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COLLOCATION METHODS FOR INDEX 1 DAES

WITH A SINGULARITY OF THE FIRST KIND

OTHMAR KOCH, ROSWITHA MÄRZ, DIRK PRAETORIUS, AND EWA WEINMÜLLER

Abstract. We study the convergence behavior of collocation schemes applied
to approximate solutions of BVPs in linear index 1 DAEs which exhibit a
critical point at the left boundary. Such a critical point of the DAE causes a
singularity within the inherent ODE system. We focus our attention on the
case when the inherent ODE system is singular with a singularity of the first
kind, apply polynomial collocation to the original DAE system and consider
different choices of the collocation points such as equidistant, Gaussian or
Radau points. We show that for a well-posed boundary value problem for
DAEs having a sufficiently smooth solution, the global error of the collocation
scheme converges with the order O(hs), where s is the number of collocation
points. Superconvergence cannot be expected in general due to the singularity,
not even for the differential components of the solution. The theoretical results
are illustrated by numerical experiments.

1. Introduction

In recent years, a lot of effort has been put into the analysis and numerical
treatment of BVPs in ODEs which can exhibit singularities. Such problems are
typically given in the following form:

tαz′(t) = M(t)z(t) + f(t, z(t)), t ∈ (0, 1],(1a)

g(z(0), z(1)) = 0, z ∈ C[0, 1],(1b)

where α ≥ 1, z is an n-dimensional real function, M is a smooth n×n matrix,
and f ∈ R

n and g ∈ R
p are smooth functions. For α = 1 the problem is called

singular with a singularity of the first kind; for α > 1 it is essentially singular
(singularity of the second kind). The search for efficient numerical methods to
solve (1a) is strongly motivated by numerous applications from physics [9, 10, 23,
42], chemistry [13, 39, 41], mechanics [12], ecology [30, 37], or economics [14, 15, 24].
Also, research activities in related fields, such as the computation of connecting
orbits in dynamical systems [38], or singular Sturm-Liouville problems [6], benefit
from techniques developed for problems of the form (1a). In this paper we will
extend the techniques developed in the context of ODEs to DAEs.

Our first objective was to provide a sound theoretical basis and the implemen-
tation of an open domain Matlab code for the numerical solution of BVPs with a
singularity of the first kind, α = 1. To compute the numerical solution of (1a), we
use collocation at points in the interior of a collocation interval. Our decision to
use collocation was motivated by its advantageous convergence properties for (1a).
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282 0. KOCH, R. MÄRZ, D. PRAETORIUS, AND E. WEINMÜLLER

The convergence order is at least equal to the stage order of the method, while in
the presence of a singularity, other high-order methods show order reductions and
become inefficient (see for example [22]); cf. [5, 21, 25]. The above convergence
results mean that a collocation scheme with s inner collocation points constitutes a
high-order basic solver (O(hs) uniformly in t), robust with respect to the singularity
of the first kind. Here, we denote by h the maximal stepsize in a (nonequidistant)
grid.

In order to solve the ODE systems efficiently, the meshes have to be adapted
to the solution behavior. For singular problems, we aim at meshes which are not
affected by the steep direction field, staying coarse also close to the singularity when
the solution is smooth in that region. To design a mesh adaptation procedure, we
need an efficient asymptotically correct a posteriori estimate for the error of the
numerical solution. Such a global error estimate was introduced in [4] and is based
on the defect correction principle. We could show that for a collocation method
of order O(hs), the error of the estimate (the difference between the exact global
error and its estimate) is of order O(hs+1); see [5, 25]. This asymptotically correct
error estimate yields a reliable basis for an efficient mesh selection procedure. Our
grid adaptation procedure results in grids which adequately reflect the solution
behavior.

The final step was to implement the above algorithm and to provide an open
domain Matlab code sbvp1.0 for nonlinear problems with an error estimation
routine and a grid selection strategy; see [2, 3]. Due to its advantageous convergence
properties, collocation is the most robust and dependable solver for singular ODEs;
cf. [3, 21]. Consequently, we expected collocation to have similar properties in the
context of singular DAEs and we will be able to confirm this hypothesis in this
article.

In the past and also more recently, several authors successfully applied colloca-
tion to well-posed BVPs in index 1 DAEs with no singularities. In [11, 31], nonlinear
systems of DAEs with constant kernel of Gx′ have been studied and superconver-
gence results for Gaussian and Lobatto points were given. The first attempts to
provide respective software go back to 1994; see [1]. In the scope of the collocation
code COLDAE are semi-explicit problems. Collocation methods applied to solve
linear and nonlinear BVPs in index 1 DAEs (without singularities) have been re-
cently analyzed in [32, 33], respectively. Here, the system is assumed to be given in
a form of separated sets of equations involving derivatives and derivative free equa-
tions. Collocation at Gaussian points and Lobatto points is used to treat those
separated equation subsets, respectively. According to our experience, in case of
singularities, we need to restrict ourselves to Gaussian points, because the use of
Radau or Lobatto points often results in an ill-posed discretized system, due to the
unboundedness of the associated canonical projector; cf. [28].

Much progress has been made concerning DAE theory and applications, but
there are still many questions left open. In particular, the numerical treatment of
critical points and singularities is just emerging. With this paper we are giving the
first insight into the behavior of polynomial collocation in the context of singular
linear index 1 DAE systems.

Only a few years ago, the concept of DAEs with properly stated leading term
was introduced and studied; cf. [7, 16, 34]. In contrast to the widely used DAE
formulation E(t)x′(t) + F (t)x(t) = g(t), this concept aims at a proper and natural
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description of the involved solution derivatives. In particular, one considers linear
DAEs written in the form

(2) A(t)(D(t)x(t))′ +B(t)x(t) = g(t), t ∈ [a, b],

with continuous coefficient matrices A(t) ∈ R
m×n, D(t) ∈ R

n×m, B(t) ∈ R
m×m,

where A(t) and D(t) are assumed to be well-matched in the sense that kerA(t)⊕
R(D(t)) = R

n. One of the advantages of this precise description of the problem
structure is that there exists an inherent explicit regular ODE (IERODE) uniquely
determined by the problem data; see [16, 17, 18]. Under mild assumptions, DAEs
in standard form can be reformulated to have properly stated leading terms. For
DAEs with properly stated leading terms arising in applications, see [16]. Linear
BVPs for regular DAEs with tractability index 1 are investigated in detail in [8].

In [36], linear index 1 DAEs with properly stated leading term and type 1A-
critical points have been analyzed. This means that after decoupling the system
using the matrix chain technique developed in [7] into the differential and algebraic
components, the related inherent ODE exhibits a singularity of the first or second
kind.

In [28], our experimental results showing the convergence of collocation schemes
applied to solve (2) have been collected, and in [27], a convergence analysis for the
above problem subject to initial conditions has been given. It turns out that for
appropriately smooth problem data in (2) the stage order is retained. This means
that the global error of the collocation scheme is at least O(hs) uniformly in t. In
this article, we will formulate the respective convergence results for BVPs in index 1
DAEs with a singularity of the first kind.

2. Convergence of collocation methods

2.1. Problem specification. We investigate the convergence of collocation for
index 1 DAEs, where the so-called inherent ODE may have a singularity of the
first kind. In this section we analyze the error of collocation methods applied to a
linear system of DAEs given in the following form:

(3) A(t)(D(t)x(t))′ + B(t)x(t) = g(t), t ∈ (0, 1],

where A(t) ∈ R
m×n, D(t) ∈ R

n×m, B(t) ∈ R
m×m, g(t), x(t) ∈ R

m, with n ≤ m.
All data in (3), that is, the matrix functions A, D, and B, and the function g, are
assumed to be at least continuous on [0, 1]. Moreover, we require that

kerA(t) = {0}, t ∈ (0, 1],(4)

R(D(t)) = R
n, t ∈ [0, 1].(5)

Condition (5) means that the matrix D(t) has full constant rank on the closed
interval. The structure (4) and (5) means that the system (3) has a properly stated
leading term on (0, 1]; cf. [35]. In order to describe the boundary conditions which
are necessary and sufficient for (3) to be well-posed, we decouple this system using
techniques from [7]. To this end we define

(6) N0(t) := ker(A(t)D(t)), t ∈ (0, 1].

