, the CIR process X1 does not spend much
time near 0 and the convergence observed for the schemes 1 and 2 is qualitatively
parabolic as a function of the time-step. For the exotic option considered here, we
also notice that scheme 2 gives a minor bias from scheme 1 for large time-steps. In
comparison and to underline the importance of the method chosen, we have put in
Table 2 the values obtained with scheme 3 for the Asian option, because they could
not have been plotted on the same scale. For that scheme, the convergence is in
that case quasi-linear.
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Figure 4. Plots of E[e−r(100 − (X̂n
tnn
)4)

+] (left) and

E[e−r1(X̂n
tnn

)2>a/k((X̂
n
tnn
)4 − (X̂n

tnn
)3)

+] (right) as a function of

the time step 1/n with X1
0 = 0.04, k = 0.5, a = 0.02, σ = 0.2,

r = 0.02, X3
0 = 100 and ρ = −0.3. The point width gives the two

standard deviation precision.

Table 2. Results for scheme 3. Parameters as in Figure 4. Preci-
sion up to two standard deviations: 5× 10−4.

n 5 7 10 14 20 30 50

E[e−r(100− (X̂n
tnn
)4)

+] 4.6189 4.4427 4.3108 4.2235 4.1570 4.1062 4.0646

Conclusion and prospects

To sum up, the contribution of this paper is twofold. On the one hand, we have
proposed second and third order schemes for the CIR process that work without
any restriction on the parameters chosen. On the other hand, we have presented the
scheme composition technique in a framework that encompasses affine diffusions.
Hence, we have been able to propose a second order scheme for these processes.
We have also illustrated with examples the accuracy and the good convergence of
these schemes.

Let us now hint at some possible continuations of this work. First, as has been
mentioned, the framework that we have presented here is well suited when the
discretization has uniformly bounded moments, which is roughly the case when the
diffusion itself has bounded moments. This holds for ATSM. Instead, we no longer
have this property in the Heston model, and a rigorous analysis of the weak error in
that case seems to be a challenging topic. Second, the weak error has been studied
in this paper for smooth functions f . It would be interesting to get the convergence
for a wider set of test functions, as in the work of Bally and Talay [4] for the
Euler scheme. Finally, we have been able here to construct a third order scheme
for the CIR using scheme compositions. To the best of our knowledge, there is no
simple recursive construction of ν-th order schemes such as Theorem 1.17 for ν > 2.
However, we can wonder if in the special case of affine diffusions, it is possible to
construct automatically schemes of order greater than 2.



HIGH ORDER DISCRETIZATION SCHEMES FOR THE CIR PROCESS 233

Appendix A. Proofs of Sections 1 and 3.

Proof of Theorem 1.9. Following Talay and Tubaro [22], we write the weak er-

ror E[f(X̂n
tnn
)] − E[f(Xx

T )] as E[f(X̂n
tnn
)] − E[f(Xx

T )] = E[u(T, X̂n
tnn
) − u(0, X̂n

t0
)] =∑n−1

i=0 E[u(tni+1, X̂
n
tni+1

) − u(ti, X̂
n
tni
)]. From the Taylor expansion of u at the point

(tni+1, X̂
n
tni
) and ∂tu = −Lu (assumption 2), we obtain

∣∣∣u(tni , X̂n
tni
)− [u(tni+1, X̂

n
tni
) +

ν∑
k=1

1

k!

(
T

n

)k

Lku(tni+1, X̂
n
tni
)]
∣∣∣

≤ (T/n)
ν+1

(ν + 1)!
Cν+1,0(1 + ‖X̂n

tni
‖eν+1,0).

On the other hand, we deduce from (1.5) and assumption (1) that there are positive
constants C, E, n0 that depend on ν and (C0,α, e0,α)α such that for n ≥ n0,

u(tni+1, X̂
n
tni+1

) = u(tni+1, X̂
n
tni
)+

ν∑
k=1

1

k!

(
T

n

)k

Lku(tni+1, X̂
n
tni
)+R

p̂(T/n)
ν+1 u(tni+1, .)(X̂

n
tni
)

with

|Rp̂(T/n)
ν+1 u(tni+1, .)(x)| ≤ C(T/n)ν+1(1 + ‖x‖E).

