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ON THE DEGREE GROWTH
IN SOME POLYNOMIAL DYNAMICAL SYSTEMS
AND NONLINEAR PSEUDORANDOM NUMBER GENERATORS

ALINA OSTAFE AND IGOR E. SHPARLINSKI

ABSTRACT. In this paper we study a class of dynamical systems generated
by iterations of multivariate polynomials and estimate the degree growth of
these iterations. We use these estimates to bound exponential sums along the
orbits of these dynamical systems and show that they admit much stronger
estimates than in the general case and thus can be of use for pseudorandom
number generation.

1. INTRODUCTION

Given a system of r polynomials F = {fo,..., fr—1} in r variables over a ring
R, one can naturally define a dynamical system generated by its iterations:

R =t = fe) k=000
for each ¢ = 0,...,r — 1; see [ 2, B, [7, @, 10, 014, I5, 26l B33, 42 43 [44] and
references therein for various aspects of such dynamical systems. It is also natural
to consider the orbits obtained by such iterations evaluated at a certain initial value
(u;w, cee ,uk7r_1).

In the special case of one linear univariate polynomial over a residue ring or
a finite field, such iterations, known as linear congruential generators, have been
successully used for decades in the theory of quasi-Monte Carlo methods; see [35]
30].

Unfortunately, in cryptographic settings, such linear generators have been suc-
cessfully attacked [IT], 19 27, 29, BI] and thus deemed unusable for cryptograpic
purposes. It should be noted that nonlinear generators have also been attacked [4]
B, 21], 24], but the attacks are much weaker and do not rule out their use for
cryptographic purposes (provided reasonable precautions are made). Although lin-
ear congruential generators have been used quite sucessfully for quasi-Monte Carlo
methods, their linear structure shows in these applications too and often limits
their applicability; see [35] [36].

Motivated by these potential applications, the statistical uniformity of the dis-
tribution (measured by the discrepancy) of one and multidimensional nonlinear
polynomial generators have been studied in |20} 22| 37, [40] [41, 45]. However, all
previously known results are nontrivial only for those polynomial generators that
produce sequences of extremely large period, which could be hard to achieve in
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practice. The reason behind this is that typically the degree of iterated polyno-
mial systems grows exponentially, and that in all previous results, the saving over
the trivial bound has been logarithmic. Furthermore, it is easy to see that in the
one-dimensional case (that is, for 7 = 1) the exponential growth of the degree of
iterations of a nonlinear polynomial is unavoidable. One also expects the same
behaviour in the mulitidimensional case for “random” polynomials fo,..., fr—1.
However, for some specially selected polynomials fy, ..., f._1, the degree may grow
significantly slower.

Indeed, here we describe a rather wide class of polynomial systems with poly-
nomial growth of the degree of their iterations. As a result we obtain much better
estimates of exponential sums, and thus of discrepancy, for vectors generated by
these iterations, with a saving over the trivial bound being a power of p. Our con-
struction resembles that of triangular maps of [33] but behaves quite differently;
for example, triangular maps in [33] have the fastest possible degree growth.

We remark that, in the case of the so-called inversive generator, rather strong
estimates are also available [38] [39], but this generator involves a modular inversion
at each step, which is a computationally expensive operation. Another alternative
where stronger than general bounds are known is the power generator, which essen-
tially consists of iterating a monomial map X — X¢; see [8] [16] 17, [18] [34] [46] and
especially the recent result of J. Bourgain [6] on the joint distribution of consec-
utive terms of this generator. Similar results also hold for pseudorandom number
generators obtained by iterating Dickson polynomials [23] and Redei functions [25].

Finally, we note that we also hope that our results may be of use for some
applications in polynomial dynamical systems.

2. POLYNOMIAL DYNAMICAL SYSTEM WITH SLOW DEGREE GROWTH

2.1. Construction. Let F be an arbitrary field and let F = {fo,..., fm} be a
system of m + 1 polynomials in F[Xj, ..., X,,] defined in the following way:
fo(Xoy .y, Xim) = Xogo(X1, ..., Xon) + ho( X1, ..., Xim),
f1( X, s Xm) = X191 ( Xy o, X)) + A1 (Xay o, Xon),
(1)
fn—1(Xo, s Xin) = Xin—19m—1(Xm) + hin—1(Xm),
fm(Xoy ..o, Xim) = aX, + b,
where
a,beF, a#0, gih €F[Xiz1,...,Xm], i=0,....m—1.