Note that N0(t) = kerD(t), t ∈ [0, 1].
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Let us denote by Q0 a continuous pointwise projector function onto kerD, i.e.
Q0(t)

2 = Q0(t), R(Q0(t)) = kerD(t), t ∈ [0, 1], and let P0 := I −Q0. Next define

G0(t) := A(t)D(t), t ∈ [0, 1],(7)

G1(t) := G0(t) +B(t)Q0(t), t ∈ [0, 1].(8)

In the following, we discuss systems (3) which are regular with tractability index 1
on the interval (0, 1], which means that the matrix G1(t) is nonsingular for t ∈
(0, 1]. We recall that the concept of a tractability index is related to properly
defined projector functions and a special matrix function sequence characterizing
the structure of the DAE; cf. [40].

Finally, we introduce the pointwise generalized inverse D− of D uniquely defined
by the following requirements:

D−DD− = D−, DD−D = D, DD− = I, D−D = P0,(9)

which need to hold pointwise on [0, 1]. Note that D− is also continuous on [0, 1].
We want to incorporate the case where the inherent ODE associated with (3)

exhibits a singularity of the first kind; see [20].
It was demonstrated in [7] that with the above assumptions the solutions of the

DAE (3) can be decoupled on (0, 1] into the differential components Dx and the
algebraic components Q0x. While u = Dx satisfies the explicit inherent ODE,

(10) u′(t) +D(t)G−1
1 (t)B(t)D(t)−u(t) = D(t)G−1

1 (t)g(t), t ∈ (0, 1],

the algebraic components are given by

(11) Q0(t)x(t) = −Q0(t)G
−1
1 (t)B(t)D(t)−u(t) +Q0(t)G

−1
1 (t)g(t)

and the solutions of (3) can be expressed as

x(t) = D(t)−u(t) +Q0(t)x(t), t ∈ (0, 1].

We are interested in solutions being smooth on the whole interval [0, 1] since we
intend to apply a high-order collocation scheme for their approximation. However,
G1(t) becomes singular for t = 0, in general. The asymptotic behavior of (10)
related to a singularity of the first kind arises when we assume that G1(0) is singular
but tG−1

1 (t) has a continuous extension on [0, 1]. Consequently, we can rewrite the
matrix D(t)G−1

1 (t)B(t)D(t)− and obtain

(12) D(t)G−1
1 (t)B(t)D(t)− =: −1

t
M(t),

whereM ∈ C[0, 1]. For the subsequent existence and uniqueness analysis we require
M ∈ C1[0, 1], which means that the problem data needs to be appropriately smooth.
Let us denote the right-hand side of (10) by f(t). Then we arrive at the inherent
ODE of the form

(13) u′(t) =
1

t
M(t)u(t) + f(t), t ∈ (0, 1].

As mentioned before, we are especially interested in smooth solutions x and there-
fore u needs to be at least in C[0, 1]. It turns out that the smoothness of u depends
on the smoothness of f and the eigenstructure of M(0). The boundary conditions
associated with (13) have to be chosen such that a well-posed singular boundary
value problem results. The theoretical background for this problem class, where
f ∈ C[0, 1], is discussed in detail in [20] and [26], for example. In order to use this
standard theory, we assume that G−1

1 (t)g(t) and thus f(t) are in C[0, 1].
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In this paper we focus our attention on boundary value problems for singular
ODE systems (13), which can equivalently be expressed as a well-posed initial value
problem with initial conditions at t∗ = 0 or terminal conditions at t∗ = 1. This
means a restriction on the spectrum of the matrix M(0) from (12); see [26, 29] for
a detailed explanation of this fact. The reason for the above assumption is that we
intend to employ a shooting argument in the course of the analysis.

A singular initial value problem posed at t∗ = 0 for the differential equation (13)
is well-posed if and only if the spectrum of M(0) contains no eigenvalues with
positive real parts and the initial value satisfies u(0) = γ ∈ kerM(0). A singular
terminal value problem posed at t∗ = 1 is well-posed if and only if the spectrum of
M(0) contains no eigenvalues with negative real parts and the invariant subspace
associated with the eigenvalue zero coincides with the nullspace of M(0).

The inherent ODE (13) is augmented by the boundary conditions

(14) Bau(0) +Bbu(1) = β,

with appropriately chosen n × n matrices Ba, Bb, and right-hand side β. For the
original DAE (3), this yields the boundary conditions

(15) BaD(0)x(0) +BbD(1)x(1) = β.

For a well-posed boundary value problem (13)–(14), the continuous solution can be
represented in the form

(16) u(t) = Ec+ tF (t), t ∈ [0, 1],

where the columns of E are a basis of kerM(0) and F (t) ∈ C[0, 1]; cf. [20]. Con-
sequently, the solution of the full problem (3) and (15) is continuous on [0, 1], cf.
(11), if the limit

Θc := lim
t→0+

Q0(t)G
−1
1 (t)B(t)D(t)−Ec

exists, and hence we can set

x0 := x(0) = D(0)−Ec−Q0(0)Θc

+Q0(0)

(
− lim

t→0+
tG−1

1 (t)B(t)D(t)−F (t) + lim
t→0+

G−1
1 (t)g(t)

)
.

(17)

In order to ensure that for any continuous solution u of the inherent ODE (13)
there exists a continuous solution x of the DAE (3), we additionally assume that

Θ := lim
t→0+

Q0(t)G
−1
1 (t)B(t)D(t)−R

exists, where R ∈ R
n×n is a projector onto kerM(0). Consequently, we have

Θc = ΘEc, and

x0 = D(0)−Ec−Q0(0)ΘEc

+Q0(0)

(
− lim

t→0+
tG−1

1 (t)B(t)D(t)−F (t) + lim
t→0+

G−1
1 (t)g(t)

)
.

(18)

It is important to note that in order to be able to set up a well-posed analytical
problem, three (sufficient) conditions have been imposed: We have assumed that

(19) tG−1
1 (t), G−1

1 (t)g(t), Q0(t)G
−1
1 (t)B(t)D(t)−E
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have continuous extensions on [0, 1]. The last assumption can also be expressed in
terms of the so-called canonical projector,

(20) Qcan(t) := Q0(t)G
−1
1 (t)B(t).

In general, Qcan(t) has to be continuous on [0, 1] to guarantee (19).

Remark. We exemplify the meaning of assumptions (19) by considering a special
DAE system given by

tx′
1(t) +B11(t)x1(t) +B12(t)x2(t) = g1(t),(21a)

B21(t)x1(t) +B22(t)x2(t) = g2(t),(21b)

where B11(t), B12(t), B21(t), B22(t) ∈ R
m×m, g1(t), g2(t) ∈ R

m, and x(t) =
(x1(t), x2(t))

T ∈ R
2m. It follows immediately that we can write the above sys-

tem in the form (3), where

A(t) =

(
tI
0

)
, D(t) =

(
I 0

)
, B(t) =

(
B11(t) B12(t)
B21(t) B22(t)

)
.

Let

Q0(t) :=

(
0 0
0 I

)
.

Then

G1(t) =

(
tI B12(t)
0 B22(t)

)
, G−1

1 (t) =

(
1
t I − 1

tB12(t)B
−1
22 (t)

0 B−1
22 (t)

)
,

and

Q0(t)G
−1
1 (t)B(t)D(t)− =

(
0

B−1
22 (t)B21(t)

)
.

Let us assume that B22(t) is nonsingular on [0, 1]. Then we can decouple (21a),
and (3) is an index 1 DAE on (0, 1]. Moreover, tG−1

1 (t) andQ0(t)G
−1
1 (t)B(t)D(t)−R

are continuous on [0, 1]. The data of the corresponding inherent ODE (13) read:

M(t) = B11(t)−B12(t)B
−1
22 (t)B21(t), f(t) =

1

t

(
g1(t)−B12(t)B

−1
22 (t)g2(t)

)
,

where M(t), f(t) = G−1
1 (t)g(t) ∈ C[0, 1]. Clearly, the differential component is

u(t) = D(t)x(t) = x1(t), and the algebraic component is

Q0(t)x(t) =

(
0

x2(t)

)
, x2(t) = −B−1

22 (t)B21(t)u(t) + B−1
22 (t)g2(t).