Since the scheme has uniformly bounded moments, there is n0 s.t. for any q > 0,
κ(q) = sup

n≥n0,0≤i≤n
E[‖X̂n

tni
‖q] < ∞. Gathering both of the previous expansions, we

get

|E[u(ti+1, X̂
n
tni+1

)− u(tni , X̂
n
tni
)]| ≤ K

nν+1
forn ≥ n0,

with K = T ν+1

(
Cν+1,0

(ν + 1)!
(1 + κ(eν+1,0)) + C(1 + κ(E))

)
.

Thus, we deduce |E(f(Xx
T ))− E(f(X̂n

tnn
))| ≤ K/nν . �

Proof of Proposition 1.10. Let f ∈ C∞
pol(D × R+). Then, there exists a family

(Cα, eα)α∈Nd such that

∀x ∈ D, ∀t ∈ [0, 1), |∂αf(x, t)| ≤ Cα(1 + ‖x‖eα),

and therefore there exist constants C, E, η > 0, depending on (Cα, eα)α∈Nd such
that

∀t ∈ (0, η),

∣∣∣∣∣E[f(X̂x
t , t)]−

ν∑
k=0

1

k!
tkLkf(x, t)

∣∣∣∣∣ ≤ Ctν+1(1 + ‖x‖E).

The quantity E[f(X̂x
t , t)]−

∑ν
k=0

1
k! t

kLkf(x, t) is thus a remainder of order ν + 1.

Taylor’s formula applied to Lkf(x, t) up to order ν − k + 1 gives:

Lkf(x, t) = Lkf(x, 0) + · · ·+ tν−k

(ν − k)!
∂ν−k
t Lkf(x, 0)

+

∫ t

0

(t− s)ν−k

(ν − k)!
∂ν−k+1
t Lkf(x, s)ds.
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It is easy then to check that the integral is a remainder of order ν−k+1, and there-

fore E[f(X̂x
t , t)] −

∑ν
k=0

∑ν−k
l=0

1
k!l! t

k+lLk∂l
tf(x, 0) = E[f(X̂x

t , t)] −
∑ν

k=0
1
k! t

k(L +

∂t)
kf(x, 0) is a remainder of order ν + 1. �

Proof of Proposition 1.11. Let f ∈ C∞
pol(D × R). Then f̃(x) ∈ C∞

pol(D), and there-
fore we get

∀t ∈ (0, η),

∣∣∣∣∣E[f̃(X̂x
t )]−

[
f̃(x) +

ν∑
k=1

1

k!
tkLkf̃(x)

]∣∣∣∣∣ ≤ Ctν+1(1 + ‖x‖E),

for constants C, E, η that only depend on a good sequence of f̃ . The function h ∈
C∞
pol(D) being fixed, these constants also only depend on a good sequence of f . �

Proof of Proposition 1.12. Let f ∈ C∞
pol(D). Thanks to the sublinear growth condi-

tion, we have bounds on the moments ofXx
t : ∀q ∈ N

∗, ∃Cq > 0, ∀t ∈ [0, 1],E[‖Xx
t ‖q]

≤ Cq(1 + xq). Using iterations of Itô’s formula, we then easily get for t ∈ [0, 1],

E[f(Xx
t )] =

ν∑
k=0

tk

k!
Lkf(x) +

∫ t

0

(t− s)ν

ν!
E[Lν+1f(Xx

s )]ds.

Since f ∈ C∞
pol(D) and L satisfies the required assumptions, there are constants

C > 0 and q ∈ N
∗ depending only on f such that |Lν+1f |(x) ≤ C(1+ ‖x‖q). Thus,

we deduce that |E[f(Xx
t )]−

∑ν
k=0

tk

k!L
kf(x)| ≤ tν+1

(ν+1)!C(1 + Cq(1 + ‖x‖q)). �

Proof of Proposition 1.15. One has

E[f(X̂2◦1,x
λ2t,λ1t

)|X̂1,x
λ1t

] = f(X̂1,x
λ1t

) +

ν∑
k=1

1

k!
λk
2t

kLk
2f(X̂

1,x
λ1t

) +R
p̂2(λ2t)
ν+1 f(X̂1,x

λ1t
)

and then

E[f(X̂2◦1,x
λ2t,λ1t

)] =
∑

l1+l2≤ν

λl1
1 λ

l2
2

l1!l2!
tl1+l2Ll1

1 L
l2
2 f(x) +Rp̂2(λ2t)◦p̂1(λ1t)f(x),

where Rp̂2(λ2t)◦p̂1(λ1t)f(x) = E[R
p̂2(λ2t)
ν+1 f(X̂1,x

λ1t
)] +

∑ν
k=0

1
k!λ

k
2t

kR
p̂1(λ1t)
ν+1−kL

k
2f(x).