We also impose the condition that each polynomial g; has a unique leading mono-
mial X Xo0™, that is,

i+1
(2) 9i(Xit1, o, Xom) = Xffr’i“ X b gi( Xy, X)),
where

(3) degg; <deggi = Siit1+  + Sim

and

(4) deg h; < degy;

fore=0,...,m—1.
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For each i = 0,...,m we define the k-th iteration of the polynomials f; by the
recurrence relation

(5) fi(O):f’ia fz(k) :fi(kil)(foa'”vfm)a k:O,l, .
2.2. Degree growth. We denote by dj; the degree of the polynomial fi(k), =
0,...,m. We also consider the vector of degrees of the iterations

di, = (dko---5dem),

and the upper triangular matrix

1 80’1 80’2 e S())m
S = 0 1 81,2 .-+ Sim
0 0 0o ... 1
given by the exponents of the leading monomials in f;, i = 0,...,m. We observe
that under iterations we have
k k—1 k—1 _ k—1 _
= i D) (0T D),
1=0,...,m—1,
= a4,
and using the conditions on the degrees of the polynomials g; and h; we get
dri = dr—1,i+ Siit1dk—1,i4+1 + -+ Simde—1,m, t=0,...,m—1,
dpm = 1L

Using the above notation, the degrees of the iterations satisfy the relation
dy, = Sdy_1, k>0 and d_;=(1,...,1)
which is equivalent to writing
(6) d, = S*(1,..., 1), k>0.
We now show that the degrees of the iterations of F grow polynomially.

Lemma 1. Let fo,...,fm € F[Xo,..., X be as in ([), satisfying the condi-
tions @), B) and {@). Then the degrees of the iterations of F = {fo,..., fm} grow
as follows:

dp; = mkmiisai_l’_l o Sme1,m T Vi(k), 1=0,...,m—1,
dim = 1,
where ¥;(T) € Q[T] is a polynomial of degree degp; < m — i.
Proof. We use induction on m. For m = 1 one can easily see that we get
dro = ksoq1+s01+1 and di1 = 1.

We assume the result is true for m indeterminates. Let S be the matrix of exponents
of the leading monomials in F as above. We write S in the following way:

R s
=i 1)

where R is the matrix given by the exponents of the first m indeterminates in the
leading monomials of f;, i =0,...,m—1, and s = (S0,m, - - ., Sm—1,m). For a vector
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v € F™ we use v! and v; to denote the transpose and the ith component of v,
respectively. We also denote by e the unit vector e = (1,...,1) € F™. Using this
notation and recalling ([B]), we obtain

4 = §FHel — <R1;+1 (RF +--. i|_ R+ I)st) o

Componentwise, we have
dki — (Rk+1et)l+((Rk++R+I)St)

)

dpm = L

i)

It is easy to note that the maximal degree of the kth iteration of polynomials f; for
any i is given by the last position in each row of S**1. Using this remark and the
induction hypothesis we get

j 1 -m—1—1 .
(R's'); = 1=’ Y Siid 1 Sme2m15m—1,m + ©i(j),
for some polynomials ¢;(Z) € Q[Z] of degree degp; < m —1 —i. Then
k 1 k
Z(R]St)i = T it Smelm ij_l_z + vi(k),
= (m—1—1)! =

for some polynomials $;(Z) € Q[Z] of degree deg @; < m —i. As

m—1

k
S = L (Bl (k1) — Bui0)),
3=0

where B,,_; is the Bernoulli polynomial of degree m — i (which has the leading
coefficient equal to 1), we finally obtain the desired result. O

Corollary 2. Let fo,..., fm € F[Xo,...,Xu] be as in [d), satisfying the condi-
tions @), @) and @). If so1...Sm—1,m # 0, then for any integer v > 1 there
is a constant ko depending only on the matriz S and v such that for any integers
k1,01,...,k,, 0, > ko and any nonzero a = (ag,...,am—1) € F™,

m—1 v
k; I’
Fakitr, k0, = E a; E (fi( ) *fi(J))
i=0  j=1

s a nonconstant polynomial of degree
deg Faykhelw--»kualu = O(km)’
where
k= max{kl,fl, ceey ky,éu}
unless the components of the vectors
(kl,...,ku) and (fl,...,ﬂu)

are permutations of each other.