If we only assume that B22(t) is nonsingular on (0, 1] and B22(0) is singular, then
it is clear that we will require additional conditions to guarantee that the inherent
ODE exhibits a singularity of the first kind, that it has a continuous solution u, and
that this solution yields a smooth solution x. In particular, these requirements are
satisfied if the matrices tB−1

22 (t), B−1
22 (t)B21(t), and B12(t)B

−1
22 (t) have continuous

extensions on the closed interval [0, 1]. �

For a high-order method to work efficiently, it is necessary that the analytical
solution x is appropriately smooth. This means that the original problem data need
to be smooth enough and, additionally, all positive real parts of the eigenvalues of
M(0) need to be sufficiently large; cf. [20].
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In the next section, we apply polynomial collocation to approximate solutions
of (3) by means of an enlarged system,

A(t)u′(t) +B(t)x(t) = g(t),(22)

D(t)x(t)− u(t) = 0, t ∈ (0, 1],(23)

which can be brought into the standard form

(24) Â(t)(D̂(t)x̂(t))′ + B̂(t)x̂(t) = ĝ(t), t ∈ (0, 1],

where x̂(t) = (x(t), u(t))T , ĝ(t) = (g(t), 0)T , and

Â(t) =

(
A(t)
0

)
, D̂(t) =

(
0 I

)
=: D̂, B̂(t) =

(
B(t) 0
D(t) −I

)
.

Problem (24) is a regular DAE system with properly stated leading term and

tractability index 1 on (0, 1]. To see this, note that D̂(t) is constant. Therefore, we

define the related matrices Ĝ0(t), Q̂0, and Ĝ1(t) as

Ĝ0(t) := Â(t)D̂ =

(
0 A(t)
0 0

)
, Q̂0 :=

(
I 0
0 0

)
and

Ĝ1(t) := Ĝ0(t) + B̂(t)Q̂0 =

(
B(t) A(t)
D(t) 0

)
,

respectively. Moreover,

ker Ĝ1 = {z ∈ R
m+n, z = (z1, z2)

T ; z1 = Q0w, z2 = Dw, w ∈ kerG1}

for all t ∈ [0, 1], which means that Ĝ1 is nonsingular on (0, 1] and Ĝ1(0) is singular,
simultaneously with G1. From the standard decoupling procedure applied to (24),
the same inherent ODE (13) results, and for the solution x̂ on (0, 1] the following
representation holds:

(25) x̂(t)=

(
x(t)
u(t)

)
=

(
(I−Q0(t)G

−1
1 (t)B(t))D(t)−u(t)+Q0(t)G

−1
1 (t)g(t)

u(t)

)
.

It is easily seen that the matrices tĜ−1
1 (t) and Q̂0(t)Ĝ

−1
1 (t)B̂(t)D̂(t)−R̂, where

R̂ = R, are continuous on [0, 1].

2.2. Collocation methods. For the theoretical discussion of collocation methods,
we define the meshes

∆ := {τ0, τ1, . . . , τN},
and hi := τi+1 − τi, i = 0, . . . , N − 1, τ0 = 0, τN = 1. For reasons of simplicity, we
restrict the discussion to equidistant meshes, hi = h, i = 0, . . . , N − 1. However,
the results also hold for nonuniform meshes, which have a limited variation in the
step sizes. For collocation, s distinct points ti,j := τi + hiρj , j = 1, . . . , s, are
inserted in each subinterval (τi, τi+1). Since we want to focus on Gaussian points,
we restrict ourselves to interior collocation points, where ρ1 > 0 and ρs < 1. A grid
with equidistant interior collocation points is illustrated in Figure 1.

Now, let us denote by Bs the Banach space of continuous, piecewise polynomial
functions q ∈ Ps of degree ≤ s, s ∈ N, equipped with the maximum norm ‖ · ‖∞.
In the following, we denote by q the vector-valued functions from Bs independently
of the number of their components. By p ∈ Bs we denote an approximation to the
exact solution x of (3), (15), and by q ∈ Bs an approximation to the exact solution
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τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN︸ ︷︷ ︸
hi

Figure 1. The computational grid

u of the inherent ODE (13); cf. (25). The numerical scheme defining p and q has
the form

A(ti,j)q
′(ti,j) +B(ti,j)p(ti,j) = g(ti,j),(26)

D(ti,j)p(ti,j)− q(ti,j) = 0,(27)

Baq(0) +Bbq(1) = β,(28)

where j = 1, . . . , s and i = 0, . . . , N − 1. It is clear by inspection of the number
of unknowns and equations that further conditions will be necessary to close the
system for the numerical treatment. Clearly, these additional conditions have to be
consistent with the original DAEs. Various choices are possible, e.g.,

(29) B(0)p(0)− g(0) ∈ lim
t→0+

R(A(t)), q(0) = D(0)p(0),

or

(30) B(1)p(1)− g(1) ∈ R(A(1)), q(1) = D(1)p(1).

We first treat the case of boundary value problems which can equivalently be posed
as initial value problems at t∗ = 0. As we will demonstrate at the end of this section,
it is sufficient to investigate the convergence for the IVP case. Consequently, we
discuss the solution of

A(t)(D(t)x(t))′ +B(t)x(t) = g(t),(31)

D(0)x(0) = γ,(32)

which is at least continuous on [0, 1] and satisfies, see (17),

(33) Q0(0)x(0) = Q0(0)x0.

Recall that in the initial condition (32) the vector γ can be freely chosen in kerM(0),
and (33) is a consistent initial condition closing the system for the numerical treat-
ment.

When applying collocation to (31)–(33), we are seeking piecewise polynomial
functions p and q in Bs, which for j = 1, . . . , s and i = 0, . . . , N − 1 satisfy

A(ti,j)q
′(ti,j) +B(ti,j)p(ti,j) = g(ti,j),(34)

D(ti,j)p(ti,j)− q(ti,j) = 0,(35)

D(0)p(0) = γ,(36)

Q0(0)p(0) = Q0(0)x0, P0(0)p(0) = D(0)−q(0).(37)

The following arguments are very similar to those given in the analysis of collo-
cation methods applied to ordinary differential equations with a singularity of the
first kind. Thus, to keep the presentation concise we refer to [5, 21, 25] for many
of the technical details. First, we study the existence and uniqueness of polyno-
mial functions p, q ∈ Bs satisfying (34)–(37). As in the analytical case discussed
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in Section 2.1, the system can be decoupled, yielding collocation equations for the
inherent ODE, j = 1, . . . , s, i = 0, . . . , N−1,

q′(ti,j) =
1

ti,j
M(ti,j)q(ti,j) + f(ti,j),(38)

q(0) = γ ∈ kerM(0),(39)

and the value assignments, j = 1, . . . , s, i = 0, . . . , N−1,

p(ti,j) = (I −Q0(ti,j)G
−1
1 (ti,j)B(ti,j))D(ti,j)

−q(ti,j)(40)

+Q0(ti,j)G
−1
1 (ti,j)g(ti,j),

p(0) = D(0)−γ +Q0(0)x0.(41)

The results in [5, 21, 25] show that the collocation equations (38), (39) have a
unique solution which satisfies

(42) q(t) = Ec+ tϕ(t) = γ + tϕ(t), ϕ ∈ Bs;

cf. (16). Conditions (40) and (41) uniquely define a piecewise polynomial p ∈ Bs.

2.3. Error analysis: Initial value problems at t∗ = 0. We now analyze the
error of the approximation p provided by (34)–(37). Let us introduce an error
function ê ∈ Bs defined by

ê ′(ti,j) = x̂ ′(ti,j)− p̂ ′(ti,j), j = 1, . . . , s, i = 0, . . . , N − 1,(43)

ê(0) = 0,(44)

cf. [5, 21], where x̂(t) = (x(t), u(t))T is the exact solution, and p̂(t) = (p(t), q(t))T

is its approximation by a collocation polynomial. Moreover, ê(t) := (e(t), eu(t))
T .