Since R
p̂1(λ1t)
ν+1−kL

k
2f(x) is a remainder of order ν + 1 − k, it is easy to get that

the sum is a remainder of order ν + 1 using Proposition 1.7. We have also t ∈
(0, η2), |Rp̂2(λ2t)

ν+1 f(X̂1,x
λ1t

)| ≤ C2λ
ν+1
2 tν+1(1+ ‖X̂1,x

λ1t
‖E2) for some constants η2, C2 >

0 and E2 ∈ 2N that only depend on a good sequence (Cα, eα) of f . Defining Φ(x) =

1+xE2
1 +· · ·+xE2

d , we have Φ ∈ C∞
pol(D) and |Rp̂2(λ2t)

ν+1 f(X̂1,x
λ1t

)| ≤ C ′
2λ

ν+1
2 tν+1Φ(X̂1,x

λ1t
)

and therefore we get for all t ∈ (0, η2 ∧ ηΦ),

|E[Rp̂2(λ2t)
ν+1 f(X̂1,x

λ1t
)]| ≤ C ′

2λ
ν+1
2 tν+1

E[Φ(X̂1,x
λ1t

)]
Ineq. (1.4)

≤ C ′
2λ

ν+1
2 tν+1CΦ(1+‖x‖EΦ)

for some positive constants ηΦ, CΦ, EΦ that only depend on Φ. Since Φ just
depends on E2, these constants depend on a good sequence of f . Therefore,

Rp̂2(λ2t)◦p̂1(λ1t)f(x) is a remainder of order ν + 1. �

Proof of Theorem 1.18. We just have to check that p̂0x(t)(dz) and p̂kx(t)(dz) (k > 0)
are respectively potential νth-order schemes for V0 and 1

2V
2
k on D. The result is

then a straightforward consequence of Theorem 1.17.
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Since there is a positive constant K such that ‖vk(x)‖ ≤ K(1 + ‖x‖) for k =
0, . . . , dW , the solutions to the ODEs Xk(t, x) are well defined on R and satisfy,
thanks to the Gronwall lemma,

∃c, c′ > 0, ∀t ∈ R, k = 0, . . . , dW , ‖Xk(t, x)‖ ≤ cec
′|t|(‖x‖+ 1).

Now let us consider f ∈ C∞
pol(D). Since Xk(t, x) solves the ODE dXk(t, x)/dt =

vk(Xk(t, x)), we get for l ∈ N:
(A.1)

f(Xk(t, x)) = f(x) + tVkf(x) + · · ·+ tl

l!
V l
kf(x) +

∫ t

0

(t− s)l

l!
V l+1
k f(Xk(s, x))ds.

Now, let us consider the case k = 0 and take l = ν and t ∈ (0, 1). Since V0

satisfies the required assumption on D, V ν+1
0 f(x) ∈ C∞

pol(D) and there are positive

constants C,E > 0 that depend on a good sequence of f such that ‖V ν+1
0 f(x)‖ ≤

C(1+‖x‖E). We can bound |
∫ t

0
(t−s)ν

ν! V ν+1
0 f(X0(s, x))ds| ≤ tν+1

ν! C(1+(cec
′
(‖x‖+

1)E) ≤ C ′tν+1(1 + ‖x‖E) for a constant C ′ > 0 that depends on a good sequence
of f , and therefore p̂0x(t)(dz) is a potential νth-order scheme for V0.