Proof. Let iy be the smallest integer with a;, # 0. Performing all trivial cancella-
tions, without loss of generality we can also assume that the vectors (kq, ..., k,) and
(¢1,...,¢,) have no common elements. Thus the largest element amongst them, k,
is unique. It is now clear from Lemma [I] that the leading term of fi(gk) is present in
Faky 01, kb, 0
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3. POLYNOMIAL PSEUDORANDOM NUMBER GENERATORS

3.1. Construction. Let F = {fo,...,fm} be a list of m + 1 polynomials in
F,[Xo,...,X,] defined as in section 2. We consider the sequence defined by a
recurrence congruence modulo a prime p of the form

(7) Unt1, = fi(Uno, .- Un,m) (mod p), n=0,1,...,
with some initial values ugp,...,upm. We also assume that 0 < u,; < p, i =
0,...,m,n=0,1,.... Using the following vector notation:
Wy = (Un,05- -+ Un,m)
and

F:(fO(XO,---,Xm),-..,fm(XO’...7Xm))7
we have the recurrence relation
W1 = F(wWy).

In particular, for any n,k > 0 and ¢ = 0,...,m we have

k
Un+4-k,i = fz( )(un,Oa ce 7un,m)
or
Wik = FE(wy,).

Clearly the sequence of vectors w,, is eventually periodic with some period T <
p™ L. Without loss of generality we assume that it is

Wpt+T = Wp, n=0,1,....
In our construction of pseudorandom sequences, we discard the last component in
the vectors w,, and denote
u, = (un,Oa ce 7un,m—1)7

which we show to be rather uniformly distributed provided T is large enough.

3.2. Exponential sums. We put
e(z) = exp(2miz/p).

Our second main tool is the Weil bound on exponential sums (see [32, Chapter 5]),
which we present in the following slightly generalized form.

Lemma 3. For any nonconstant polynomial F € F,[Xo,...,X] of total degree
D, we have the bound

p

Z e (F(zo,...,om))| < DpmT1/2.

0y s T =1

We follow the scheme previously introduced in [37) [38]. Furthermore, as has
been suggested in [41] 45], we work with higher moments of the corresponding
exponential sums. However the polynomial growth of the degree allows us a much
more favorable choice of parameters and thus leads to a better estimate than in
previous works.
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Assume that the sequence {u,} generated by (@) is purely periodic with an

arbitrary period T. For an integer vector a = (ag,...,am—1) € Z™ we introduce
the exponential sum
N-—-1 m—1
Sa(N) = Z e (Z aiunﬂ) .
n=0 =0

Theorem 4. Let the sequence {u,} be given by (), where the family of m + 1
polynomials F = {fo,..., fm} € Fp[Xo,...,Xm] of total degree d > 2 is of the
form (@), satisfying the conditions @), @) and @), and such that so1 ... Sm—1,m #
0. Assume that {u,} is purely periodic with period T. Then for any fized integer
v > 1, and any positive integer N < T, the bound
max [Sa(N)| =0 (po‘m”Nl_Bm’”)
ged(ag,.am—1,p)=1
holds, where

2m? + 2mv +2m+v 1
O,y = and By = o
’ dv(m +v) ’

2v
and the implied constant depends only on d, m and v.

Proof. Select any a = (ag,...,am—1) € Z™ with ged(ag, ..., am-1,p) = 1. It is
obvious that for any integer &k > 1 we have

N—-1 m—1
Sa(N) — Z e <Z aiunJrk,i)

n=0 =0

< 2k.

Let ko be the same as in Corollary [2 Therefore, for any integer K > ko,
(8) (K — ko +1)|Sa(N)| < W + K,
where

N
<>

n=0

W:

-1

n=0 k=kq i=0

K m—1
S e X o )|

k=ko i=0
As before, we define the sequence of polynomials

F¥(Xo,..., Xm) €FylXo, .., X

by ([@). Then
N-1| K m—1 2v
w2 < N¥L Z Z e (Z aifi(k) (un)>
n=0 |k=ko i=0
K m—1 2v
< N Z Z e (Z aifi(k) (wo,...,wm)>
wo,..., W €Fp 1k=kg =0

K v

N2v-1 Z Z e mz_:lai Z (fi(kj) (W) — fi(éj) (W))

k1, sk by =Ko weRp+1 =0 j=1

For O(K") vectors

(kl,...,]{?y) and (61,...,&,),

which are permutations of each other, we estimate the inner sum trivially as p™*!.
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For the other O(K?”) vectors, we combine Corollary B with Lemma [ getting
the upper bound K™p™t1/2 for the inner sum for at most K2 sums. Hence,

W2y < KVN2y—lpm+1 +Km+21/N21/—1pm+1/2.