Trivially,

(45) ê ′(t) =
s∑

µ=1

Lµ

(
t− τi
h

)
x̂ ′(ti,µ)− p̂ ′(t), t ∈ (τi, τi+1),

where Lµ denotes the µth Lagrange polynomial (of degree s − 1) associated with
the abscissae ρ1, . . . , ρs on the interval [0, 1]. In our analysis we wish to take into
account that possibly the differential and the algebraic solution components have
different smoothness. Thus, we assume that

u = Dx ∈ C k̃+1[0, 1], x ∈ C �̃+1[0, 1],

and set

k := min{k̃, s}, � := min{�̃, s}.
From standard results for interpolation, see [19], we can conclude that

(46) ê ′(t) = x̂ ′(t)− p̂ ′(t) +

(
O(h�)
O(hk)

)
.

Due to (44), integration of (46) yields

(47) ê(t) = x̂(t)− p̂(t) + t

(
r(t)
s(t)

)
,
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with r(t) = O(h�) and s(t) = O(hk). Thus, ê satisfies the collocation scheme

A(ti,j)e
′
u(ti,j) +B(ti,j)e(ti,j) = ti,jB(ti,j)r(ti,j),(48)

D(ti,j)e(ti,j)− eu(ti,j) = ti,j(D(ti,j)r(ti,j)− s(ti,j)),(49)

e(0) = 0, eu(0) = 0.(50)

Again, we can reduce the problem to the collocation scheme applied to the inherent
ODE related to (48)–(49), cf. (38), and obtain

e′u(ti,j) =
1

ti,j
M(ti,j)eu(ti,j)−M(ti,j)O(hk),(51)

eu(0) = 0.(52)

To prove this statement we multiply (48) by D(ti,j)G
−1
1 (ti,j) and obtain

e′u(ti,j) +D(ti,j)G
−1
1 (ti,j)B(ti,j)D(ti,j)

−D(ti,j)e(ti,j)

= ti,jD(ti,j)G
−1
1 (ti,j)B(ti,j)r(ti,j),

(53)

taking into account the relations DG−1
1 A = I, DG−1

1 BQ0 = 0, and DG−1
1 B =

DG−1
1 BD−D. We now express D(ti,j)e(ti,j) using (49), as

D(ti,j)e(ti,j) = eu(ti,j) + ti,jD(ti,j)r(ti,j)− ti,j s(ti,j),

and insert this into (53). Rearranging yields

e′u(ti,j)−
1

ti,j
M(ti,j)eu(ti,j)

= −M(ti,j)s(ti,j) +
(
M(ti,j)D(ti,j) + ti,jD(ti,j)G

−1
1 (ti,j)B(ti,j)

)
r(ti,j).

(54)

The second term on the right-hand side vanishes, since

MD + tDG−1
1 B = −tDG−1

1 BD−D + tDG−1
1 B

= tDG−1
1 B(I −D−D) = tDG−1

1 BQ0 = 0,

and this completes the argument.
Note that the inhomogeneity in (51) remains uniformly bounded for t ∈ [0, 1].

Therefore, we can use [5, 21], see also (42), to conclude that

(55) eu(t) = tO(hk).

Consequently, the error function e ∈ Bs can be uniquely described by assigning its
values,

e(ti,j) = (I −Q0(ti,j)G
−1
1 (ti,j)B(ti,j))D(ti,j)

−eu(ti,j)(56)

+Q0(ti,j)G
−1
1 (ti,j)ti,jB(ti,j)r(ti,j),

e(0) = 0.(57)

Finally, we have e(ti,j) = O(hmin{�,k}) and since e ∈ Bs, it immediately follows that

e(t) = O(hmin{�,k}) and

(58) x(t)− p(t) = O(hmin{�,k})

hold.
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2.4. Error analysis: Terminal value problems at t∗ = 1. Consider the case
where the boundary value problem can equivalently be posed as a terminal value
problem at t∗ = 1. The convergence proof given above requires a few modifica-
tions in that case. The collocation equations (34)–(35) are now augmented by the
terminal conditions, cf. (11), (25),

D(1)p(1) = β,

Q0(1)p(1) = −Q0(1)G
−1
1 (1)B(1)D(1)−β +Q0(1)G

−1
1 (1)g(1),

P0(1)p(1) = D(1)−q(1).

Clearly, (44) is replaced by ê(1) = 0, whence (47) becomes

(59) ê(t) = x̂(t)− p̂(t) + (1− t)

(
r(t)
s(t)

)
.

Consequently, the error function satisfies the collocation scheme

A(ti,j)e
′
u(ti,j) +B(ti,j)e(ti,j) = (1− ti,j)B(ti,j)r(ti,j),(60)

D(ti,j)e(ti,j)− eu(ti,j) = (1− ti,j)D(ti,j)r(ti,j)− (1− ti,j)s(ti,j),(61)

e(1) = 0, eu(1) = 0.(62)

The collocation scheme for the associated inherent ODE reads

e′u(ti,j) =
1

ti,j
M(ti,j)eu(ti,j)−

1

ti,j
M(ti,j)(1− ti,j)O(hk),(63)

eu(1) = 0.(64)

This yields, see [25] for the proof,

(65) eu(t) = O(hk).

Moreover,

e(ti,j) = (I −Q0(ti,j)G
−1
1 (ti,j)B(ti,j))D(ti,j)

−eu(ti,j)(66)

+(1− ti,j)Q0(ti,j)G
−1
1 (ti,j)B(ti,j)r(ti,j),

e(1) = 0.(67)

According to assumptions (19), this yields e(ti,j) = t−1
i,j O(hmin{�,k}) and therefore

e(t) = O(hmin{�,k}−1); i.e., we observe an order reduction if compared with (58).
The error bound e(ti,j) = O(hmin{�,k}) from (58), however, follows under the addi-
tional assumption that the canonical projector

Qcan(t) := Q0(t)G
−1
1 (t)B(t)(68)

has a continuous extension on [0, 1].

2.5. Error analysis: Boundary value problems. To conclude the error analy-
sis, we give the shooting argument which demonstrates that the analysis of initial
value problems given above is sufficient for the analysis of boundary value prob-
lems for the DAE (3). This argument is the same as the one given in [5, 21] for
boundary value problems of singular ODEs, and carries over to our present analy-
sis. Recall that tG−1

1 (t), G−1
1 (t)g(t), and Q0(t)G

−1
1 (t)B(t)D(t)−E are assumed to

have continuous extensions on [0, 1]. The columns of E form a basis for kerM(0).



292 0. KOCH, R. MÄRZ, D. PRAETORIUS, AND E. WEINMÜLLER

The solution of the inherent ODE (13) can be written as

u(t) =
r∑

µ=1

aµuµ(t) + ũ(t),

where U = (uµ)µ=1,...,r is the solution of the homogeneous matrix ODE with initial
condition U(0) = E, and the particular solution ũ satisfies the inhomogeneous
equation, albeit with homogeneous initial condition. It is easy to see from Section
2.1 that this implies a representation of x as

x(t) =
r∑

µ=1

aµxµ(t) + x̃(t),(69)

where X = (xµ)µ=1,...,r with

(70) xµ(t) = (I −Q0(t)G
−1
1 (t)B(t))D(t)−uµ(t)

solves the matrix DAE

A(t)(D(t)X(t))′ +B(t)X(t) = 0,(71)

D(0)X(0) = E,(72)

and x̃ = (I −Q0G
−1
1 B)D−ũ+Q0G

−1
1 g satisfies

A(t)(D(t)x̃(t))′ +B(t)x̃(t) = g(t),(73)

D(0)x̃(0) = 0.(74)

Due to our assumptions, X and x̃ are continuous on [0, 1]. An analogous represen-
tation holds for the collocation solution p,

(75) p(t) =

r∑
µ=1

bµpµ(t) + p̃(t),

where P = (pµ)µ=1,...,r and p̃ are the collocation solutions of the problems (71)–(72)
and (73)–(74), respectively. Similarly as in the ODE case, see [5, 21], substitution
of the solution representations (69) and (75) into (14) yields

aµ − bµ = O(hk)

provided that the matrix BaE +BbP (1) is nonsingular. Consequently, the conver-
gence result

‖u− q‖∞ = O(hk), ‖x− p‖∞ = O(hmin{�,k})

holds also for the solution of the boundary value problem (3), (15).
The considerations for problems posed at t∗ = 1 are analogous.