We now consider k ∈ {1, . . . , dW } and take l = 2ν + 1 in (A.1). Since 1
2V

2
k

satisfies the required assumption on D, V 2ν+2
k f(x) ∈ C∞

pol(D) and there are positive

constants C,E > 0 that depend on a good sequence of f such that ‖V 2ν+2
0 f(x)‖ ≤

C(1 + ‖x‖E). We get from (A.1) (recall E[N2ν ] = (2ν)!
2νν! ):

E[f(Xk(
√
tN, x))] =f(x) +

t

2
V 2
k f(x) + · · ·+ tν

ν!
(
1

2
V 2
k )

νf(x)

+ E

[∫ √
tN

0

(
√
tN − s)2ν+1

(2ν + 1)!
V 2ν+2
k f(Xk(s, x))ds

]
.

(A.2)

We have

|
∫ √

tN

0

(
√
tN − s)2ν+1

(2ν+1)!
V 2ν+2
k f(Xk(s, x))ds| ≤

tν+1

(2ν+1)!
|N |2ν+2C(1+ cec

′√t|N|(‖x‖+1)E)

and we remark that for t ∈ (0, 1), E[|N |2ν+2C(1 + cec
′√t|N |(‖x‖+ 1)E)] ≤ C ′′(1 +

‖x‖E) for a constant C ′′ that depends on f only through a good sequence. There-
fore, p̂kx(t)(dz) is a potential νth-order scheme for 1

2V
2
k . �

Proof of Proposition 3.2. We just give the main arguments here. The functions
X̃, XCIR

0 and XCIR
1 are nondecreasing w.r.t. t and x, and it is therefore nec-

essary and sufficient to check that these compositions are well defined and non-
negative for the “worst case”: y = −A and ε = −1. We remark also that

X̃(−t,XCIR
0 (t, x)) = XCIR

0 (t, X̃(−t, x)) = x +

(
a− σ2

4 − σ√
2

√∣∣a− σ2

4

∣∣) t and the

term in brackets is positive when σ2 < 4
3a and negative when σ2 > 4

3a and σ2 �= 4a.

When σ2 < 4a, the condition x ≥ t σ√
2

√
a− σ2/4 ensures that X̃(t, x) ≥ 0 and

XCIR
0 (t,XCIR

1 (
√
ty, X̃(εt, x))) is then well defined. When 4a/3 < σ2 < 4a, x ≥

t

(√
σ2

4 − a+ σ√
2

√
a− σ2

4 + σ
2A

)2

guarantees X̃(−t,XCIR
0 (t,XCIR

1 (−
√
tA, x))) ≥

0. When σ2 > 4a, X̃(−t,XCIR
1 (−

√
tA,XCIR

0 (t, x))) is well defined and nonnegative
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if and only if x ≥ t

⎡
⎣σ2

4 − a+

(√
σ√
2

√
σ2

4 − a+ σ
2A

)2
⎤
⎦. This condition implies

that x ≥ t

[
σ2

4 − a+ σ√
2

√
σ2

4 − a

]
. Hence, XCIR

1 (−
√
tA,XCIR

0 (t, X̃(−t, x))) is well

defined too. �
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2004.

7. Brigo, D. and Alfonsi, A. (2005). Credit default swap calibration and derivatives pricing with
the SSRD stochastic intensity model, Finance Stoch., Vol. 9, No. 1, pp. 29-42. MR2210926

8. Brigo, D., and Mercurio, F. (2006), Interest Rate Models – Theory and Practice, 2nd edition,

with Smile, Inflation and Credit, Springer-Verlag. MR2255741 (2007d:91002)

9. Broadie, M. and Kaya, Ö. (2003). Exact simulation of stochastic volatility and other affine
jump diffusion processes, Working Paper.

10. Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985). A Theory of the Term Structure of Interest
Rates. Econometrica 53, pp. 385-407. MR785475

11. Dai, Q. and Singleton, K. (2000). Specification Analysis of Affine Term Structure Models, The
Journal of Finance, Vol. LV, No. 5, pp. 1943-1978.

12. Deelstra, G. and Delbaen, F (1998). Convergence of Discretized Stochastic (Interest Rate)
Processes with Stochastic Drift Term, Appl. Stochastic Models Data Anal. 14, pp. 77-84.
MR1641781 (99g:60097)

13. Diop, A. (2003). Sur la discrétisation et le comportement à petit bruit d’EDS multidimen-
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