Inserting this bound in (), we derive
Sa(N) =0 <K—1/2N1—1/2up(m+1)/21/ + K77L/21/N1—1/2yp(2m+1)/4u i K) _

Choosing
K — ’7p1/2(m+1/)—‘

(and assuming that p is large enough, so K > ko), after simple calculations we
obtain the desired result. O
Since
lim opm/Bmy =m+1/2,
V—r00
we see from Theorem [ that for any fixed € > 0 there is a § > 0 such that if
T > N > pm+1/2+57 then

max |Sa(N)| = O (N'79)

ged(ao,.,am—1,p)=1

(to see this, it is enough to choose a sufficiently large v). On the other hand, when
T and N are close to their largest possible value p™*1, that is, if

T Z N Z pm+1+0(1),
then Theorem @l applied with v = 1 gives the estimate

max [Sa(N)| < N1-1/4m+1)°+o(1)
ged(ag,...,am—1,p)=1 o

3.3. Discrepancy. Given a sequence I' of N points,

9) I'= {('Yn,Oa cee a'Yn,m—l)nN:_ol

in the m-dimensional unit cube [0,1)™, it is natural to measure the level of its
statistical uniformity in terms of the discrepancy A(T"). More precisely,

TF(B) _ |B|

AT)= sup N

BCo,1)™

)

where T1(B) is the number of points of I inside the box
B =01, 1) X - X [, Bm) € [0,1)"

and the supremum is taken over all such boxes; see [I3] [30].

We recall that the discrepancy is a widely accepted quantitative measure of
uniformity of distribution of sequences, and thus good pseudorandom sequences
should (after an appropriate scaling) have a small discrepancy; see [35] [36].

Typically the bounds on the discrepancy of a sequence are derived from bounds
of exponential sums with elements of this sequence. The relation is made explicit in
the celebrated Koksma—Szisz inequality, see [13, Theorem 1.21], which we present
in the following form.
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Lemma 5. For any integer L > 1 and any sequence T' of N points (@) the discrep-
ancy A(T) satisfies the following bound:

1 1 m—1 1 N-—-1 m—1
laol,..s|am—1|<L §=0 n=0 j=0
ag+tag, >0
Now, combining Lemma [B with the bound obtained in Theorem [ and taking
L =p—1, we obtain:

Theorem 6. Let the sequence {u,} be given by (), where the family of m + 1
polynomials F = {fo,..., fm} € Fp[Xo,...,Xm] of total degree d > 2 is of the
form ), satisfying the conditions @), @) and @), and such that so1 ... Sm—1,m 7#
0. Assume that {u,} is purely periodic with period T. Then for any fized integer
v > 1, and any positive integer N < T, the discrepancy Dy of the sequence

(un,oa---,m>’ n=0,...,N—1,
D p
satisfies the bound

Dy = O (p*mN~Fm (logp)™)

where
2m2 4+ 2my + 2m + v 1
qm,y = and ﬁm v — 5

’ dv(m +v) ’

2v
and the implied constant depends only on d, m and v.

We remark that the same comments at the end of Section also apply to
Theorem

4. REMARKS AND OPEN QUESTIONS

We recall that the dynamical degree dyndeg F of the polynomial system F and
of the associated affine map F : F" — F" is defined as

1/k
dyndeg F = lim (deg}'(k)) ,
k—o0

where F(*) is the kth iteration of F (and deg F(*) is the largest degree of its
components); see [43] Section 7.1.3]. We note that the polynomial systems F
which we have constructed in () satisfy dyndeg F = 1 under the conditions (2I),
@) and ). Furthermore, for any nonlinear polynomial system F with dyndeg F =
1, one can obtain an improvement of the generic bounds on the corresponding
exponential sums and the discrepancy of the generated sequences. However the
actual improvement depends on the speed of the convergence.

One of the attractive choices of polynomials (Il), which leads to a very fast
pseudorandom number generator, is

9i(Xig1, .-, Xom) = Xia and hi(Xig1, .., Xm) = a;

for some constants a; € Fp,, ¢ =0,...,m—1. The corresponding sequence of vectors
is generated at the cost of one multiplication per component. This naturally leads to
a question of studying the periods of such sequences generated by such polynomial
dynamical systems.
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We also note that it is natural to consider the joint distribution of several con-
secutive vectors

(un7"'7un+571)7 ’I’LZO,].,...,

in the sm-dimensional space. It seems that our method (with some minor adjust-
ments) can be applied to derive an appropriate variant of Corollary [2 which is
needed for such a result.

One of the possible ways to improve our results is to construct special polyno-
mials F = {fo,..., fr—1} such that linear combinations of their iterations, of the
type which appear in the proof of Theorem M satisfy the condition of the Deligne
bound [I2], that is, have a nonsingular highest form. In fact, even some partial
control over the dimension of the singularity locus of this highest form may already
lead to better estimates via results of Katz [28§].

Finally, obtaining stronger results “on average” over all initial values wq € ]F;”‘|r1
is an interesting and challenging question. It is possible that some of the arguments
of [39] may be applied to this problem.
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