3. Numerical experiments

In this section, we illustrate the convergence behavior of the quantities

gextau := ‖p− x‖tau, gextcol := ‖p− x‖tcol,
geutau := ‖q − u‖tau, geutcol := ‖q − u‖tcol,

numerically. The first two expressions are the maximal values of the global errors
of the solution x in the mesh points only (tau)1 and in all grid points, including

1Cf. the definition of ∆ in Section 2.2.
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τi and collocation points ti,j , (tcol), respectively. The last two expressions are the
respective global errors for the differential solution components u.

Before continuing with the results of our numerical experiments, we stress that
in the above theory the important assumptions (19),

(76) tG−1
1 (t) ∈ C[0, 1], G−1

1 (t)g(t) ∈ C[0, 1], Q0(t)G
−1
1 (t)B(t)D(t)−E ∈ C[0, 1]

have been made. They are sufficient for the stage order s of the collocation scheme
to hold. Let x and u denote the solutions of the DAE and the inherent ODE,
respectively. Provided that u is sufficiently smooth, (76) yields, for equidistant
interior collocation points,

geutau = O(hs+1), geutcol = O(hs+1),(77a)

geutau = O(hs), geutcol = O(hs),(77b)

for s odd or even, respectively; see [28]. Moreover, note that for Gaussian colloca-
tion points the superconvergence behavior O(h2s) in ∆ does not hold in general,
a well-known fact in the context of singular ODEs. Rather, the same orders as in
(77a) are observed (uniform superconvergence).

If the inherent ODE is an initial value problem and if x is sufficiently smooth,
theory predicts the same order of convergence for gextau and gextcol as for u; cf.
Section 2.3. If the inherent ODE is a terminal value or boundary value problem,
our analysis additionally requires

Qcan(t) := Q0(t)G
−1
1 (t)B(t) ∈ C[0, 1](78)

to ensure this optimal convergence behavior; cf. Section 2.4. In this case, theory
predicts that

gextau = O(hs), gextcol = O(hs).(79)

If the assumptions (76) and (78) are violated, order reductions in the algebraic
components might occur. In particular, order reductions can be due to the behavior
of the canonical projector Qcan(t) for t → 0+, in the case when Qcan becomes
unbounded in this limit. In the following, we consider two problem classes and try
to illustrate important aspects of the theory by appropriately constructed model
problems; cf. Tables 1 and 2 for a summary. Therein, we highlight order reductions
in the sense that the stage order is not observed for the numerical experiment,
although the exact solutions are sufficiently smooth.

All experiments have been carried out in Matlab 7 by our new version of
sbvp [3, 4].

3.1. Problem class 1 — setting and analytical properties. The system of
DAEs in this problem class has the form(

tk

1

)
(x1(t) + α(t)x2(t))

′ +

(
tkβ(t) −tk α′(t)

0 γ(t)− α′(t)

)
x(t) =

(
tkg1(t)
g2(t)

)
=: g(t),

where k ≥ 0. Model problems can be constructed in such a way that the inherent
differential equation is regular or singular, with singularity of the first or of the
second kind; see [28] for comprehensive experimental results on the convergence of
collocation schemes applied to solve such problems.

For the models considered here, k = 0 and the above system has the form

(80)

(
1
1

)
(x1(t) + α(t)x2(t))

′ +

(
β(t) −α′(t)
0 γ(t)− α′(t)

)
x(t) =: g(t).
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Table 1. Overview of numerical experiments, where the inherent
ODEs are classified as initial (IVP), terminal (TVP), or boundary
value problem (BVP). We stress that the exact solutions for all but
the final Problem 2.4 are smooth. Order reductions are indicated
in the fifth column

Experiment Assumptions (76)(76)(76) QcanQcanQcan, cf. (78) ODE Order Reference

Prbl. 1.1 satisfied O(1/t) IVP stage [28, Prbl. 1.22]

Prbl. 1.2 not satisfied O(1/t2) TVP reduction [28, Prbl. 1.21]

Prbl. 2.1 satisfied continuous BVP stage [28, Prbl. 4.2]

Prbl. 2.2 satisfied continuous BVP stage [28, Prbl. 4.3]

Prbl. 2.3 satisfied O(1/t) TVP stage [28, Prbl. 4.5]

Prbl. 2.4 satisfied O(1/t) TVP reduction [28, Prbl. 4.6]

Table 2. Experimentally observed convergence rates for different
collocation schemes with s = 3, 4; cf. [28] for details. Order reduc-
tions are highlighted in italic.

s = 3s = 3s = 3 s = 4s = 4s = 4
gexgexgex geugeugeu gexgexgex geugeugeu

Experiment Collocation tau tcol tau tcol tau tcol tau tcol

Prbl. 1.1 equidistant 4 4 4 4 4 4 4 4
Gaussian 4 4 4 4 4 4 5 5

Prbl. 1.2 equidistant 3 3 4 4 3 3 4 4
Gaussian 3 3 5 4 3 3 5 5

Prbl. 2.1 equidistant 4 4 4 4 4 4 4 4
Gaussian 4 4 4 4 4 4 5 5
Radau 4 4 4 4 5 5 5 5

Prbl. 2.2 equidistant 4 4 4 4 4 4 4 4
Gaussian 4 4 4 4 4 4 5 5
Radau 4 4 4 4 5 5 5 5

Prbl. 2.3 equidistant 3 3 4 4 4 4 4 4
Gaussian 3 3 4 4 4 4 5 5

Prbl. 2.4 equidistant 0.3 0.3 1.2 1.2 0.3 0.3 1.2 1.2
Gaussian 0.3 0.3 1.3 1.3 0.3 0.3 1.2 1.2

In order to specify x we need to calculate the canonical projector (20),

Qcan(t) = Q0(t)G
−1
1 (t)B(t) =

1

α(t)β(t) + γ(t)

(
α(t)β(t) −α(t)γ(t)
−β(t) γ(t)

)
.(81)

Moreover, with

Q0(t)G
−1
1 (t) =

1

α(t)β(t) + γ(t)

(
α(t) −α(t)
−1 1

)
,

we obtain

Pcan(t) =
1

α(t)β(t) + γ(t)

(
γ(t) α(t)γ(t)
β(t) α(t)β(t)

)
,

and finally, the explicit formula for the solution x of the DAE (80) follows from

x(t) =
1

α(t)β(t) + γ(t)

(
γ(t)
β(t)

)
u(t) +

1

α(t)β(t) + γ(t)

(
α(t)g1(t)− α(t)g2(t)

−g1(t) + g2(t)

)
.



COLLOCATION METHODS FOR INDEX 1 DAES 295

It is important to note that the sign of the term

−β(t)(γ(t)− α′(t))

ϕ(t)
,

cf. (10), with β(t)(γ(t) − α′(t)) evaluated at t = 0, is crucial and decides the
boundary conditions necessary for the solution u (and x) to be at least in C[0, 1];
cf. [20] for the analysis of singular ODEs.

Problem 3.1. We choose α(t) = −1, whence ϕ(t) = γ(t)−β(t). With γ(t) = t+2
and β(t) = 2, we obtain ϕ(t) = t and the equation for u reads:

u′(t) = −2(t+ 2)

t
u(t) +

1

t

(
(t+ 2) g1(t)− 2 g2(t)

)
.

The requirement ϕ(t) �= 0 for t ∈ (0, 1] is satisfied because γ(t) − β(t) = t �= 0 for
t ∈ (0, 1]. We additionally choose u(t) = te5t. The right-hand side g is specified
below, and the solution of the problem has the form x(t) = (−(6t+1)e5t/2,−(8t+
1)e5t/2)T . Finally, we arrive at the system of DAEs(

1
1

)
(x1(t)− x2(t))

′ +

(
2 0
0 t+ 2

)
x(t) =

(
− te5t

− 8t+7
2 te5t

)
,

subject to the boundary conditions x1(0) − x2(0) = 0, 2x1(1) − 3x2(1) = 6.5e5.
Concerning the boundary conditions, we note that here

1

t
M(t) = −2(t+ 2)

t
, M(0) = −4,

and therefore we need to prescribe the value u(0) = x1(0)− x2(0) = 0. The second
boundary condition is equivalent to β(t)x1(t) − γ(t)x2(t) = g1(t) − g2(t); cf. (30).
For this example, condition (76) is satisfied. From α(t) = −1, γ(t) = t+2, β(t) =
2, α(t)β(t) + γ(t) = t, we obtain

G−1
1 (t) =

1

α(t)β(t) + γ(t)

(
α(t) + γ(t)− α′(t) −α(t) + α(t)β(t) + α′(t)

−1 1

)
=

1

t

(
t+ 1 −1
−1 1

)
.

This means that

G−1
1 (t) = O

(
1

t

)
⇒ tG−1

1 (t) = O (1) .

Moreover

G−1
1 (t)g(t) =

1

t

(
t+ 1 −1
−1 1

)(
− te5t

− 8t+7
2 te5t

)
=

(
t+ 1 −1
−1 1

)(
− e5t

− 8t+7
2 e5t

)
∈ C[0, 1]

and E = 0. The associated canonical projector (20) is

Qcan(t) =

(
− 2

t
2+t
t

− 2
t

2+t
t

)
= O

(
1

t

)
.

Since the solution x is appropriately smooth, in Table 3 we observe the following
convergence behavior for s = 4 equidistant collocation points,

gextau = gextcol = geutau = geutcol = O(hs) = O(h4),
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Table 3. Convergence results for Problem 1.1: s = 4, equidistant
collocation points.

Uniform Mesh gextaugextaugextau gextcolgextcolgextcol
N h error order const. error order const.

20 5.00e − 02 2.321e − 03 4.0 3.548e + 02 2.321e − 03 4.0 3.548e + 02
40 2.50e − 02 1.459e − 04 4.0 3.627e + 02 1.459e − 04 4.0 3.627e + 02
80 1.25e − 02 9.155e − 06 4.0 3.652e + 02 9.155e − 06 4.0 3.652e + 02
160 6.25e − 03 5.744e − 07 4.0 3.659e + 02 5.744e − 07 4.0 3.659e + 02

Uniform Mesh geutaugeutaugeutau geutcolgeutcolgeutcol
N h error order const. error order const.

20 5.00e − 02 1.032e − 04 4.0 1.742e + 01 1.032e − 04 4.0 1.742e + 01
40 2.50e − 02 6.429e − 06 4.0 1.674e + 01 6.429e − 06 4.0 1.674e + 01
80 1.25e − 02 4.015e − 07 4.0 1.653e + 01 4.015e − 07 4.0 1.653e + 01
160 6.25e − 03 2.509e − 08 4.0 1.646e + 01 2.509e − 08 4.0 1.646e + 01

Table 4. Convergence results for Problem 1.1: s = 4, Gaussian
collocation points.

Uniform Mesh gextaugextaugextau gextcolgextcolgextcol
N h error order const. error order const.

20 5.00e − 02 8.633e − 04 4.0 1.319e + 02 8.633e − 04 4.0 1.319e + 02
40 2.50e − 02 5.426e − 05 4.0 1.349e + 02 5.426e − 05 4.0 1.349e + 02
80 1.25e − 02 3.406e − 06 4.0 1.358e + 02 3.406e − 06 4.0 1.358e + 02
160 6.25e − 03 2.137e − 07 4.0 1.361e + 02 2.137e − 07 4.0 1.361e + 02

Uniform Mesh geutaugeutaugeutau geutcolgeutcolgeutcol
N h error order const. error order const.

20 5.00e − 02 2.479e − 09 5.5 3.804e − 02 6.356e − 06 4.8 1.243e + 01
40 2.50e − 02 6.377e − 11 5.3 1.839e − 02 2.100e − 07 4.9 1.597e + 01
80 1.25e − 02 1.801e − 12 5.1 1.120e − 02 6.749e − 09 5.0 1.856e + 01
160 6.25e − 03 5.684e − 14 5.0 5.533e − 03 2.139e − 10 5.0 2.020e + 01

which is predicted by theory. For s = 4 Gaussian collocation points, we observe

gextau = gextcol = O(hs) = O(h4), geutau = geutcol = O(hs+1) = O(h5);

cf. Table 4. Note that although the canonical projector Qcan(t) = O(1/t) is un-
bounded for t → 0+, no order reduction is observed. This is due to the fact that
the involved inherent ODE is an initial value problem, and therefore an additional
factor t helps to balance the unboundedness of Qcan(t) = O(1/t); see (55)–(56).

Problem 3.2. Functions α(t) and ϕ(t) are as in Problem 1.1. With γ(t) = sin t
and β(t) = t, we obtain ϕ(t) = sin t− t and the equation for u reads:

u′(t) = − t sin t

sin t− t
u(t) +

1

sin t− t

(
sin t g1(t)− t g2(t)

)
.

The requirement ϕ(t) �= 0 for t ∈ (0, 1] is satisfied. We set u(t) = t − sin t,
g1(t) = g2(t) are given below, and the solution of the system is x(t) = (− sin t,−t)T .
The related system of DAEs is(

1
1

)
(x1(t)− x2(t))

′ +

(
t 0
0 sin t

)
x(t) =

(
1− cos t− t sin t
1− cos t− t sin t

)
,

boundary conditions are given by x1(1)− x2(1) = − sin(1)+ 1, x2(1) = −1, and it
is clear that this problem must be treated as a terminal value problem from right
(t = 1) to left (t = 0). Since

lim
t→0+

(
− t sin t

sin t− t

)
= lim

t→0+

(6
t

)
= lim

t→0+

(λ
t

)
, λ > 0,
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Table 5. Convergence results for Problem 1.2: s = 2, equidis-
tant collocation points. One observes order reductions for both
components of x = (x1, x2).

Uniform Mesh gex1taugex1taugex1tau gex1tcolgex1tcolgex1tcol
N h error order const. error order const.

20 5.00e − 02 3.165e − 02 1.0 5.587e − 01 3.165e − 02 1.0 5.587e − 01
40 2.50e − 02 1.604e − 02 1.0 5.975e − 01 1.604e − 02 1.0 5.975e − 01
80 1.25e − 02 8.072e − 03 1.0 6.200e − 01 8.072e − 03 1.0 6.200e − 01
160 6.25e − 03 4.049e − 03 1.0 6.330e − 01 4.049e − 03 1.0 6.330e − 01

Uniform Mesh gex2taugex2taugex2tau gex2tcolgex2tcolgex2tcol
N h error order const. error order const.

20 5.00e − 02 3.165e − 02 1.0 5.575e − 01 3.165e − 02 1.0 5.575e − 01
40 2.50e − 02 1.604e − 02 1.0 5.971e − 01 1.604e − 02 1.0 5.971e − 01
80 1.25e − 02 8.072e − 03 1.0 6.199e − 01 8.072e − 03 1.0 6.199e − 01
160 6.25e − 03 4.049e − 03 1.0 6.330e − 01 4.049e − 03 1.0 6.330e − 01

Uniform Mesh geutaugeutaugeutau geutcolgeutcolgeutcol
N h error order const. error order const.

20 5.00e − 02 6.260e − 06 2.5 1.247e − 02 6.691e − 06 2.4 9.998e − 03
40 2.50e − 02 1.538e − 06 2.0 2.697e − 03 1.605e − 06 2.1 3.197e − 03
80 1.25e − 02 3.829e − 07 2.0 2.519e − 03 3.920e − 07 2.0 2.911e − 03
160 6.25e − 03 9.563e − 08 2.0 2.466e − 03 9.681e − 08 2.0 2.712e − 03

we prescribe the value of u at t = 1, u(1) = x1(1) − x2(1). The second boundary
condition is again the consistency condition (30).

The conditions (76) and (78) are not satisfied. From α(t) = −1, γ(t) = sin t,
β(t) = t, α(t)β(t) + γ(t) = sin t− t, it follows that

(82) G−1
1 (t) =

1

sin t− t

(
sin t− 1 1− t

−1 1

)
= O

(
1

t3

)
⇒ tG−1

1 (t) = O

(
1

t2

)
.

However,

G−1
1 (t)g(t) =

1

sin t− t

(
sin t− 1 1− t

−1 1

)(
1− cos t− t sin t
1− cos t− t sin t

)
=

(
1− cos t− t sin t

0

)
and E = 0. The canonical projector (20) has the form

(83) Qcan(t) =

(
− t

sin t−t
sin t

sin t−t

− t
sin t−t

sin t
sin t−t

)
= O

(
1

t2

)
.

Due to (82)–(83), we observe clear order reductions; see Tables 5 and 6. Here, we
are dealing with a terminal value problem and there are no additional t factors to
balance the behavior of Qcan(t); see (65)–(66). Note that for singular boundary
value problems in ODEs, the uniform superconvergence order O(hs+1) for Gaussian
collocation nodes holds in general at both the mesh points τi and the collocation
points tij .

3.2. Problem class 2.

3.2.1. Problems with bounded canonical projector, B22 nonsingular. The problems
considered in the previous section exhibited scalar inherent ODEs with M(0) ∈ R.
Therefore, the associated BVP could be posed either as an initial value problem,
M(0) < 0, or as a terminal value problem, M(0) > 0; see Problem 1.1 and Problem
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Table 6. Convergence results for Problem 1.2: s = 2, Gaussian
collocation points. One observes order reductions for both compo-
nents of x = (x1, x2).

Uniform Mesh gex1taugex1taugex1tau gex1tcolgex1tcolgex1tcol
N h error order const. error order const.

20 5.00e − 02 3.994e − 02 1.0 7.413e − 01 3.994e − 02 1.0 7.413e − 01
40 2.50e − 02 2.013e − 02 1.0 7.716e − 01 2.013e − 02 1.0 7.716e − 01
80 1.25e − 02 1.010e − 02 1.0 7.889e − 01 1.010e − 02 1.0 7.889e − 01
160 6.25e − 03 5.062e − 03 1.0 7.988e − 01 5.062e − 03 1.0 7.988e − 01

Uniform Mesh gex2taugex2taugex2tau gex2tcolgex2tcolgex2tcol
N h error order const. error order const.

20 5.00e − 02 3.994e − 02 1.0 7.405e − 01 3.994e − 02 1.0 7.405e − 01
40 2.50e − 02 2.013e − 02 1.0 7.713e − 01 2.013e − 02 1.0 7.713e − 01
80 1.25e − 02 1.010e − 02 1.0 7.888e − 01 1.010e − 02 1.0 7.888e − 01
160 6.25e − 03 5.062e − 03 1.0 7.987e − 01 5.062e − 03 1.0 7.987e − 01

Uniform Mesh geutaugeutaugeutau geutcolgeutcolgeutcol
N h error order const. error order const.

20 5.00e − 02 3.070e − 06 3.0 2.432e − 02 3.070e − 06 3.0 2.432e − 02
40 2.50e − 02 3.840e − 07 3.0 2.450e − 02 3.840e − 07 3.0 2.450e − 02
80 1.25e − 02 4.801e − 08 3.0 2.456e − 02 4.801e − 08 3.0 2.456e − 02
160 6.25e − 03 6.001e − 09 3.0 2.457e − 02 6.001e − 09 3.0 2.457e − 02

1.2, respectively. In order to study the influence of other eigenstructures of the ma-
trix M(0), we now consider the following higher-dimensional semi-explicit problem
posed on the interval (0, 1]:

(84)

(
t I
0

)(
(I 0)

(
x1(t)
x2(t)

))′
+

(
B11 B12

B21 B22

)(
x1(t)
x2(t)

)
=

(
g1(t)
g2(t)

)
,

or explicitly,

tx′
1(t) +B11x1(t) +B12x2(t) = g1(t),(85a)

B21x1(t) +B22x2(t) = g2(t),(85b)

where B11, B12, B21, B22 ∈ R
2×2 are constant matrices, g1(t), g2(t) ∈ C[0, 1] and

the matrix B22 is nonsingular. Due to the problem structure we can immediately
rewrite (85) to decouple the inherent ODE system and the system of algebraic
constraints.

We first express x2(t) from (85b), x2(t) = B−1
22 (g2(t) − B21x1(t)), and rewrite

(85a) as

x′
1(t) = −1

t

(
B11x1(t)−B12B

−1
22 B21x1(t)

)
+

1

t

(
g1(t)−B12B

−1
22 g2(t)

)
.

Consequently, the inherent ODE system is singular with a singularity of the first
kind and has the form

(86) x′
1(t) =

1

t
Mx1(t) + f(t), t ∈ (0, 1],

where M = B12B
−1
22 B21 − B11 and f(t) =

(
g1(t)−B12B

−1
22 g2(t)

)
/t. Problems 2.1

and 2.2 given below are specified in such a way that M has a special eigenstructure:
Problem 2.1 has eigenvalues λ1 = 0, λ2 = 5, and for Problem 2.2, λ1 = λ2 = 0.

The initial conditions which guarantee that for f ∈ C[0, 1] the solution x1(t)
of (86) is at least in C[0, 1] read Qx1(0) = 0, where Q is a projection onto the
subspace of R

2 spanned either by the eigenvector associated with the negative
eigenvalue of M or by the principal vector associated with the eigenvalue zero
(Problem 2.2). For uniqueness we need to prescribe the value of Px1, where P =
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I−Q. Clearly, P = S+R, where S is a projection onto the subspace of R2 spanned
by the eigenvector associated with the positive eigenvalue of M (Problem 2.1).
Recall that R is a projection onto the subspace of R2 spanned by the eigenvector
associated with the eigenvalue zero (Problems 2.1 and 2.2). According to theory,
one needs to prescribe Sx1 at t = 1, but Rx1 can be specified at either t = 0 or
t = 1. We now give the specification of Problems 2.1 and 2.2; for details see [28].

Problem 3.3. The matrices Bij are

B11 =
(

9 12
−8 −11

)
, B12 =

(
3 −1

−2 1

)
, B21 =

(
1 1
2 3

)
, B22 =

(
1 0

0 1
2

)
.

For the system (86) we have λ1 = 0, λ2 = 5 and

M =
(−10 −15

10 15

)
, ev0 =

(−1.5
1

)
, ev5 =

(−1
1

)
, R =

(
3 3

−2 −2

)
, S =

(−2 −3
2 3

)
.

The functions g and f are specified in such a way that the solution of the Problem
2.1 reads:

x1 =

(
x11

x12

)
=

(
e5t sin(t)− 1.5 + t5

cos(5t)− t5

)
, x2 =

(
x21

x22

)
=

(
cos(5t)− 1
e5t sin(t)

)
.

Here, Q = 0 and the solution is continuous. We just need to specify boundary
conditions which are necessary for uniqueness. We prescribe (Sx1(1))2 = 2x11(1)+
3x12(1) = 2e5 sin(1)+3 cos(5)−4, and for the second condition we specify (Rx1(0))1,
which means x11(0)+x12(0) = −0.5. For x2, we prescribe the consistency condition
B22x2(t) +B21x1(t) = g2(t) at t = 0,(

1 0
0 1

2

)
x2(0) +

(
1 1
2 3

)
x1(0) =

(
−0.5
0

)
.

Problem 3.4. For this model we define the matrices Bij as

B11 =
(−9 −15

8 13

)
, B12 =

(
3 −1

−2 1

)
, B21 =

(
1 1
2 3

)
, B22 =

(
1 0

0 1
3

)
.

In (86) we now have λ1 = λ2 = 0 and

M =
(

6 9
−4 −6

)
, ev0 =

(−3
2

)
, pv0 =

(
1

−1

)
, R =

(
3 3

−2 −2

)
, Q =

(−2 −3
−2 −3

)
.

Moreover,

x1 =

(
x11

x12

)
=

(
e4t sin(t)− 3
cos(4t) + 1

)
, x2 =

(
x21

x22

)
=

(
cos(4t)− 1
e4t sin(t)

)
.

We require (Qx1(0))1 = 0, or equivalently, 2x11(0)+3x12(0) = 0 for the solution x1

to be continuous on [0, 1]. As a second condition we choose to specify (Rx1(1))1,
which means x11(1) + x12(1) = e4 sin(1) + cos(4) − 2. The consistency conditions
for x2 read B22x2(0) +B21x1(0) = g2(0), which means(

1 0
0 1

3

)
x2(0) +

(
1 1
2 3

)
x1(0) =

(
−1
0

)
.

We stress that, for Problems 2.1 and 2.2, condition (76) is satisfied due to the
Remark on page 286. The numerical results are summarized in Table 2. In [28]
we have also considered other eigenstructures of the matrix M , and it is worth
mentioning that collocation at Gaussian points proved robust for all situations.
The experiments for this problem class show convergence rates which do not differ
from those given in (77a) and (79). Here, we have also used Radau points as



300 0. KOCH, R. MÄRZ, D. PRAETORIUS, AND E. WEINMÜLLER

collocation points. (Lobatto points cannot be used because of the singularity.) As
for Gaussian points, superconvergence does not always hold; cf. Table 2.

3.2.2. Problems with unbounded canonical projector, B22 singular. Here, we con-
tinue the study of the behavior of the canonical projector Qcan(t). The following
examples can be written as a modified system (84) and have the form

(87)

(
tα I
0

)(
(I 0)

(
x1(t)
x2(t)

))′
+

(
B11(t) B12(t)
B21(t) B22(t)

)(
x1(t)
x2(t)

)
=

(
g1(t)
g2(t)

)
.

Here again,

D = ( I 0 ), D− =

(
I
0

)
, Q0 =

(
0 0
0 I

)
.

Moreover, B22(t) := tβB22, β > 0, α + β = 1, and B22 is nonsingular. In this
setting,

G1(t) =

(
tαI B12(t)
0 B22(t)

)
, G−1

1 (t) =

(
1
tα I − 1

tαB12(t)B
−1
22

0 B−1
22

)
,

which means that tG−1
1 has a continuous extension to [0, 1] in the case where all

involved matrices are continuous on [0, 1]. However, the canonical projector

(88) Qcan(t) = Q0G
−1
1 (t)B(t) =

(
0 0

1
tβ
B−1

22 B21(t) I

)
is unbounded on [0, 1] for β > 0. Moreover,

DG−1
1 (t)B(t)D− =

1

tα
B11(t)−

1

t
B12(t)B

−1
22 B21(t)

=
1

t

(
tβB11(t)−B12(t)B

−1
22 B21(t)

)
,

and hence

M(t) = −tβB11(t) +B12(t)B
−1
22 B21(t), M(0) = B12(0)B

−1
22 B21(0).

For the experiments, we choose the matrices B12(t), B21(t) to be constant and the
matrices B22, B21(t) to be nonsingular. Moreover, with the choice B12 = B−1

21 and
B−1

22 = diag(λ1, λ2), λi �= 0, the eigenvalues of M(0) are λ1 and λ2. Consequently,
since M(0) is nonsingular, R = 0, and the matrix Q0G

−1
1 (t)B(t)D−R = 0 has a

continuous extension on [0, 1].

Problem 3.5. The matrices Bij are

B11 =
(
0 0
0 0

)
, B12 =

(
3 −1

−2 1

)
, B21 =

(
1 1
2 3

)
, B22(t) = tβB22 = tβ

(
1 0

0 1
5

)
.

Also,

B−1
22 =

(
1 0
0 5

)
, M(0) = B12B

−1
22 B21 =

(−7 −12
8 13

)
.

System (87) is subject to the boundary conditions

x1(1) = sin(1), x2(1) = e1,

x1(1) + x2(1) + x3(1) = sin(1) + e1 + cos(1),

2x1(1) + 3x2(1) +
1

5
x4(1) = 2 sin(1) + 3e1 +

1

5
e−1.
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Since the eigenvalues of M(0) are both positive, we prescribe the values of the
differential components x1(t) and x2(t) at t = 1. The remaining two conditions are
consistent boundary conditions for the algebraic components. Note that we solve
a terminal value problem which generically shows order reductions when Qcan(t)
becomes unbounded for t → 0+.

The right-hand side g which depends on parameters α, β, and � ≥ α has been
chosen such that the problem has the solution x(t) = (t sin(t), tet, cos(t), t�e−t)T ;
cf. [28] for details. For the experiment, the parameters have been set as follows:
α = 0, β = 1, and � = 3.

The numerical results for this example can be found in Table 2. For the case
where the differential solution components u(t) are smooth, no order reduction
is observed, although the projection matrix Qcan(t) = O(1/t) is unbounded for
t → 0+.

Problem 3.6. We use the same data as in Problem 2.3 except for the right-hand
side g which here depends on parameters α, β, γ, δ and � such that � ≥ α ≥
0, α+ β = 1, β > 0, δ ≥ 1, γ ≥ 0, γ + α ≥ 0.

The boundary conditions for the resulting terminal value problem are given by

x1(1) = sin(1), x2(1) = e1,

x1(1) + x2(1) + x3(1) = sin(1) + e1 + cos(1),

2x1(1) + 3x2(1) +
1

5
x4(1) = 2 sin(1) + 3e1 +

1

5
e−1.

Again, since the eigenvalues of M(0) are both positive, we prescribe the values of
the differential components x1(t) and x2(t) at t = 1. The remaining two conditions
are consistent boundary conditions for the algebraic components. Note that (76) is
again satisfied. The solution now has the form x(t) = (tγ sin(t), tδet, cos(t), t�e−t)T ,
and the differential components x1 and x2 may become unsmooth. We set α = 0
and β = 1, and the remaining parameters are specified as � = 5

2 , γ = 6
5 , δ = 5

2 .
The experiments for this example are reported in Table 2. Now, we observe

order reductions due to the fact that the canonical projector (88) is unbounded for
t → 0+ (β = 1). One would expect to see the convergence order O(h1.2) owing
to the properties of x, especially the differential components. However, one loses
approximately one additional power of h in x which can be attributed to the O(1/t)
behavior of Qcan(t).

4. Summary

We investigated the convergence behavior of collocation schemes applied to solve
BVPs in linear index 1 DAEs with a singularity of the first kind. We have consid-
ered a very general analytical problem setting, linear index 1 DAE systems with
properly stated leading term, which were required to be well-posed and have suffi-
ciently smooth solutions. For the discussion of the analytical problem and in the
convergence analysis of the collocation scheme, we utilized a theoretical decoupling
of the system to derive the explicit inherent ODE and the algebraic constraints.
We could show that in the case of initial, terminal, and boundary value problems,
the global error of the collocation scheme for s equidistant, Gaussian or Radau
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collocation points is O(hs) uniformly in t. More precisely, for equidistant nodes,

gextau = O(hs), gextcol = O(hs), geutau = O(hs+1), geutcol = O(hs+1),

gextau = O(hs), gextcol = O(hs), geutau = O(hs), geutcol = O(hs)

hold for s odd and even, respectively. By means of experiments we could illustrate
the fact that conditions on the problem data which are sufficient for the analytical
problem to be well posed turn out to be necessary for the numerical scheme to have
the stage order s. The superconvergence order 2s for Gaussian points does not hold
in general, due to the singularity in the inherent ODE.

Similar convergence results hold also for systems of DAEs with no singularities in
the inherent ODE. For initial, terminal, and boundary value problems with smooth
solutions, the above convergence orders hold in the case that condition (78) is
satisfied. Otherwise, order reductions in the algebraic components may occur.

Clearly, when the solution of the problem is not sufficiently smooth, correspond-
ing order reductions are observed, in line with classical collocation theory.

For Radau collocation superconvergence, gextau=O(h2s−1), geutau=O(h2s−1)
is observed, and the uniform convergence behavior is gextcol = O(hs+1), geutcol =

O(hs+1), for all values of s, except for the case s = 1, corresponding to the backward
Euler rule showing the expected linear convergence.
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